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Many hypersonic flows of interest feature high free-stream stagnation enthalpies, which
lead to high flow-field temperatures and thermochemical non-equilibrium (TCNE) effects,
such as finite-rate chemistry and vibrational excitation. However, very few studies have
considered receptivity for high-enthalpy flows. In this paper, we investigate the receptivity
of a high-enthalpy Mach 5 straight-cone boundary layer to slow and fast acoustic free-
stream waves using direct numerical simulation alongside linear stability theory and the
linear parabolised stability equations. In addition, we investigate the TCNE effect on
receptivity by comparing results between the TCNE gas model and a thermochemically
frozen gas model. The dominant instability mechanism for this flow configuration
is found to be Mack’s second mode, with the unstable mode being the fast mode.
Second-mode receptivity coefficients are obtained for a number of frequencies. For free-
stream slow acoustic waves, these receptivity coefficients are found to generally increase
with frequency. For a small subset of the considered frequency range, the receptivity
coefficients corresponding to free-stream fast acoustic waves are found to be several
times larger than for free-stream slow acoustic waves. The TCNE effects are found to
lead to higher peak N-factors while also reducing second-mode receptivity coefficients,
indicating that TCNE effects have competing impacts on receptivity versus stability for
the considered frequencies.
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1. Introduction

Extreme surface heating still poses a substantial challenge to the design of vehicles for
sustained hypersonic flight. It is well known that turbulent flows can greatly increase
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surface heating compared with a laminar flow (Hollis 2012). If laminar-to-turbulent
transition locations can be predicted, then the use of potentially heavy or costly thermal
protection systems can be reduced or even eliminated entirely in areas where the boundary
layer remains laminar, thus improving the feasibility of the vehicle in terms of cost and
aerodynamic performance.

In a boundary layer, transition to turbulence occurs when a disturbance in an initially
laminar flow reaches some critical amplitude. If environmental disturbances (such as free-
stream disturbances or surface roughness) are small, then transition occurs through a
specific path. First, the environmental disturbances excite the boundary-layer disturbance
modes through the so-called receptivity process. Next, one or more of these boundary-
layer disturbance modes are destabilised through some linear instability mechanism, after
which they grow exponentially. For two-dimensional (2-D) or axisymmetric hypersonic
boundary layers, the dominant instability mechanism is Mack’s second mode (Mack
1984). If the disturbance mode becomes large enough in amplitude, it becomes nonlinear
and shortly thereafter break down to turbulence begins. Naturally, transition locations
depend not only on the nature of the instability mechanism, but also on the initial
amplitude of the disturbance mode when it first becomes unstable, which is determined
by the receptivity process.

The most commonly used transition prediction method is the e" method of van
Ingen (1956), which postulates that transition occurs when a single unstable frequency
or spanwise mode within the overall boundary-layer disturbance attains some critical
amplitude. While the eV method has proven to be useful, its main drawback is that
it neglects the contribution of the broadband spectrum of frequencies and spanwise
wavenumbers within the boundary-layer disturbance towards transition. In light of these
issues, Mack (1977) proposed a more sophisticated transition prediction method that takes
into account this spectrum. Recently, Marineau (2017) was able to use the amplitude
method to predict transition locations fairly accurately for straight-cone geometries in
wind tunnel conditions. To be used effectively, however, both of these transition prediction
methods require knowledge of the initial amplitude of the unstable mode, which must be
obtained from receptivity studies.

In many cases, transition locations are influenced primarily by the presence
of free-stream disturbances. In ground-based facilities, free-stream disturbances are
predominantly acoustic in nature, originating from the turbulent boundary layer on the
walls of the wind tunnel (Laufer 1961). In flight tests, the free-stream disturbances are
more likely to be vorticity or entropy disturbances, with the former being associated with
turbulence. Receptivity to free-stream disturbances in a hypersonic flow is characterised
by the presence of the bow shock, and the interaction of the free-stream wave with
the bow shock fundamentally changes the nature of the wave. According to the linear
disturbance—shock interaction theory of McKenzie & Westphal (1968), a free-stream wave,
upon interacting with a shock, will transmit or generate waves of all four types (fast and
slow acoustic, entropy, vorticity) behind the shock. These waves evolve as they interact
with the geometry and excite the boundary-layer modes through a synchronisation process
(Fedorov & Khokhlov 2001).

The problem of receptivity to free-stream disturbances has been studied for a wide range
of free-stream conditions and geometries but has mostly been limited to low-enthalpy
flows, where flow-field temperatures are low enough that a calorically perfect gas (CPG)
assumption is valid. Some notable examples of low-enthalpy receptivity studies are Kara,
Balakumar & Kandil (2011), Balakumar & Kegerise (2011), Huang & Zhong (2014),
Cerminara & Sandham (2017), Balakumar & Chou (2018) and He & Zhong (2022). High-
enthalpy flows, on the other hand, are characterised by high flow-field temperatures which
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lead to real-gas effects such as chemical reactions and the excitation of vibrational or
electronic internal energy modes. These types of flows are commonly encountered in
flight conditions, for example in the Re-entry F experiment (Johnson et al. 1972), and
in a number of ground-based facilities, such as the T5 reflected shock tunnel at Caltech or
the High Enthalpy Shock Tunnel at Gottingen.

A real-gas flow can be further classified as an equilibrium, frozen or non-equilibrium
flow based on a Damkdohler number, representing the ratio of the characteristic flow time
scale to the characteristic time scale of a real-gas process. A vibrational Damkdohler
number can be defined as Da, = ty/7y, where 77 is the characteristic flow time and
T, is the characteristic vibrational relaxation time scale. Similarly, a chemical Damkohler
number can be defined as Da. = /7., where 7. is the characteristic chemical reaction
time scale. If Da, — o0 or Da. — oo, the vibrational relaxation or chemical reactions
occur so quickly that the flow is in thermal or chemical equilibrium. If Da, — 0 or
Da. — 0, vibrational relaxation or chemical reactions occur so slowly that the vibration
temperature and chemical composition remain ‘frozen’ at their initial values, at least in the
inviscid limit. Realistic flows are usually somewhere between these two extremes, and are
considered to be in thermal or chemical non-equilibrium. At even higher temperatures, it
is necessary to also consider ionisation and its characteristic time scale, although a similar
discussion applies.

Real-gas effects influence boundary-layer stability through two routes. The first route
is an indirect one; that is, real-gas effects modify the underlying mean flow, which then
influences the disturbance. Generally, real-gas effects lead to an overall cooling of the
mean flow (i.e. a reduction in translation—rotation temperature), which in turn tends to
destabilise the second mode. This cooling occurs as a result of thermal energy being
directed towards vibrational modes through vibrational relaxation (Bitter & Shepherd
2015; Knisely & Zhong 2020), or towards endothermic dissociation reactions (Stuckert
& Reed 1994; Chang, Vinh & Malik 1997; Hudson, Chokani & Candler 1997; Marxen
et al. 2013; Mir6 Mir6 et al. 2020; Zanus et al. 2020b). Stuckert & Reed (1994) and Chang
et al. (1997) showed that this cooling can lead to the appearance of unstable supersonic
modes. In the second route, real-gas effects influence the disturbance directly. Within this
route, Kline, Chang & Li (2018) found that, for a Mach 11 straight-cone flow, vibrational
relaxation had a stabilising influence on the second mode, with the degree of stabilisation
depending on the vibrational relaxation time scale. Johnson, Seipp & Candler (1998)
found that, for a Mach 5.1 straight-cone flow, endothermic reactions (like dissociation)
were stabilising to the second mode, while exothermic reactions (like recombination) were
destabilising. Mortensen (2018) found a similar result for a Mach 20 straight-cone flow.

Very few studies have considered receptivity to free-stream disturbances for high-
enthalpy flows. Some notable studies include Ma & Zhong (2004), Prakash & Zhong
(2012), Wagnild (2012) and Wang (2017). Only a small subset of these high-enthalpy
studies (e.g. Varma & Zhong (2022)) have attempted to obtain receptivity coefficients
(i.e. the ratio of the initial amplitude of the unstable mode to the amplitude of the free-
stream disturbance) or the real-gas effect on said receptivity coefficients. As a result, the
existing knowledge base of receptivity for high-enthalpy flows is limited in terms of the
free-stream conditions and geometries considered and in scope. The preliminary findings
of the authors (Varma & Zhong 2022) suggest that, for a Mach 5 flow over a straight
cone, thermochemical non-equilibrium (TCNE) effects decrease receptivity coefficients
for free-stream acoustic pulses compared with a thermochemically frozen gas.

This study aims to expand on the understanding of receptivity in high-enthalpy flows by
(1) investigating receptivity to free-stream acoustic waves for a Mach 5 high-enthalpy flow
and by (ii) investigating the TCNE effect on receptivity for this flow. Much of this study
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Parameter Value Parameter Value

Moo 5 Poo 2.322 x10~2 kgm—3
Poo 10 kPa T, Ty,00 14913 K

Yn, 0.78 Yo, 0.22

Table 1. Free-stream conditions for present study. The temperatures are not specified a priori, but are
computed from the remaining quantities.

is based on the preliminary work of Varma & Zhong (2022). The paper is organised as
follows. The simulation conditions are described in § 2 while the governing equations and
numerical methods are described in §§ 3 and 4, respectively. The results are presented in
§8§ 5-7. Finally, § 8 concludes the paper.

2. Simulation conditions
2.1. Free-stream conditions and geometry

The free-stream conditions used here are the same as Knisely & Zhong (2019b,c, 2020)
and are summarised in table 1. The free-stream stagnation enthalpy is /¢ 00 2 9.17 MJ kg™!
and the unit Reynolds number is Rej & 1.72 x 10® m~!. These conditions are similar to
those found in high-enthalpy shock tunnels. The geometry is a circular cone with a nose
radius of 1 mm and a half-angle of 5° at zero angle of attack.

2.2. Cases

For the above flow configuration, direct numerical simulation (DNS) is performed for
two cases using different gas models. The first case (hereafter referred to as the TCNE
case) uses a TCNE gas model that includes finite-rate chemistry based on a five-species
air model, as well as a two-temperature model for the translation—rotation and vibration
temperatures. The governing equations are given in § 3. The wall is assumed to be
isothermal and in thermal equilibrium with 7;, = T;, = 600 K and non-catalytic for the
species mass fractions.

The second case (hereafter referred to as the frozen case) considers a thermochemically
frozen gas in which the species mass fractions and vibration temperature remain at
their free-stream values everywhere in the flow field. This was implemented in the DNS
by neglecting the chemical production/depletion term (wy) and the translation—vibration
energy transfer term (Q7_v ), and by setting the species mass fractions and vibration
temperature at the wall to their free-stream values. The wall is assumed to be isothermal
for the translation—rotation temperature at 7, = 600 K.

Note that, because w; and Q7_v s are neglected in the frozen case, the vibration energy
equation can be subtracted out from the total energy equation such that the vibration
temperature no longer appears as a variable in the equation set. Hence, the vibration
temperature becomes a passive variable and is ultimately irrelevant to the results. Because
of this, and because the species mass fractions are also uniform in this case, we would
obtain functionally the same results if we instead considered a CPG model, where the
vibrational energy is neglected entirely and species mass fractions are fixed.

2.3. Wall temperature considerations

It should be noted that the wall temperature used in this study is higher than what is
typically observed in high-enthalpy wind tunnels. In reality, because of short test durations,
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the wall temperature remains close to the ambient temperature (usually around 300 K) for
the entire test. Such a cold wall is difficult to simulate numerically because of the high
temperature (and density) gradients. However, even with the present wall temperature of
600 K, the wall is considered to be cold, with a nominal wall-to-edge temperature ratio
of T, /T, ~ 0.24 on the frustum. As such, the results of the present study are expected
to at least be qualitatively consistent with experimental results in terms of boundary-layer
receptivity.

2.4. Direct numerical simulation grid and grid convergence

The DNS is performed up to s = 1.25 m, where s is the arclength measured along the
surface starting from the stagnation point. The wall-normal grid uses 513 grid points.
The streamwise grid uses at least 10 grid points per millimetre up to s &~ 0.6 m and
approximately 5 grid points per millimetre between s ~ 0.6 and s = 1.25 m. Since the
flow field is axisymmetric, the azimuthal direction uses only 4 grid points.

The grid convergence is assessed using the grid convergence index (GCI) described
by Roache (2009), which is essentially a measure of the uncertainty arising from the
discretisation error. The GCI is evaluated in terms of the amplitude of mode F; (the
unstable mode) at the branch I and II neutral points (the point at which the unstable mode
goes becomes unstable and stable again, respectively). Errors beyond the branch II neutral
point are not relevant to this study. The branch I and II neutral points are taken to be
those predicted by the linear parabolised stability equations (LPSE) except for the wall-
normal grid convergence analysis, where the linear stability theory (LST) ones are used
instead. The neutral points do not vary substantially between the two stability frameworks.
The grid convergence analysis is performed for the TCNE case only, although the results
should apply for the frozen case as well because of the similarities in the flow fields
and grid stretching parameters used. For this analysis, we consider a fixed frequency of
f =600 kHz.

The GCI for the wall-normal discretisation is estimated by performing an LST analysis
using the mean flow profiles from the present DNS (using 513 points in the wall-normal
direction), and comparing the results with those obtained using the mean flow profiles
from two separate DNSs using 385 and 769 points in the wall-normal direction. The
resulting comparison is shown in figure 1(a). The error from the LST discretisation itself
is least two orders of magnitude smaller than the error from the underlying DNS base
flow and does not affect the GCI estimate. The LST computations follow the streamwise
evolution of the amplitude of mode F relative to a starting location of s = 0.01 m. This
amplitude is computed by integrating the growth rate. The accumulated error upstream
of the starting location is assumed to be negligible. Following Roache (2009), the GCI is
estimated by computing an empirical order of accuracy p., (which in this case is less
than p =5, the theoretical order of accuracy), performing Richardson extrapolation using
Pemp, then multiplying the resulting error by a factor of safety of 1.25. In doing so, the wall-
normal GCl in terms of the branch I and I amplitudes are 1.79 % and 3.29 %, respectively.

The GCI for the streamwise discretisation is computed by comparing unsteady DNS
results (with imposed free-stream slow acoustic waves) with another DNS with a coarser
grid, with roughly half the number of streamwise points between s ~ 0.01 and s = 1.25 m.
Figure 1(b) compares the wall pressure amplitude between the two grids. Errors
accumulated upstream of s & 0.01 m are assumed to be negligible. Note that the boundary-
layer disturbance is nominally multimodal, containing not only mode Fi, but other types
of waves as well. However, the boundary-layer disturbance at the branch II neutral point
is dominated by mode F;. Hence, the disturbance amplitude at this point is essentially the
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Figure 1. (a) Comparison of LST-derived second-mode amplification ratio relative to s = 0.01 m between the
present DNS grid (with 513 points) and finer and coarser DNS grids (with 769 and 385 points, respectively)
in the wall-normal direction. (b) Comparison of wall pressure perturbation amplitude with free-stream slow
acoustic waves between the present DNS grid and a coarser DNS grid with half the number of points in the
streamwise direction, starting from s = 0.01 m.

amplitude of mode Fj. The amplitude of mode Fj at the branch I neutral point is estimated
through a backtracking method described later in this paper. The GCI is estimated here by
performing Richardson extrapolation with p = 5 (the theoretical order of accuracy) and
multiplying the resulting error by a factor of safety of 3. This more conservative factor
of safety is recommended by Roache (2009) since the empirical order of accuracy is
not known in this case (only two grids are considered). The streamwise GCI in terms of
both the branch I and IT amplitudes is approximately 0.72 %. The streamwise GCI is the
same between the two locations due to the nature of the backtracking method mentioned
earlier.

The GCI for the temporal discretisation is estimated by running a 1-D inviscid perfect
gas simulation with a slightly larger time step but the same Runge—Kutta method as
the last subdomain in the full DNS (spanning from s ~ 0.6 to s = 1.25 m). The mean
flow conditions roughly approximate those at the boundary-layer edge at s = 1 m. The
simulation is initiated with slow acoustic waves at the inlet. The dissipation rate per
wavelength associated with the temporal discretisation (which is primarily dissipative) is
estimated. Extrapolating these results to the distance of the branch I and II neutral points,
the temporal GCIs in terms of the branch I and II neutral points are 0.045 % and 0.069 %,
respectively.

The combined GCIs in terms of the amplitude at the branch I and II neutral points
are approximately 2.56 % and 4.08 %, respectively. The GCI for the branch I amplitude
in particular may appear to be excessive when considering the branch I receptivity
coefficients (see figure 22), where the differences between the TCNE and frozen cases
are of the same order of magnitude as the GCI. However, because the two cases have
similar overall flow fields, they have similar grid resolution requirements, and similar
discretisation errors. This means the comparisons of results between the TCNE and frozen
cases will essentially be unchanged regardless of the number of points used in the grid,
as long as the same grid stretching parameters are used. This was verified by comparing
low-resolution steady DNS results between the two gas models. With this understanding,
the present grid resolution is sufficient.
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3. Governing equations and gas model

The governing equations are the Navier—Stokes equations extended to a TCNE gas
model. The formulation is that of Mortensen & Zhong (2014) but is summarised here
for the convenience of the reader. Chemical non-equilibrium is included through a five
species air model (N2, Oy, NO, N and O) with finite-rate chemistry, whereas thermal
non-equilibrium is included through a two-temperature model with separate translation—
rotation and vibration temperatures. The governing equations in Cartesian coordinates and

in vector form are
oU doF; 0G;
— 4w, (3.1)
ot 8xj axj'

where U is the vector of conserved quantities and W is the vector of source terms defined
by

[ o1 ] [ W) ]
Pns Wy
U=|pPu1|, W= 0 : (3.2)
puL 0
pu3 0
pe 0
_'Oev_ _Z;”:niv (QT—V,S + wsev,s)_

The inviscid and viscous flux vectors, F; and G ;, respectively, are defined by

p1U T P11V
PnsU j PnsVUnsj
Fj=|puiu; + péij |, G;= T1j . 3.3)
pusltj + pdj 12¥,
pusij + pds; 73,
(p+pe)u; —u;Tij +qj + quj+ D goy Pshsvs;
peyl i L qu,j + Z?Zf Ps€y,sVsj i

Here, ns is the number of species, nms is the number of molecular species, p; is the
density of species s, p is the mixture density, u; is the component of velocity in the j-
direction, T is the translation-rotation temperature, T, is the vibration temperature, e is the
mixture specific total energy, e, is the mixture specific vibration energy, e, s is the species
specific vibration energy, w; is the species chemical production term and Q7_y ; is the
term representing the exchange of energy between the translation—rotation and vibration
modes for species s. The pressure p is given by the equation of state

ns
p=>_ PR, (3.4)
s=1

where Ry = R/Mj is the specific gas constant, R is the universal gas constant and M; is
the molar mass. In addition

ou; ou 2 Oduy
W= oy an ) T3 G
J l
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is the viscous stress tensor, where w is the mixture viscosity, while ¢; and g, ; are the
translation—rotation and vibration heat fluxes, respectively, given by

aT T,

qgj=—k—, quj=—kv—,
0x;j 0x;

where k is the mixture translation—rotation conductivity and k, is the mixture vibration
conductivity. The mixture total energy per unit volume, pe, is defined by

(3.6)

ns ns

1
pe = Z pscu sT + pey + Epukuk + Z psh?, (3.7)

s=1 s=1

where £ is the species specific heat of formation, and ¢, s is the species translation—
rotation specific heat at constant volume, defined by

Cy,s =Cuy,tr,s + Curot,s» (3.8)
where ¢, ;5 s the translation specific heat at constant volume, defined by

3
Co,tr,s — ERS» 3.9)

and ¢, 01,5 1S the rotation specific heat at constant volume, defined by

R, for molecular species,
Cu,rot,s = ’ . p (3.10)
0  for atomic species.
The mixture vibration energy per unit volume, pe,, is defined by
ns
pey =7 pseys, 3.11)
s=1
where
— Rbs _ for diatomic species
tuy = | 00/ T peee (3.12)
0 for atomic species,

and 6, s is the characteristic vibrational temperature of each species as tabulated by Park
(1990). Furthermore, A is the species specific enthalpy defined by

hy=(cvs+ R) T +eys +h. (3.13)

The reaction rates are computed from
ky=CyT) exp (—04/Ts) , (3.14)
kp=ky/Keq, (3.15)

where k f is the forward reaction rate and kj is the backward reaction rate, with constants
from Park (1985). All reaction rates are computed using 7, = T except for the forward
reaction rates for the dissociation reactions, which are computed using 7, = /T T,. The
equilibrium coefficient, K., is computed directly from the curve fits of Park (1990) or
through the Gibbs free energy curve fits of McBride et al. (1963).

The source term Qr_y  is computed from the Landau-Teller model (Vincenti &
Kruger 1967)

€y,s (T) - €y,s (Ty)

e , (3.16)

QT—V,S = Ps
1013 A16-8
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where (7,) is the Landau—Teller relaxation time given by Lee (1985) and t., is the high-
temperature correction term from Park (1990).

The species viscosities are computed using a Blottner curve fit with coefficients
from Blottner, Johnson & Ellis (1971). The species thermal conductivities are computed
using Eucken’s relation (Eucken 1913). The mixture viscosity and thermal conductivities
are computed using Wilke’s mixing rule (Wilke 1950). For improved computational
efficiency, the diffusion velocity is computed using Fick’s law with a constant Schmidt
number of Sc = 0.5.

4. Numerical methods
4.1. Direct numerical simulation

This study uses the TCNE shock-fitting DNS solver of Mortensen & Zhong (2014). In
the shock-fitting framework, the computational domain evolves in time following the
movement of the shock. The domain is discretised using a body-fitted curvilinear grid.
This grid is then mapped onto a rectilinear computational grid through a coordinate
transformation. The governing equations (3.1)—(3.3) are transformed to the computational
coordinate system and discretised on the computational grid using a finite difference
scheme. In the streamwise and wall-normal directions, derivatives are computed using
the fifth-order accurate explicit finite difference scheme of Zhong (1998). In the transverse
direction, derivatives are computed using Fourier collocation. To reduce computational
overhead, the overall domain is divided into several subdomains, which are computed
sequentially moving downstream.

The upper boundary of each subdomain is the bow shock. The conditions at the upper
boundary are thus computed from the free-stream conditions via the Rankine-Hugoniot
relations, where the species mass fractions and vibration temperature are assumed to
remain fixed across the shock. The wall boundary conditions have already been mentioned
in § 2. The inflow boundary conditions are treated differently depending on the streamwise
location of the subdomain. In the first subdomain, which includes the nose tip, there is
no inflow boundary. For downstream subdomains, the inflow boundary conditions are
specified from the outflow conditions of the previous subdomain. The outflow boundary
conditions are specified through extrapolation.

Note that the first subdomain contains a grid line that is coincident with the axis of the
cone and a singularity in the coordinate system mentioned above. The conditions along
this line are interpolated from the surrounding points.

Both steady and unsteady solutions are obtained via time stepping using the forward
Euler method, the three-stage third-order strong stability preserving Runge—Kutta (SSP-
RK) method of Shu & Osher (1988) or the four-stage third-order SSP-RK method of Spiteri
& Ruuth (2002). A complete description of the DNS code and a derivation of the TCNE
shock-fitting procedure can be found in the work of Mortensen (2015).

4.2. Linear parabolised stability equations

To account for non-parallel effects in the stability analysis, a new TCNE LPSE solver was
developed based on the existing LST solver of Mortensen & Zhong (2016) and Knisely
& Zhong (2017). Here, the LST formulation is modified slightly such that streamwise
derivatives of the grid metrics (the scale factors) associated with the curvilinear coordinate
system are neglected.

The derivation of the LPSE equations takes inspiration from the LST derivation of
Mortensen & Zhong (2016) and the LPSE derivation of Beyak (2022). A verification
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of the LPSE solver is provided in Appendix. The LPSE equations are derived from the
TCNE Navier—Stokes equations in curvilinear coordinates by a perturbation expansion of
the form ¢(x, y, z,1) =q(x, y, z) + ¢’ (x, v, z, t), where ¢ is an arbitrary flow quantity, g
is the mean flow quantity, ¢’ is the perturbation quantity and x, y and z are the coordinates
in the streamwise, wall-normal and spanwise directions, respectively. Note that these
coordinates are different from the global coordinates used in the DNS solver. Terms that
contain only mean flow quantities are subtracted out, since they satisfy the governing
equations themselves. Terms that contain nonlinearities in ¢’ are neglected under the
assumption of small (linear) perturbations. The flow is assumed to evolve slowly in the
streamwise direction so that the substitution ¥ = ex can be made, where e = O(Re 1) is a
small parameter with Re being the Reynolds number. The perturbations are then assumed
to take the form

X
g (x,y,2,t)=g(x, y) exp |:i (f a(x)dx + Bz — wt>i| , 4.1)
%o
where ¢ (X, y) is the shape function, w is the angular frequency of the disturbance and «
and B are the wavenumbers in the streamwise and spanwise directions, respectively. The
streamwise wavenumber « is complex and can be written as o = o + i«;. The spanwise
wavenumber B is real and is specified a priori. For the cases considered in this study, only
axisymmetric waves are considered so that 8 = 0. Substituting the above expression into
the governing equations and neglecting terms that contain nonlinearities in €, we arrive at
a set of ns + 5 partial differential equations of the form

A82 +8L tcepl 4 Gl ¢=0 4.2)
dy?2 Ay dx axay ) ’
where ¢ = [01, 02, ..., Pns, U, U, W, T, f"V]T, and A, B, C, D and E are complex square

matrices of size ns + 5, with ns being the number of species in the gas model.

It is well known that there is an ambiguity in the LPSE formulation, since the streamwise
variation of the disturbance could be contained in both the shape function and in the
streamwise wavenumber. To resolve this ambiguity, an additional constraint, in the form
of a normalisation condition, must be applied. Typically, the normalisation condition
is chosen so that the shape function varies slowly in the streamwise direction. As a
result, most of the streamwise variation of the disturbance should be contained in the
variation of the streamwise wavenumber. This normalisation condition is implemented
as a convergence criterion for the streamwise wavenumber «. Using the kinetic energy
normalisation condition described by Chang & Malik (1994), « is updated iteratively until
convergence at each streamwise step as

1 [Yma i 3D G,
*k+D) _ k) _ 5~ ol = +*—= +p*— | d 4.3
* * ZE/O p(u8x+v8x+w 8x> Y (4.3)
Ymax
E=/ P (@*0 4+ 50 + v*) dy, “4.4)
0

where k is the iteration index, “*’ denotes the complex conjugate and y;,,y is the height of
the computational domain.

Solutions are obtained by marching downstream given the shape function profile at some
initial streamwise location (the inlet). In this study, the initial shape function profile is
specified as the eigenfunction from a converged LST solution. It should be noted that
the marching procedure is numerically unstable if the streamwise grid spacing is smaller
than some value, which can sometimes prevent proper grid convergence. It is common

1013 A16-10


https://doi.org/10.1017/jfm.2025.10230

https://doi.org/10.1017/jfm.2025.10230 Published online by Cambridge University Press

Journal of Fluid Mechanics

to alleviate this restriction by artificially suppressing the shape function pressure gradient
(0p/0dx) in the manner of Vigneron, Rakich & Tannehill (1978). This modification was
found to be unnecessary for the cases considered in this study, although the option is still
available should the user require it.

For the wall-normal grid, the grid stretching scheme of Malik (1990) is used to cluster
points near the wall. In his formula, half of the points are placed below a user-specified
wall-normal distance y;, while the other half are located above it. Here, we set y; = 4§,
where 6 is the local boundary-layer thickness. Here, § is taken to be the wall-normal
position at which the total enthalpy first reaches 99.5 % of the free-stream total enthalpy
starting from the wall. In addition, ., is the height of the domain. For LPSE we set
Ymax = 88, but for LST we set yiax = 0.99ysnk.

We now consider the numerical treatment of the partial derivatives in (4.2). Let us
first consider the partial derivatives in the streamwise direction, x. These derivatives are
computed using a grid transformation because there are no grid lines parallel to this
direction (except for the grid line located at the wall itself). This in turn is due to the
fact that the wall-normal grid distribution varies in the streamwise direction according to
the local boundary-layer height (see previous discussion). We consider a local grid that
consists of the current streamwise station and the one or two stations upstream of it. This
local grid with coordinates (x, y) is then transformed into a local rectilinear computational
grid with coordinates (&, n). The transformation can be written as x =& and y = y(&, n).
The derivatives in x are then computed by first computing the derivatives in £ and n and
then making use of the chain rule. The derivatives in & are computed using second-order
backward differences except for the first step, where they are instead computed using a
first-order backwards difference. The derivatives in i are computed using an explicit five-
point finite difference scheme for a uniform grid. The scheme is fourth- and third-order
accurate for the first and second derivatives, respectively.

Now we consider the numerical treatment of the partial derivatives in the wall-normal
direction, y. Although it is possible to use the grid transformation procedure mentioned
earlier to compute these derivatives, doing so is neither necessary nor preferable. That
is, the wall-normal derivatives do not require any grid transformation, since the original
grid is orthogonal to the wall. Also, because discretisation errors tend to increase on
a uniform grid due to Runge’s phenomenon, we prefer to instead compute the wall-
normal derivatives directly on the original grid, which is non-uniform. Like the LST
formulation of Mortensen & Zhong (2016), we generate finite difference stencils for the
non-uniform grid using Lagrange polynomials. Here, a five-point stencil is used, which
yields finite difference stencils that are fourth- and third-order accurate for the first and
second derivatives, respectively.

At the wall (y = 0), the boundary conditions are chosen to match the underlying mean
flow. In the TCNE case, the non-catalytic boundary conditions of Mortensen & Zhong
(2013) are used. In the frozen case, the perturbations in mass fractions are set to zero.
At the free-stream boundary (y = y4x), homogeneous Dirichlet conditions are used for
all quantities except for the wall-normal velocity, which is computed from the continuity
equation. The free-stream boundary conditions can be written as

ps=li=w=T="T,=0, (4.5)
a/\ a_ ns a/\

L s _o. 4.6)
y oy ‘ dy

Lastly, note that the wavenumber «, as obtained directly from the LPSE solution,
does not correspond to the physical wavenumber and growth rate of the disturbance.
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Figure 2. Schematic of a planar wave in the free stream impinging on a cone at zero incident angle.

In fact, these quantities vary based on the disturbance quantity and the wall-normal
position. Assuming no streamwise curvature in the LPSE coordinate system, the physical
wavenumber (denoted by ) and growth rate (denoted by ') are computed as

1 dq

y=or +Im|{ —— ], 4.7
q 0x
10

p—— +Re(——q), 4.8)
q 0x

where g is some disturbance quantity, which in general is complex valued. The streamwise
phase speed is ¢, = w/y. Note that, if « were obtained from LST, the second term on
the right-hand side of each of the above equations would be neglected, since streamwise
derivatives of the eigenfunctions are assumed to be zero in the LST framework.
Transition prediction is often done through the e” transition criterion of van Ingen

(1956)
eNG) — ? = exp </-s O’(S)ds) , (4.9
0 K

0

where for a fixed frequency f and spanwise wavenumber B, A is the disturbance
amplitude, A is the amplitude at the branch I neutral point (the point at which an unstable
mode first becomes unstable) and sp is the location of the branch I neutral point. The
exponent N is referred to as the N-factor and is the parameter most commonly used to
correlate transition locations. The N-factor at which transition occurs, however, is not
universal. In actual flight conditions or in quiet wind tunnels, transition N-factors are
usually greater than 9 since free-stream noise levels are relatively low. In traditional wind
tunnels, transition N-factors of 5-6 are common due to much higher free-stream noise
levels (Schneider 2001).

4.3. Free-stream disturbance model

The free-stream disturbances in this study are modelled as planar acoustic waves whose
wavenumber vectors are aligned with the axis of the cone (zero incident angle). A
schematic of this configuration is provided in figure 2. The disturbance is assumed to
be thermochemically frozen, which means there are no perturbations in mass fractions or
vibration temperature. The disturbance quantities can then be specified as

Uy, Fuoo

v 0

wh, | =€ 0 cos (kyx — wt + ), (4.10)
p(/)o Yir Moo Poo

péo Moo poo
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where ()’ denotes a perturbation quantity, « is the axial velocity, v is the vertical velocity,
w is the horizontal velocity, p is the pressure, p is the density, y;, is the translation—
rotation specific heat ratio and M is the Mach number. In addition, k, is the axial
wavenumber, w is the angular frequency, ¥ is the phase angle and € is a non-dimensional
scaling parameter. The + and — signs correspond to fast and slow acoustic waves,
respectively. The dispersion relation for linear acoustic waves at zero incident angle can
be written as

1)

— =Uoo T doo, (4.11)

X

where a is the frozen speed of sound.

In this study, we set € = 1 x 1077 for the slow acoustic waves and € =5 x 1073 for the
fast acoustic waves. These values were chosen such that the disturbance amplitude is small
enough to be linear while also being large enough to avoid contamination by numerical
noise. The slow acoustic wave was given a larger amplitude in anticipation of a weaker
boundary-layer response, although this was unnecessary in hindsight. A number of these
waves, at varying frequencies, are imposed simultaneously on the steady free stream. A set
of seven frequencies is considered, ranging from f = 400 to 1000 kHz, with a spacing of
Af =100 kHz between each frequency. The phase angle of each wave is chosen randomly
from a uniform distribution in [0, 27r] to minimise any unintended nonlinear effects that
may arise due to constructive interference.

4.4. Fast Fourier transform

Since the free-stream disturbance model involves waves of multiple frequencies imposed
simultaneously, unsteady DNS results are analysed using a temporal fast Fourier transform
(FFT). The unsteady perturbation of an arbitrary quantity g corresponding to a single
Fourier mode at frequency f can be written as

q'(x,y, 2,0 =1q"(x, y, D)l exp [i (=2nft + ¥ (x, y,2)], (4.12)

where ¢’ is the perturbation, |¢’| is the amplitude and v is the phase angle. Both
the amplitude and phase angle are obtained directly from the FFT output. For a given
frequency the growth rate, streamwise wavenumber and phase speed, respectively, are
computed as

1 dlq'|

- , 413
77 1q1 os @13
3
i (4.14)
as
2
i (4.15)
y

where s is the streamwise coordinate.

5. Steady DNS results
5.1. The TCNE case

To get an overall picture of the steady flow field, the Mach number contours for a large
portion of the cone are shown in figure 3. Note that, due to the relatively low free-stream
Mach number, the shock height is large compared with the boundary-layer thickness.
Figure 4(a) shows the contours of temperatures in the nose region. At the stagnation line,
the translation—rotation temperature (denoted by 7') starts at a maximum of approximately
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Figure 3. Steady DNS Mach number contours in the TCNE case.
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Figure 4. (a) Steady DNS contours of translation—rotation temperature and vibration temperature, and (b) O
and O mass fractions in the nose region in the TCNE case. Areas where 7, > T are bounded within white lines
on the bottom half of (a).

8700 K immediately behind the shock and decreases to 600 K at the wall. The vibration
temperature (denoted by 7)) is at its free-stream value (about 1491.3 K) behind the
shock but slowly increases moving towards the stagnation point, reaching a maximum
of approximately 5600 K a small distance away from the stagnation point. The vibration
temperature also decreases to 600 K at the wall, since thermal equilibrium is assumed
there. Both temperatures generally decrease moving downstream from the stagnation line.
At the same time, a vibrational boundary layer starts to appear near the wall in which
T, > T. The appearance of this vibrational boundary layer is likely related to the
expansion of the flow where the spherical nose meets the frustum. The translation—
rotation temperature is able to react quickly to the expansion. However, vibrational
relaxation occurs too slowly to allow the vibration temperature to do the same.
This is consistent with the fact that vibrational modes require many more molecular
collisions to reach equilibrium than the translation and rotation modes (Anderson 2006).
Moving downstream, this vibrational boundary becomes increasingly thin and eventually
disappears. As a result, T, < T for the vast majority of the flow field. In any case, the
differences between T and T, demonstrate that the flow is not in thermal equilibrium.
Figure 4(b) shows the contours of O, and O mass fractions in the nose region. The
largest mass fractions aside from N and O, correspond to atomic oxygen O. As such,
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Figure 5. (a) Mean flow profiles of translation-rotation temperature, vibration temperature and streamwise
velocity at s = 0.5 m for both gas models. (b) Mean flow profiles of O, and O mass fractions at s = 0.5 m in
the TCNE case.

the primary chemical reaction is the dissociation of O; into O, with the O mass fraction
indicating the extent to which this dissociation occurs. The largest O mass fractions are
on the stagnation line itself, reaching a peak value of approximately 7 %. However, as
temperatures decrease moving downstream, O begins to recombine into O;. By the end of
the region shown in the figure, the peak O mass fraction is only approximately 2.5 %.

The second-mode instability occurs far downstream of the nose, and is thus more
affected by the nature of the boundary layer on the cone frustum. Figure 5 shows the wall-
normal profiles of various quantities at s = 0.5 m. Note that both gas models are included
in this figure. However, only the TCNE case is considered in the present discussion.
Looking at the temperature profiles (figure Sa), it is apparent that the temperatures are
much lower than at the leading edge. Nevertheless, there are still noticeable discrepancies
between T and T,. In particular, the peak in T is approximately 2500 K while the peak
in T, is only approximately 1800 K. These discrepancies indicate that the flow has still
not reached thermal equilibrium. Looking at figure 5(b), the peak O mass fraction is only
approximately 0.014 %. Even at s = 0.1 m, where the second-mode instability first begins,
the peak O mass fraction is still only approximately 0.1 %. In fact, for most of the cone
frustum, Yy, ~ 0.78 and Yo, ~ 0.22.

5.2. Frozen case

In figure 6 it can be seen that, at several points near the leading edge, the translation—
rotation temperature is almost everywhere lower in the TCNE case compared with the
frozen case. In other words, TCNE effects result in a cooling of the flow. Moving
downstream, the cooling effect tends to weaken, as evidenced by the weaker discrepancies
in translation—rotation temperature between the TCNE and frozen cases. This cooling
is due to the fact that, in the TCNE case, a portion of the energy contained in the
translation—rotation mode is diverted to the vibration mode through vibrational relaxation
while another portion is diverted to endothermic dissociation reactions. The cooling also
indirectly leads to a decrease in shock height due to an associated increase in density.
Referring back to the mean flow profiles at s = 0.5 m (figure 5), the translation—
rotation temperature in the TCNE case is again almost everywhere lower than in the frozen
case, with the peak translation-rotation temperature being approximately 80 K lower.
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Figure 6. Mean flow profiles of translation—rotation and vibration temperature at (a) the stagnation line
(s =0 mm), (b) s = 8.58 mm and (¢) s = 21.9 mm in both the TCNE and frozen cases.

This indicates that the TCNE case has a cooler mean flow on the frustum as well. This
cooling is associated with an increase in density and a decrease in mixture viscosity,
leading to a slightly thinner boundary layer in the TCNE case. At this location, the
boundary-layer thickness, &, as measured through the 99.5 % total enthalpy criterion, is
approximately 1.77 mm in the TCNE case, and approximately 1.80 mm in the frozen case.

6. The LST and LPSE results
6.1. The TCNE case

To establish the instability mechanism, LST and LPSE computations were performed
using the profiles from steady DNS as input. Figure 7 shows the streamwise variation
of the phase speed and growth rate of the relevant discrete modes at f = 600 kHz. The
LPSE solution is based on the wall pressure perturbation and is initialised using the LST
mode Fi eigenfunction slightly downstream of where mode Fj is synchronised with the
entropy/vorticity spectrum. Both gas models are included in the figure, but the TCNE
case is considered first. Note that u,; = 3857.2 ms~! and M ps = 4.875 are the post-
shock streamwise velocity and Mach number, respectively, at s = 1 m. For simplicity,
these post-shock conditions are used as an approximation to the actual boundary-layer
edge conditions, which vary slowly in the streamwise direction. From the phase speed
plot, mode F emerges from the fast acoustic spectrum at ¢, /u s ~ 1+ 1/M s near the
leading edge and then decreases in phase speed moving downstream. It then crosses the en-
tropy/vorticity spectrum at ¢, /u p5 ~ 1. The curve labelled mode F; actually corresponds
to two distinct modes with different eigenfunctions on either side of the entropy/vorticity
spectrum (Fedorov & Tumin 2011). However, this distinction is not particularly relevant to
this study, so the entire curve will be simply be referred to as mode Fp, as is common in
the literature. Mode S emerges from the slow acoustic spectrum at ¢, /ups =1 —1/M
near the leading edge and increases in phase speed moving downstream. Downstream
of the entropy/vorticity/mode F; synchronisation point, mode Fj is synchronised with
mode S. Even further downstream, mode F; becomes destabilised. This destabilisation is
characteristic of Mack’s second-mode instability (Mack 1984). The fact that mode F; is
unstable, rather than mode S, is consistent with the cold-wall conditions considered here.
Note that it is common to refer to the mode that becomes unstable through the second-
mode instability as the second mode. We adopt this nomenclature here, so the term second
mode will refer to mode F; for the present flow conditions.
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Figure 7. The LST and LPSE (a) phase speed and (b) growth rate for relevant discrete modes at f = 600 kHz.
The same plots are zoomed-in to the unstable region in (¢) and (d), respectively. The LPSE computations are
based on the wall pressure perturbation.

To gain a more complete view of the stability behaviour, the streamwise marching
process for mode F; (the second mode) is repeated for a wide range of frequencies.
This results in a 2-D stability map, showing the streamwise distances and frequencies
at which the second mode is stable and unstable. Figure 8 depicts the second-mode
stability map computed from LST. The branch I neutral stability curve (where the second
mode first becomes unstable) and the branch II neutral stability curve (where the second
mode becomes stable again) are also shown. Interestingly, there is no evidence of a
supersonic mode here. The supersonic mode refers to an unstable second mode that
propagates upstream supersonically relative to the mean flow at the boundary-layer edge,
ie. ¢, /ups <1—1/M,s, and is usually signified by a ‘kink’ in the growth rate curve
and an extension of the branch II neutral curve further downstream and towards higher
frequencies (Bitter & Shepherd 2015; Knisely & Zhong 20195). The studies of Knisely
& Zhong (2019b,¢), however, have observed supersonic modes for the same free-stream
conditions and geometry. The lack of a supersonic mode here is due to the warmer wall
that is used here, with 7T, = 600 K, as compared with their study, where T;, = 300 K is
used instead. This is consistent with the finding of Bitter & Shepherd (2015) that increasing
the wall temperature tends to suppress the supersonic mode. In any case, since supersonic
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Figure 8. The LST stability map for the TCNE case. Contoured areas correspond to regions where mode Fi
is unstable.

modes generally occur far downstream of the branch I neutral point, they are not expected
to affect receptivity coefficients.

We now consider how non-parallel effects impact the second mode by referring back
to figure 7. The LPSE phase speed agrees well with LST, except for a small region
in the vicinity of the mode F1/S synchronisation point. The growth rates on the other
hand show more noticeable discrepancies, and the LPSE predicts a higher peak growth
rate and a downstream-shifted unstable region compared with LST. Note that the LPSE
results presented in the figure are based on the wall pressure perturbation. Although not
shown here, we can make similar growth rate comparisons for several other disturbance
quantities, namely the peak mass flux |(pu)’ + (pv) | max, kinetic energy (given by 4.4)
and the peak amplitudes of the primitive variables in (4.2). Between these quantities, the
increase in peak growth rate relative to LST is strongest for the wall pressure perturbation
and weakest for the streamwise velocity |u’|mqx. Figure 9 compares the N-factor curves
and envelopes obtained using the two stability frameworks. The LPSE N-factors shown
are based on the wall pressure perturbation and the streamwise velocity. The N-factor
curves and envelopes for the other mentioned disturbance quantities lie between these
two quantities. It is evident that the LPSE predicts smaller peak N-factors and N-factor
envelopes compared with LST. By the end of the domain, the LPSE N-factor envelope
based on the wall pressure perturbation and streamwise velocity is approximately 0.1 and
0.3 lower, respectively, compared with the LST N-factor envelope. It is interesting to note
that the N-factor envelope is smaller when using LPSE, although the LPSE shows higher
peak growth rates than LST. This is because when using LPSE, the unstable region is
shifted further downstream. In any case, the lower peak N-factors and N-factor envelope
when using LPSE indicate that non-parallel effects are slightly stabilising to the second
mode here. Similar findings with respect to the non-parallel effect on the second mode
were made by Zanus et al. (2020a), although their case featured an unstable supersonic
mode due to a colder wall at T, = 300 K.

The weak overall discrepancy between LPSE and LST is due to the fact that non-
parallel effects tend to weaken with decreasing free-stream Mach numbers. Nevertheless,
even small variations in N-factors can lead to significant discrepancies in amplification
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Figure 9. The LPSE and LST N-factor curves for TCNE case. Each curve is spaced Af = 100 kHz from the
next.

ratios (e™). For example, if N and eV are evaluated at s = 0.8 m for f = 600 kHz,
LST predicts N ~ 3.12 and eV ~ 22.6. On the other hand, the LPSE, based on the wall
pressure perturbation, predicts N ~ 2.82 and eV ~ 16.8. Here, LST overpredicts the N-
factor only by approximately 10 % but overpredicts e by approximately 35 %. This is a
significant discrepancy, and is important to keep in mind, since the method that will be
used to estimate receptivity coefficients later on requires e values as input. Given the
potential for significant discrepancies in "V due to non-parallel effects, using LPSE is
necessary to obtain reliably accurate estimates of receptivity coefficients.

6.2. Frozen case

Returning to figure 7, the difference in phase speed between the TCNE and frozen cases is
practically negligible. On the other hand, the second-mode growth rate shows noticeable
discrepancies. Both LPSE and LST results show that the TCNE peak growth rate is
approximately 8 % higher than the frozen peak growth rate. In addition, both branch I
and II neutral points are shifted downstream compared with the frozen case. Because the
branch II neutral point is shifted downstream further than the branch I neutral point, the
instability region is actually longer in the TCNE case. Lastly, figure 10 shows that, in the
TCNE case, the unstable frequency range is shifted towards higher frequencies, while the
peak growth rate at a fixed streamwise location is increased.

As mentioned in the introduction, real-gas effects (or more specifically, TCNE effects)
enter the linear stability problem via two routes. The first route indirectly affects stability
by modifying the mean flow. The second route directly affects stability by acting on the
disturbance itself. To identify the relevant route, figure 10 also includes a hybrid case
using the TCNE mean flow but with a frozen disturbance model. The frozen disturbance
model is defined as one where perturbations in the chemical production terms (w;) and
translation—vibration energy transfer terms (Q’ _ v.s) are neglected. Evidently, there is
very little difference between the TCNE and hybrid cases, where the mean flow is the
same (TCNE) but the disturbance models are different. However, there are significant
discrepancies between the hybrid and frozen cases, where the disturbance model is the
same (frozen), but the mean flows are different. This result implies that, for this flow
configuration, TCNE effects influence stability primarily by modifying the mean flow.
This modification was shown earlier to result in an overall cooling of the boundary layer
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Figure 10. Comparison of LST second-mode growth rates between the TCNE, frozen and hybrid (TCNE
mean flow, frozen disturbance) cases.

with reduced translation—rotation temperatures. Similar results were found by Bitter &
Shepherd (2015) and Knisely & Zhong (2020).

Note that the shift of the unstable region further downstream and towards higher
frequencies, as well as the higher peak growth rates in the TCNE case, are characteristic
of wall cooling as well (see e.g. Kara, Balakumar & Kandil 2008). Hence, TCNE effects
on stability are analogous to that of wall cooling for this flow.

Also note that the result shown in figure 10 differs from that of Johnson et al
(1998), who found that TCNE effects shifted the unstable frequency range towards higher
frequencies (as is the case here) but also noticeably reduced the peak growth rate at a
fixed streamwise location, unlike the present case. The discrepancy between the present
result and that of Johnson et al. (1998) can be explained by the fact that TCNE effects are
comparatively weak in the present case. That is, in their case, TCNE effects had significant
impacts not only on the mean flow but also on the disturbance itself, with the TCNE effect
on the disturbance itself tending to reduce growth rates.

The TCNE effect on the second-mode N-factors is shown in figure 11, which compares
the LPSE N-factors based on the wall pressure perturbations between the two gas models.
For a fixed frequency, the discrepancies between the two gas models are relatively small
for a sizable portion of the unstable region. However, the TCNE N-factors overtake the
frozen N-factors by a significant margin closer to the branch II neutral point (that is, the
point corresponding to the peak N-factor for each frequency). Additionally, by the end
of the domain (s = 1.25 m) the TCNE N-factor envelope is approximately 0.9 higher
than the frozen N-factor envelope. Similar results are found for the other disturbance
quantities mentioned in the previous subsection. These results indicate that TCNE effects
are destabilising to the second mode here.

7. Unsteady DNS results

To investigate the receptivity process, we perform unsteady DNS in which both slow and
fast acoustic planar waves (with the parameters discussed in §4) are imposed onto the
previously converged steady-state solution. In each subdomain, the unsteady simulations
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Figure 11. Comparison of LPSE N-factor curves and envelopes between the TCNE and frozen cases. Each
curve is spaced Af = 50 kHz from the next. The N-factors are based on the wall pressure perturbation.

are run until the initial transients exit the subdomain and the flow field becomes temporally
periodic. The unsteady data are then stored over one additional period for FFT analysis.
Before discussing the results, it is helpful to recall the relevant receptivity mechanisms.
According to Fedorov & Khokhlov (2001), receptivity to free-stream disturbances in a
hypersonic boundary layer occurs primarily through the synchronisation (the matching
of phase speeds) of the discrete modes (mode Fp, mode S, etc.) with waves from the
continuous spectra (slow and fast acoustic waves, entropy waves and vorticity waves).
When two waves are sufficiently synchronised, they can excite each other. Toward
the leading edge, slow (fast) acoustic waves can excite mode S (mode Fj) owing to
their synchronisation. Downstream, entropy and vorticity waves can excite mode F)
owing to their synchronisation (Fedorov & Tumin 2003). Even further downstream, the
synchronisation of mode S and mode F; allows the two modes to excite one another.

7.1. The TCNE case

7.1.1. Slow acoustic waves
Free-stream slow acoustic waves are considered first. Figure 12 shows the associated
density perturbations near the leading edge and behind the shock for f = 600 kHz.
The boundary-layer thickness, &, as defined through the 99.5 % total enthalpy criterion,
is also shown. Two regions can be identified within the disturbance field. The first region
is the shock layer, which is defined here as the region between the edge of the boundary
layer and the shock. The mean flow in the shock layer is mostly inviscid. By measuring
the streamwise wavelengths of the disturbances emanating from the shock, it can be
shown that the density perturbations in the shock layer are primarily due to slow acoustic
waves. The second region is the boundary layer. The disturbance here is more difficult to
characterise based on the perturbation contours alone. A more reliable way to identify the
different waves present in the boundary layer is to compute streamwise phase speeds.
Figure 13(a) shows the phase speed of the disturbance at the same frequency. The
DNS phase speed is computed using the wall pressure perturbation (p;,) and the density
perturbation (o) at y, = 0.9 mm, which is a position located away from the wall but
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Figure 12. Snapshot of unsteady DNS density perturbation contours near the leading edge for free-stream slow
acoustic waves at f = 600 kHz in the TCNE case. The black line represents the boundary-layer thickness
defined through the 99.5 % total enthalpy criterion. The contours are clipped to better show disturbance
structure.
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Figure 13. Comparison of (a) phase speed and (b) growth rate between unsteady DNS, LST and LPSE for
free-stream slow acoustic waves at f = 600 kHz in the TCNE case.

is close to or within the boundary layer, with the ratio y,/§ varying from 1.86 at s =
0.01 m to 0.45 at s = 0.65 m. The phase speed based on the wall pressure perturbation
is computed from the FFT output using (4.15). The phase speed based on the density
perturbation is estimated from a snapshot of the disturbance field as ¢, & 2 f As,, where
As, is the distance between successive zeros in the streamwise direction (Fedorov et al.
2013). The phase speed towards the leading edge oscillates about the slow acoustic
spectrum or the entropy/vorticity spectrum, depending on the wall-normal position and
the disturbance quantity considered. The former indicates the presence of slow acoustic
waves. Since mode S is excited by slow acoustic waves near the leading edge owing to
their synchronisation, it can be inferred that mode S is also present. The latter indicates
the presence of entropy/vorticity waves. Because of their similar phase speeds, it is
not possible to determine whether these waves are primarily entropy waves or vorticity
waves, at least within the scope of the present study. Accordingly, we use the term
‘entropy/vorticity waves’ to be inclusive of both wave types.

Figure 14 shows the density perturbations further downstream, in the vicinity of
the entropy/vorticity/mode F; synchronisation point at s = 0.5 m. Again, the density
perturbations far outside the boundary layer are primarily due to slow acoustic waves,
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Figure 14. Snapshot of unsteady DNS density perturbation contours in the vicinity of the en-
tropy/vorticity/mode Fj synchronisation point for free-stream slow acoustic waves at f = 600 kHz in the
TCNE case. The black line represents the boundary-layer thickness defined through the 99.5 % total enthalpy
criterion. The contours are clipped to better show disturbance structure.

s (m) Mode S Mode F;

0.05 1 1

0.1 41 x 1072 9.5 x 107!
0.2 1.8 x 1074 7.7 x 107!
0.3 1.0 x 1076 49 x 107!
0.4 6.4 x 107° 22 x 107!
0.5 43 x 1071 6.7 x 1072
0.6 21 %1078 1.4 x 1072

Table 2. The LST-derived amplification ratios at various streamwise locations for mode S and mode F;
relative to s = 0.05 m at f = 600 kHz.

as can be verified by measuring the streamwise wavelengths directly from the contours.
Figure 13(a) shows that between s ~ 0.4 and s ~ 0.5 m, the phase speed is close to
the entropy/vorticity spectrum, indicating the presence of entropy/vorticity waves. In the
vicinity of the synchronisation point mentioned above, we expect mode Fj to be excited
by these entropy/vorticity waves.

Note that the phase speed towards the leading edge never oscillates about mode F; or the
fast acoustic spectrum, regardless of wall-normal position or disturbance quantity. Hence,
if mode F| is excited near the leading edge (by fast acoustic waves), it is most likely excited
weakly compared with mode S.

The oscillations in phase speed (figure 13a) and growth rate (figure 13b) are similar
to those found in many receptivity studies, such as those of Zhong & Ma (2006) and
Cerminara & Sandham (2017). These oscillations are likely due to interference between
waves of different streamwise wavelengths. However, a strict verification of the underlying
mechanism will require the use of multimode decomposition (see Gaydos & Tumin 2004;
Miselis, Huang & Zhong 2016 or Zou & Zhong 2023), which allows one to isolate the
amplitude of each of the component modes in the boundary layer.

For this flow configuration, mode S is exceptionally stable. This stability is demonstrated
in table 2, which shows the LST-derived amplification ratios of modes S and F; and at
various streamwise locations relative to s = 0.05 m for f = 600 kHz. Now, in the LST
framework, mode S is always stable. This is not the case in the DNS, where mode S
amplifies when excited by other waves in the boundary layer (e.g. by slow acoustic waves
near the leading edge) and decays otherwise. Nevertheless, because of its high level of
inherent stability, mode S may be attenuated so strongly that it reaches the mode F;/S
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Figure 15. Wall pressure perturbation amplitude vs. streamwise distance for free-stream slow acoustic waves
at (a) f =400, (b) f =600, (c) f =800 and (d) f = 1000 kHz, in the TCNE and frozen cases. The dash-dot
lines indicate the branch I and II neutral points in the TCNE case based on LPSE.

synchronisation region (in the vicinity of s = 0.594 m at this frequency) with a much
lower amplitude than mode F;. Now, the relevance of mode S in the receptivity process
derives from its synchronisation with mode Fi. If mode S is much weaker than mode Fi,
we can effectively treat mode S as if it were not present to begin with. Hence, the excitation
of mode S by slow acoustic waves may be secondary, or even irrelevant, in terms of its
contribution to the amplitude of mode F7 at the branch I neutral point, compared with the
direct excitation of mode F; (by entropy/vorticity waves and fast acoustic waves).

The evolution of the boundary-layer disturbance can be understood further by
considering the wall pressure perturbation amplitude, as shown in figure 15. At f = 400
kHz, the branch I neutral point is downstream of s = 1.25 m (the end of the domain),
and as such, second-mode amplification is not observed. For the remaining frequencies
(including those not shown in the figure), two distinct regions can be identified. The first
region is upstream of the branch I neutral point. Here, the amplitude generally decreases
in the streamwise direction, but is highly oscillatory. There is a noticeable amplification
of the disturbance in the vicinity of the entropy/vorticity/mode F; synchronisation point
which is likely due to the interaction between mode Fj and the entropy/vorticity waves.
A similar amplification was noted by Fedorov ef al. (2013) in the context of receptivity to
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Figure 16. Comparison of wall-normal pressure perturbation profiles between unsteady DNS, LST and LPSE
for free-stream slow acoustic waves at f = 600 kHz in the TCNE case. Panels show (a) s = 0.658 m and
(b) s =0.802 m.

temperature spots. The second region is downstream of the branch I neutral point. Here,
there is a clear increase in amplitude due to the second-mode instability of mode Fj. At
the same time, the amplitude curve becomes smoother as other waves contribute less and
less to the overall disturbance.

In this study, receptivity coefficients are obtained by backtracking the initial amplitude
of mode F; at the branch I neutral point from its amplitude downstream. This method
is described in greater detail in § 7.1.3. To use this method, it is important to determine
where mode F; becomes ‘sufficiently dominant’, a term which we define here to mean
that the DNS amplitude approximates the amplitude of mode F; well enough to backtrack
receptivity coefficients reliably. One way to do this is to look at the amplitude plot and find
the point downstream of the branch I neutral point where the oscillations are sufficiently
weak. Using this criterion, we can say that for 500 kHz < f < 900 kHz, mode F; becomes
sufficiently dominant at least by the branch II neutral point. However, for f = 1000 kHz,
there are still noticeable oscillations present at the branch II neutral point, implying that
mode F; does not become sufficiently dominant at this frequency. The main drawback
with this method is that it is sometimes difficult to determine how strong the oscillations
are if the underlying amplitude is increasing, which often limits its applicability to the
region in the vicinity of the branch II neutral point.

Because of the difficulty mentioned above, it is sometimes preferable to instead use
the phase speed and growth rate plots to estimate the point at which mode F; becomes
sufficiently dominant. The oscillations in these quantities are usually easier to identify
than the oscillations in amplitude, and can be easily compared with LST or LPSE results.
Returning to figure 13, we find that both the phase speed and growth rate eventually begin
to track mode F as it becomes amplified via the second-mode instability. The oscillations
in both quantities become negligible around s = 0.8 m, which means that mode Fj
has become sufficiently dominant at least by this point. After this point, there is decent
agreement between the DNS results and the LST mode F; and LPSE results. Furthermore,
the LPSE growth rate matches much more closely with the DNS, since non-parallel effects
are included in the LPSE framework.

Figure 16 shows the pressure perturbation profiles at two locations within the unstable
region. The first location considered is s = 0.658 m, where there are noticeable
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Figure 17. Snapshot of unsteady DNS density perturbation contours near the leading edge for free-stream fast a-
coustic waves at f = 600 kHz in the TCNE case. The black line represents the boundary-layer thickness defined
through the 99.5 % total enthalpy criterion. The contours are clipped to better show the disturbance structure.

discrepancies between the DNS profile and the LST mode F; and LPSE profiles towards
the upper portion of the boundary layer. These discrepancies are due to weak second-mode
amplification and the presence of slow acoustic and entropy/vorticity waves. On the other
hand, at s = 0.802 m, the DNS profile matches well with the LST mode F| and LPSE
profiles, confirming that mode F] is sufficiently dominant at this point.

7.1.2. Fast acoustic waves

We now consider fast acoustic waves imposed in the free stream. Figure 17 shows the
density perturbations near the leading edge at f = 600 kHz. The density perturbations
in the shock layer are primarily due to fast acoustic waves, as confirmed by measuring
the streamwise wavelengths of the disturbances emanating from the shock. As before,
we compute phase speeds to identify the different types of waves in the boundary layer.
Figure 18 shows the estimated phase speed based on the wall pressure perturbation for the
same frequency. Other quantities and/or wall-normal positions in the boundary layer show
qualitatively similar results. Towards the leading edge, the phase speed oscillates about the
phase speed of mode F|. However, since mode F| is excited by fast acoustic waves near
the leading edge, we can infer that fast acoustic waves are also present in the boundary
layer here.

Figure 18 also shows the phase speed of mode F>. This mode belongs to the same family
of modes as mode Fj. However, mode F, exits the fast acoustic spectrum much further
downstream than mode Fi. The line labelled ‘mode F>’ corresponds to both a fast acoustic
mode and mode F;. Towards the leading edge, the LST solver seems to track a fast acoustic
mode, which explains the rapid increase in phase speed past ¢, /u,; = 1 + 1/M, there.
It is unclear where the line transitions from a fast acoustic mode to mode F5, i.e. where
mode F, emerges from the fast acoustic spectrum as a distinct mode. Therefore, if the DNS
phase speed is close to the fast acoustic spectrum, it may indicate the presence of (i) fast
acoustic waves only or (ii) a combination of fast acoustic waves and mode F>, depending
on the streamwise location.

Moving downstream from the leading edge, the phase speed eventually shifts away
from mode Fj and towards the fast acoustic spectrum. This behaviour is explained by
the fact that mode F7 begins to decay at some point downstream owing to its gradual
desynchronisation with the fast acoustic waves, and because mode F| is nominally stable
upstream of the branch I neutral point. Hence, the amplitude of mode F; becomes lower
than the amplitude of the fast acoustic waves or, if mode F; is also present, their combined
amplitudes (i.e. the sum of their amplitudes). This causes the phase speed to shift towards
the fast acoustic spectrum.
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Figure 18. Comparison of phase speed between unsteady DNS, LST and LPSE for free-stream fast acoustic
waves at f = 600 kHz in the TCNE case. The DNS and LPSE results are obtained using the wall pressure
perturbation.

Moving even further downstream towards the entropy/vorticity/mode F; synchronisa-
tion point at s & 0.5 m, the phase speeds remain close to the fast acoustic spectrum,
indicating that the waves in the boundary layer continue to primarily be fast acoustic waves
or a mixture of fast acoustic waves and mode F».

In this case, the oscillations in phase speed (and amplitude) are consistent with
interference between mode F| and fast acoustic waves (or a mixture of fast acoustic waves
and mode F3). This will be shown later. For now, it suffices to say that, near the leading
edge, the presence of mode S should cause secondary oscillations of very short length
scales due to the large wavelength difference between mode S and the waves mentioned
earlier. Such oscillations are not observed here, which indicates that mode S, if present, is
very weak compared with mode Fj. Combined with the fact that mode § is highly stable
(see discussion in § 7.1.1), the excitation of mode S by slow acoustic waves is unlikely
to be a relevant receptivity mechanism in this case. On a separate note, the decay of
mode F| moving downstream from the leading edge could allow it to interact with weak
entropy/vorticity waves as it synchronises with the entropy/vorticity spectrum. Because
of the strong oscillations in amplitude due to interference (see figure 19), it is difficult to
tell if there is any local amplification that would indicate an interaction between mode F
and the entropy/vorticity waves. Hence, it is unclear whether the excitation of mode F; by
entropy/vorticity waves is significant.

The wall pressure perturbation amplitudes for the fast acoustic wave case are presented
in figure 19. For f = 400 kHz, there is no observed second-mode amplification, since the
branch I point is downstream of the end of the domain. For f = 500 kHz (not shown) and
f = 600 kHz, second-mode amplification can be clearly identified, but there are strong
oscillations well into the unstable region, unlike what was found in the slow acoustic wave
case. These oscillations (which can be found for all considered frequencies) are due to
interference between mode F and fast acoustic waves (or a mixture of fast acoustic waves
and mode F3). The persistence of these oscillations up to the branch II neutral point implies
that mode F7 never becomes sufficiently dominant. However, for these two frequencies
(500 and 600 kHz), mode Fj does at least surpass the combined amplitude of the other
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Figure 19. Wall pressure perturbation amplitude vs. streamwise distance for free-stream fast acoustic waves at
(a) f =400, (b) f =600, (¢c) f =800 and (d) f = 1000 kHz, in the TCNE and frozen cases. The dash-dot
lines indicate the branch I and II neutral points in the TCNE case based on LPSE.

waves through second-mode amplification. This is demonstrated in figure 18, where the
phase speed at f = 600 kHz shifts towards that of mode F; around s = 0.85 m.

Figure 20 compares the DNS pressure perturbation profiles with the LST/LPSE results
for several streamwise locations near s = 1 m for f = 600 kHz. These locations correspond
to different points along the oscillations in wall pressure perturbation amplitude, as shown
in the inset of the figure. For brevity, the LST and LPSE profiles are shown only for s
= 1.0021 m, keeping in mind that the LST and LPSE profiles do not change significantly
between the locations considered. The effect of interference on the perturbation throughout
the boundary layer is seen through the differences in the shapes of the DNS profiles
between these locations. The DNS profiles show poor overall agreement with the LST
mode F; eigenfunction and the LPSE shape function, confirming that mode F; does not
become sufficiently dominant despite second-mode amplification.

For f > 700 kHz, second-mode amplification is weak enough that mode F; never
surpasses the combined amplitude of the other waves. Accordingly, the phase speed at
these frequencies (not shown) does not shift towards that of mode F; even after second-
mode amplification. This result, combined with the observation that the location of
the apparent peak disagrees with that of the branch II neutral point, suggests that the
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Figure 20. Comparison of wall-normal pressure perturbation profiles between unsteady DNS, LST and LPSE
near s = 1 m for free-stream fast acoustic waves at f = 600 kHz in the TCNE case.

amplification seen in figure 19 for f = 800 and 1000 kHz is unrelated to second-mode
amplification. However, Ma & Zhong (2003a, b) and Zhong & Ma (2006) found that there
can be a notable downstream amplification due to the excitation of mode F; by fast acoustic
waves (owing to their synchronisation). This is likely the case here.

An interesting observation is that for f = 1000 kHz, the amplitude curve is fairly smooth
past s & 0.2 m. Now, since the oscillations are due to interference between mode Fi, fast
acoustic waves and mode F, (as will be shown later), it can be concluded that the observed
smoothness past s & 0.2 m is due to the fast acoustic waves (or the combination of fast
acoustic waves and mode F3) being particularly strong compared with the amplitude of
mode F|, which undergoes weak second-mode amplification at this frequency.

It is possible to directly verify that the oscillations in amplitude are due to interference
between waves. If a disturbance consists of two waves with different phase speeds, the
expression given by De Tullio & Sandham (2015) can be used to estimate the peak-to-peak
distance in the oscillations of the disturbance amplitude owing to their interference. This
expression is written as

Cr,ACr,B
As =

=" (7.1)
flera —cr Bl

where As is the peak-to-peak distance and ¢, 4 and ¢, p are the phase speeds of waves A
and B, respectively. Consider wave A to have a phase speed near the fast acoustic spectrum,
so that ¢, o4 &~ 1.205u),,. Consider wave B to be mode F1, keeping in mind that ¢, g must be
adjusted according to the local phase speed of mode F7. The peak-to-peak distance shown
in the inset of figure 19(b) for f = 600 kHz is measured to be approximately 16.3 mm.
Using the above expression with the phase speed of mode F; evaluated at the midpoint
of the two peaks, the peak-to-peak distance is approximately 16.2 mm, showing excellent
agreement with the DNS results. The agreement at other locations is not quite as good, but
still decent overall. The relative error is approximately 9 % for the first set of peaks near the
leading edge, 5 % for the second set and so on, continuing to decrease downstream. This
indicates that the oscillations are due to interference between mode F; and a wave (or a
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combination of waves) whose phase speed(s) is (are) close to the fast acoustic spectrum. In
other words, the oscillations are due to interference between mode F and the fast acoustic
waves or, if mode F; is present, a combination of both waves. A similar analysis can be
performed for the phase speed plots.

The origin of the oscillations is the same for all considered frequencies. However,
a notable exception is that there are long-period oscillations that appear some distance
downstream of the branch II neutral point at higher frequencies (see the amplitude curves
for f = 800 and 1000 kHz in figure 19). These oscillations are instead more consistent
with interference between mode F> and the fast acoustic waves.

7.1.3. Receptivity coefficients

A key objective in a receptivity study is to obtain receptivity coefficients. Generally, the
receptivity coefficient (denoted by Cpg) is defined as Cp = Ag/Ac, Where Ag is the
amplitude of the unstable mode at the branch I neutral point, and Ay is the amplitude
of the free-stream disturbance. Unfortunately, obtaining A is not straightforward, since
the boundary-layer disturbance in the DNS contains many competing modes at the branch
I neutral point. However, it is still possible to estimate the receptivity coefficient by using
a backtracking method, as Ma & Zhong (2003b) have done. The premise of this method
is that if the amplitude of the unstable mode is known at some point downstream of the
branch I neutral point, then dividing that amplitude by the corresponding N-factor at the
point allows for the branch I amplitude to be estimated. Rearranging (4.9), the branch I
amplitude of the unstable mode can be estimated as

A(s)  AGs)

Apg=A = = .
0 (SO) f:) O_(s) dS eN(S)

(7.2)

Here, the amplitude A is obtained by sampling the unsteady DNS perturbation at some
point downstream of the branch I neutral point where the unstable mode is sufficiently
dominant. The value of eV at the same point can be obtained from LST or LPSE.
As mentioned before, the location at which the unstable mode becomes sufficiently
dominant can be found by looking at the amplitude, phase speed or growth rate plots.
We expect that mode Fj reaches its highest amplitude, and is hence most dominant, near
the branch II neutral point. Therefore, the sampling location is taken to be the branch
IT neutral point (as predicted by the LPSE) except in cases where the branch II neutral
point is outside the computational domain, in which case the last point in the domain is
used. Here, the receptivity coefficient is evaluated using the wall pressure perturbation
amplitude normalised by the free-stream pressure perturbation amplitude, so that Cp =
1P} (50)1/ 1Pl -

A major limitation to the methodology described above is that, for a given frequency,
there must exist a location where the unstable mode is sufficiently dominant in the DNS.
An exception to this is that, if the unstable mode is greater than the combined amplitude
of the other waves, but not sufficiently dominant, the phase speed and growth rate tend to
oscillate about the solution for the unstable mode. This was, for example, seen for f = 600
kHz in the fast acoustic wave case (figure 18). In this scenario, it is possible to filter out
the oscillations and approximately recover the amplitude of mode F; by using a smoothing
algorithm.

The smoothing is performed using the locally estimated scatterplot smoothing method
of Cleveland & Devlin (1986). This method requires the user to specify a window length,
denoted by L, on which the smoothing is performed. The ratio of L to the length scale of
the oscillations/variations in amplitude determines the level of smoothing, with large ratios
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Figure 21. (a) Amplitude versus L/As at the LPSE branch II neutral point (s &~ 1.04 m) in the TCNE fast
acoustic wave case at f = 600 kHz. (b) Amplitude curves near the branch II neutral point in the TCNE fast
acoustic wave case at f = 600 kHz for several values of L/As. (¢) Unsmoothed and smoothed (L/As = 8)
amplitude curves near the branch II neutral point in the TCNE slow acoustic wave case at f = 600 kHz.

corresponding to more smoothing and vice versa. The relevant oscillation length scale is
the peak-to-peak distance (denoted by As), which can be estimated at a given sampling
location by using (7.1) or by direct measurement. Figure 21(a) shows the amplitude plotted
versus L/As at the branch II neutral point (predicted by LPSE) in the fast acoustic wave
case at f = 600 kHz. Because the unsmoothed amplitude is near a local minimum in
the oscillations, increasing L initially leads to a sharp increase in amplitude. Also, since
the oscillations have a relatively short length scale, they become damped with small L.
However, since the underlying amplitude variation of mode F| occurs over much longer
length scales, L must be increased substantially before mode Fj itself is damped. Based
on this observation, the optimal L presumably lies in the region immediately after the
oscillations have been damped. For the case shown in figure 21(a), we chose L/As = 8
(shown as the vertical dashed line) as the window length. The smoothed amplitude curves
for this case are shown in figure 21(b) for different values of L/As. Reasonable values
of L/As seem to vary between 6 and 8 for the other fast acoustic wave cases. We used
L/As =5 in the slow acoustic wave case for f = 1000 kHz. As an additional verification
of the smoothing procedure, we applied it to the slow acoustic wave case at f = 600 kHz,
where oscillations near the branch II neutral point are negligible to begin with. Now, in
this study, the largest L relative to the underlying variation of mode F7i, i.e. the strongest
smoothing, corresponds to L/As =5 in the slow acoustic wave case at f = 1000 kHz. For
the purposes of this verification we can obtain a roughly equivalent peak-to-peak distance
for f = 600 kHz by taking the peak-to-peak distance near the branch II neutral point in
the slow acoustic wave case at f = 1000 kHz and multiplying it by 5/3, the ratio of the two
frequencies. Figure 21(c) shows the result. It is evident that even the strongest smoothing
has a negligible effect on the amplitude of mode F; itself.

Using the backtracking method, receptivity coefficients can be computed without
smoothing for 500 kHz < f < 900 kHz in the slow acoustic wave case or with smoothing
for f = 1000kHz in the slow acoustic wave case and f = 500 and 600 kHz in the fast
acoustic wave case. In all other cases, it is not possible to compute receptivity coefficients,
at least within the scope of the present study. These cases are f = 400 kHz in both the
slow and fast acoustic wave cases, where the unstable region is downstream of the end of
the domain, and f > 700 kHz in the fast acoustic wave case, where mode F never exceeds
the amplitude of the fast acoustic waves, thus preventing the use of smoothing. Obtaining
receptivity coefficients in the latter scenario is likely to require multimode decomposition
of the DNS results.
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Figure 22. Second-mode (mode F) receptivity coefficients based on the wall pressure perturbation
amplitude. Receptivity coefficients are estimated using the backtracking method with N-factors from LPSE.

The second-mode receptivity coefficients are shown in figure 22. Only the TCNE case is
considered in the present discussion. At f = 500 and 600 kHz, the receptivity coefficients
in the fast acoustic wave case are much larger than the slow acoustic wave case. In other
words, the fast acoustic waves excite the second mode more strongly than slow acoustic
waves at these frequencies. From this result, it would be fair to assume that transition
would occur earlier if purely fast acoustic waves were imposed in the free stream rather
than slow acoustic waves. However, this is an unrealistic scenario. Recent studies have
shown that in hypersonic wind tunnels, the free-stream acoustic waves are primarily slow
acoustic waves (Duan, Choudhari & Wu 2014; Wagner et al. 2018). Another interesting
result is that the fast acoustic receptivity coefficient at f = 600 kHz is slightly smaller
than at f = 500 kHz, contradicting the results for the slow acoustic waves, where the
receptivity coefficients increase with frequency. However, due to the lack of additional
data points, it is unclear whether this trend would be continued.

7.2. Frozen case

Comparing the unsteady DNS results between the two gas models, we find that in both
the slow acoustic wave case (figure 15) and the fast acoustic wave case (figure 19),
the amplitude curves are qualitatively similar, indicating that TCNE effects do not
fundamentally change the receptivity mechanism. This can also be further verified by
looking at the phase speed and growth rate plots, which for brevity are not shown here.
However, for the frequencies at which mode F; surpasses the external waves in amplitude
through second-mode amplification (f > 500 kHz in the slow acoustic wave case, and
f =500 and 600 kHz in the fast acoustic wave case), the peak amplitudes attained through
second-mode amplification are much higher in the TCNE case. For example, in both the
slow and fast acoustic waves cases at f = 600 kHz, the peak amplitude is about two times
higher using the TCNE gas model.

Figure 22 shows that the receptivity coefficients in the TCNE case show the same
frequency-dependent behaviour as the frozen case. This is unsurprising since the
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Figure 23. Comparison of disturbance amplitudes based on () translation—rotation temperature, (b) pressure,
(c) streamwise velocity and (d) density at s = 0.4 m and f = 600 kHz in the slow acoustic wave case.

receptivity mechanism is essentially unchanged between the two gas models. However, the
receptivity coefficients in the TCNE case are smaller by an average of approximately 9 %
in the slow acoustic wave case and 8 % in the fast acoustic wave case. Recall, however,
that the second mode attains higher peak N-factors in the TCNE case. This means that
TCNE effects have competing impacts on receptivity versus stability for the frequencies
considered here.

The receptivity coefficients shown in figure 22 were obtained using the wall pressure
perturbation amplitude. However, the comparison between the two gas models could
change if other disturbance quantities are considered. To investigate this, we can use
LST to obtain the eigenfunctions of the second mode at the branch I neutral point
and then scale those eigenfunctions based on the wall pressure perturbation amplitude
(i.e. the receptivity coefficients in figure 22). If we consider the peak amplitudes of
density, streamwise velocity, wall-normal velocity and translation—rotation temperature,
the reduction in amplitude in the TCNE case is similar or larger in magnitude compared
with the wall pressure perturbation.

Although the destabilisation of the second mode in the TCNE case is due to the cooling
of the mean flow, the specific mechanisms behind the reduction in receptivity coefficients
is still unclear. A number of mechanisms could be relevant here, namely (i) a weakening of
the external waves that excite mode Fi, (ii) a reduction in the efficiency of the receptivity
process, which could be characterised by the ratio of the amplitude of mode F; to the
external waves and/or (iii) stronger decay of mode F) outside the regions where mode F
is excited. Unfortunately, the DNS results do not provide sufficient information to confirm
these effects. For instance, in the slow acoustic wave case, the boundary-layer disturbance
using the TCNE gas model is broadly attenuated for a number of key disturbance quantities
for much of the flow field upstream of the branch I neutral point, as demonstrated in
figure 23. However, the disturbance consists of slow acoustic waves, entropy/vorticity
waves and mode Fp, to varying degrees. As such, while it can be concluded that the
overall disturbance is weaker in the TCNE case, we cannot make any further conclusions.
In the fast acoustic wave case, we have found that the disturbance can either be stronger or
weaker in the TCNE case, depending on the disturbance quantity and the streamwise/wall-
normal positions. In this case it is unclear whether even the overall disturbance is
necessarily stronger or weaker. Further investigation of the mechanisms mentioned above
will require the use of multimode decomposition, which is outside of the scope of this
study.
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8. Conclusion

In this study, DNS, LST and LPSE were used to study boundary-layer receptivity to
free-stream acoustic waves for a high-enthalpy Mach 5 flow over a cone. A TCNE gas
model was used. The flow at the leading edge features moderate dissociation and is
out of thermal equilibrium. On the cone frustum, however, the mixture composition
returns to its pre-shock composition, but still does not reach thermal equilibrium, with
T, < T in the boundary layer. The LST results showed that the instability mechanism was
Mack’s second mode, with the unstable mode being mode Fi. Using a newly developed
LPSE code, non-parallel effects were found to be slightly stabilising to the second mode,
leading to slightly lower peak N-factors for a fixed frequency and a slightly smaller N-
factor envelope. Unsteady DNS was then performed to investigate the receptivity of the
second mode to both fast and slow acoustic planar waves for a number of frequencies
between 400 and 1000 kHz. For slow acoustic free-stream waves, second-mode receptivity
coefficients were found to increase with frequency. Receptivity coefficients for the fast
acoustic free-stream waves were obtained only for 500 and 600 kHz, but were much
larger than the corresponding receptivity coefficients for the slow acoustic free-stream
waves.

The TCNE effect on receptivity was investigated by comparing results between the
TCNE case and a secondary case, using a thermochemically frozen gas model. The
TCNE effects were found to have a cooling effect on the boundary layer, reducing overall
translation—rotation temperatures. The TCNE effects were also found to be destabilising
to the second mode, leading to larger peak N-factors for a fixed frequency and a
larger N-factor envelope. In particular, the N-factor envelope based on the wall pressure
perturbation was approximately 0.9 higher by the end of the domain in the TCNE case.
However, the second-mode receptivity coefficients for the TCNE case were on average
approximately 9 % smaller for the slow acoustic wave case and approximately 8 % smaller
for the fast acoustic wave case. The fact that the TCNE case had larger peak N-factors
for a fixed frequency, but smaller receptivity coefficients, means that TCNE effects have
competing impacts on receptivity versus stability for the considered frequencies in this
case.

These results suggest that the TCNE effect on transition is more complex than initially
thought. In many cases of engineering interest, stability analyses predict TCNE effects to
be destabilising to the second mode, which tends to shift transition locations upstream.
However, if TCNE effects lead to a reduction in receptivity coefficients, then transition
locations may not be shifted upstream as far as the stability analysis alone might suggest.
In more extreme cases, the reduction in receptivity coefficients may be substantial enough
to push transition locations downstream, rather than upstream. The results also suggest
that, in some cases, it may be possible to purposely make use of the TCNE effect to delay
transition through a reduction of receptivity coefficients.

It should be mentioned that this study is by no means a complete characterisation
of receptivity for high-enthalpy boundary layers. To achieve this, further studies are
necessary. For instance, multimode decomposition could be used to obtain receptivity
coefficients for more frequencies in the fast acoustic wave case or to yield further insights
into the TCNE effect on receptivity coefficients. Results could also differ in cases with
higher stagnation enthalpies, where TCNE effects are expected to be stronger, or for other
types of free-stream waves, such as planar waves at non-zero incident angles.

It should also be mentioned that we consider only thermochemically frozen acoustic
waves in the free stream. To preface, at the considered free-stream temperatures, finite-
rate chemistry effects are so weak that they can be readily neglected. However, 1-D
non-equilibrium acoustic wave simulations, following the work of Wagnild (2012), show
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Parameter Value Parameter Value
M~ 10 Ty, Too

Poo 1.91 x10~2 kgm—3 Poo 4 kPa
Yn, 0.78 Yo, 0.22

Table 3. Free-stream conditions for ach 10 straight-cone flow studied by Knisely & Zhong (2019 a).

that vibrational relaxation is weak (i.e. frozen), with very small damping rates of at
most 2.3 x 1072 m~! for the frequencies considered. Even so, a limitation arises in
that the present results can be extended only to free-stream acoustic waves where the
perturbations in 7, are very small compared with the perturbations in 7. However,
such cases are relevant because of the weak (frozen) vibrational relaxation (as shown
by Wagnild). Nevertheless, if the above conditions are not fulfilled, results may change.
Another limitation is that damping via vibrational relaxation is neglected. Although
weak, these damping effects can add up over long propagation distances. To account for
this, it is necessary to define a separate receptivity coefficient normalised by the free-
stream disturbance amplitude at some fixed location upstream of the cone geometry.
We hypothesise that the additional vibrational damping in the free stream would lower
these receptivity coefficients relative to the frozen case even more substantially than the
receptivity coefficients presented here.
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Appendix. Verification of LPSE Solver

The new LPSE code is validated for a high-enthalpy Mach 10 flow over a straight cone
with a nose radius of 1 mm and a half-angle of 5°, first studied by Knisely & Zhong
(2019a). The free-stream conditions for this case are summarised in table 3. The free-
stream stagnation enthalpy is 14.78 MJkg~!. The wall is assumed to be isothermal, with
both translation—rotation and vibration temperatures set to 1000 K. The wall is also
assumed to be supercatalytic for the species mass fractions.

Figure 24 compares the second-mode growth rates at f = 700 kHz between the present
LPSE solver and those used by Chang, Kline & Li (2021) and Chen, Wang & Fu (2021).
The growth rates are computed using the wall pressure perturbation. The data for the other
studies wre obtained by digitising the published figures and should be within plotting
accuracy of the original data. In our LPSE solution there exists a transient near s = (0.2 m
where the initial shape function (obtained from LST) adjusts to the non-parallel solution.
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Figure 24. Comparison of LPSE results for the Mach 10 case of Knisely & Zhong (2019a), in terms of
second-mode growth rates at f = 700 kHz.

As a result, there are oscillations in the growth rate that obscure the true location of
the branch I neutral point. These oscillations are strongly dependent on the streamwise
location at which the solution is initiated. However, for the purposes of this verification
study, we did not attempt to search for the initial location that would minimise such
oscillations. These oscillations dampen quickly, and as the second mode grows, the results
are within the variations seen by the other studies beyond s ~ 0.28 m. This result gives us
confidence that the LPSE solver has been implemented correctly.
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