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 a b s t r a c t

 High-order numerical methods are commonly employed in direct numerical simulation (DNS) to 
achieve the required accuracy with fewer degrees of freedom, thereby improving computational ef-
ficiency. To further improve global spatial accuracy, Bai and Zhong proposed the multi-layer compact 
(MLC) schemes (JCP, 2019) to introduce spatial derivatives as new degrees of freedom and create a 
more compact stencil for the same spatial accuracy. Stability analysis showed MLC can achieve seventh-
order global accuracy with closed boundaries, which surpasses most of the sixth-order conventional 
upwind finite difference schemes. Despite this high-order convergence rate, MLC faces challenges in 
supersonic flow simulations, primarily due to the Gibbs phenomenon across shock waves. The numer-
ical oscillation can cause divergence in high-order numerical schemes if no additional treatment, such 
as shock-capturing or shock-fitting methods, is applied. Therefore, further studies are needed to en-
hance MLC’s applicability to realistic high-speed flow applications, particularly in the context of shock 
treatments and boundary condition implementation. This paper develops a novel MLC method to im-
prove its applicability for supersonic flow simulations. The proposed method integrates MLC with the 
shock-fitting method (MLC-SF), treating the shock wave as a computational boundary that separates up-
stream and downstream solutions. The shock-fitting method mitigates spurious numerical oscillations 
across the discontinuous interface, preserving the high-order accuracy of MLC-SF. Additionally, this 
paper introduces a physically consistent boundary condition for the MLC-SF spatial derivative layers 
behind the shock. This boundary condition uses the inversion of the flux Jacobian matrix to estimate 
the correct spatial derivatives, ensuring consistency between MLC-SF value and derivative layers at 
the inflow boundary. In order to systematically benchmark the proposed method, MLC-SF is applied to 
five simulation cases involving linear advection, Euler, and Navier-Stokes equations on one- and two-
dimensional domains. The studied cases aim to compare the results of shock-fitting and shock-capturing 
methods, evaluate the performance of MLC-SF within the arbitrary Lagrangian-Eulerian (ALE) frame-
work for moving grid applications, and test the MLC-SF derivative layers on fluid mechanics problems 
involving non-Cartesian grids. In both one-dimensional and two-dimensional shock wave interaction 
cases, MLC-SF with the proposed physically consistent inflow condition achieves seventh-order spatial 
accuracy, which outperforms the other four tested methods. Notably, in the one-dimensional shock-
interaction results, the fifth-order WENO methods exhibit only first-order accuracy behind the shock 
wave, highlighting the necessity of adopting the shock-fitting approach to maintain the high spatial 
accuracy property in MLC-SF. In terms of computational efficiency. MLC-SF can save at least 30 % 
of the computational time compared to conventional high-order finite difference methods with shock-
fitting for Shu-Osher-like problem. The overall objective of this study is to establish a high-order MLC 
framework suitable for compressible and high-speed fluid mechanics simulations.
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$\tau $


$P_1$


$P_0$


\begin {align}\dfrac {\partial U}{\partial t} + \dfrac {\partial F_j}{\partial x_j} = 0\end {align}


$F_j$


$U$


$\rho _m$


$W$


\begin {align}\dfrac {\partial U}{\partial t} + \dfrac {\partial F^{inv}_j}{\partial x_j} - \dfrac {\partial F^{vis}_{j}}{\partial x_j} = W, \ \ \ j = \{1, 2, 3\} \label {eqn: governing-3D}\end {align}


$U$


$F^{inv}_j$


$F^{vis}_{j}$


\begin {align}U = \left [\begin {array}{@{}c@{}} \rho _m\\ \rho u_1 \\ \rho u_2 \\ \rho u_3 \\ e \end {array}\right ], \ \ \
F^{inv}_j = \left [\begin {array}{@{}c@{}} \rho _m u_j\\ \rho u_1 u_j + p \delta _{1j} \\ \rho u_2 u_j + p \delta _{2j} \\ \rho u_3 u_j + p \delta _{3j} \\ (e + p) u_j \end {array} \right ], \ \ \
F^{vis}_{j} = \left [ \begin {array}{@{}c@{}} 0 \\ \tau _{1j} \\ \tau _{2j} \\ \tau _{3j} \\ \tau _{jk} u_k - q_j \end {array}\right ]\end {align}


$\tau _{ij}$


\begin {align}\tau _{ij} = \mu \left ( \dfrac {\partial u_i}{\partial x_j} + \dfrac {\partial u_j}{\partial x_i}\right ) - \frac {2}{3} \mu \dfrac {\partial u_k}{\partial x_k}\delta _{ij}\end {align}


\begin {align}\mu (T) = \mu _0 \left (\frac {T}{T_0} \right )^{3/2}\frac {T_0 + S}{T + S}\end {align}


$\kappa $


\begin {align}q_j = - \kappa \dfrac {\partial T}{\partial x_j}\end {align}


$\kappa $


$D^+_x u$


$i$


\begin {align}\sum ^{M_2}_{k=-M_1} b_k (D^+_x u)_{i + k} = \frac {1}{h}\sum ^{N_2}_{k =-N_1}a_k u_{i + k} + O(h^p)\end {align}


$a$


$b$


$p$


$b_k \neq 0$


$k \neq 0$


$b_k = 0$


$k \neq 0$


\begin {align}&a_{\pm 4} = \mp \frac {1}{280} + \frac {1}{40320} \alpha , \ \ \
a_{\pm 3} = \pm \frac {4}{105} - \frac {1}{5040} \alpha , \ \ \
a_{\pm 2} = \mp \frac {1}{5} + \frac {1}{1440} \alpha , \nonumber \\ &a_{\pm 1} = \pm \frac {4}{5} - \frac {1}{720} \alpha , \ \ \
a_{0} = \frac {1}{576} \alpha \ \ \
b_0 = 1\end {align}


$\alpha $


$\alpha $


\begin {align}\dfrac {\partial F_j}{\partial x_j} = D^+_{x_j} F^+_j + D^-_{x_j} F^-_j + O(h^p)\end {align}


$\epsilon $


$\epsilon $


$0.2$


$1.0$


\begin {align}F^\pm _j = \frac {1}{2}\left (F_j \pm \lambda _j U\right ), \ \ \
\lambda _j = c + \sqrt {{u_j}^2 + (\epsilon c)^2} \label {eqn: Lax-Friedrichs}\end {align}


\begin {align}\dfrac {d U}{dt} = L(U, t)\end {align}


\begin {align}U^{(1)} &= U^n + \Delta t L(U^n, t^n) \nonumber \\ U^{(2)} &= \frac {3}{4} U^n + \frac {1}{4}\left [U^{(1)} + \Delta t L(U^{(1)}, t^n + \Delta t)\right ] \nonumber \\ U^{n + 1} &= \frac {1}{3}U^n + \frac {2}{3}\left [U^{(2)} + \Delta t L(U^{(2)}, t^n + \frac {\Delta t}{2})\right ]\end {align}


\begin {align}\dfrac {\partial gU}{\partial t} + \dfrac {\partial F'_1}{\partial \xi } + \dfrac {\partial F'_2}{\partial \eta } + \dfrac {\partial F'_3}{\partial \zeta } = 0 \label {eqn:ALE}\end {align}


\begin {align}\left [\begin {array}{@{}c@{}} F_1' \\ F_2' \\ F_3' \\ \end {array}\right ] = g\left [\begin {array}{@{}ccc@{}} \xi _x & \xi _y & \xi _z\\ \eta _x & \eta _y & \eta _z\\ \zeta _x & \zeta _y & \zeta _z\\ \end {array}\right ] \left [\begin {array}{@{}c@{}} F_1 \\ F_2 \\ F_3 \\ \end {array}\right ] + g\left [\begin {array}{@{}c@{}} \xi _t \\ \eta _t \\ \zeta _t \\ \end {array}\right ] U \label {eqn: ALE_flux}\end {align}


$(x, y, z)$


$(\xi , \eta , \zeta )$


$g$


$U_\xi $


$U_\eta $


$U_x$


$U_y$


$F'$


\begin {align}F'_s - F'_0 = \left ( \vec {F}_s - \vec {F}_0 \right ) \cdot \vec {a}_G + \left (U_s - U_0 \right ) b_G = 0 \label {eqn:R-H}\end {align}


$\vec {a}_G$


$b_G$


$F_0$


$U_0$


$F_s$


$U_s$


$\eta = 1$


$\vec {a}_G$


$b_G$


\begin {align}\vec {a}_G &= (g \eta _x)_G \hat {x} + (g \eta _x)_G \hat {y} + (g \eta _x)_G \hat {z} \nonumber \\ b_G &= g \eta _t\end {align}


$\vec {a}_G$


$b_G$


$C^+$


\begin {align}\dfrac {\partial b_G}{\partial t} = \frac {-1}{[I^+_s \cdot (U_s - U_0)]} \left [\lambda ^+_{s} I^+_s \dfrac {\partial U_s}{\partial t} + I^+_{s} (\vec {F}_s - \vec {F}_0)\cdot \dfrac {\partial \vec {a}_G}{\partial t} - (I^+_{s} \mathbf {B}'_0)\dfrac {\partial U_0}{\partial t}\right ] \label {eqn:shock_acc}\end {align}


\begin {align}\left (\dfrac {\partial \vec {F}_{s}}{\partial t} - \dfrac {\partial \vec {F}_{0}}{\partial t} \right ) \cdot \vec {a}_G + \left ( \vec {F}_{s} - \vec {F}_{0} \right ) \cdot \dfrac {\partial \vec {a}_G}{\partial t} + \left (\dfrac {\partial U_s}{\partial t} - \dfrac {\partial U_0}{\partial t}\right ) b_G +\left (U_s - U_0 \right ) \dfrac {\partial b_G}{\partial t} = 0 \label {eqn:RH_time}\end {align}


$F'_2$


\begin {align}\mathbf {B}' = \dfrac {\partial F'_2}{\partial U} = \dfrac {\partial \vec {F}}{\partial U} \cdot \vec {a} + b_G \mathbf {I}\end {align}


$\mathbf {I}$


$\mathbf {B}'$


\begin {equation}\mathbf {B}'_s \dfrac {\partial U_s}{\partial t} - \mathbf {B}'_0 \dfrac {\partial U_0}{\partial t} + \left (\vec {F}_{s} - \vec {F}_{0} \right ) \cdot \dfrac {\partial \vec {a}_G}{\partial t} +\left (U_s - U_0 \right ) \dfrac {\partial b_G}{\partial t} = 0 \label {eqn:RH-time-B}\end {equation}


$\mathbf {B}'_s$


$\lambda ^+_{s}$


$I^+_{s}$


$C^+$


$I^+_{s}$


$U_x$


\begin {align}\dfrac {\partial }{\partial t} \left [\begin {array}{@{}c@{}} U \\ U_{x_k} \end {array}\right ] + \dfrac {\partial }{\partial x_j} \left [\begin {array}{@{}c@{}} F_j\\ F_{j,x_k} \end {array}\right ] - \dfrac {\partial }{\partial x_j} \left [\begin {array}{@{}c@{}} F_{vj}\\ F_{vj, x_k} \end {array} \right ] = 0\end {align}


\begin {align}\dfrac {\partial }{\partial t} \left [\begin {array}{@{}c@{}} U \\ U_x \\ \end {array}\right ] + \dfrac {\partial }{\partial x} \left [\begin {array}{@{}c@{}} F_1 \\ F_{1, x} \\ \end {array}\right ] = 0 \label {eqn:1D_MLC}\end {align}


$x$


$\partial F_{1}/\partial x = F_{1,x}$


$U_x$


$F_{1, x} = \mathbf {A} U_x$


$F_{1,xx}$


$u$


$u$


$u_x$


\begin {align}(D^+_{xx} u)_i = \frac {1}{h^2} \sum ^{L_2}_{l=-L_1} a_l u_{i + l} + \frac {1}{h} \sum ^{M_2}_{m=-M_1} b_m (u_x)_{i+m} + O(h^p) \label {eqn:MLC-1D}\end {align}


$a$


$b$


$h$


$L_1-L_2-M_1-M_2$


$L_1-L_2-M_1-M_2$


$\alpha $


\begin {align}a_{\pm 2} = \frac {7}{85} \mp \frac {25}{3456} \alpha , \ \ \
&a_{\pm 1} = \frac {64}{27} \mp \frac {5}{108} \alpha , \ \ \
a_0 = -5 \nonumber \\ b_{\pm 2} = \mp \frac {1}{36} + \frac {1}{576} \alpha , \ \ \
&b_{\pm 1} = \mp \frac {8}{9} + \frac {1}{36} \alpha , \ \ \
b_0 = \frac {1}{16}\alpha \end {align}


$F_{1,xx}$


$F_1$


$F_{1,x}$


\begin {align}\dfrac {\partial }{\partial t} \left [\begin {array}{@{}c@{}} U \\ U_x \\ U_y \\ \end {array}\right ] + \dfrac {\partial }{\partial x} \left [\begin {array}{@{}c@{}} F_1 \\ F_{1,x} \\ F_{1,y} \\ \end {array}\right ] + \dfrac {\partial }{\partial y} \left [\begin {array}{@{}c@{}} F_2 \\ F_{2,x} \\ F_{2,y} \\ \end {array}\right ]= 0 \label {eqn:2D_MLC}\end {align}


$F_{1, xx}$


$F_{2, yy}$


$F_{1, xy}$


$F_{2, xy}$


$u_{xy}$


$u$


$u_x$


$u_y$


\begin {align}(u_{xy})_{ij} &= \frac {1}{h^2} \sum _{l_y = L_1}^{L_2} \sum _{l_x = L_1}^{L_2} a_{l_x, l_y} u_{i+l_x, j+l_y} \nonumber \\ &+ \frac {1}{h} \sum _{m_y = M_1}^{M_2}\sum _{m_x = M_1}^{M_2} \left [b_{m_x, m_y} (u_x)_{i+m_x, j+m_y} + c_{m_x, m_y} (u_y)_{i+m_x, j+m_y} \right ] + O(h^r)\end {align}


\begin {align}\dfrac {\partial }{\partial t} \left [\begin {array}{@{}c@{}} U \\ U_x \\ U_y \\ U_{xy} \\ \end {array}\right ] + \dfrac {\partial }{\partial x} \left [\begin {array}{@{}c@{}} F_1 \\ F_{1, x} \\ F_{1, y} \\ F_{1, xy} \\ \end {array}\right ] + \dfrac {\partial }{\partial y} \left [\begin {array}{@{}c@{}} F_2 \\ F_{2, x} \\ F_{2, y} \\ F_{2, xy} \\ \end {array}\right ]= 0\end {align}


$U_{xy}$


$F_{1, xy}$


$F_{2, xy}$


$F_{1, xy} = \mathbf {A}_{y} U_x + \mathbf {A} U_{xy}$


$F_{1, xxy}$


$F_{2, xyy}$


$F_{1, xxy}$


$F_{1, y}$


$F_{1, xy}$


$x$


$F_{2, xyy}$


$F_{2, x}$


$F_{2, xy}$


$y$


\begin {align}\dfrac {\partial }{\partial t} \left [U \right ] + \mathbf {A}\dfrac {\partial }{\partial x} \left [ U \right ] = 0\end {align}


$\mathbf {A} = \partial F_1/ \partial U$


$\lambda $


$\mathbf {A}$


\begin {align}\dfrac {\partial }{\partial t}\left [\begin {array}{@{}c@{}} U\\ U_x \end {array} \right ] + \underbrace {\left [\begin {array}{@{}cc@{}} \mathbf {A} & 0 \\ \mathbf {A}_x & \mathbf {A} \end {array}\right ]}_{\mathbf {B}} \dfrac {\partial }{\partial x}\left [\begin {array}{@{}c@{}} U\\ U_x \end {array}\right ] = 0 \label {eqn: Jacobian-MLC}\end {align}


$\mathbf {B}$


$\mathbf {A}$


$\mathbf {A}$


\begin {align}F^\pm _{j, x} = \frac {1}{2}\left [F_{j, x} \pm \left (\lambda _{j} U_x + \lambda _{j, x} U \right )\right ], \ \ \
\lambda _j = c + \sqrt {{u_j}^2 + (\epsilon c)^2}, \ \ \
\lambda _{j, x} = c_x + \frac {u_j u_{j, x} + \epsilon ^2 c c_x}{ \sqrt {{u_j}^2 + \left (\epsilon c \right )^2}} \label {eqn: Lax-Friedrichs-MLC}\end {align}


$F^\pm _{j, x}$


$F^\pm _j$


$D^{\pm }_{xx} F_j$


$\lambda _j$


$\mathbf {B}$


$\mathbf {A}$


$\lambda _{j, x} U$


$F^\pm _j$


$F^\pm _{j, x}$


$\epsilon $


\begin {align}\dfrac {\partial U}{\partial t} = -\frac {1}{g}\left (\dfrac {\partial F'_1}{\partial \xi } + \dfrac {\partial F'_2}{\partial \eta } - U\dfrac {\partial g}{\partial t} \right )\end {align}


$U$


$U_\xi $


$U_\eta $


\begin {align}\dfrac {\partial U_\xi }{\partial t} &= \frac {g_\xi }{g^2}\left (\dfrac {\partial F'_1}{\partial \xi } + \dfrac {\partial F'_2}{\partial \eta } - U\dfrac {\partial g}{\partial t} \right ) -\frac {1}{g}\left (\dfrac {\partial ^2 F'_1}{\partial \xi ^2} + \dfrac {\partial ^2 F'_2}{\partial \xi \partial \eta } - U_\xi \dfrac {\partial g}{\partial t} - U\dfrac {\partial g_\xi }{\partial t}\right )\nonumber \\ \dfrac {\partial U_\eta }{\partial t} &= \frac {g_\eta }{g^2}\left (\dfrac {\partial F'_1}{\partial \xi } + \dfrac {\partial F'_2}{\partial \eta } - U\dfrac {\partial g}{\partial t} \right ) -\frac {1}{g}\left (\dfrac {\partial ^2 F'_1}{\partial \xi \partial \eta } + \dfrac {\partial ^2 F'_2}{\partial \eta ^2} - U_\eta \dfrac {\partial g}{\partial t} - U\dfrac {\partial g_\eta }{\partial t}\right )\end {align}


$U_s$


$\xi $


$\eta $


$(U_\xi )_s$


\begin {align}\left ( \vec {F}_s \cdot \vec {a}_G + U_s b_G \right )_\xi = \left (\vec {F}_0 \cdot \vec {a}_G - U_0 b_G\right )_\xi \label {eqn:R-H_xi}\end {align}


$(U_\eta )_s$


\begin {align}\dfrac {\partial U_s}{\partial t} = {\mathbf {B}'_s}^{-1} \left [\mathbf {B}'_0 \dfrac {\partial U_0}{\partial t} - \left (\vec {F}_s - \vec {F}_0 \right ) \cdot \dfrac {\partial \vec {a}_G}{\partial t} -\left (U_s - U_0 \right ) \dfrac {\partial b_G}{\partial t}\right ] \label {eqn:MLC-BC-RH}\end {align}


$(U_\eta )_s$


$\eta $


$\mathbf {B}_{s}$


\begin {align}\dfrac {\partial U_s}{\partial \eta } = -{\mathbf {B}_s}^{-1} \left ( \dfrac {\partial U_s}{\partial t} + \mathbf {A}_s \dfrac {\partial U_s}{\partial \xi } \right ) \label {eqn: MLC_BC_B_inv}\end {align}


$C^+$


$C^+$


$C^+$


$U_{s, \eta }$


$\mathcal {L}$


\begin {align}\frac {d U}{dt}\biggr |_{out} &= L(U, U_\xi , U_\eta , t) \nonumber \\ \frac {d U_\xi }{dt}\biggr |_{out} &= L_\xi (U, U_\xi , U_\eta , t) \nonumber \\ \frac {d U_\eta }{dt}\biggr |_{out} &= L_\eta (U, U_\xi , U_\eta , t)\end {align}


$\mathcal {L}_1$


$p_\infty $


$\mathcal {L}_1$


$\mathcal {L}_1$


\begin {align}\mathcal {L}_1 = K(p - p_\infty )\end {align}


$K$


$K = \sigma (1 - M^2)c/L$


$M$


$L$


$\sigma $


$\sigma = 0$


$\sigma $


$\mathcal {L}_1$


\begin {align}\mathcal {L}_1 &= K(p - p_\infty ) \nonumber \\ \mathcal {L}_{1, \xi } &= K_\xi (p - p_\infty ) + K p_\xi \nonumber \\ \mathcal {L}_{1, \eta } &= K_\eta (p - p_\infty ) + K p_\eta \end {align}


$\mathcal {L}_1$


\begin {align}\dfrac {\partial \rho u}{\partial t} = \dfrac {\partial \rho v}{\partial t} = 0\end {align}


\begin {align}y_\eta \dfrac {\partial p}{\partial \xi } - y_\xi \dfrac {\partial p}{\partial \eta } &= y_\eta \dfrac {\partial \tau _{xx}}{\partial \xi } - x_\eta \dfrac {\partial \tau _{xy}}{\partial \xi } - y_\xi \dfrac {\partial \tau _{xx}}{\partial \eta } + x_\xi \dfrac {\partial \tau _{xy}}{\partial \eta } \nonumber \\ -x_\eta \dfrac {\partial p}{\partial \xi } + x_\xi \dfrac {\partial p}{\partial \eta } &= y_\eta \dfrac {\partial \tau _{xy}}{\partial \xi } - x_\eta \dfrac {\partial \tau _{yy}}{\partial \xi } - y_\xi \dfrac {\partial \tau _{xy}}{\partial \eta } + x_\xi \dfrac {\partial \tau _{yy}}{\partial \eta }\end {align}


\begin {align}\left [\begin {array}{@{}c@{}} p_{\xi }\\ p_{\eta } \end {array}\right ] = J\left [\begin {array}{@{}cc@{}} x_\xi & y_\xi \\ x_\eta & y_\eta \\ \end {array}\right ] \left [\begin {array}{@{}c@{}} C_1 \\ C_2 \end {array}\right ]\end {align}


\begin {align}C_1 &= y_\eta \dfrac {\partial \tau _{xx}}{\partial \xi } - x_\eta \dfrac {\partial \tau _{xy}}{\partial \xi } - y_\xi \dfrac {\partial \tau _{xx}}{\partial \eta } + x_\xi \dfrac {\partial \tau _{xy}}{\partial \eta } \nonumber \\ C_2 &= y_\eta \dfrac {\partial \tau _{xy}}{\partial \xi } - x_\eta \dfrac {\partial \tau _{yy}}{\partial \xi } - y_\xi \dfrac {\partial \tau _{xy}}{\partial \eta } + x_\xi \dfrac {\partial \tau _{yy}}{\partial \eta }\end {align}


$p$


\begin {align}\dfrac {\partial u}{\partial t} + \dfrac {\partial u}{\partial x} = 0 \;\;\; \text {on } x \in [-1, 1], \;\;\; t \in [0, 2]\end {align}


\begin {align}u(x, t=0) = sin\left (\pi x - \frac {sin(\pi x)}{\pi } \right )\end {align}


$\epsilon $


$10^{-6}$


$10^{-40}$


$t = 2$


$N = 8$


$L^1$


$t = 2$


$N = 8$


$L^1$


$L^1$


$N$


$L^1$


$\theta = 30^\circ $


$\vec {v} = (-1, -1)$


\begin {align}\dfrac {\partial gU}{\partial t} + \dfrac {\partial F'_1}{\partial \xi } + \dfrac {\partial F'_2}{\partial \eta } = 0 \;\;\; \text {on } \xi , \eta \in [0, 1], \;\;\; t \in [0, 1]\end {align}


$U = F_1 = F_2 = u$


\begin {align}u(x, y, t=0) = \text {sin}(2\pi (x + y))\end {align}


\begin {align}\left [\begin {array}{@{}c@{}} x \\ y \\ \end {array}\right ] = \left [\begin {array}{@{}cc@{}} D_x \cdot \text {cos}(\theta ) & - D_y \cdot \text {sin}(\theta ) \\ D_x \cdot \text {sin}(\theta ) & D_y \cdot \text {cos}(\theta ) \\ \end {array}\right ] \left [\begin {array}{@{}c@{}} \xi \\ \eta \\ \end {array}\right ]\end {align}


$D_x$


$D_y$


$N=8$


$\eta = 0$


$L^1$


$N$


$\eta = 0$


$L^1$


$10^{-9}$


$M$


\begin {align}\dfrac {\partial }{\partial t} \left [\begin {array}{@{}c@{}} \rho \\ \rho u \\ \rho e \\ \end {array}\right ] + \dfrac {\partial }{\partial x} \left [\begin {array}{@{}c@{}} \rho u \\ \rho u^2 + p \\ (\rho e + p) u\\ \end {array}\right ] = 0 \;\;\; \text {on } x \in [-1, 1], \;\;\; t \in [0, 0.36]\end {align}


$x \leq x_G$


\begin {align}\rho (x, t=0) &= \left [(\gamma +1)M^2\right ]/\left [(\gamma -1)M^2 + 2\right ] \nonumber \\ u(x, t=0) &= \left [2\sqrt {\gamma }(M^2-1)\right ]/\left [(\gamma + 1)M\right ] \nonumber \\ p(x, t=0) &= 1 + \left [2\gamma (M^2 - 1)\right ]/\left (\gamma + 1\right )\end {align}


$x > x_G$


\begin {align}\rho (x, t=0) &= 1.0 + \delta \cdot \text {sin}^4(2.5\pi x) \nonumber \\ u(x, t=0) &= 0 \nonumber \\ p(x, t=0) &= 1\end {align}


$\gamma = 1.4$


$M = 3$


$\delta = 0.2$


$x_G = -0.8$


$C^3$


$t = 0$


$N=100$


$N=1,600$


$N=102,400$


$\Omega _1$


$x \in [0.18, 0.43]$


$x \in [-1, 0.43]$


$N=100$


$L^1$


$L^1$


$r = 5.5$


$\Omega _1$


$L^1$


$\Omega _1$


$L^1$


$L^1$


$N$


$L^1$


$C^3$


$x$


$-0.5$


$0.2$


$C^{\infty }$


$\Omega _1$


$L^1$


$\Omega _1$


$N$


$L^1$


$10^{-10}$


$L^1$


$10^{-10}$


$x_G \approx 0$


$\rho ^* = \rho '/A_e \rho _1$


$\rho ^{*} = \rho '/A_e\overline {\rho }_1$


$M_\infty $


\begin {align}\frac {p'_1}{\overline {p}_1} &= 0\nonumber \\ \frac {u'_1}{\overline {u}_1} &= l A_v \cos (mx + ly - \overline {u}_1 m t)\nonumber \\ \frac {v'_1}{\overline {u}_1} &= -m A_v \cos (mx + ly - \overline {u}_1 m t)\nonumber \\ \frac {\rho '_1}{\overline {\rho }_1} &= A_e \cos (mx + ly - \overline {u}_1 m t)\end {align}


$l = \sin (\psi _1)$


$m = \cos (\psi _1)$


$M_\infty = 1.5$


$A_v = A_e = 10^{-4}$


$\psi _1 = 15^\circ $


$\Omega = [-1.5\pi , 2\pi ]\times [0, 2\pi )$


$(N + 1) \times N$


$T^* = T/T_{ref} \approx 6.95$


$T_{ref} = 2\pi l/\overline {u}_1 m$


$C^-$


$L^1$


$N$


$L^1$


$N = 512$


$U_{s, \eta }$


$(r - 1)$


$U$


$(r-2)$


$L^1$


$U_\eta $


$R$


\begin {align}x_{w} = \frac {1}{2R} {y_{w}}^2\end {align}


$M_\infty = 5.73$


$Re_R = 100$


$T_\infty = 250$


$\gamma = 1.4$


$Pr=0.77$


$\xi $


$\eta $


$x_{end} = R$


$x_{end} = 4R$


$\eta $


$r$


$T_w = 1250$


$10^{-4}$


$N = 10$


$N = 10$


$L^1$


$N$


$L^1$


$N$


$(N_\xi , N_\eta ) = (21, 21)$


$(N_\xi , N_\eta ) = (321, 321)$


$q_c = -358.780\ kW/m^2$


$N = 10$


$L^1$


$U_\xi $


$U_\eta $


$C^+$


$L^1$


\begin {align}\dfrac {\partial U}{\partial t} &= - (1/g)A \nonumber \\ \dfrac {\partial U_\xi }{\partial t} &= -\left [(1/g)_\xi A + (1/g) A_\xi \right ] \nonumber \\ \dfrac {\partial U_\eta }{\partial t} &= -\left [(1/g)_\eta A + (1/g) A_\eta \right ]\end {align}


$g$


$A$


$g_t U$


$F'_i$


\begin {align}A &= g_t U + F'_{1, \xi } + F'_{2, \eta } \nonumber \\ A_\xi &= g_{t \xi } U + g_t U_\xi + F'_{1, \xi \xi } + F'_{2,\xi \eta }\nonumber \\ A_\eta &= g_{t \eta } U + g_t U_\eta + F'_{1,\xi \eta } + F'_{2,\eta \eta }\end {align}


$\xi $


$F'_1$


\begin {align}F'_1 &= y_\eta F_1 - x_\eta F_2 + (g\xi _t) U \nonumber \\ F'_{1, \xi } &= \left ( y_{\xi \eta } F_1 + y_\eta F_{1, \xi } \right ) - \left (x_{\xi \eta } F_2 + x_\eta F_{2, \xi } \right ) + (g\xi _t)_{\xi } U + (g\xi _t) U_{\xi } \nonumber \\ F'_{1, \eta } &= \left ( y_{\eta \eta } F_1 + y_\eta F_{1, \eta } \right ) - \left (x_{\eta \eta } F_2 + x_\eta F_{2, \eta } \right ) + (g\xi _t){\eta } U + (g\xi _t) U_{\eta }\end {align}


$\eta $


$F'_2$


\begin {align}F'_2 &= -y_\xi F_1 + x_\xi F_2 + (g\eta _t) U \nonumber \\ F'_{2,\xi } &= -\left ( y_{\xi \xi } F_1 + y_\xi F_{1, \xi } \right ) + \left (x_{\xi \xi } F_2 + x_\xi F_{2, \xi } \right ) + (g\eta _t)_{\xi } U + (g\eta _t) U_{\xi } \nonumber \\ F_{2,\eta } &= -\left ( y_{\xi \eta } F_1 + y_\xi F_{1, \eta } \right ) + \left (x_{\xi \eta } F_2 + x_\xi F_{2,\eta } \right ) + (g\eta _t)_{\eta } U + (g\eta _t) U_{\eta }\end {align}


$F_i$


\begin {align}F_1 &= F^{inv}_1 - F^{vis}_2 \nonumber \\ F_2 &= F^{inv}_2 - F^{vis}_2\end {align}


$x$


$F^{inv}_1$


\begin {align}F_1^{inv} = \left [\begin {array}{@{}c@{}} \rho u\\ \rho u^2 + p \\ \rho u v \\ (e + p)u \\ \end {array}\right ]\end {align}


$y$


$F^{inv}_2$


\begin {align}F^{inv}_2 = \left [\begin {array}{@{}c@{}} \rho v\\ \rho uv \\ \rho v^2 + p \\ (e + p)v \\ \end {array}\right ]\end {align}


$\delta $


\begin {align}\dfrac {\partial F^{inv}_1}{\partial \delta } = \dfrac {\partial }{\partial \delta } \left [\begin {array}{@{}c@{}} \rho u\\ \rho u^2 + p \\ \rho u v \\ (e + p)u \\ \end {array}\right ] = \left [\begin {array}{@{}c@{}} (\rho u)_\delta \\ (\rho u)_\delta u + (\rho u)u_\delta + p_\delta \\ (\rho u)_\delta v + (\rho u) v_\delta \\ (e_\delta + p_\delta )u + (e + p)u_\delta \\ \end {array}\right ]\end {align}


\begin {align}\dfrac {\partial F^{inv}_2}{\partial \delta } = \dfrac {\partial }{\partial \delta } \left [\begin {array}{@{}c@{}} \rho v\\ \rho uv \\ \rho v^2 + p \\ (e + p)v \\ \end {array}\right ] = \left [\begin {array}{@{}c@{}} (\rho v)_\delta \\ (\rho v)_\delta u + (\rho v)u_\delta \\ (\rho v)_\delta v + (\rho v) v_\delta + p_\delta \\ (e_\delta + p_\delta )v + (e + p)v_\delta \\ \end {array}\right ]\end {align}


\begin {align}e &= \frac {p}{\gamma - 1} + \frac {1}{2}\rho (u^2 + v^2) \nonumber \\ p &= (\gamma -1) \cdot [e - \frac {1}{2}\rho (u^2 + v^2)] \nonumber \\ T &= \frac {\gamma - 1}{\rho R_{gas}} \left [e - \frac {1}{2}\frac {(\rho u)^2 + (\rho v)^2}{\rho } \right ]\end {align}


$\delta $


\begin {align}u_\delta &= \frac {1}{U_1}U_{2, \delta } - \frac {U_2}{{U_1}^2}U_{1, \delta } \nonumber \\ v_\delta &= \frac {1}{U_1}U_{3, \delta } - \frac {U_3}{{U_1}^2}U_{1, \delta } \nonumber \\ T_\delta &= -\frac {(\gamma - 1)U_{1, \delta }}{{U_1}^2 R_{gas}} \left [U_4 - \frac {1}{2}\frac {(U_2)^2 + (U_3)^2}{U_1} \right ] + \frac {\gamma - 1}{U_1 R_{gas}} \left [U_{4, \delta } - \frac {U_2 U_{2, \delta } + U_3 U_{3, \delta }}{U_1} + \frac {(U_2)^2 + (U_3)^2}{2(U_1)^2}U_{1, \delta } \right ] \nonumber \\ p_\delta &= U_{1, \delta } R_{gas} T + U_1 R_{gas} T_\delta \end {align}


$\vec {U} = [\rho , \rho u, \rho v, e]^T$


$x$


$F^{vis}_1$


\begin {align}F^{vis}_1 = \left [\begin {array}{@{}c@{}} 0 \\ \tau _{xx}\\ \tau _{xy} \\ k T_x + u \tau _{xx} + v \tau _{xy} \\ \end {array}\right ]\end {align}


$y$


$F^{vis}_2$


\begin {align}F^{vis}_2 = \left [\begin {array}{@{}c@{}} 0 \\ \tau _{xy}\\ \tau _{yy} \\ k T_y + u \tau _{xy} + v \tau _{yy} \\ \end {array}\right ]\end {align}


$x$


$\delta $


\begin {align}F^{vis}_{1, \delta } = \left [\begin {array}{@{}c@{}} 0 \\ (\tau _{xx})_\delta \\ (\tau _{xy})_\delta \\ (k T_x)_\delta + u_\delta \tau _{xx} + u (\tau _{xx})_\delta + v_\delta \tau _{xy} + v (\tau _{xy})_\delta \\ \end {array}\right ]\end {align}


$y$


\begin {align}F^{vis}_{2, \delta } = \left [\begin {array}{@{}c@{}} 0 \\ (\tau _{xy})_\delta \\ (\tau _{yy})_\delta \\ (k T_y)_\delta + u_\delta \tau _{xy} + u (\tau _{xy})_\delta + v_\delta \tau _{yy} + v (\tau _{yy})_\delta \\ \end {array}\right ]\end {align}


$\lambda = -2/3\mu $


\begin {align}\tau _{xx} &= 2 \mu u_x + \tau _D \nonumber \\ \tau _{xy} &= \mu \left ( u_y + v_x \right ) \nonumber \\ \tau _{yy} &= 2 \mu v_y + \tau _D \nonumber \\ \tau _D &= \lambda \nabla \cdot \vec {u}\end {align}


$\delta $


\begin {align}(\tau _{xx})_\delta &= 2 \left [ \mu _\delta u_{x} + \mu u_{x, \delta } \right ] + \tau _{D, \delta } \nonumber \\ (\tau _{xy})_\delta &= \mu _\delta \left [u_y + v_x\right ] + \mu \left [u_{y, \delta } + v_{x, \delta }\right ] \nonumber \\ (\tau _{yy})_\delta &= 2 \left [ \mu _\delta v_{y} + \mu v_{y, \xi }\right ] + \tau _{D, \xi }\end {align}


\begin {align}q_x &= kT_x \nonumber \\ q_y &= kT_y\end {align}


$\delta $


\begin {align}q_{x, \delta } &= k_\delta T_x + k T_{x, \delta } \nonumber \\ q_{y, \delta } &= k_\delta T_y + k T_{y, \delta }\end {align}


\begin {align}\dfrac {\partial \rho }{\partial t} + d_1 + m_{2, y} &= 0 \nonumber \\ \dfrac {\partial \rho _\xi }{\partial t} + d_{1, \xi } + m_{2, y, \xi } &= 0 \nonumber \\ \dfrac {\partial \rho _\eta }{\partial t} + d_{1, \eta } + m_{2, y, \eta } &= 0\end {align}


$x$


$m_1 = \rho u$


\begin {align}\dfrac {\partial m_1}{\partial t} &+ u d_1 + \rho d_3 + (m_1 v)_y = 0 \nonumber \\ \dfrac {\partial m_{1, \xi }}{\partial t} &+ u_\xi d_1 + u d_{1, \xi } + \rho _\xi d_3 + \rho d_{3, \xi } + (m_1 v)_{y, \xi } = 0 \nonumber \\ \dfrac {\partial m_{1, \eta }}{\partial t} &+ u_\eta d_1 + u d_{1, \eta } + \rho _\eta d_3 + \rho d_{3, \eta } + (m_1 v)_{y, \eta } = 0\end {align}


$m_2 = \rho v$


\begin {align}\dfrac {\partial m_2}{\partial t} &+ v d_1 + \rho d_4 + ( m_2 v + p )_y = 0 \nonumber \\ \dfrac {\partial m_{2, \xi }}{\partial t} & + v_\xi d_1 + v d_{1, \xi } + \rho _\xi d_4 + \rho d_{4 ,\xi } + ( m_2 v + p )_{y, \xi } = 0 \nonumber \\ \dfrac {\partial m_{2, \eta }}{\partial t} & + v_\eta d_1 + v d_{1, \eta } + \rho _\eta d_4 + \rho d_{4 ,\eta } + ( m_2 v + p )_{y, \eta } = 0\end {align}


\begin {align}\dfrac {\partial e}{\partial t} &+ \frac {1}{2}(u_k u_k)d_1 + \frac {d_2}{\gamma - 1} + m_1 d_3 + m_2 d_4 + [(e + p)v]_y = 0 \nonumber \\ \dfrac {\partial e_{\xi }}{\partial t} &+ (u u_\xi + v v_\xi )d_1 + \frac {1}{2}(u_k u_k)d_{1, \xi } + \frac {d_{2, \xi }}{\gamma - 1} + m_{1, \xi } d_3 + m_1 d_{3, \xi } \nonumber \\ &+ m_{2, \xi } d_4 + m_2 d_{4, \xi } + [(e + p)v]_{y, \xi } = 0 \nonumber \\ \dfrac {\partial e_{\eta }}{\partial t} &+ (u u_\eta + v v_\eta )d_1 + \frac {1}{2}(u_k u_k)d_{1, \eta } + \frac {d_{2, \eta }}{\gamma - 1} + m_{1, \eta } d_3 + m_1 d_{3, \eta } \nonumber \\ &+ m_{2, \eta } d_4 + m_2 d_{4, \eta } + [(e + p)v]_{y, \eta } = 0\end {align}


$d_1$


\begin {align}d_1 &= \frac {1}{c^2} \left [\mathcal {L}_2 + d_2 \right ] \nonumber \\ d_{1, \xi } &= -2\frac {c_\xi }{c^3} \left [\mathcal {L}_2 + d_2 \right ] + \frac {1}{c^2}\left [\mathcal {L}_{2, \xi } + d_{2, \xi } \right ] \nonumber \\ d_{1, \eta } &= -2\frac {c_\eta }{c^3} \left [\mathcal {L}_2 + d_2 \right ] + \frac {1}{c^2}\left [\mathcal {L}_{2, \eta } + d_{2, \eta } \right ]\end {align}


$d_2$


\begin {align}d_2 &= 0.5 (\mathcal {L}_4 + \mathcal {L}_1)\nonumber \\ d_{2, \xi } &= 0.5 (\mathcal {L}_{4, \xi } + \mathcal {L}_{1, \xi })\nonumber \\ d_{2, \eta } &= 0.5(\mathcal {L}_{4, \eta } + \mathcal {L}_{1, \eta })\end {align}


$d_3$


\begin {align}d_3 &= \frac {\mathcal {L}_4 - \mathcal {L}_1}{2\rho c}\nonumber \\ d_{3, \xi } &= -\frac {\mathcal {L}_4 - \mathcal {L}_1} {2(\rho c)^2}(\rho _\xi c + \rho c_\xi ) + \frac {\mathcal {L}_{4, \xi } - \mathcal {L}_{1, \xi }}{2\rho c}\nonumber \\ d_{3, \eta } &= -\frac {\mathcal {L}_{4, \eta } - \mathcal {L}_{1, \eta }} {2(\rho c)^2}(\rho _\eta c + \rho c_\eta ) + \frac {d_{2, \eta }}{2\rho c}\end {align}


$d_4$


\begin {align}d_4 &= \mathcal {L}_3 \nonumber \\ d_{4, \xi } &= \mathcal {L}_{3, \xi }\nonumber \\ d_{4, \xi } &= \mathcal {L}_{3, \eta }\end {align}


$\mathcal {L}_1$


\begin {align}\mathcal {L}_1 &= \lambda _1 (p_x - \rho c u_x) \nonumber \\ \mathcal {L}_{1, \xi } &= \lambda _{1, \xi } (p_x - \rho c u_x) + \lambda _1 [p_{x, \xi } - (\rho _\xi c + \rho c_\xi )u_x + \rho c u_{x, \xi }] \nonumber \\ \mathcal {L}_{1, \eta } &= \lambda _{1, \eta } (p_x - \rho c u_x) + \lambda _1 [p_{x, \eta } - (\rho _\eta c + \rho c_\eta )u_x + \rho c u_{x, \eta }]\end {align}


$\mathcal {L}_2$


\begin {align}\mathcal {L}_2 &= \lambda _2 (c^2 \rho _x - p_x) \nonumber \\ \mathcal {L}_{2, \xi } &= \lambda _{2, \xi } (c^2 \rho _x - p_x) + \lambda _2 (2c c_\xi \rho _x + c^2 \rho _{x, \xi } - p_{x, \xi })\nonumber \\ \mathcal {L}_{2, \eta } &= \lambda _{2, \eta } (c^2 \rho _x - p_x) + \lambda _2 (2c c_\eta \rho _x + c^2 \rho _{x, \eta } - p_{x, \eta })\end {align}


$\mathcal {L}_3$


\begin {align}\mathcal {L}_3 &= \lambda _3 v_x \nonumber \\ \mathcal {L}_{3, \xi } &= \lambda _{3, \xi } v_x + \lambda _3 v_{x, \xi } \nonumber \\ \mathcal {L}_{3, \eta } &= \lambda _{3, \eta } v_x + \lambda _3 v_{x, \eta }\end {align}


$\mathcal {L}_4$


\begin {align}\mathcal {L}_4 &= \lambda _4 (p_x + \rho c u_x) \nonumber \\ \mathcal {L}_{4, \xi } &= \lambda _{4, \xi } (p_x + \rho c u_x) + \lambda _4 [p_{x, \xi } + (\rho _\xi c + \rho c_\xi ) u_x + \rho c u_{x, \xi }]\nonumber \\ \mathcal {L}_{4, \eta } &= \lambda _{4, \eta } (p_x + \rho c u_x) + \lambda _4 [p_{x, \eta } + (\rho _\eta c + \rho c_\eta ) u_x + \rho c u_{x, \eta }]\end {align}


$\lambda _1$


\begin {align}\lambda _1 &= u - c \nonumber \\ \lambda _{1, \xi } &= u_\xi - c_\xi \nonumber \\ \lambda _{1, \eta } &= u_\eta - c_\eta \end {align}


$\lambda _2$


$\lambda _3$


\begin {align}\lambda _2 &= \lambda _3 = u \nonumber \\ \lambda _{2, \xi } &= u_\xi \nonumber \\ \lambda _{2, \eta } &= u_\eta \end {align}


$\lambda _4$


\begin {align}\lambda _4 &= u + c \nonumber \\ \lambda _{4, \xi } &= u_\xi + c_\xi \nonumber \\ \lambda _{4, \eta } &= u_\eta + c_\eta \end {align}
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1.  Introduction

The growing demand for hypersonic research, driven by national security, space exploration, and advanced aircraft development, 
has increasingly received the attention of researchers. A breakthrough in hypersonic vehicle development could significantly reshape 
the aerospace industry’s trajectory [1]. In the study of hypersonic boundary layer transitions, local maxima in skin friction and wall 
heat transfer typically occur near the end of the transitional zone [2]. Accurate prediction of the transition location and delaying 
turbulence generation can greatly reduce the vehicle’s cooling system requirements [3]. However, studying fluid mechanics at such ex-
tremely high-speed flow poses experimental and numerical challenges. Hypersonic fluid mechanics includes not only the effects of gas 
compressibility and shock-turbulence interactions, but also the added complexities of high-temperature gas dynamics, rarefied flow 
regimes, and complex chemical-physical interaction between molecular reaction and chaotic turbulence [4]. Conducting hypersonic 
experiments is challenging due to difficulties in generating high enthalpy and noise-free inflow streams. At the same time, numerical 
simulations must resolve multiscale flow features both temporally and spatially, ranging from molecular energy mode excitations to 
turbulence energy cascades. To date, hypersonic fluid mechanics remains a significant challenge in aerospace engineering.

1.1.  DNS in hypersonic boundary layer transition flows

Direct numerical simulation (DNS) has been adopted in hypersonic fluid mechanics research for years, particularly in the study of 
boundary layer transition flows [3]. Within boundary layers, hypersonic flows receive perturbations from environmental disturbances 
through receptivity mechanisms, leading to the formation of various eigenmodes. These eigenmodes grow, interact, and ultimately 
result in turbulence [5]. Turbulence models generally face limitations in accurately modeling laminar-to-turbulent transitions, shock 
wave-boundary layer interactions, and separated turbulence, due to the complex and multi-scale features of hypersonic flows [6]. 
Capturing the small yet critical nonlinear interactions of flow perturbations requires highly accurate DNS.

Zhong [4] showed a family of high-order upwind explicit (non-compact) and compact [7] finite difference methods can be applied 
to hypersonic transitional DNS. The study used the shock-fitting method to treat the sharp primary shock as a computational bound-
ary. By separating the flow solution into upstream and downstream regions of the shock wave, high-order methods can simulate 
the supersonic flow with the discontinuous interface without incurring the Gibbs phenomenon and causing unstable simulations. 
Additionally, the study conducted von Neumann stability analysis for the explicit and compact upwind finite difference methods. 
The results indicated that seventh-order interior stencils could only be used with up to fifth-order boundary stencils. This implies 
conventional finite difference methods achieve at most sixth-order global accuracy for closed boundary problems. Duan et al. [8] 
applied the bandwidth-optimized WENO method [9] to simulate the hypersonic transitional boundary. Shock-capturing methods like 
WENO enable numerical schemes to resolve downstream locations where shocklets and turbulence interactions occur. Laible and Fasel 
[10] utilized upwind finite difference schemes in the downstream and wall-normal directions, complemented by a pseudo-spectral 
method in the azimuthal direction, to simulate hypersonic cone flow. They also applied low-pass filtering to suppress undesirable 
high-frequency numerical oscillations. Candler et al. [11] compared various numerical methods for reentry vehicles using the fi-
nite volume software, US3D, with kinetic energy consistent (KEC) flux [12]. Nguyen et al. [13] utilized a matrix-free discontinuous 
Galerkin method [14] in simulating hypersonic boundary layer transitions on a flared cone using calorically perfect gas assumption 
with implicit large eddy simulation (ILES), also referred to as under-resolved DNS (UDNS) [15].

1.2.  High-order numerical methods

High-order numerical methods are computationally efficient to achieve the same accuracy for having at least a third-order spatial 
convergence rate [16]. This character makes high-order methods ideal for DNS applications that have relatively simple geometry and 
demanding accuracy requirements in space. The traditional high-order numerical representations are spectral [17], finite difference 
[7,18,19], and finite volume [20] methods. The spectral method is widely considered the most accurate numerical approach due to 
its exponential convergence rate, known as spectral accuracy [21], and has been used since the early years of DNS research [22]. 
However, the conventional spectral method is vulnerable to discontinuous interfaces in solutions or bounded computational domain 
because of its global basis function representation, which limits its application [23]. In contrast, finite difference and finite volume 
methods offer a slower algebraic convergence rate [24] but provide greater flexibility in imposing boundary conditions and integrating 
with parallel computing frameworks. Conventional explicit upwind finite difference can achieve sixth-order accuracy when applied to 
smooth problems [4]. The compact finite difference methods, such as Lele [7], reduce numerical dissipation for high frequency wave 
and achieve a spectral-like resolution. However, compact schemes require additional implicit solver to compute first-order derivative 
from neighboring values, which compromise the computing time of the method. On the other hand, high-order finite volume methods 
depend on accurate flux reconstruction on the cell faces. Proper flux reconstruction is crucial for achieving numerical conservation 
properties, such as kinetic energy [12] and entropy [25] conservation, which are essential for accurately capturing the correct flow 
physics.

There has been a recent rise in interest in the finite element-based (FEM) methods by increasing the degrees of freedom inside 
each element. Among the methods, discontinuous Galerkin (DG) method received the most attention in the community. One of the 
biggest strengths of DG or other finite element-based methods is the ease of implementation of high-order formulation on unstructured 
grids through the weak formulation. Conventional FEM approaches that utilize continuous basis functions often require additional 
stabilization techniques when applied to fluid mechanics problems. Cockburn and Shu [26] showed that using discontinuous basis 
functions between elements, combined with Runge-Kutta time integration, can be stably applied to the Navier-Stokes equations. This 
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approach is known as the Runge-Kutta Discontinuous Galerkin (RKDG) method. However, RKDG requires high-memory storage due to 
the duplicated degrees of freedom on element faces. Memory-efficient DG methods such as hybridized DG [27] and embedded DG [28] 
are proposed to reduce the redundant degrees of freedom through minimizing the flux jump across element faces. The flexibility of DG 
has been widely used in various fluid mechanic applications. For hypersonic applications, Hoskin et al. [29] provided an overview 
of DG for high-speed flow, including discussions on both shock-capturing and shock-fitting techniques within the DG framework. 
Other basis function-based methods, such as spectral volume (SV) [30] and spectral difference (SD) [31] methods, are also gaining 
attention. Spectral volume methods subdivide SV cell into several control volumes and reconstruct fluxes from the neighboring states 
inside the cell. Spectral difference methods utilize the solutions on the Gaussian quadrature points to avoid direct surface or volume 
integrations. These methods can be considered as complement approaches to DG for FEM-based methods.

1.3.  Multi-layer compact schemes

In addition to the traditional high-order methods and FEM-based approaches, Zhong and Bai [32–34] proposed the multi-layer 
compact (MLC) schemes which introduce first-order spatial derivatives as new degrees of freedom to the finite difference method. 
In MLC [32,33], the original solution space for the flow states is referred to the value layer and the newly introduced solution 
space for spatial derivatives of flow states is referred to the derivative layers. This method solves both value and derivative layer 
through time integration of the same governing equations but with different formulation. For the value layer, the first-order flux 
derivatives in the original governing equations can be analytically computed through the chain rule with the aid of the first-order 
spatial derivatives from the derivative layer. For the derivative layer, the time change of the spatial derivatives is estimated from 
the spatial differentiation of the original governing equations, which plays as the auxiliary equations to the problem. In the auxiliary 
equations, the second-order flux derivatives are numerically estimated from both neighboring state values and first-order spatial 
derivatives. By utilizing this multi-layer structure, MLC forms a more compact stencil than conventional finite difference methods, 
achieving spectral-like spatial resolution similar to that of the compact schemes from Lele [7]. Furthermore, MLC shares conceptual 
similarities with the discontinuous Galerkin (DG) method, as both introduce additional degrees of freedom at grid points or within 
cells. The derivative layer in MLC can be seen as analogous to a 𝑃1 approximation in DG, similar to how the finite volume method 
aligns with a 𝑃0 DG approximation. However, the fundamental solving procedures differ: MLC solves the governing equations in 
different differential forms for each layer, while DG relies on a weak formulation to compute the time change of the solution states.

From the previous study from Bai and Zhong [33], MLC can achieve up to seventh-order spatial accuracy on a closed boundary 
linear advection problem. In contrast, conventional finite difference methods can only achieve sixth-order global accuracy for closed 
boundary problems [4]. This limitation arises because conventional schemes typically rely on up to fifth-order one-sided differences 
at the boundaries, and higher-order implementations often lead to simulation divergence. As a consequence, even using a seventh or 
higher-order stencil for interior points, the conventional methods have a lower spatial global accuracy due to the usage of less accurate 
boundary stencils. Meanwhile, MLC can incorporate a seventh-order interior stencil with sixth-order boundary stencils without causing 
simulation divergence. Furthermore, the Fourier analysis from the study shows that MLC has spectral-like properties such as lower 
numerical dissipation for high wave number and less dispersive error. This spectral-like property can be also found in the compact 
schemes from Lele [7], which also treats first-order derivatives as unknowns and solve them globally through an implicit solver. Unlike 
conventional compact scheme, MLC does not require a global linear solver to compute the first-order derivatives. MLC compute the 
first-order derivatives through the time integration of the auxiliary equations explicitly. Also, since the value layer solutions can be 
computed analytically without numerical differentiation, MLC is computationally more efficient than the conventional methods in 
term of computer wall time for one-dimensional linear advection problems. To address weak numerical instability originating from 
the numerical approximation of the second-order cross derivatives for MLC on multi-dimensional problems, Bai and Zhong proposed 
the directional MLC (DMLC) to address this issue [34]. This method introduces all of the cross derivatives as another new degree 
of freedom to the system. For two-dimensional problems, the time change of the second-order cross derivatives is estimated from 
second-order auxiliary equations. The third-order flux derivatives in the DMLC auxiliary equations are numerically approximated 
by the first-order and second-order cross derivatives. The derivative estimation in DMLC avoids using the weakly unstable two-
dimensional cross derivative stencils in MLC, which improves the method stability for multi-dimensional problems.

Even though MLC and its variants have demonstrated strong capabilities in terms of numerical accuracy and computational 
efficiency, previous studies [32–34] only applied the method to linear advection problems, which are far from complex, realistic 
scenarios such as hypersonic transitional boundary layer flows. Bridging the gap between simple one-dimensional wave problems and 
the complex multi-scale physical interactions in hypersonic flows requires further development. Key challenges remain, such as flux 
vector splitting for nonlinear hyperbolic equations, boundary condition implementations for Navier-Stokes equations, and treatments 
for discontinuous shock waves. While most of these issues have been investigated individually for other conventional methods, 
MLC requires adaptations of these techniques, particularly for the newly introduced derivative layers. Among these challenges, the 
treatment of discontinuous shock waves is the priority to be resolved, since improper shock handling can cause immediate simulation 
divergence. Therefore, developing a robust and effective shock treatment for MLC is critical to extending its applicability to supersonic 
flow simulations.

1.4.  Shock-capturing methods

To apply high-order numerical schemes to high-speed flows, shock-capturing and shock-fitting methods are commonly employed 
to suppress numerical oscillations caused by the Gibbs phenomenon near shocks. The shock-fitting method represents a shock wave 
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as either a computational interface or a shock-fitted mesh face, thereby explicitly treating the shock as a boundary [4,35,36]. This 
approach prevents numerical schemes from solving across the discontinuity, effectively eliminating the Gibbs phenomenon. However, 
shock-fitting typically requires prior knowledge of the shock topology, which limits its application primarily to relatively simple 
supersonic flow fields. In contrast, shock-capturing methods do not require explicit identification of shock locations. Instead, they 
introduce artificial dissipation, either explicitly or implicitly, to stabilize the simulation by smoothing the solution near shock waves 
[37]. Due to their robustness and flexibility, shock-capturing methods are well-suited for complex scenarios, including supersonic 
flows involving shocklets, triple points, and turbulence-shock interactions. Both shock-fitting and shock-capturing methods remain 
popular tools in the supersonic research community, each offering unique advantages depending on the complexity and requirements 
of the flow problem.

The robustness of shock-capturing methods makes them ideal for initial investigations of supersonic flow fields. One of the earliest 
shock-capturing approaches was the artificial viscosity method, introduced by von Neumann and Richtmyer [38], which added 
an artificial viscosity term proportional to the local velocity gradient to stabilize simulations. Jameson et al. [39] developed the 
Jameson-Schmidt-Turkel (JST) scheme, which incorporates both second- and fourth-order artificial dissipative fluxes. The second-
order dissipation is activated near shock waves to enhance stability, while the fourth-order dissipation suppresses high-frequency 
oscillations caused by aliasing. For discontinuous Galerkin (DG) methods, Persson and Peraire [40] introduced a discontinuity sensor 
to selectively apply numerical diffusion. Other classical shock-capturing techniques, such as flux limiters [41,42] and slope limiters 
[43], are also widely adopted for stabilizing supersonic flow simulations.

In recent decades, the weighted essentially non-oscillatory (WENO) method has become a widely popular shock-capturing ap-
proach for simulating flows with shocks. The WENO family uses multiple sub-stencils to evaluate the flux, reconstructing it through a 
weighted averaging process. Jiang and Shu [44] enhanced the original WENO method developed by Liu et al. [45] by introducing the 
concept of minimizing the total variation in the smoothness indicator, thereby achieving optimal fifth-order accuracy for three-point 
stencils more effectively. This improved method, known as WENO-JS, became the foundation for subsequent WENO methods. Various 
WENO variants have since been developed to address specific limitations of WENO-JS, such as improving the weighting function to 
ensure faster convergence toward the optimal weights in smooth regions. Notable advancements include WENO-M [46], WENO-Z 
[47,48], and targeted essentially non-oscillatory (TENO) methods [49].

Among the WENO family, the Hermite WENO (HWENO) method [50,51] has a particularly close relationship with the multi-layer 
compact (MLC) schemes. Like MLC, HWENO uses both function values and first-order derivatives to reconstruct fluxes from neigh-
boring cell averages. HWENO has been successfully applied to Runge-Kutta discontinuous Galerkin (RKDG) methods, maintaining 
compactness while delivering computational efficiency. Given its reliance on first-order derivative layers, HWENO could be seam-
lessly incorporated into the MLC framework, which inherently supports such derivative layers for flux reconstruction. This suggests 
a promising possibility for enabling shock-capturing simulations with MLC by leveraging HWENO.

However, shock-capturing schemes often resort to lower, sometimes even first-order accuracy in the vicinity of shocks. This 
approach, while stabilizing the solution, tends to smear the discontinuities and diminish the global accuracy of the solution. Addi-
tionally, many shock-capturing methods require fine-tuning of empirical parameters, which can vary depending on the flow field, 
further complicating their application. In contrast, the shock-fitting method, which treats shocks as computational boundaries, offers 
a more accurate result of shock wave physics. This makes it a suitable candidate for applications such as hypersonic boundary layer 
transition flows, where shock time-dependent behaviors are critical.

1.5.  Shock-fitting methods

While shock-capturing methods provide robust approaches for simulating flow fields containing shock waves, they typically re-
duce the order of accuracy when encountering discontinuous interfaces. This reduction compromises the overall spatial accuracy of 
otherwise high-order schemes. An alternative approach, which is not mutually exclusive, is the shock-fitting method [4,35,36]. This 
technique, introduced for supersonic flow simulations in the 1960s [52], treats the shock wave as a computational boundary. By sepa-
rating the upstream and downstream solutions at the shock, the shock-fitting method preserves the high spatial accuracy of high-order 
schemes. In Zhong [4], the shock boundary movement is estimated through the local shock acceleration from a time derivative of the 
Rankine-Hugoniot relations with a characteristic relation. This shock-fitting method with high-order upwind finite difference method 
has been used in various hypersonic boundary layer transition flow studies [3,53,54]. Johnsen et al. [55] conducted a comprehensive 
comparison of shock-fitting and shock-capturing methods. Their results showed that shock-fitting is generally more accurate than 
shock-capturing when the downstream solution is smooth and relatively simple. This characteristic makes shock-fitting particularly 
attractive for direct numerical simulations (DNS) of hypersonic boundary layer transitions, where precise modeling of time-dependent 
shock wave interactions is crucial [3,10]. Rawat and Zhong [56] compared different approaches for estimating shockfront motion 
and found that using the time derivative of the Rankine-Hugoniot relations with a characteristic relation, yielded the most accurate 
results. However, shock-fitting has a significant limitation: it requires a priori knowledge of the shock wave’s location in the flow 
field. In realistic problems, shock locations are often not well-defined and may form and evolve over time, as seen in phenomena 
such as shock triple points, shocklets, and turbulence-shock interactions.

Shock detection has become a critical research focus in the supersonic simulation community, particularly for identifying shock 
waves in smeared and turbulent CFD simulation results. The primary purpose of shock detection is to identify shock locations and 
apply appropriate shock treatment techniques, such as refining grids near shock waves or deploying shock-capturing methods in 
marked cells. In this context, the smoothness indicator in WENO methods [44] can also be considered as a shock detection tool. 
The Ducros sensor [57] is widely used for shock detection due to its ability to distinguish shock waves from compressible turbulent 
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structures effectively. Other approaches, such as edge detection techniques from image processing [58,59] and neural network-based 
classifiers [60–62], have received significant interest in recent years. To integrate shock detection into the shock-fitting method 
for simulating complex shock wave interactions, Paciorri and Bonfiglioli [63] proposed a framework for the finite volume method 
with unstructured grids. This method adaptively modifies grid point connectivity and interpolates shock-captured solutions from the 
background mesh based on detected shock locations. In a more recent study [64], the method was further enhanced to incorporate 
shock detection and pattern identification, enabling the creation of continuous shock boundaries from discrete marked cells. This 
combined approach has demonstrated the ability to capture intricate shock structures, such as those observed in three-dimensional 
shock reflections [65].

In a broader context, r-adaptation techniques that track shockfronts can also be classified as shock-fitting methods, even when 
shocks are not explicitly marked or tracked. Nguyen et al. [66] proposed an r-adaptation approach for hybridized DG methods 
in compressible flow simulations by solving the Helmholtz equation. A velocity divergence-based shock indicator was used as the 
source term for this equation, enabling the method to accurately track shock locations in various two-dimensional supersonic steady 
flows, including channel flow over a bump, double ramps, and flows past a cylinder. Beyond conventional CFD solvers, recent 
advancements in optimization-based shock-tracking methods have demonstrated the ability to eliminate the need for limiters or 
artificial viscosity to stabilize shocks. These methods reformulate supersonic flow simulations as optimization problems. For instance, 
the Moving Discontinuous Galerkin Finite Element Method with Interface Condition Enforcement (MDG-ICE), developed by Kercher 
and Corrigan [67], incorporates the DG residual, flux differences between elements, and geometric boundary conditions into an 
objective function. The shock-tracking process minimizes flux differences or enforces interface conditions by dynamically adjusting 
mesh points. This method naturally extends to unsteady problems by recasting the governing equations into a steady space-time 
formulation. Similarly, the High-Order Implicit Shock Tracking (HOIST) method, introduced by Zahr and Persson [68], treats the DG 
residual as an optimization constraint. It introduces a discontinuity tracker as an objective function to minimize, ensuring accurate 
shock representation while maintaining stability and high-order accuracy.

1.6.  Objectives

This paper is aiming for developing a novel numerical method designed for high-order multi-layer compact (MLC) schemes in 
high-speed flow simulations to achieve seventh-order global accuracy. Unlike previous MLC studies by Bai and Zhong [33,34], which 
primarily focused on numerical analysis and implemented MLC on simple, periodic, linear advection-dominant problems, this work 
addresses the complex demands of realistic supersonic flow simulation scenarios. These simulations require sophisticated approaches 
to overcome challenges such as flux-vector splitting, shock treatment, and boundary condition formulation for compressible fluid 
dynamics equations. To bridge these critical gaps, this paper develops and implements MLC integrated with a high-order shock-fitting 
method, termed MLC-SF, for supersonic flow over a cylinder. This integration is not merely a technical enhancement; it identifies 
and incorporates the essential components necessary for practical supersonic flow applications. By advancing the development of 
MLC-SF, this study extends its applicability to more challenging and realistic scenarios. Furthermore, we benchmark MLC-SF against 
established shock interaction problems, including the cases from the comprehensive assessment of high-resolution methods by Johnsen 
et al. [55]. This comparative analysis demonstrates the robustness and effectiveness of MLC-SF in addressing specific problems while 
providing valuable insights for researchers evaluating MLC-SF’s suitability for their applications.

This paper is organized as follows. Section 2 provides an overview of the numerical methods and techniques developed from 
existing studies for supersonic flow simulations. Topics include the governing equations, the conventional upwind finite difference 
method, the shock-fitting method, and the multi-layer compact (MLC) schemes. This section highlights the essential components 
of conventional approaches for supersonic flow simulations and introduces the multi-layer compact (MLC) scheme. Section 3 out-
lines the necessary adaptations for the MLC with shock-fitting (MLC-SF) framework. These include a modified flux-vector splitting 
scheme to mitigate the carbuncle phenomenon-a numerical instability that occurs near the centerline in blunt body flows [69]-the 
arbitrary Lagrangian-Eulerian (ALE) formulation for handling moving meshes, and the development of boundary conditions for the 
MLC derivative layers. This section highlights the essential components of conventional approaches to supersonic simulations and 
introduces MLC. Section 3 outlines the necessary adaptations for MLC-SF, including a modified flux-vector splitting scheme to miti-
gate the carbuncle phenomenon, a numerical error happened in the vicinity of the centerline [69], the arbitrary Lagrangian-Eulerian 
(ALE) formulation for moving meshes, and boundary conditions for MLC derivative layers. Section 4 verifies and demonstrates the 
capabilities of MLC and the proposed MLC-SF against other well-estabilished methods like FD-SF and WENO methods. In addition to 
the grid convergence rate studies, this Section also provides the numerical error versus computational time to justify computational 
cost of MLC-SF. In Section 5, MLC-SF is applied to more realistic shock-involving two-dimensional problems to showcase the appli-
cability of the method. The test cases include two-dimensional vorticity-entropy wave interaction from Mahesh [70] and supersonic 
flow over a parabolic cylinder. Finally, Section 6 concludes the paper with remarks and suggestions for future work.

2.  Numerical methods

2.1.  Conventional finite difference approach

Fluid mechanics problems are often modeled using the Navier-Stokes or Euler equations, assuming the continuum hypothesis 
holds. Regardless of the governing equations used, when the Reynolds number is sufficiently high, the advection term plays a critical 
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role in the flow physics. The advection term is generally expressed in conservation form as: 
𝜕𝑈
𝜕𝑡

+
𝜕𝐹𝑗
𝜕𝑥𝑗

= 0 (1)

where 𝐹𝑗 represents the fluxes for different direction, which can be nonlinear functions of the state variables 𝑈 . One key challenge 
in fluid simulations is accurately estimating these nonlinear fluxes from neighboring numerical solutions. To address this, various 
numerical methods have been employed in fluid mechanics, including finite difference, finite volume, and discontinuous Galerkin 
methods.

Finite-difference methods, including both explicit and compact schemes, have been applied to DNS of hypersonic boundary layer 
transitions for many years. While these methods exhibit slower spatial convergence rates compared to spectral methods, they offer 
greater flexibility in implementing boundary conditions, making them suitable for simulating slightly complex geometries such as 
blunt objects with shock waves. Most high-order finite-difference methods are upwind-biased schemes, which introduce a small 
amount of dissipative error to stabilize convection-dominated hypersonic flows. These methods are well-established in the research 
community [4,8,10] and form a solid foundation for the development of MLC-SF on DNS applications.

2.1.1.  Navier–Stokes equations
For low-altitude applications where the fluid continuum hypothesis can be applied, the hypersonic flow is mainly driven by the 

Navier-Stokes equations. In contrast to other fluid mechanics problems, hypersonic flow needs to consider molecular dissociation and 
ionization due to the high temperature in the flow field, where the ideal gas law may not be applied. One approach involves intro-
ducing the density of each species 𝜌𝑚 and using an extra body force term 𝑊  to model chemical reactions and other thermochemical 
nonequilibrium processes. Hence, the governing equations of a three-dimensional unsteady hypersonic flow can be expressed in a 
nonlinear conservation form, which is: 

𝜕𝑈
𝜕𝑡

+
𝜕𝐹 𝑖𝑛𝑣𝑗

𝜕𝑥𝑗
−
𝜕𝐹 𝑣𝑖𝑠𝑗

𝜕𝑥𝑗
= 𝑊 , 𝑗 = {1, 2, 3} (2)

where the conservative flow states 𝑈 , inviscid flux components 𝐹 𝑖𝑛𝑣𝑗 , and viscous flux components 𝐹 𝑣𝑖𝑠𝑗  are: 

𝑈 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑚
𝜌𝑢1
𝜌𝑢2
𝜌𝑢3
𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐹 𝑖𝑛𝑣𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑚𝑢𝑗
𝜌𝑢1𝑢𝑗 + 𝑝𝛿1𝑗
𝜌𝑢2𝑢𝑗 + 𝑝𝛿2𝑗
𝜌𝑢3𝑢𝑗 + 𝑝𝛿3𝑗
(𝑒 + 𝑝)𝑢𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐹 𝑣𝑖𝑠𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝜏1𝑗
𝜏2𝑗
𝜏3𝑗

𝜏𝑗𝑘𝑢𝑘 − 𝑞𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

The viscous stress tensor 𝜏𝑖𝑗 contains the shear and the bulk viscosity. For simplicity, one may apply Stokes’ hypothesis which assumes 
the bulk viscosity is equal to zero and leads to the following: 

𝜏𝑖𝑗 = 𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

− 2
3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 (4)

and the viscosity is modeled by Sutherland’s law: 

𝜇(𝑇 ) = 𝜇0

(

𝑇
𝑇0

)3∕2 𝑇0 + 𝑆
𝑇 + 𝑆

(5)

For the thermal conduction term, the heat flux is modeled by Fourier’s law with a thermal conductivity 𝜅: 

𝑞𝑗 = −𝜅 𝜕𝑇
𝜕𝑥𝑗

(6)

One of the common approaches in aerospace applications for thermal conductivity 𝜅 is assuming the ratio of momentum diffusivity 
to thermal diffusivity remains constant. This ratio is known as the Prandtl number. The typical range of the Prandtl number for air is 
0.71 to 0.78 based on different flight conditions [4,12,71]. With the above equations and relations, one may start to apply numerical 
methods to the model for simulating hypersonic flows.

2.1.2.  Upwind finite difference method
Finite difference methods have been widely used in hypersonic research, as shown in the works of Zhong [4], Duan et al. [8], and 

Laible and Fasel [10]. The upwind approximation of the first-order derivative in finite difference 𝐷+
𝑥 𝑢 at location 𝑖 can be expressed 

in the following general form: 
𝑀2
∑

𝑘=−𝑀1

𝑏𝑘(𝐷+
𝑥 𝑢)𝑖+𝑘 =

1
ℎ

𝑁2
∑

𝑘=−𝑁1

𝑎𝑘𝑢𝑖+𝑘 + 𝑂(ℎ𝑝) (7)

where 𝑎 and 𝑏 are the finite difference coefficients that can be derived from the Taylor expansion, and the spatial convergence rate 
of the expression is 𝑝th-order. If 𝑏𝑘 ≠ 0 for 𝑘 ≠ 0 location, this formulation is referred to as compact schemes [7]. Compact schemes 
have a spectral-like convergence rate but require an implicit solver to compute derivatives globally. On the other hand, an explicit 
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scheme 𝑏𝑘 = 0 for 𝑘 ≠ 0, does not require an implicit solver. In Zhong [4], the coefficients of seventh-order explicit upwind schemes 
in interior points are:

𝑎±4 = ∓ 1
280

+ 1
40320

𝛼, 𝑎±3 = ± 4
105

− 1
5040

𝛼, 𝑎±2 = ∓1
5
+ 1

1440
𝛼,

𝑎±1 = ±4
5
− 1

720
𝛼, 𝑎0 =

1
576

𝛼 𝑏0 = 1 (8)

where 𝛼 is the upwind parameter for stabilizing the scheme which, however, introduces dissipation errors. In Bai and Zhong [33], 
the 𝛼 is set to 36 for the seventh-order scheme for numerical scheme comparison.

The flux vector splitting technique is used to achieve an upwind-biased numerical solver during the flux evaluation step. This 
method splits the nonlinear advection terms into right-running (positive direction) and left-running (negative direction) waves using 
an approximate Riemann solver, which are then discretized using the corresponding upwind stencils: 

𝜕𝐹𝑗
𝜕𝑥𝑗

= 𝐷+
𝑥𝑗
𝐹+
𝑗 +𝐷−

𝑥𝑗
𝐹−
𝑗 + 𝑂(ℎ𝑝) (9)

The local Lax-Friedrichs or Rusanov flux is used to approximate the Riemann solver. In addition, a predefined parameter 𝜖 is added 
to the maximum eigenvalue evaluation to smooth the solution near the stagnation points. A typical range of 𝜖 is 0.2 to 1.0 depending 
on the flow field requirements on the numerical dissipation inside the low-speed zone. This approach can mitigate the carbuncle 
phenomenon [69] at the centerline of the supersonic over a blunt object flow. 

𝐹±
𝑗 = 1

2
(

𝐹𝑗 ± 𝜆𝑗𝑈
)

, 𝜆𝑗 = 𝑐 +
√

𝑢𝑗2 + (𝜖𝑐)2 (10)

With the above procedures for evaluating the spatial derivatives, the flow state can be advanced in time using an appropriate time 
integration method. 

𝑑𝑈
𝑑𝑡

= 𝐿(𝑈, 𝑡) (11)

The third-order low-storage strong stability preserving Runge-Kutta method (SSP-RK3), also known as the total variation diminishing 
(TVD) Runge-Kutta method [72], is used for time integration in most of the simulation cases presented in the following sections:

𝑈 (1) = 𝑈𝑛 + Δ𝑡𝐿(𝑈𝑛, 𝑡𝑛)

𝑈 (2) = 3
4
𝑈𝑛 + 1

4
[

𝑈 (1) + Δ𝑡𝐿(𝑈 (1), 𝑡𝑛 + Δ𝑡)
]

𝑈𝑛+1 = 1
3
𝑈𝑛 + 2

3

[

𝑈 (2) + Δ𝑡𝐿(𝑈 (2), 𝑡𝑛 + Δ𝑡
2
)
]

(12)

For problems involving molecular reactions, the time scale of the thermo-chemical source terms can be small, leading to numerical 
stiffness in time integration. A hybrid approach can be used, such as the implicit-explicit (IMEX) time integration method, where the 
reaction terms are handled implicitly while the flow states are computed explicitly.

2.2.  Shock-fitting methods

The shock-fitting method has a long-standing history in supersonic flow simulations, dating back to the 1960s [52]. This tech-
nique treats the discontinuous shock wave as a computational boundary, where the post-shock properties are determined using oblique 
shock relations. Zhong [4] successfully applied the shock-fitting method to hypersonic boundary layer transition DNS, enabling de-
tailed investigations into hypersonic turbulence formation mechanism [3]. For shock movement computation, Rawat and Zhong [56] 
demonstrated that combining a conventional moving mesh with the time derivative of the Rankine-Hugoniot conditions, along with 
characteristic relations to estimate shock locations, effectively preserves the high-order spatial accuracy of upwind finite difference 
methods. The following section focuses on the implementation of this shock-fitting approach, adopting the notations from Zhong [4].

2.2.1.  Moving mesh treatment
In the moving mesh approach for the shock-fitting method, the shockfront is treated as a fixed boundary in the computational 

domain, while the grid points move within the physical domain. Consequently, Eq.  (2) must be modified to account for the moving 
mesh. One approach to achieve this is by applying the arbitrary Lagrangian-Eulerian (ALE) method to the three-dimensional governing 
equations, resulting in the following formulation: 

𝜕𝑔𝑈
𝜕𝑡

+
𝜕𝐹 ′

1
𝜕𝜉

+
𝜕𝐹 ′

2
𝜕𝜂

+
𝜕𝐹 ′

3
𝜕𝜁

= 0 (13)

where 
⎡

⎢

⎢

⎣

𝐹 ′
1
𝐹 ′
2
𝐹 ′
3

⎤

⎥

⎥

⎦

= 𝑔
⎡

⎢

⎢

⎣

𝜉𝑥 𝜉𝑦 𝜉𝑧
𝜂𝑥 𝜂𝑦 𝜂𝑧
𝜁𝑥 𝜁𝑦 𝜁𝑧

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐹1
𝐹2
𝐹3

⎤

⎥

⎥

⎦

+ 𝑔
⎡

⎢

⎢

⎣

𝜉𝑡
𝜂𝑡
𝜁𝑡

⎤

⎥

⎥

⎦

𝑈 (14)

The detailed derivation in vector form can be found in the work by Persson et al. [73]. This approach maps the solutions from the 
physically moving domain (𝑥, 𝑦, 𝑧) to the static computational domain (𝜉, 𝜂, 𝜁 ) where 𝑔 is associated with the Jacobian of the mapping 
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function. ALE not only takes the coordinate transformation into account but also introduces the induced flux due to the mesh motion 
into the calculation. The MLC form of the moving mesh treatment can be simply obtained by applying spatial differentiation to the 
above equations with the chain rule. In the present study, the derivatives with respect to the computational coordinate, 𝑈𝜉 and 𝑈𝜂 , are 
used to represent the derivative layers in the two-dimensional MLC under the ALE formulation, instead of using physical coordinate 
derivatives, 𝑈𝑥 and 𝑈𝑦. This choice is motivated by the fact that the spatial derivatives in Eq.  (13) are defined in the computational 
coordinate. Using derivatives with respect to the physical coordinate would require additional steps to transform the computed fluxes 
back to the computational coordinate, slightly increasing the overall computational cost of the method.

2.2.2.  Shockfront movement
Given supersonic free-stream conditions or solutions numerically calculated from the upstream supersonic flow field, the flow 

states immediately behind the shockfront can be determined using the Rankine-Hugoniot conditions. These conditions claim that the 
flux normal to and relative to the shock wave 𝐹 ′ must be conserved: 

𝐹 ′
𝑠 − 𝐹

′
0 =

(

𝐹𝑠 − 𝐹0
)

⋅ 𝑎𝐺 +
(

𝑈𝑠 − 𝑈0
)

𝑏𝐺 = 0 (15)

where 𝑎𝐺 acts as the normal vector of the shockfront, 𝑏𝐺 is a transformed shockfront normal velocity, 𝐹0 and 𝑈0 are the fluxes and 
states in front of the shock, and 𝐹𝑠 and 𝑈𝑠 are the fluxes and states behind the shock. If the shockfront is located at the top boundary 
on the computational domain, i.e. 𝜂 = 1, then 𝑎𝐺 and 𝑏𝐺 are equal to:

𝑎𝐺 = (𝑔𝜂𝑥)𝐺𝑥̂ + (𝑔𝜂𝑥)𝐺 𝑦̂ + (𝑔𝜂𝑥)𝐺 𝑧̂

𝑏𝐺 = 𝑔𝜂𝑡 (16)

where the hat notations denote the unit vectors in the physical coordinate. Note that the normal vector of the shockfront, ⃗𝑎𝐺, depends 
on the shockfront’s normal velocity, 𝑏𝐺, since the geometry of the shockfront is obtained through time integration of the shock 
velocity. Therefore, evaluating the shock velocity is another critical step in the shock-fitting method.

There are several ways to evaluate the shockfront velocity. In Rawat and Zhong’s study [56], three different shock velocity evalu-
ation methods are discussed. Among the methods, the time derivative of the Rankine-Hugoniot conditions with 𝐶+ characteristics has 
the best spatial accuracy when applied to the shock-fitting method with high-order finite difference methods. The method computes 
the shockfront velocity through time integration of shock acceleration and the acceleration is given by Eq. (20).

The acceleration equation derivation starts with the time derivative of the Rankine-Hugoniot conditions: 
(

𝜕𝐹𝑠
𝜕𝑡

−
𝜕𝐹0
𝜕𝑡

)

⋅ 𝑎𝐺 +
(

𝐹𝑠 − 𝐹0
)

⋅
𝜕𝑎𝐺
𝜕𝑡

+
(

𝜕𝑈𝑠
𝜕𝑡

−
𝜕𝑈0
𝜕𝑡

)

𝑏𝐺 +
(

𝑈𝑠 − 𝑈0
) 𝜕𝑏𝐺
𝜕𝑡

= 0 (17)

Applying the chain rule to Eq.  (14), the Jacobian of the flux in the direction normal to the shock wave, 𝐹 ′
2 , is given by: 

𝐁′ =
𝜕𝐹 ′

2
𝜕𝑈

= 𝜕𝐹
𝜕𝑈

⋅ 𝑎 + 𝑏𝐺𝐈 (18)

where 𝐈 is the identity matrix. Substituting 𝐁′ into Eq.  (17) yields:

𝐁′
𝑠
𝜕𝑈𝑠
𝜕𝑡

− 𝐁′
0
𝜕𝑈0
𝜕𝑡

+
(

𝐹𝑠 − 𝐹0
)

⋅
𝜕𝑎𝐺
𝜕𝑡

+
(

𝑈𝑠 − 𝑈0
) 𝜕𝑏𝐺
𝜕𝑡

= 0 (19)

Then compute the eigenvalue and eigenvector for the flux Jacobian right behind the shockfront, 𝐁′
𝑠. There exists an eigenvalue, 𝜆+𝑠 , 

and an eigenvector, 𝐼+𝑠 , which is associated with the 𝐶+ characteristic line that propagated toward the shockfront. Finally, using the 
inner product of Eq. (19) with 𝐼+𝑠  to obtain the shock acceleration equation: 

𝜕𝑏𝐺
𝜕𝑡

= −1
[𝐼+𝑠 ⋅ (𝑈𝑠 − 𝑈0)]

[

𝜆+𝑠 𝐼
+
𝑠
𝜕𝑈𝑠
𝜕𝑡

+ 𝐼+𝑠 (𝐹𝑠 − 𝐹0) ⋅
𝜕𝑎𝐺
𝜕𝑡

− (𝐼+𝑠 𝐁
′
0)
𝜕𝑈0
𝜕𝑡

]

(20)

With the acceleration of the shockfront, the shock velocity and location can be obtained through a time integration method.

2.3.  The very high-order upwind multi-layer compact scheme

The multi-layer compact schemes (MLC) proposed by Bai and Zhong [33] introduces the spatial derivatives of the flow states 𝑈𝑥
as additional degrees of freedom to the conventional finite difference method. The general form of the governing equations without 
body form term on MLC becomes: 

𝜕
𝜕𝑡

[

𝑈
𝑈𝑥𝑘

]

+ 𝜕
𝜕𝑥𝑗

[

𝐹𝑗
𝐹𝑗,𝑥𝑘

]

− 𝜕
𝜕𝑥𝑗

[

𝐹𝑣𝑗
𝐹𝑣𝑗,𝑥𝑘

]

= 0 (21)

The auxiliary equations in the second row are derived from the spatial differentiation of the original governing. MLC formulation 
can be applied not only to the first-order derivative but also to other high-order derivatives. The following sections will demonstrate 
various MLC frameworks for one and multi-dimensional problems.
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2.3.1.  One-dimensional formulation
The fundamental idea of the MLC is to add additional degrees of freedom for each grid point. Spatial derivatives of the flow states 

are selected as extra simulated variables since they have a direct relation with flux derivatives. To obtain the auxiliary equations 
for the newly introduced variables, one can utilize spatial differentiation of the original governing equation. For example, in one 
dimensional MLC problem, a one-dimensional linear advection becomes: 

𝜕
𝜕𝑡

[

𝑈
𝑈𝑥

]

+ 𝜕
𝜕𝑥

[

𝐹1
𝐹1,𝑥

]

= 0 (22)

The flux derivative with respect to 𝑥, 𝜕𝐹1∕𝜕𝑥 = 𝐹1,𝑥, has a direct relation with 𝑈𝑥 by using the flux Jacobian, i.e., 𝐹1,𝑥 = 𝐀𝑈𝑥. Hence, 
the only remaining unknown in Eq.  (22) is the flux’s second derivative, 𝐹1,𝑥𝑥. In MLC, the second derivative of a numerical state 𝑢
can be approximated by using neighboring values of 𝑢 and 𝑢𝑥: 

(𝐷+
𝑥𝑥𝑢)𝑖 =

1
ℎ2

𝐿2
∑

𝑙=−𝐿1

𝑎𝑙𝑢𝑖+𝑙 +
1
ℎ

𝑀2
∑

𝑚=−𝑀1

𝑏𝑚(𝑢𝑥)𝑖+𝑚 + 𝑂(ℎ𝑝) (23)

The above MLC coefficients, 𝑎 and 𝑏, can be derived from the Taylor series with a uniform grid size, ℎ. Fig. 1 shows the schematic 
of the stencil used in the above equation with 𝐿1 − 𝐿2 −𝑀1 −𝑀2. For instance, the seventh-order MLC coefficients with the upwind 
parameter, 𝛼, to stabilize the numerical schemes for hyperbolic equations:

𝑎±2 =
7
85

∓ 25
3456

𝛼, 𝑎±1 =
64
27

∓ 5
108

𝛼, 𝑎0 = −5

𝑏±2 = ∓ 1
36

+ 1
576

𝛼, 𝑏±1 = ∓8
9
+ 1

36
𝛼, 𝑏0 =

1
16
𝛼 (24)

For the actual value of the third and fifth-order MLC coefficients, Bai and Zhong’s study [33] provides a more detailed derivation 
process and the definition of the upwind parameter. In the present study, the upwind parameters for different orders of accuracy are 
given in Table 1 which are the same values provided in Bai and Zhong’s stability study. With the above formulations, the second 
derivative of the flux, 𝐹1,𝑥𝑥, in Eq.  (22) can be approximated using the MLC scheme in Eq.  (23), with 𝐹1 and 𝐹1,𝑥 provided. Then 
the equation can be applied with a time integration method to simulate the one-dimensional problem.

2.3.2.  Two-dimensional formulation
For two dimensional MLC problem, the linear advection with MLC can be expressed as: 

𝜕
𝜕𝑡

⎡

⎢

⎢

⎣

𝑈
𝑈𝑥
𝑈𝑦

⎤

⎥

⎥

⎦

+ 𝜕
𝜕𝑥

⎡

⎢

⎢

⎣

𝐹1
𝐹1,𝑥
𝐹1,𝑦

⎤

⎥

⎥

⎦

+ 𝜕
𝜕𝑦

⎡

⎢

⎢

⎣

𝐹2
𝐹2,𝑥
𝐹2,𝑦

⎤

⎥

⎥

⎦

= 0 (25)

Similar to the one-dimensional problem, the first derivatives of fluxes are derived from flux Jacobians, and the second derivatives, 
𝐹1,𝑥𝑥 and 𝐹2,𝑦𝑦, can be approximated by Eq.  (23). So the remaining unknowns in the two-dimensional equation are second-order 
mixed derivative terms, 𝐹1,𝑥𝑦 and 𝐹2,𝑥𝑦. The mixed derivative, 𝑢𝑥𝑦, can be approximated by using 𝑢, 𝑢𝑥 and 𝑢𝑦:

(𝑢𝑥𝑦)𝑖𝑗 =
1
ℎ2

𝐿2
∑

𝑙𝑦=𝐿1

𝐿2
∑

𝑙𝑥=𝐿1

𝑎𝑙𝑥 ,𝑙𝑦𝑢𝑖+𝑙𝑥 ,𝑗+𝑙𝑦

+ 1
ℎ

𝑀2
∑

𝑚𝑦=𝑀1

𝑀2
∑

𝑚𝑥=𝑀1

[

𝑏𝑚𝑥 ,𝑚𝑦 (𝑢𝑥)𝑖+𝑚𝑥 ,𝑗+𝑚𝑦 + 𝑐𝑚𝑥 ,𝑚𝑦 (𝑢𝑦)𝑖+𝑚𝑥 ,𝑗+𝑚𝑦
]

+ 𝑂(ℎ𝑟) (26)

Noting that most of the coefficients inside the stencil remain zero; only a few of the points have non-zero values. This is due to 
the two-dimensional stencil involving too many points than the required number to achieve targeting accuracy. The point selection 

Fig. 1. Schematic of 𝐿1 − 𝐿2 −𝑀1 −𝑀2 scheme for MLC second-derivative approximation.

Table 1 
MLC spatial accuracy and corresponding upwind parameter.
 MLC Scheme  Order of Accuracy, 𝑝  Upwind Parameter, 𝛼
 1-1-1-1  3  1.5
 2-2-1-1  5 -1
 2-2-2-2  7  12
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process is based on using as few points as possible to reduce the computational cost and suppress round-off error accumulation. For 
simplicity, the detailed point selection procedure and the associated coefficient values are referred to the study by Bai and Zhong 
[33].

2.3.3.  Directional multi-layer compact (DMLC) Scheme
In Bai and Zhong [32], the above mixed derivative approximation exhibits weak numerical instabilities over a small range of 

wavenumbers. To address this issue, Bai and Zhong proposed another approach [34] to solve the mixed derivative instability in multi-
dimensional MLC. This approach is called the directional multi-layer compact (DMLC) schemes which introduces cross derivatives as 
new unknowns. For instance, Eq.  (25) in DMLC becomes: 

𝜕
𝜕𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑈
𝑈𝑥
𝑈𝑦
𝑈𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝜕
𝜕𝑥

⎡

⎢

⎢

⎢

⎢

⎣

𝐹1
𝐹1,𝑥
𝐹1,𝑦
𝐹1,𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝜕
𝜕𝑦

⎡

⎢

⎢

⎢

⎢

⎣

𝐹2
𝐹2,𝑥
𝐹2,𝑦
𝐹2,𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎦

= 0 (27)

With the introduction of 𝑈𝑥𝑦 to the system, one can use the flux Jacobian and the chain rule to obtain 𝐹1,𝑥𝑦 and 𝐹2,𝑥𝑦, e.g., 𝐹1,𝑥𝑦 =
𝐀𝑦𝑈𝑥 + 𝐀𝑈𝑥𝑦. Hence, the remaining unknowns in the system are the third-order derivative 𝐹1,𝑥𝑥𝑦 and 𝐹2,𝑥𝑦𝑦. However, these terms 
can be solved by using the one-dimensional MLC approximation. For instance, 𝐹1,𝑥𝑥𝑦 is approximated by 𝐹1,𝑦 and 𝐹1,𝑥𝑦 in 𝑥 direction 
and, similarly, 𝐹2,𝑥𝑦𝑦 is approximated by 𝐹2,𝑥 and 𝐹2,𝑥𝑦 in 𝑦 direction. So the above process avoids DMLC using the unstable cross 
derivative approximation and yields more stable results. In the numerical results section, both MLC and DMLC will be discussed and 
compared for two-dimensional problems.

3.  Proposed adaptations for MLC-SF

Bai and Zhong [33,34] conducted stability analysis for MLC and DMLC, demonstrating that these methods maintain stability with 
up to sixth-order boundary closure schemes while achieving seventh-order global accuracy for linear advection problems. They applied 
these methods to one-dimensional and two-dimensional linear advection scenarios and two-dimensional entropy wave transportation. 
However, these test cases are limited to linear advection wave-dominant problems with fixed grids and periodic boundary conditions. 
Extending MLC to more realistic applications, such as simulating supersonic flow over blunt bodies, requires significant adaptations. 
An appropriate Riemann solver must be employed to split zeroth- and first-order fluxes into upwind and downwind directions for 
accurate estimation of second-order derivatives. Furthermore, integrating the dynamic grid shock-fitting method requires an MLC 
computational framework incorporating the arbitrary Lagrangian-Eulerian (ALE) formulation. Proper handling of closed domain 
boundary conditions-including inflow, outflow, and wall boundaries-is essential for managing derivative layers. This section outlines 
the critical adaptations necessary for applying MLC to supersonic flow simulations over blunt objects. These key advancements form 
the foundation of the proposed multi-layer compact schemes with shock-fitting method (MLC-SF).

3.1.  Flux vector splitting

The flux vector splitting technique is a crucial component of the upwind numerical methods. The technique introduces the idea 
similar to the approximated Riemann solver by determining the underlying wave direction and applying the upwind- and downwind-
biased stencils accordingly. To introduce the flux vector splitting to MLC, the deriving procedure starts with the conservative form 
of a one-dimensional nonlinear advection equation: 

𝜕
𝜕𝑡
[𝑈 ] + 𝐀 𝜕

𝜕𝑥
[𝑈 ] = 0 (28)

where 𝐀 = 𝜕𝐹1∕𝜕𝑈 is the flux Jacobian. The objective of flux vector splitting is to convert the nonlinear equation into two pure 
left and right direction problems based on the local and neighboring states while minimizing numerical dissipation and maintaining 
computational efficiency. For instance, the local Lax-Friedrichs method shown in Eq.  (10) computes the absolute value of the max-
imum eigenvalue 𝜆 from 𝐀. Then, the method splits the above nonlinear advection equation into right- and left-running wave-only 
equations and deploys upwind and downwind discretization, respectively. Even though Lax-Friedrichs introduces certain amounts of 
numerical dissipation to the results, the method is still applicable for high-order supersonic flow simulations.

For the MLC adaptation, the above conservative form of a one-dimensional nonlinear advection equation becomes the below 
expression by attaching the first-order auxiliary equation to the bottom row: 

𝜕
𝜕𝑡

[

𝑈
𝑈𝑥

]

+
[

𝐀 0
𝐀𝑥 𝐀

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐁

𝜕
𝜕𝑥

[

𝑈
𝑈𝑥

]

= 0 (29)

One may notice that the MLC system Jacobian 𝐁 has the same eigenvalues as the original Jacobian 𝐀 through the Schur complement 
and assume 𝐀 is invertible. The physical interpretation of this statement is that the underlying wave speeds for both the value layer 
and the derivative layer are the same, which is reasonable since the values and their derivatives should travel at the same speed along 
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the characteristics. Henceforth, the MLC adaptation of the local Lax-Friedrichs method, as shown in Eq.  (10), remains valid when 
differentiating via the chain rule: 

𝐹±
𝑗,𝑥 = 1

2
[

𝐹𝑗,𝑥 ±
(

𝜆𝑗𝑈𝑥 + 𝜆𝑗,𝑥𝑈
)]

, 𝜆𝑗 = 𝑐 +
√

𝑢𝑗2 + (𝜖𝑐)2, 𝜆𝑗,𝑥 = 𝑐𝑥 +
𝑢𝑗𝑢𝑗,𝑥 + 𝜖2𝑐𝑐𝑥
√

𝑢𝑗2 + (𝜖𝑐)2
(30)

With 𝐹±
𝑗,𝑥 from above and 𝐹±

𝑗  from Eq.  (10), both upwind and downwind second-order flux derivatives 𝐷±
𝑥𝑥𝐹𝑗 can be approximated 

by the split fluxes with corresponding direction MLC stencils.
In Bai and Zhong [33], the maximum eigenvalue 𝜆𝑗 used in the local Lax-Friedrichs method is based on the local maximum 

eigenvalues inside the stencil. This procedure requires a local maximum eigenvalue search from the neighboring values used by the 
stencil. In the proposed approach, all of the variables in Eq.  (30) are local and do not require a neighboring search process. Also, since 
the MLC system Jacobian 𝐁 has the same maximum eigenvalue of 𝐀, the proposed method is capable of splitting Eq.  (29) into two 
pure left and right direction problems. Compared to Bai and Zhong’s approach, the additional 𝜆𝑗,𝑥𝑈 term preserves the differentiation 
relation between 𝐹±

𝑗  and 𝐹±
𝑗,𝑥, which slightly improves simulation accuracy. Furthermore, the usage of smoothing parameter 𝜖 ensures 

the flux is differentiable in the vicinity of the bow shock center line and suppresses the carbuncle phenomenon, which can lead to a 
diverged simulation.

3.2.  Arbitrary Lagrangian–Eulerian formulation

For the moving grid shock-fitting method, the arbitrary Lagrangian-Eulerian (ALE) formulation is crucial for accounting for changes 
in the solution state due to the motion of Lagrangian grid points within an Eulerian flow field. This formulation allows the solutions 
behind the shock wave to respond appropriately to the shockfront movement. For a two-dimensional system, Eq.  (13) can be expressed 
as follows for time integration: 

𝜕𝑈
𝜕𝑡

= −1
𝑔

(

𝜕𝐹 ′
1

𝜕𝜉
+
𝜕𝐹 ′

2
𝜕𝜂

− 𝑈
𝜕𝑔
𝜕𝑡

)

(31)

This is the standard formulation for applying the finite difference method within the ALE framework. In the finite difference method, 
the spatial derivatives of fluxes require numerical approximation, as discussed in the previous chapter. For MLC, the time derivative 
of the value layer 𝑈 can be computed analytically through the chain rule if the derivative layers 𝑈𝜉 and 𝑈𝜂 are given. However, the 
derivative layers require time integration from the auxiliary equations shown below:

𝜕𝑈𝜉
𝜕𝑡

=
𝑔𝜉
𝑔2

(

𝜕𝐹 ′
1

𝜕𝜉
+
𝜕𝐹 ′

2
𝜕𝜂

− 𝑈
𝜕𝑔
𝜕𝑡

)

− 1
𝑔

(

𝜕2𝐹 ′
1

𝜕𝜉2
+
𝜕2𝐹 ′

2
𝜕𝜉𝜕𝜂

− 𝑈𝜉
𝜕𝑔
𝜕𝑡

− 𝑈
𝜕𝑔𝜉
𝜕𝑡

)

𝜕𝑈𝜂
𝜕𝑡

=
𝑔𝜂
𝑔2

(

𝜕𝐹 ′
1

𝜕𝜉
+
𝜕𝐹 ′

2
𝜕𝜂

− 𝑈
𝜕𝑔
𝜕𝑡

)

− 1
𝑔

(

𝜕2𝐹 ′
1

𝜕𝜉𝜕𝜂
+
𝜕2𝐹 ′

2

𝜕𝜂2
− 𝑈𝜂

𝜕𝑔
𝜕𝑡

− 𝑈
𝜕𝑔𝜂
𝜕𝑡

)

(32)

Similar to the finite difference discretization for first-order derivatives, the second-order derivatives in the auxiliary equations are 
approximated using upwind MLC discretization. Most terms in the auxiliary equations can be derived through the chain rule and 
applied consistently across different equations. Appendix A.1 provides detailed relations between the required derivative terms for 
MLC calculations. For directional MLC (DMLC) or three-dimensional implementations, a similar approach can be followed to derive 
the necessary expressions.

3.3.  Inflow conditions for MLC-SF

For the shock-fitting method on MLC-SF, the flow states right behind the shock, 𝑈𝑠, are derived from Eq.  (15) but the state deriva-
tives remain undetermined. To ensure the MLC derivative layers’ boundary condition is consistent with the above shock acceleration 
computation, this study adopts the same idea of using Rankine-Hugoniot conditions and flow characteristics. To simplify the deriving 
procedure, two-dimensional Euler equations are used and the shockfront tangential and normal directions are 𝜉 and 𝜂, respectively.

For the derivative layer tangential to the shockfront surface, (𝑈𝜉 )𝑠, the derivative can be directly derived from the spatial differ-
entiation of Eq.  (15), the Rankine-Hugoniot conditions: 

(

𝐹𝑠 ⋅ 𝑎𝐺 + 𝑈𝑠𝑏𝐺
)

𝜉
=
(

𝐹0 ⋅ 𝑎𝐺 − 𝑈0𝑏𝐺
)

𝜉
(33)

This is due to the flow states behind the shock being derived from the upstream condition and shockfront geometry. Hence, the 
derivatives along the shockfront surface are independent of the downstream flow states.

For the derivative layers in the shockfront normal direction, (𝑈𝜂)𝑠, the boundary condition deriving process starts from rearranging 
Eq. (19): 

𝜕𝑈𝑠
𝜕𝑡

= 𝐁′
𝑠
−1
[

𝐁′
0
𝜕𝑈0
𝜕𝑡

−
(

𝐹𝑠 − 𝐹0
)

⋅
𝜕𝑎𝐺
𝜕𝑡

−
(

𝑈𝑠 − 𝑈0
) 𝜕𝑏𝐺
𝜕𝑡

]

(34)
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Then the time derivative of the flow states is obtained, and the spatial derivative of the flow state, (𝑈𝜂)𝑠, can be acquired from the 
inverse of the Euler equations with the flow Jacobian in the 𝜂 direction, 𝐁𝑠: 

𝜕𝑈𝑠
𝜕𝜂

= −𝐁𝑠−1
(

𝜕𝑈𝑠
𝜕𝑡

+ 𝐀𝑠
𝜕𝑈𝑠
𝜕𝜉

)

(35)

The physical meaning of the above process is utilizing the wave propagation direction in flow characteristics. In Eq.  (20), the 
shock acceleration depends on the time derivatives associated with the 𝐶+ characteristics line. This is due to 𝐶+ being the only 
characteristic conveying information toward the shockfront. The rest of the characteristics, which originated from the shockfront, 
should depend on upstream states. Hence, Eq.  (34) implicitly computes the rest of the state derivatives with the state derivatives 
associated with 𝐶+ fixed. This new boundary condition at shockfront provides more accurate and numerically stable results than 
simply using extrapolation or one-sided finite difference to estimate the derivatives normal to the shock 𝑈𝑠,𝜂 . The testing results of 
this boundary condition are shown in the one-dimensional shock-density wave problem and two-dimensional entropy-vorticity wave 
interaction with shock problems. For the Navier-Stokes equations, Eq.  (35) needs to consider the viscous effect in the state-inversion 
process.

3.4.  Outflow conditions for MLC

In the supersonic flow over a blunt object simulation, both supersonic and subsonic outflow conditions are required to apply 
the Navier-Stokes equations. This is because the flow field consists of the subsonic viscous boundary layer in the vicinity of the 
no-slip wall and the supersonic flow outside the layer. In the Navier-Stokes characteristic boundary conditions (NSCBC) proposed 
by Poinsot and Lele [74], the supersonic and subsonic outflow conditions should be treated differently due to the characteristic 
propagation directions. The method derives the boundary condition by converting a multi-dimensional into the local one-dimensional 
inviscid (LODI) relation and applying the method of characteristics to determine which Riemann invariant-like variables  should 
be computed. This procedure makes the NSCBC a robust boundary condition which can be applied to high-order numerical schemes 
without the usage of interpolation or extrapolation. This study borrows the idea of NSCBC to derive boundary conditions for the MLC 
derivative layers when applicable. Appendix A.2 provides the two-dimensional NSCBC with MLC.

For supersonic outflow conditions, the flow states on the boundary can be simply computed through time integration from the 
interior points due to the characteristics all leaving the computational domain, and no additional information is needed to flow in.

𝑑𝑈
𝑑𝑡

|

|

|

|𝑜𝑢𝑡
= 𝐿(𝑈,𝑈𝜉 , 𝑈𝜂 , 𝑡)

𝑑𝑈𝜉
𝑑𝑡

|

|

|

|𝑜𝑢𝑡
= 𝐿𝜉 (𝑈,𝑈𝜉 , 𝑈𝜂 , 𝑡)

𝑑𝑈𝜂
𝑑𝑡

|

|

|

|𝑜𝑢𝑡
= 𝐿𝜂(𝑈,𝑈𝜉 , 𝑈𝜂 , 𝑡) (36)

For the inviscid subsonic non-reflecting outflow, building a perfectly non-reflecting boundary condition might not lead to a well-
posed problem. If one specifies the amplitude of the incoming characteristics 1 to zero, the simulation could lead to a diverged 
solution due to a potential ill-posedness of the problem. The NSCBC suggests converting the boundary condition into a partially 
non-reflecting condition by imposing a pressure at infinity 𝑝∞. This reference variable represents the static pressure outside the 
computational domain. This outflow condition will be based on the pressure difference between the pressure on the boundary and 
far-field pressure to generate a weak 1 into the computational domain where 1 takes the below form: 

1 = 𝐾(𝑝 − 𝑝∞) (37)

where 𝐾 is a constant: 𝐾 = 𝜎(1 −𝑀2)𝑐∕𝐿 which is based on the maximum Mach number in the flow 𝑀 , the characteristic size of the 
domain 𝐿, and a scaling parameter 𝜎. For 𝜎 = 0 condition, this outflow condition will become the perfectly non-reflecting outflow 
condition, which may cause an unstable simulation. One should select an appropriate 𝜎 for different flow fields.

By introducing a similar concept to the MLC inviscid subsonic non-reflecting outflow condition, the 1 and the corresponding 
spatial derivatives can be estimated as follows through direct differentiation:

1 = 𝐾(𝑝 − 𝑝∞)

1,𝜉 = 𝐾𝜉 (𝑝 − 𝑝∞) +𝐾𝑝𝜉
1,𝜂 = 𝐾𝜂(𝑝 − 𝑝∞) +𝐾𝑝𝜂 (38)

With the 1 computed from the above relation, the rest of the boundary flow states can be obtained through the procedure from 
Appendix A.2.

For the viscous subsonic outflow condition, Poinsot and Lele [74] found that fixing the normal derivatives of the tangential 
viscous stresses and the normal heat flux appears to be the best choice in terms of simulation stability. However, a similar approach 
for MLC leads to unstable simulation results. For the current MLC implementation for viscous subsonic outflow conditions, a compact 
extrapolation based on the interior points is used for the value and wall-normal derivative layers. The wall-tangential derivative layer 
is obtained through a central finite difference method from the extrapolated value layer. Even though this extrapolation approach 
has limited accuracy, MLC is able to converge for the supersonic flow over blunt object simulations by using this approach.
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3.5.  Wall conditions for MLC

Both inviscid slip wall and viscous isothermal no-slip wall boundary conditions are considered in the present study. Even though 
these boundary conditions are also discussed in the NSCBC by Poinsot and Lele [74], the current MLC implementations utilizing the 
NSCBC deriving process lead to unstable simulation results. The reason for the difference between the original NSCBC approach and 
the MLC version is more than the discrepancy in the usage of the numerical scheme. The introduction of arbitrary Lagrangian-Eulerian 
formulation to MLC and the curvilinear mapping for the curve walls can also affect the requirement of the boundary condition. 
In the present study, the wall boundary conditions heavily rely on extrapolation and interpolation from the interior points. This 
approach has relatively stronger numerical stability by controlling the order of the accuracy of the extrapolation process. However, 
the extra/interpolation-based approach can only be used with at most fifth-order approximations with MLC, which limits the global 
accuracy of the final simulation results.

The physical condition of the inviscid slip wall is zero wall-normal velocity for preventing the flow from penetrating the wall. 
This condition allows the tangential component of velocity and the rest of the flow properties to change freely. For the current MLC 
implementation of this boundary condition, all of the value and derivative layers are obtained through extrapolation from the interior 
points. Then, the zero wall-normal velocity condition is imposed on the velocity components, and the velocity tangential derivative 
layer is recalculated through finite difference discretization.

For the viscous isothermal no-slip wall, the direct extrapolation technique used in the inviscid slip wall boundary will diverge 
when the grid size is reduced. The viscous boundary condition requires an additional treatment when applying MLC. The current MLC 
implementation for this boundary type still uses direct extrapolation on the wall-normal derivative layer for the velocity components 
and temperature. Extrapolations on the value and wall-tangential layers are not required since these values are given in the isothermal 
no-slip wall boundary. However, the pressure gradients are estimated based on the idea of all of the velocity components staying zero 
all the time on the wall, which means the time derivative in the x and y-momentum equations are: 

𝜕𝜌𝑢
𝜕𝑡

=
𝜕𝜌𝑣
𝜕𝑡

= 0 (39)

With the above conditions, one may apply the no-slip boundary condition and rewrite the momentum equation in ALE formulation 
to obtain the below relation:

𝑦𝜂
𝜕𝑝
𝜕𝜉

− 𝑦𝜉
𝜕𝑝
𝜕𝜂

= 𝑦𝜂
𝜕𝜏𝑥𝑥
𝜕𝜉

− 𝑥𝜂
𝜕𝜏𝑥𝑦
𝜕𝜉

− 𝑦𝜉
𝜕𝜏𝑥𝑥
𝜕𝜂

+ 𝑥𝜉
𝜕𝜏𝑥𝑦
𝜕𝜂

−𝑥𝜂
𝜕𝑝
𝜕𝜉

+ 𝑥𝜉
𝜕𝑝
𝜕𝜂

= 𝑦𝜂
𝜕𝜏𝑥𝑦
𝜕𝜉

− 𝑥𝜂
𝜕𝜏𝑦𝑦
𝜕𝜉

− 𝑦𝜉
𝜕𝜏𝑥𝑦
𝜕𝜂

+ 𝑥𝜉
𝜕𝜏𝑦𝑦
𝜕𝜂

(40)

This relation describes how the pressure gradients react to the wall shear stresses in a transformed coordinate. Since the velocity value 
and gradients are known, through either the boundary conditions or extrapolation, the shear stress can be computed, and pressure 
gradients can be obtained by solving the relation with matrix inversion: 

[

𝑝𝜉
𝑝𝜂

]

= 𝐽
[

𝑥𝜉 𝑦𝜉
𝑥𝜂 𝑦𝜂

][

𝐶1
𝐶2

]

(41)

where

𝐶1 = 𝑦𝜂
𝜕𝜏𝑥𝑥
𝜕𝜉

− 𝑥𝜂
𝜕𝜏𝑥𝑦
𝜕𝜉

− 𝑦𝜉
𝜕𝜏𝑥𝑥
𝜕𝜂

+ 𝑥𝜉
𝜕𝜏𝑥𝑦
𝜕𝜂

𝐶2 = 𝑦𝜂
𝜕𝜏𝑥𝑦
𝜕𝜉

− 𝑥𝜂
𝜕𝜏𝑦𝑦
𝜕𝜉

− 𝑦𝜉
𝜕𝜏𝑥𝑦
𝜕𝜂

+ 𝑥𝜉
𝜕𝜏𝑦𝑦
𝜕𝜂

(42)

Then the pressure value layer 𝑝 on the wall can be computed from the wall-normal derivatives with a reversed finite difference 
discretization. This additional pressure treatment improves the MLC stability with the viscous isothermal no-slip wall boundary when 
a finer grid is applied.

4.  Numerical results – verifications

In this section, three test cases are selected to verify and benchmark the performance of the proposed multi-layer compact schemes 
with the shock-fitting method (MLC-SF) in fifth- and seventh-order accuracy formulations. For comparison, this paper also evaluates 
the conventional upwind finite difference method with the shock-fitting method (FD-SF) [4], along with three weighted essentially 
non-oscillatory (WENO) schemes. The tested WENO schemes include WENO5-JS [44], WENO5-M [46], and WENO5-Z [47], which 
represent the simulation results obtained using shock-capturing techniques. Detailed parameter settings for the WENO methods will 
be provided in the one-dimensional linear advection problem section. For the two-dimensional moving mesh problem, the dynamic 
multi-layer compact (DMLC) method will also be discussed. Time integration for all three verification cases is conducted using the 
fourth-order Runge-Kutta method, with the time step set sufficiently small to minimize temporal errors. The corresponding Courant-
Friedrichs-Lewy (CFL) number for the numerical tests ranges from 0.001 to 0.01. For the Euler equations, the modified local Lax-
Friedrichs method [4] is adopted for flux-vector splitting.
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4.1.  One-dimensional linear advection wave

The one-dimensional linear advection problem with periodic boundaries from Henrick et al [46] is given as follows: 
𝜕𝑢
𝜕𝑡

+ 𝜕𝑢
𝜕𝑥

= 0 on 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 2] (43)

and the initial condition: 

𝑢(𝑥, 𝑡 = 0) = 𝑠𝑖𝑛
(

𝜋𝑥 −
𝑠𝑖𝑛(𝜋𝑥)
𝜋

)

(44)

The problem is designed to examine WENO methods when the first derivative vanishing points existed in the system. From Henrick 
et al. [46] works, WENO5-JS has convergence issues near the vanishing point even though the solution is considered smooth. Hence, 
both WENO-M and WENO-Z are designed to address this issue and converge with optimal spatial accuracy. The parameter, 𝜖, of 
WENO local smoothness indicator in WENO5-JS is set to 10−6 and for WENO5-M and WENO5-Z are 10−40.

Fig. 2 illustrates the 𝐿1-norm error convergence rate versus the mesh number, 𝑁 , and the solutions at the simulation’s end time 
for the fifth-order methods. Among these methods, WENO5-JS demonstrates the slowest convergence rate, consistent with its known 
convergence properties. In contrast, WENO5-M and WENO-Z achieve the optimal fifth-order convergence rate. A key distinction 
between these two methods lies in their computational cost: WENO-Z requires 30 % less computing time compared to WENO-M [48], 
as it evaluates smoothness indicators using absolute differences rather than recalculating weights for each indicator from the mapping 
function.

For the shock-fitting methods, the upwind finite difference method maintains a steady fifth-order convergence rate, with slightly 
lower errors than the modified WENO methods at equivalent mesh densities. Meanwhile, MLC demonstrates the best overall spatial 
accuracy among all methods. This superior accuracy can be attributed to the additional degrees of freedom in MLC, which is twice as 
many as the other methods for the same number of grid points. Even when accounting for this disparity by normalizing the degrees 
of freedom, MLC still achieves lower errors than the others.

This trend of superior spatial accuracy for MLC extends to the seventh-order results, as shown in Fig. 3. The results from the one-
dimensional linear advection problem highlight MLC’s capability to handle smooth solutions with exceptional precision. Fig. 4 shows 

Fig. 2. One-dimensional linear advection: fifth-order methods comparison for solutions at 𝑡 = 2 with 𝑁 = 8 (left) and 𝐿1-norm error convergence 
rate (right) .

Fig. 3. One-dimensional linear advection: seventh-order methods comparison for solutions at 𝑡 = 2 with 𝑁 = 8 (left) and 𝐿1-norm error convergence 
rate (right).
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Fig. 4. One-dimensional linear advection: first derivative 𝐿1-norm error convergence rate for fifth-order (left) and seventh-order (right) methods.

Fig. 5. Two-dimensional linear advection with a moving mesh: solution contours of the initial state (left) and the end state (right).

the error convergence rates of the first derivative for different methods. The convergence behavior of the first derivative follows a 
similar trend to that of the solution value, except that WENO-JS exhibits an even slower convergence rate. As before, the MLC scheme 
achieves the lowest error for a given mesh number and degrees of freedom among all tested methods.

4.2.  Two-dimensional linear advection wave on a moving grid

The two-dimensional linear advection with moving mesh problem aims to verify MLC and DMLC with a two-dimensional advection 
equation with moving mesh treatment. The problem is given as a rectangular computational domain with a tilt angle 𝜃 = 30◦ counter-
clock wisely and the entire domain is moving uniformly in 𝑣 = (−1,−1). The governing equation for this problem can be derived from 
Eq.  (13): 

𝜕𝑔𝑈
𝜕𝑡

+
𝜕𝐹 ′

1
𝜕𝜉

+
𝜕𝐹 ′

2
𝜕𝜂

= 0 on 𝜉, 𝜂 ∈ [0, 1], 𝑡 ∈ [0, 1] (45)

where the state and fluxes in the physical domain are 𝑈 = 𝐹1 = 𝐹2 = 𝑢. For the initial condition: 
𝑢(𝑥, 𝑦, 𝑡 = 0) = sin(2𝜋(𝑥 + 𝑦)) (46)

and the coordinate transformation function: 
[

𝑥
𝑦

]

=
[

𝐷𝑥 ⋅ cos(𝜃) −𝐷𝑦 ⋅ sin(𝜃)
𝐷𝑥 ⋅ sin(𝜃) 𝐷𝑦 ⋅ cos(𝜃)

][

𝜉
𝜂

]

(47)

Note that 𝐷𝑥 and 𝐷𝑦 are properly selected to ensure the state value is consistent with the periodic boundaries. Fig. 5 shows the 
problem’s initial and end solution contours in the physical domain.

Fig. 6 illustrates the solution profiles along the 𝜂 = 0 line for FD, MLC, and DMLC methods. For both fifth- and seventh-order 
approaches, the FD method exhibits the least accuracy compared to the two MLC-based methods. In the fifth-order results, DMLC 
demonstrates slightly higher accuracy than MLC. However, for the seventh-order cases, the differences between MLC and DMLC are 
negligible and visually indistinguishable.

Fig. 7 presents the error convergence plots for the upwind finite difference method, MLC, and DMLC. In fifth-order methods, 
MLC and DMLC show very similar error trends with respect to the mesh number, both outperforming the upwind finite difference 
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Fig. 6. Two-dimensional linear advection with a moving mesh: Solution comparison between different methods with 𝑁 = 8 and 𝜂 = 0 for fifth-order 
methods (left) and seventh-order methods (right).

method in terms of accuracy per degree of freedom and computational efficiency. For the seventh-order methods, all three approaches 
exhibit comparable error distributions relative to degrees of freedom, although MLC slightly deviates from the trend for certain grid 
resolutions.

In terms of computational efficiency, DMLC significantly outperforms the upwind finite difference method. To achieve an 𝐿1-norm 
error of approximately 10−9, the seventh-order DMLC required 54.7 s, whereas the seventh-order upwind finite difference method 
took 163.4 s. This represents a 2.99 times speedup for DMLC, underscoring its efficiency for high-accuracy simulations.

4.3.  One-dimensional entropy-shock interaction wave

The one-dimensional shock-density wave interaction presented in this study is based on Shu-Osher’s problem [75] and revised by 
Suresh [76] for improving problem smoothness. The problem simulates a normal shock moving at Mach number, 𝑀 , relative to the 
upstream and interacting with a density wave. The governing equations are the Euler equations: 

𝜕
𝜕𝑡

⎡

⎢

⎢

⎣

𝜌
𝜌𝑢
𝜌𝑒

⎤

⎥

⎥

⎦

+ 𝜕
𝜕𝑥

⎡

⎢

⎢

⎣

𝜌𝑢
𝜌𝑢2 + 𝑝
(𝜌𝑒 + 𝑝)𝑢

⎤

⎥

⎥

⎦

= 0 on 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 0.36] (48)

with the initial condition for downstream, 𝑥 ≤ 𝑥𝐺:

𝜌(𝑥, 𝑡 = 0) =
[

(𝛾 + 1)𝑀2]∕
[

(𝛾 − 1)𝑀2 + 2
]

𝑢(𝑥, 𝑡 = 0) =
[

2
√

𝛾(𝑀2 − 1)
]

∕[(𝛾 + 1)𝑀]

𝑝(𝑥, 𝑡 = 0) = 1 +
[

2𝛾(𝑀2 − 1)
]

∕(𝛾 + 1) (49)

and for upstream, 𝑥 > 𝑥𝐺:
𝜌(𝑥, 𝑡 = 0) = 1.0 + 𝛿 ⋅ sin4(2.5𝜋𝑥)

𝑢(𝑥, 𝑡 = 0) = 0

𝑝(𝑥, 𝑡 = 0) = 1 (50)

where 𝛾 = 1.4, 𝑀 = 3, 𝛿 = 0.2 and 𝑥𝐺 = −0.8. The problem selected is due to fluxes relative to the shockfront being 𝐶3 continuous 
when 𝑡 = 0. This smoothness property provides a more gentle start for the density interaction process and yields a better convergence 
rate for high-order methods with the shock-fitting method.

Fig. 9 shows the global solution profile and error for fifth-order FD-SF, MLC-SF, and WENO5-JS with mesh number 𝑁 = 1, 600. The 
reference solution is from fifth-order FD with 𝑁 = 102, 400. From the density error distribution plot, a smooth region, Ω1, is defined 
with 𝑥 ∈ [0.18, 0.43]. This region is the slow entropy wave region and will be used for error evaluation in the later part of this test. 
Also, the global error is defined by 𝑥 ∈ [−1, 0.43] to avoid errors near the shock.

Fig. 8 presents the simulation results of mesh number 𝑁 = 100 for both fifth and seventh-order methods. Among the fifth-order 
methods, the WENO family exhibits noticeable smearing in the slow entropy wave region. This behavior likely stems from the WENO 
methods employing less accurate stencils near the shock, which compromises resolution in adjacent regions. In contrast, FD-SF 
captures the initial oscillations at the first few peaks of the slow entropy wave region, though some smearing is evident toward the 
end of the region. Overall, FD outperforms pure shock-capturing methods in this test case.

Notably, MLC-SF delivers the most accurate results for both fifth- and seventh-order simulations. The fifth-order MLC-SF success-
fully tracks all peaks in the slow entropy wave region in a level of precision that even the seventh-order FD-SF method does not 
achieve. These results highlight MLC-SF’s superior ability to resolve fine details in complex flow regions behind the shock when using 
the shock-fitting method.
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Fig. 7. Two-dimensional linear advection with a moving mesh: 𝐿1-norm error versus mesh number 𝑁 (top), degrees of freedom (middle), and 
computing elapsed time (bottom) for fifth (left) and seventh-order (right) methods.

Table 2 shows the global density 𝐿1-norm error for the fifth-order methods. For the shock-fitting methods, the upwind 
FD-SF converges around fifth-order and MLC-SF can achieve a convergence rate with 𝑟 = 5.5 in certain points. In contrast, 
the fifth-order shock-capturing schemes, without shock-fitting applied, are converged around first-order even for the two ad-
vanced WENO methods. Table 3 shows the error convergence rate of fifth-order methods in the smooth region, Ω1. For the 
shock-fitting methods, the upwind finite difference method achieves fifth-order accuracy faster than the global error and MLC-
SF’s convergence rate is capped at sixth-order. On the other hand, WENO methods’ performance is improved but still below
second-order.

For seventh-order methods, Table 4 shows the 𝐿1-norm error in both global and smooth regions. Both the upwind finite difference 
method and MLC are below seventh-order accuracy in the global region. One of the possible reasons for the reduction in spatial 
accuracy is the upstream flux being 𝐶3 continuous across the shock. The discontinuity in higher-order derivatives causes the high-
order approximation to fail and leads to incorrect derivative estimation. The error due to the discontinuity can be observed in Fig. 9 
at the interfaces of different system waves (𝑥 around −0.5 and 0.2). One way to reduce the discontinuity error is using 𝐶∞ function 
in the upstream such as the bump function. Nevertheless, the measured spatial accuracy is recovered to the expected order when the 
solution is evaluated within the smooth region, Ω1. The FD-SF is capped at sixth-order accuracy due to the usage of the fifth-order 
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Fig. 8. One-dimensional shock-density wave interaction: Density comparison between different methods with 𝑁 = 100 for fifth-order methods (left) 
and seventh-order methods (right).

Fig. 9. One-dimensional shock-density wave interaction: density distribution at t = 0.36 (top) and the corresponding density error distribution for 
fifth-order methods.

Table 2 
One-dimensional shock-density wave interaction: global density 𝐿1-norm error and convergence rate for 
fifth-order methods.

 FD-SF (7-pts)  MLC-SF (2-2-1-1)  WENO5-JS  WENO5-M  WENO5-Z
 N 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟

 50 3.43 ⋅ 10−2 6.21 ⋅ 10−3 4.91 ⋅ 10−2 4.79 ⋅ 10−2 4.85 ⋅ 10−2

 100 1.24 ⋅ 10−2  1.5 4.65 ⋅ 10−4  3.7 2.48 ⋅ 10−2  1.0 2.88 ⋅ 10−2  0.7 2.82 ⋅ 10−2  0.8
 200 1.86 ⋅ 10−3  2.7 1.00 ⋅ 10−5  5.5 1.02 ⋅ 10−2  1.3 1.25 ⋅ 10−2  1.2 1.14 ⋅ 10−2  1.3
 400 8.58 ⋅ 10−5  4.4 2.23 ⋅ 10−7  5.5 4.13 ⋅ 10−3  1.3 5.24 ⋅ 10−3  1.3 4.31 ⋅ 10−3  1.4
 800 3.04 ⋅ 10−6  4.8 5.79 ⋅ 10−9  5.3 1.58 ⋅ 10−3  1.4 2.06 ⋅ 10−3  1.3 1.63 ⋅ 10−3  1.4
 1600 1.05 ⋅ 10−7  4.9 2.06 ⋅ 10−10  4.8 6.85 ⋅ 10−4  1.2 8.55 ⋅ 10−4  1.3 6.90 ⋅ 10−4  1.2
 3200 3.78 ⋅ 10−9  4.8 1.01 ⋅ 10−11  4.4 3.13 ⋅ 10−4  1.1 3.66 ⋅ 10−4  1.2 3.19 ⋅ 10−4  1.1
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Table 3 
One-dimensional shock-density wave interaction: smooth region (Ω1) density 𝐿1-norm error and conver-
gence rate for fifth-order methods.

 FD-SF (7-pts)  MLC-SF (2-2-1-1)  WENO5-JS  WENO5-M  WENO5-Z
 N 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟

 50 1.70 ⋅ 10−1 3.36 ⋅ 10−2 2.54 ⋅ 10−1 2.61 ⋅ 10−1 2.57 ⋅ 10−1

 100 5.50 ⋅ 10−2  1.6 2.30 ⋅ 10−3  3.9 2.04 ⋅ 10−1  0.3 2.03 ⋅ 10−1  0.4 2.03 ⋅ 10−1  0.3
 200 8.84 ⋅ 10−3  2.6 4.55 ⋅ 10−5  5.7 9.06 ⋅ 10−2  1.2 1.14 ⋅ 10−1  0.8 1.08 ⋅ 10−1  0.9
 400 3.82 ⋅ 10−4  4.5 7.80 ⋅ 10−7  5.9 3.29 ⋅ 10−2  1.5 4.56 ⋅ 10−2  1.3 3.89 ⋅ 10−2  1.5
 800 1.29 ⋅ 10−5  4.9 1.26 ⋅ 10−8  5.9 1.02 ⋅ 10−2  1.7 1.72 ⋅ 10−2  1.4 1.19 ⋅ 10−2  1.7
 1600 4.12 ⋅ 10−7  5.0 2.00 ⋅ 10−10  6.0 2.83 ⋅ 10−3  1.9 5.46 ⋅ 10−3  1.7 3.15 ⋅ 10−3  1.9
 3200 1.30 ⋅ 10−8  5.0 3.04 ⋅ 10−12  6.0 8.18 ⋅ 10−4  1.8 1.57 ⋅ 10−3  1.8 8.96 ⋅ 10−4  1.8

Table 4 
One-dimensional shock-density wave interaction: global and the smooth region density 
𝐿1-norm error and convergence rate for seventh-order methods.

 Global  Smooth Region
 FD-SF (9-pts)  MLC-SF (2-2-2-2)  FD-SF (9-pts)  MLC-SF (2-2-2-2)

 N 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟 𝐿1 error 𝑟

 50 4.45 ⋅ 10−2 8.50 ⋅ 10−3 2.47 ⋅ 10−1 4.62 ⋅ 10−2

 100 8.10 ⋅ 10−3  2.5 1.82 ⋅ 10−4  5.5 4.18 ⋅ 10−2  2.6 7.15 ⋅ 10−4  6.0
 200 2.45 ⋅ 10−4  5.1 2.10 ⋅ 10−6  6.4 1.13 ⋅ 10−3  5.2 3.47 ⋅ 10−6  7.7
 400 4.63 ⋅ 10−6  5.7 5.92 ⋅ 10−8  5.1 1.92 ⋅ 10−5  5.9 1.22 ⋅ 10−8  8.2
 800 9.48 ⋅ 10−8  5.6 1.75 ⋅ 10−9  5.1 2.75 ⋅ 10−7  6.1 4.69 ⋅ 10−11  8.0
 1600 2.80 ⋅ 10−9  5.1 9.31 ⋅ 10−11  4.2 3.77 ⋅ 10−9  6.2 1.82 ⋅ 10−12  4.7
 3200 1.19 ⋅ 10−10  4.6 5.21 ⋅ 10−12  4.2 5.45 ⋅ 10−11  6.1 8.69 ⋅ 10−13  1.1

boundary closure schemes for stability. In contrast, MLC-SF can even reach an eighth-order convergence rate with the proposed 
boundary condition and eventually reduce to first-order due to the emergence of round-off errors.

Regarding computational efficiency, Fig. 10 and Fig. 11 show the 𝐿1-norm error in the global and smooth regions concerning the 
mesh number, degrees of freedom, and elapsed time. Either in the plots of degrees of freedom or elapsed time, MLC-SF is the fastest 
method in converging errors. This implies MLC-SF is the most memory and computing time-efficient method among the compared 
methods. In seventh-order methods, the upwind finite difference method requires 162.7 s to achieve an error of 10−10 in the global and 
smooth regions. On the other hand, MLC-SF only took 122.4 and 48.7 s to reach the error for global and smooth regions respectively. 
In other words, MLC-SF provides a 1.32 times speedup in the global region and 3.34 times speedup in the smooth region over the 
upwind finite difference for obtaining density 𝐿1-norm error equal to 10−10.

5.  Numerical results – applications

This section extends FD-SF and MLC-SF from the previous section to more realistic shock-involving problems like two-dimensional 
vorticity-entropy wave interaction with a shock wave [70] and supersonic flow over a parabolic cylinder. These case studies provide 
the grid convergence rate plots to demonstrate the current capability of MLC-SF compared with well-established FD-SF. In addition 
to the grid convergence rate studies, preliminary results for MLC with the 1-1-1-1 (third-order) scheme applied to two-dimensional 
supersonic flow over a cylinder are also presented. Although further study is needed on improving wall boundary conditions for the 
derivative layers in order to achieve the seventh-order global accuracy, the results demonstrate that the current implementation can 
converge to a proper solution, highlighting the method’s potential for real-world applications.

5.1.  Two-dimensional supersonic vorticity–entropy wave interaction with a shock wave

This testing case aims to test the numerical accuracy of the MLC-SF proposed in section 3.3 on the two-dimensional Euler equations. 
The problem is based on Mahesh’s linear perturbation problem [70], which is a supersonic inviscid flow with a normal shock sitting 
in the middle of the computational domain (𝑥𝐺 ≈ 0). Fig. 12 shows the initial density fluctuation distribution (𝜌∗ = 𝜌′∕𝐴𝑒𝜌1) in the 
simulation domain. The left boundary is a supersonic inlet with a given Mach number 𝑀∞ and the right boundary is a subsonic 
outlet. For the top and bottom boundaries, a periodic interface is applied to these boundaries to connect the simulation solutions on 
the horizontal borders virtually. The initial fluctuation terms for the upstream zone are applied as follows:

𝑝′1
𝑝1

= 0

𝑢′1
𝑢1

= 𝑙𝐴𝑣 cos(𝑚𝑥 + 𝑙𝑦 − 𝑢1𝑚𝑡)
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Fig. 10. One-dimensional shock-density wave interaction: global 𝐿1-norm error versus mesh number 𝑁 (top), degrees of freedom (middle), and 
computing elapsed time (bottom) for fifth (left) and seventh-order (right) methods.

𝑣′1
𝑢1

= −𝑚𝐴𝑣 cos(𝑚𝑥 + 𝑙𝑦 − 𝑢1𝑚𝑡)

𝜌′1
𝜌1

= 𝐴𝑒 cos(𝑚𝑥 + 𝑙𝑦 − 𝑢1𝑚𝑡) (51)

where 𝑙 = sin(𝜓1) and 𝑚 = cos(𝜓1). In this testing problem, the given freestream and fluctuation parameters are 𝑀∞ = 1.5, 𝐴𝑣 = 𝐴𝑒 =
10−4, and 𝜓1 = 15◦. For the initial solutions behind the shock wave, the downstream fluctuations and the shape of the shock wave 
are derived based on the linear perturbation theory. The linearized solution can be found in Mahesh’s work [70]. For the numerical 
simulation setting, the subsonic outlet boundary condition is implemented using the non-reflecting characteristic boundary from 
Poinsot and Lele [74]. The entire computational domain, Ω = [−1.5𝜋, 2𝜋] × [0, 2𝜋), is split into two zones: upstream and downstream. 
The number of grid points for each zone is (𝑁 + 1) ×𝑁 . The third-order strong stability preserving Runge-Kutta method [72] is used for 
the time integration and the CFL number ranges from 0.05 to 0.3 for different grid sizes. The total simulation time is 𝑇 ∗ = 𝑇 ∕𝑇𝑟𝑒𝑓 ≈ 6.95
where the reference time is the perturbation traveling time in the spanwise direction, 𝑇𝑟𝑒𝑓 = 2𝜋𝑙∕𝑢1𝑚. The simulation time is set to 
prevent the outlet numerical error, a 𝐶− acoustic wave, from reaching the solutions behind the shock wave.
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Fig. 11. One-dimensional shock-density wave interaction: 𝐿1-norm error in the smooth region, Ω1, versus mesh number 𝑁 (top), degrees of freedom 
(middle), and computing elapsed time (bottom) for fifth (left) and seventh-order (right) methods.

Fig. 12. Two-dimensional shock interaction: the initial density fluctuation distribution (𝜌∗ = 𝜌′∕𝐴𝑒𝜌1) in the entire computational domain (left) and 
in the vicinity of the shock wave (right).

Journal of Computational Physics 541 (2025) 114332 

21 



Y.-T. Lin and X. Zhong

Fig. 13. Two-dimensional shock interaction: post-shock density fluctuation distribution comparison for third-order methods (left) and the seventh-
order methods (right).

Fig. 14. Two-dimensional shock interaction: 𝐿1-norm error versus mesh number 𝑁 (top) and degree of freedom (bottom) for third (left) and 
seventh-order (right) methods.

Fig. 13 shows the simulation results of the post-shock density distribution using third- and seventh-order methods. For the same 
mesh number, the MLC methods demonstrate higher accuracy than the FD methods. Fig. 14 shows the 𝐿1-norm error with different 
mesh sizes and orders of the method used. The error is computed based on the density error right behind the shock wave, and the 
reference solution is the finest grid point solution (𝑁 = 512) from the seventh-order MLC-SF. In addition to comparing the results 
between FD-SF and MLC-SF, this testing case also compares different boundary condition implementations for MLC-SF for the stream-
wise state derivative behind the shock wave 𝑈𝑠,𝜂 . The two boundary condition implementations are the physically consistent method 
mentioned in section 3.3 (MLC-SF/PC) and the finite difference method (MLC-SF/FD). The MLC-SF/FD uses (𝑟 − 1)th-order one-sided 
difference schemes to estimate the derivative behind the shock from the downstream state values 𝑈 . For seventh-order MLC-SF, 
the MLC-SF/FD approach uses (𝑟 − 2)th-order (fifth-order) one-sided difference due to the numerical stability issue when sixth-order 
is used. Consequently, the 𝐿1-norm error of the MLC-SF/FD is about the same as the FD-SF for the same mesh number. On the 
other hand, the MLC-SF/PC approach can estimate the 𝑈𝜂 derivative without using one-sided difference. This makes the method 
outperform the other two methods and achieve a seventh-order global convergence rate for coarser grid points. The testing case 
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Fig. 15. Two-dimensional supersonic flow over parabolic cylinder: temperature contour for the Euler equations (left) and the Navier-Stokes equation 
(right) with third-order upwind finite difference method, FD-SF, (lower section) and multi-layer compact scheme, MLC-SF, (upper section).

shows the importance of the boundary condition used for the MLC-SF to achieve the desired global convergence rate for simulation. 
The key to constructing an accurate MLC boundary condition is to ensure the condition’s physical meaning between the value and 
derivative layers is consistent.

5.2.  Two-dimensional supersonic flow over a blunt object

The last simulation case is the two-dimensional supersonic flow over a parabolic cylinder. In this problem, both the Euler and 
Naver-Stokes equations are considered. For the geometry of the cylinder, the parabola is defined based on the radius of curvature at 
the parabola center 𝑅. The explicit wall’s coordinate function is: 

𝑥𝑤 = 1
2𝑅

𝑦𝑤
2 (52)

The freestream flow conditions are 𝑀∞ = 5.73, 𝑅𝑒𝑅 = 100, and 𝑇∞ = 250 K. For simplicity, this problem only considers the ideal gas 
model with 𝛾 = 1.4 and 𝑃𝑟 = 0.77. The rest of the flow conditions can be found in Zhong’s supersonic flow over a cylinder study [4].

The tested schemes are the third-order FD-SF (five-point stencil) and MLC-SF (1-1-1-1) for this problem set. In the computational 
domain, 𝜉 is defined as the clockwise azimuthal direction to the parabola, and 𝜂 is defined as the wall-normal direction toward the 
shockfront. The parabola endpoints for the Euler equation are located at 𝑥𝑒𝑛𝑑 = 𝑅 and for the Navier-Stokes equations are 𝑥𝑒𝑛𝑑 = 4𝑅. 
Also, the mesh number in 𝜂 direction for Navier-Stokes problems is doubled compared to the inviscid flow. The discrepancy in the 
domain size and mesh number used for the two equations is due to the Navier-Stokes equations having convergence issues at the outlet 
for shorter computational domains and strong velocity and temperature gradient in the vicinity of the stagnation point. For boundary 
condition implementations, a mirror condition is used at the centerline to reduce the computational cost. The outlet boundary states 
in the Navier-Stokes simulations are computed through 𝑟th-order polynomial extrapolation for both value and derivative layers from 
the interior points. The inlet states are obtained from the shock-fitting method described in section 3.3 (MLC-SF/PC). For the Euler 
wall boundary, the inviscid non-penetrable wall is applied. The pressure term is computed from the pressure gradient based on the 
momentum equation in the wall-normal direction. Non-slip and isothermal conditions are applied to the Navier-Stokes wall boundary. 
The wall temperature 𝑇𝑤 = 1250 K, and the pressure term is extrapolated from the interior points. In addition, MLC-SF uses polynomial 
extrapolation to obtain velocity derivatives on the wall. All of the simulations use third-order strong stability preserving Runge-Kutta 
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Fig. 16. Two-dimensional supersonic flow over parabolic cylinder (Euler equations): Pressure coefficient on the wall (left) and non-dimensionalized 
temperature at the centerline (right) with 𝑁 = 10 for different methods.

Fig. 17. Two-dimensional supersonic flow over parabolic cylinder (Navier-Stokes equations): Pressure coefficient on the wall (left) and non-
dimensionalized heat flux on the wall (right) with 𝑁 = 10 for different methods.

Fig. 18. Two-dimensional supersonic flow over parabolic cylinder: 𝐿1-norm error for the pressure coefficient on the wall versus mesh number 𝑁
for the Euler equations (left) and 𝐿1-norm error for the non-dimensionalized heat flux on the wall versus mesh number 𝑁 for the Navier-Stokes 
equations (right).

method [72] for time integration with CFL number ranging from 0.05 to 0.6 for different mesh numbers. Simulations are considered 
converged when the non-dimensional velocity change over steps is at least less than 10−4.

Fig. 15 shows the side-by-side comparison of the third-order FD-SF and MLC-SF in a non-dimensional temperature contour for 
the two equations with mesh number (𝑁𝜉 , 𝑁𝜂) = (21, 21). The FD-SF method is based on Zhong’s work [4], which has been applied to 
various studies [54,77,78] and can be treated as the reference method to the problem. For the current implementation, the MLC-SF 
has similar results as the FD-SF, which shows the consistency of the solution between the two methods.

The reference solutions used for the following error evaluation, for both Euler and Navier-Stokes equations, are computed using 
the fifth-order FD-SF method on a fine mesh with (𝑁𝜉 , 𝑁𝜂) = (321, 321). Additionally, the reference heat flux at the center point in 
the Navier-Stokes simulation is 𝑞𝑐 = −358.780 𝑘𝑊 ∕𝑚2, as obtained from the reference solution. In Fig. 16 and Fig. 17, both Euler and 
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Navier-Stokes simulations have similar accuracy for both MLC and FD when a coarse mesh (𝑁 = 10) is used. However, as shown in 
Fig. 18, the 𝐿1-norm error, whether in terms of the pressure coefficient for the Euler equations or the heat flux for the Navier-Stokes 
equations, is larger for MLC-SF compared to FD-SF on the same mesh. This is due to the current MLC-SF wall boundaries and subsonic 
outlet implementations not being physically consistent with both value and derivative layers. Most of the implementations rely on 
extrapolation or one-sided finite difference, which introduces numerical instability or uncertainty to the MLC-SF simulations. Also, as 
shown in the two-dimensional shock interaction case, a non-physically consistent boundary, like MLC-SF/FD, will deteriorate MLC-SF 
error convergence. As a result, deriving physically consistent boundary conditions for both wall boundary and subsonic outlet, such 
as MLC-proposed in the previous case, is necessary for MLC-SF to achieve the desired order of accuracy globally.

6.  Conclusions

This paper establishes the multi-layer compact schemes with shock-fitting method (MLC-SF) applied to one-dimensional and 
two-dimensional flow for supersonic flow over a blunt object simulation. To fully leverage the high spatial accuracy of MLC, the 
shock-fitting method is introduced to suppress the Gibbs phenomenon caused by discontinuous shock wave. To integrate MLC with 
the dynamic grid shock-fitting method, the arbitrary Lagrangian-Eulerian (ALE) formulation is derived for the MLC derivative layers 
and uses the derivatives based on the computational domain 𝑈𝜉 and 𝑈𝜂 as the MLC derivative layers. This enables the application 
of MLC-SF on non-Cartesian grids and for problems with moving boundaries. In addition, a physically consistent inflow boundary 
condition is proposed for the shock-fitting method (MLC-SF/PC) to maintain high-order spatial accuracy in MLC-SF. This proposed 
boundary condition for the shock-normal derivative layer utilizes the 𝐶+ characteristics propagated toward the shockfront, which 
is consistent with the inflow condition for the value layer. This physically consistent approach eliminates the need for polynomial 
extrapolation or one-side finite difference, allowing MLC to achieve global seventh-order spatial accuracy. Finally, the proposed 
MLC framework was tested and compared with other high-order methods in both one-dimensional and two-dimensional problems to 
evaluate the method’s spatial accuracy.

For the one-dimensional linear advection problems, the upwind finite difference (FD) method and MLC have better spatial con-
vergence rates than the tested WENO methods. This is because the upwind methods do not require a smoothness indicator to recover 
the optimal spatial accuracy. For the one-dimensional Shu-Osher-like problem, the methods incorporating the shock-fitting approach 
achieve significantly higher spatial convergence rates than pure shock-capturing methods. The shock-capturing methods exhibit only 
about first-order convergence behind the shock wave, even when employing fifth-order WENO schemes. The discontinuous solution 
across the shock wave forces shock-capturing methods to rely on lower-order formulations, preventing them from achieving their 
designed optimal spatial accuracy. In contrast, the upwind methods with shock-fitting can achieve sixth-order accuracy for FD-SF 
and up to eighth-order accuracy for MLC-SF in the smooth region. This is due to the shock-fitting method only simulating the flow 
behind the shock wave which prevents the numerical schemes from solving the flow field across the discontinuous interface. Among 
the numerical schemes implemented with the shock-fitting method, MLC is more computationally efficient than the upwind finite 
difference for obtaining the same order of errors. The seventh-order MLC can have a 1.32 times speedup over the seventh-order 
upwind finite difference method for the same global 𝐿1-norm error and 3.34 times speedup in the smooth region.

For the two-dimensional system, both MLC and DMLC were implemented on the linear advection with a moving mesh problem. The 
cross derivative approximation in MLC makes the method less accurate in seventh-order form and potentially introduces numerical 
instability to the simulation. On the other hand, DMLC resolves the stability issue by introducing the cross derivative term as new 
degrees of freedom and has a more consistent and stable error convergence rate. The resulting speedup for DMLC over the finite 
difference method is 2.99. From the studied cases and compared methods, MLC is the suitable method for the one-dimensional 
problem and DMLC is the most efficient and stable method for the two-dimensional linear advection problem. In the two-dimensional 
shock-interaction problem, the proposed inflow condition for MLC-SF is physically consistent between both value and derivative 
layers. This property stabilizes the MLC boundary conditions and enables the schemes to achieve global seventh-order accuracy. 
However, the current boundary condition implementations for the supersonic flow past parabolic cylinder for both Euler and Navier-
Stokes equations fail to achieve the desired seventh-order accuracy. This limitation arises from the wall boundary and subsonic 
outlet conditions, which rely on polynomial extrapolation or one-sided differences that are insufficient to stabilize simulations while 
maintaining high spatial accuracy. These testing cases show the importance of the boundary condition implementations in fully 
utilizing MLC-SF’s potential.

Although MLC-SF demonstrates promising spatial accuracy and computational efficiency in the tested problems, the current frame-
work faces limitations when applied to three-dimensional supersonic flow over a blunt object while maintaining seventh-order global 
accuracy. One of the key challenges of MLC-SF is designing boundary conditions that match the spatial accuracy of interior stencils. 
As shown by Zhong [4], the boundary conditions using conventional extrapolation or one-sided finite difference discretization can 
only achieve fifth-order spatial order accuracy without causing simulations to diverge. However, MLC-SF requires at least sixth-order 
boundary conditions to achieve the seventh-order global accuracy. Boundary condition implementation like Navier-Stokes character-
istic boundary conditions (NSCBC) [74] can be an ideal approach, as they do not rely on extrapolation or one-sided finite difference 
schemes. However, implementing NSCBC in MLC is significantly more complex than in conventional finite difference methods. The 
process requires addressing additional derivative layers in MLC and defining appropriate physical interaction processes between MLC-
SF solutions and closed boundaries. Consequently, developing high-order boundary conditions for MLC-SF will be a primary focus to 
improve the applicability of the method.

Another challenge for the proposed MLC-SF framework is the method’s capability on complex shock interactions such as flow fields 
involving triple points of shock waves or shocklets. While the shock-fitting method offers high-order accuracy, it relies on relatively 
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simple shock structures where the shock location can be predefined before simulations. For fluid flows with complex or multiple 
shock interactions, shock-capturing methods remain the more suitable approach. Ideally, a hybrid approach combining shock-fitting 
and shock-capturing methods could be developed to suppress the Gibbs phenomenon in the vicinity of the primary shock while 
simultaneously simulating downstream shocklet interactions.

Finally, MLC-SF requires more implementation time due to its multi-layer structure. The auxiliary equations derived from the 
spatial differentiation of the governing equations demand additional development time and debugging efforts, particularly due to 
the extra terms introduced by the chain rule. Although MLC-SF has demonstrated computational efficiency in simple one- and two-
dimensional problems, the additional auxiliary equations in the three-dimensional formulation may hinder computational speed. 
However, the higher-order spatial convergence rate of MLC can offset the extra computational cost when more mesh points are 
used. MLC could become more efficient if a more effective method for computing the derivative layers is developed. Overall, the 
work presented in this paper aims to demonstrate MLC-SF’s potential in more realistic simulation problems. Studying these MLC-SF 
adaptations is not just about applying MLC on more complex problems but also provide a different perspective to the current existing 
simulation frameworks.
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Appendix A. 

A.1.  Two-dimensional ALE formulation for MLC-SF

To implement a dynamic grid for the shock-fitting method, the arbitrary Lagrangian-Eulerian (ALE) formulation is introduced and 
integrated with the MLC framework. The auxiliary equations for MLC with ALE are derived directly using the chain rule. The general 
form of the governing equations in the ALE formulation is expressed as:

𝜕𝑈
𝜕𝑡

= −(1∕𝑔)𝐴

𝜕𝑈𝜉
𝜕𝑡

= −
[

(1∕𝑔)𝜉𝐴 + (1∕𝑔)𝐴𝜉
]

𝜕𝑈𝜂
𝜕𝑡

= −
[

(1∕𝑔)𝜂𝐴 + (1∕𝑔)𝐴𝜂
]

(A.1)

where 𝑔 is the determinant of the coordinate transformation Jacobian.
The total ALE fluxes, 𝐴, which include the fluxes accounting for grid motion, 𝑔𝑡𝑈 , and coordinate transformation 𝐹 ′

𝑖 :

𝐴 = 𝑔𝑡𝑈 + 𝐹 ′
1,𝜉 + 𝐹

′
2,𝜂

𝐴𝜉 = 𝑔𝑡𝜉𝑈 + 𝑔𝑡𝑈𝜉 + 𝐹 ′
1,𝜉𝜉 + 𝐹

′
2,𝜉𝜂

𝐴𝜂 = 𝑔𝑡𝜂𝑈 + 𝑔𝑡𝑈𝜂 + 𝐹 ′
1,𝜉𝜂 + 𝐹

′
2,𝜂𝜂 (A.2)

The zeroth- and first-order flux derivatives are computed analytically. The transformed fluxes in the 𝜉 direction, 𝐹 ′
1 :

𝐹 ′
1 = 𝑦𝜂𝐹1 − 𝑥𝜂𝐹2 + (𝑔𝜉𝑡)𝑈

𝐹 ′
1,𝜉 =

(

𝑦𝜉𝜂𝐹1 + 𝑦𝜂𝐹1,𝜉
)

−
(

𝑥𝜉𝜂𝐹2 + 𝑥𝜂𝐹2,𝜉
)

+ (𝑔𝜉𝑡)𝜉𝑈 + (𝑔𝜉𝑡)𝑈𝜉
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𝐹 ′
1,𝜂 =

(

𝑦𝜂𝜂𝐹1 + 𝑦𝜂𝐹1,𝜂
)

−
(

𝑥𝜂𝜂𝐹2 + 𝑥𝜂𝐹2,𝜂
)

+ (𝑔𝜉𝑡)𝜂𝑈 + (𝑔𝜉𝑡)𝑈𝜂 (A.3)

The transformed fluxes in the 𝜂 direction, 𝐹 ′
2 :

𝐹 ′
2 = −𝑦𝜉𝐹1 + 𝑥𝜉𝐹2 + (𝑔𝜂𝑡)𝑈

𝐹 ′
2,𝜉 = −

(

𝑦𝜉𝜉𝐹1 + 𝑦𝜉𝐹1,𝜉
)

+
(

𝑥𝜉𝜉𝐹2 + 𝑥𝜉𝐹2,𝜉
)

+ (𝑔𝜂𝑡)𝜉𝑈 + (𝑔𝜂𝑡)𝑈𝜉

𝐹2,𝜂 = −
(

𝑦𝜉𝜂𝐹1 + 𝑦𝜉𝐹1,𝜂
)

+
(

𝑥𝜉𝜂𝐹2 + 𝑥𝜉𝐹2,𝜂
)

+ (𝑔𝜂𝑡)𝜂𝑈 + (𝑔𝜂𝑡)𝑈𝜂 (A.4)

Note that the fluxes in the physical coordinate, 𝐹𝑖, are generally consisted of the inviscid and viscous terms:
𝐹1 = 𝐹 𝑖𝑛𝑣1 − 𝐹 𝑣𝑖𝑠2

𝐹2 = 𝐹 𝑖𝑛𝑣2 − 𝐹 𝑣𝑖𝑠2 (A.5)

For the inviscid flux in 𝑥 direction, 𝐹 𝑖𝑛𝑣1 : 

𝐹 𝑖𝑛𝑣1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜌𝑢
𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

(𝑒 + 𝑝)𝑢

⎤

⎥

⎥

⎥

⎥

⎦

(A.6)

and the inviscid flux in 𝑦 direction, 𝐹 𝑖𝑛𝑣2 : 

𝐹 𝑖𝑛𝑣2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
(𝑒 + 𝑝)𝑣

⎤

⎥

⎥

⎥

⎥

⎦

(A.7)

The first-order derivatives of the fluxes can be simply computed through direct differentiation with respect to any given direction, 𝛿: 

𝜕𝐹 𝑖𝑛𝑣1
𝜕𝛿

= 𝜕
𝜕𝛿

⎡

⎢

⎢

⎢

⎢

⎣

𝜌𝑢
𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

(𝑒 + 𝑝)𝑢

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

(𝜌𝑢)𝛿
(𝜌𝑢)𝛿𝑢 + (𝜌𝑢)𝑢𝛿 + 𝑝𝛿
(𝜌𝑢)𝛿𝑣 + (𝜌𝑢)𝑣𝛿

(𝑒𝛿 + 𝑝𝛿)𝑢 + (𝑒 + 𝑝)𝑢𝛿

⎤

⎥

⎥

⎥

⎥

⎦

(A.8)

and 

𝜕𝐹 𝑖𝑛𝑣2
𝜕𝛿

= 𝜕
𝜕𝛿

⎡

⎢

⎢

⎢

⎢

⎣

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
(𝑒 + 𝑝)𝑣

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

(𝜌𝑣)𝛿
(𝜌𝑣)𝛿𝑢 + (𝜌𝑣)𝑢𝛿

(𝜌𝑣)𝛿𝑣 + (𝜌𝑣)𝑣𝛿 + 𝑝𝛿
(𝑒𝛿 + 𝑝𝛿)𝑣 + (𝑒 + 𝑝)𝑣𝛿

⎤

⎥

⎥

⎥

⎥

⎦

(A.9)

The ideal gas relation is used to determine the relation between the conservative states and the primitive variables:

𝑒 =
𝑝

𝛾 − 1
+ 1

2
𝜌(𝑢2 + 𝑣2)

𝑝 = (𝛾 − 1) ⋅ [𝑒 − 1
2
𝜌(𝑢2 + 𝑣2)]

𝑇 =
𝛾 − 1
𝜌𝑅𝑔𝑎𝑠

[

𝑒 − 1
2
(𝜌𝑢)2 + (𝜌𝑣)2

𝜌

]

(A.10)

Similarly, the spatial derivatives of primitive variables can be obtained by the chain rule with respect to any given direction, 𝛿:

𝑢𝛿 =
1
𝑈1
𝑈2,𝛿 −

𝑈2

𝑈1
2
𝑈1,𝛿

𝑣𝛿 =
1
𝑈1
𝑈3,𝛿 −

𝑈3

𝑈1
2
𝑈1,𝛿

𝑇𝛿 = −
(𝛾 − 1)𝑈1,𝛿

𝑈1
2𝑅𝑔𝑎𝑠

[

𝑈4 −
1
2
(𝑈2)2 + (𝑈3)2

𝑈1

]

+
𝛾 − 1
𝑈1𝑅𝑔𝑎𝑠

[

𝑈4,𝛿 −
𝑈2𝑈2,𝛿 + 𝑈3𝑈3,𝛿

𝑈1
+

(𝑈2)2 + (𝑈3)2

2(𝑈1)2
𝑈1,𝛿

]

𝑝𝛿 = 𝑈1,𝛿𝑅𝑔𝑎𝑠𝑇 + 𝑈1𝑅𝑔𝑎𝑠𝑇𝛿 (A.11)

Recall the conservative states are 𝑈⃗ = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝑒]𝑇 .
For the viscous flux in 𝑥 direction, 𝐹 𝑣𝑖𝑠1 : 

𝐹 𝑣𝑖𝑠1 =

⎡

⎢

⎢

⎢

⎢

⎣

0
𝜏𝑥𝑥
𝜏𝑥𝑦

𝑘𝑇𝑥 + 𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎦

(A.12)
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and viscous flux in 𝑦 direction, 𝐹 𝑣𝑖𝑠2 : 

𝐹 𝑣𝑖𝑠2 =

⎡

⎢

⎢

⎢

⎢

⎣

0
𝜏𝑥𝑦
𝜏𝑦𝑦

𝑘𝑇𝑦 + 𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦

⎤

⎥

⎥

⎥

⎥

⎦

(A.13)

The first-order spatial derivatives of the viscous flux in 𝑥 direction with respect to any given direction, 𝛿: 

𝐹 𝑣𝑖𝑠1,𝛿 =

⎡

⎢

⎢

⎢

⎢

⎣

0
(𝜏𝑥𝑥)𝛿
(𝜏𝑥𝑦)𝛿

(𝑘𝑇𝑥)𝛿 + 𝑢𝛿𝜏𝑥𝑥 + 𝑢(𝜏𝑥𝑥)𝛿 + 𝑣𝛿𝜏𝑥𝑦 + 𝑣(𝜏𝑥𝑦)𝛿

⎤

⎥

⎥

⎥

⎥

⎦

(A.14)

and spatial derivatives of the viscous flux in 𝑦 direction: 

𝐹 𝑣𝑖𝑠2,𝛿 =

⎡

⎢

⎢

⎢

⎢

⎣

0
(𝜏𝑥𝑦)𝛿
(𝜏𝑦𝑦)𝛿

(𝑘𝑇𝑦)𝛿 + 𝑢𝛿𝜏𝑥𝑦 + 𝑢(𝜏𝑥𝑦)𝛿 + 𝑣𝛿𝜏𝑦𝑦 + 𝑣(𝜏𝑦𝑦)𝛿

⎤

⎥

⎥

⎥

⎥

⎦

(A.15)

For the viscous stress terms, the fluid is assumed to be Newtonian, with viscosity modeled using Sutherland’s law. Additionally, the 
Stokes hypothesis is applied (𝜆 = −2∕3𝜇):

𝜏𝑥𝑥 = 2𝜇𝑢𝑥 + 𝜏𝐷
𝜏𝑥𝑦 = 𝜇

(

𝑢𝑦 + 𝑣𝑥
)

𝜏𝑦𝑦 = 2𝜇𝑣𝑦 + 𝜏𝐷
𝜏𝐷 = 𝜆∇ ⋅ 𝑢 (A.16)

The first-order spatial derivatives of the viscous stress terms with respect to any given direction, 𝛿:
(𝜏𝑥𝑥)𝛿 = 2

[

𝜇𝛿𝑢𝑥 + 𝜇𝑢𝑥,𝛿
]

+ 𝜏𝐷,𝛿
(𝜏𝑥𝑦)𝛿 = 𝜇𝛿

[

𝑢𝑦 + 𝑣𝑥
]

+ 𝜇
[

𝑢𝑦,𝛿 + 𝑣𝑥,𝛿
]

(𝜏𝑦𝑦)𝛿 = 2
[

𝜇𝛿𝑣𝑦 + 𝜇𝑣𝑦,𝜉
]

+ 𝜏𝐷,𝜉 (A.17)

For the thermal conduction terms:
𝑞𝑥 = 𝑘𝑇𝑥
𝑞𝑦 = 𝑘𝑇𝑦 (A.18)

and their first-order spatial differentiation with respect to 𝛿 direction:
𝑞𝑥,𝛿 = 𝑘𝛿𝑇𝑥 + 𝑘𝑇𝑥,𝛿
𝑞𝑦,𝛿 = 𝑘𝛿𝑇𝑦 + 𝑘𝑇𝑦,𝛿 (A.19)

A.2.  Two-dimensional NSCBC for MLC-SF

The Navier-Stokes characteristic boundary conditions (NSCBC), proposed by Poinsot and Lele [74], can be applied to the MLC 
framework to prevent the use of lower-order extrapolation or one-side finite difference for determining the derivative on the compu-
tational boundaries. NSCBC utilizes the concept of characteristic propagation to ensure the solution states inside the computational 
domain can properly interact with the numerical boundaries. The method begins by using transformed governing equations. For 
example, the continuity equation and its corresponding derivative layers:

𝜕𝜌
𝜕𝑡

+ 𝑑1 + 𝑚2,𝑦 = 0

𝜕𝜌𝜉
𝜕𝑡

+ 𝑑1,𝜉 + 𝑚2,𝑦,𝜉 = 0

𝜕𝜌𝜂
𝜕𝑡

+ 𝑑1,𝜂 + 𝑚2,𝑦,𝜂 = 0 (A.20)

where the surface normal of the numerical boundary is assumed to be in 𝑥-direction.
The x-momentum equation, 𝑚1 = 𝜌𝑢:

𝜕𝑚1
𝜕𝑡

+ 𝑢𝑑1 + 𝜌𝑑3 + (𝑚1𝑣)𝑦 = 0

𝜕𝑚1,𝜉

𝜕𝑡
+ 𝑢𝜉𝑑1 + 𝑢𝑑1,𝜉 + 𝜌𝜉𝑑3 + 𝜌𝑑3,𝜉 + (𝑚1𝑣)𝑦,𝜉 = 0
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𝜕𝑚1,𝜂

𝜕𝑡
+ 𝑢𝜂𝑑1 + 𝑢𝑑1,𝜂 + 𝜌𝜂𝑑3 + 𝜌𝑑3,𝜂 + (𝑚1𝑣)𝑦,𝜂 = 0 (A.21)

The y-momentum, 𝑚2 = 𝜌𝑣:
𝜕𝑚2
𝜕𝑡

+ 𝑣𝑑1 + 𝜌𝑑4 + (𝑚2𝑣 + 𝑝)𝑦 = 0

𝜕𝑚2,𝜉

𝜕𝑡
+ 𝑣𝜉𝑑1 + 𝑣𝑑1,𝜉 + 𝜌𝜉𝑑4 + 𝜌𝑑4,𝜉 + (𝑚2𝑣 + 𝑝)𝑦,𝜉 = 0

𝜕𝑚2,𝜂

𝜕𝑡
+ 𝑣𝜂𝑑1 + 𝑣𝑑1,𝜂 + 𝜌𝜂𝑑4 + 𝜌𝑑4,𝜂 + (𝑚2𝑣 + 𝑝)𝑦,𝜂 = 0 (A.22)

The energy equation:
𝜕𝑒
𝜕𝑡

+ 1
2
(𝑢𝑘𝑢𝑘)𝑑1 +

𝑑2
𝛾 − 1

+ 𝑚1𝑑3 + 𝑚2𝑑4 + [(𝑒 + 𝑝)𝑣]𝑦 = 0

𝜕𝑒𝜉
𝜕𝑡

+ (𝑢𝑢𝜉 + 𝑣𝑣𝜉 )𝑑1 +
1
2
(𝑢𝑘𝑢𝑘)𝑑1,𝜉 +

𝑑2,𝜉
𝛾 − 1

+ 𝑚1,𝜉𝑑3 + 𝑚1𝑑3,𝜉

+ 𝑚2,𝜉𝑑4 + 𝑚2𝑑4,𝜉 + [(𝑒 + 𝑝)𝑣]𝑦,𝜉 = 0
𝜕𝑒𝜂
𝜕𝑡

+ (𝑢𝑢𝜂 + 𝑣𝑣𝜂)𝑑1 +
1
2
(𝑢𝑘𝑢𝑘)𝑑1,𝜂 +

𝑑2,𝜂
𝛾 − 1

+ 𝑚1,𝜂𝑑3 + 𝑚1𝑑3,𝜂

+ 𝑚2,𝜂𝑑4 + 𝑚2𝑑4,𝜂 + [(𝑒 + 𝑝)𝑣]𝑦,𝜂 = 0 (A.23)

The transformed variable 𝑑1:

𝑑1 =
1
𝑐2

[

2 + 𝑑2
]

𝑑1,𝜉 = −2
𝑐𝜉
𝑐3

[

2 + 𝑑2
]

+ 1
𝑐2

[

2,𝜉 + 𝑑2,𝜉
]

𝑑1,𝜂 = −2
𝑐𝜂
𝑐3

[

2 + 𝑑2
]

+ 1
𝑐2

[

2,𝜂 + 𝑑2,𝜂
]

(A.24)

Transformed variable 𝑑2:
𝑑2 = 0.5(4 + 1)

𝑑2,𝜉 = 0.5(4,𝜉 + 1,𝜉 )

𝑑2,𝜂 = 0.5(4,𝜂 + 1,𝜂) (A.25)

Transformed variable 𝑑3:

𝑑3 =
4 − 1
2𝜌𝑐

𝑑3,𝜉 = −
4 − 1

2(𝜌𝑐)2
(𝜌𝜉𝑐 + 𝜌𝑐𝜉 ) +

4,𝜉 − 1,𝜉

2𝜌𝑐

𝑑3,𝜂 = −
4,𝜂 − 1,𝜂

2(𝜌𝑐)2
(𝜌𝜂𝑐 + 𝜌𝑐𝜂) +

𝑑2,𝜂
2𝜌𝑐

(A.26)

Transformed variable 𝑑4:
𝑑4 = 3

𝑑4,𝜉 = 3,𝜉

𝑑4,𝜉 = 3,𝜂 (A.27)

Characteristics 1:

1 = 𝜆1(𝑝𝑥 − 𝜌𝑐𝑢𝑥)

1,𝜉 = 𝜆1,𝜉 (𝑝𝑥 − 𝜌𝑐𝑢𝑥) + 𝜆1[𝑝𝑥,𝜉 − (𝜌𝜉𝑐 + 𝜌𝑐𝜉 )𝑢𝑥 + 𝜌𝑐𝑢𝑥,𝜉 ]

1,𝜂 = 𝜆1,𝜂(𝑝𝑥 − 𝜌𝑐𝑢𝑥) + 𝜆1[𝑝𝑥,𝜂 − (𝜌𝜂𝑐 + 𝜌𝑐𝜂)𝑢𝑥 + 𝜌𝑐𝑢𝑥,𝜂] (A.28)

Characteristics 2:

2 = 𝜆2(𝑐2𝜌𝑥 − 𝑝𝑥)

2,𝜉 = 𝜆2,𝜉 (𝑐2𝜌𝑥 − 𝑝𝑥) + 𝜆2(2𝑐𝑐𝜉𝜌𝑥 + 𝑐2𝜌𝑥,𝜉 − 𝑝𝑥,𝜉 )

2,𝜂 = 𝜆2,𝜂(𝑐2𝜌𝑥 − 𝑝𝑥) + 𝜆2(2𝑐𝑐𝜂𝜌𝑥 + 𝑐2𝜌𝑥,𝜂 − 𝑝𝑥,𝜂) (A.29)

Characteristics 3:

3 = 𝜆3𝑣𝑥
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3,𝜉 = 𝜆3,𝜉𝑣𝑥 + 𝜆3𝑣𝑥,𝜉
3,𝜂 = 𝜆3,𝜂𝑣𝑥 + 𝜆3𝑣𝑥,𝜂 (A.30)

Characteristics 4:

4 = 𝜆4(𝑝𝑥 + 𝜌𝑐𝑢𝑥)

4,𝜉 = 𝜆4,𝜉 (𝑝𝑥 + 𝜌𝑐𝑢𝑥) + 𝜆4[𝑝𝑥,𝜉 + (𝜌𝜉𝑐 + 𝜌𝑐𝜉 )𝑢𝑥 + 𝜌𝑐𝑢𝑥,𝜉 ]

4,𝜂 = 𝜆4,𝜂(𝑝𝑥 + 𝜌𝑐𝑢𝑥) + 𝜆4[𝑝𝑥,𝜂 + (𝜌𝜂𝑐 + 𝜌𝑐𝜂)𝑢𝑥 + 𝜌𝑐𝑢𝑥,𝜂] (A.31)

The characteristic speed 𝜆1:
𝜆1 = 𝑢 − 𝑐

𝜆1,𝜉 = 𝑢𝜉 − 𝑐𝜉
𝜆1,𝜂 = 𝑢𝜂 − 𝑐𝜂 (A.32)

Characteristic speed 𝜆2 = 𝜆3:
𝜆2 = 𝜆3 = 𝑢

𝜆2,𝜉 = 𝑢𝜉
𝜆2,𝜂 = 𝑢𝜂 (A.33)

Characteristic speed 𝜆4:
𝜆4 = 𝑢 + 𝑐

𝜆4,𝜉 = 𝑢𝜉 + 𝑐𝜉
𝜆4,𝜂 = 𝑢𝜂 + 𝑐𝜂 (A.34)

Depends on the boundary type, different condition will be applied and the rest of unspecified variables are calculated through the 
transformed governing equations. 
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