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Boundary layer transition can be initiated differently given the nature of the external
disturbances. Receptivity, which refers to the interaction between external disturbances and
the boundary layer, introduces an initial disturbance amplitude into the flow for all scenarios.
Different transition prediction tools consider receptivity to different extents. The popular 𝑒𝑁

method primarily focuses on the growth rate, also called the 𝑁 factor, of disturbances and
neglects the initial amplitude. To address this issue, Mack (1977) proposed the amplitude method
to incorporate receptivity, nonlinear effects, and broadband characteristics of disturbances.
In amplitude method, an accurate evaluation of the receptivity coefficient at the branch I
neutral stability location is significant in obtaining the initial amplitude of the disturbance
wave. Current evaluation of the receptivity coefficient are the experimental fitting method used
by Marineau (2017) and the back-tracking numerical method implemented by He and Zhong
(2021). Although both approaches have the capability of obtaining the receptivity coefficient,
the evaluation is not directly at the branch I neutral stability location for their case studies.
Furthermore, the DNS results by He indicated a need for a multimode analysis to obtain the
true initial amplitude at the branch I neutral stability location. To facilitate this analysis,
the bi-orthogonal eigenfunction decomposition, proposed by Tumin (2007), can be applied to
decompose the DNS flow field into normal modes including discrete and continuous modes
to obtain the modal amplitude for receptivity evaluation. By employing the high order finite
difference method by Zou and Zhong (2023), the bi-orthogonal eigenfunction system of the
hypersonic boundary layer over a blunt cone is obtained, allowing for the decomposition of the
receptivity flowfield. From the preliminary results of the decomposition, an overall trend of the
discrete mode S amplitude and growth rate agrees with previous 𝑒𝑁 and LST results, showing a
reduction in multimode effects. The receptivity coefficient for a band of frequencies are also
computed for demonstration. Moreover, in addition to the discrete modes F and S, a discrete
entropy layer mode has been identified near the synchronization region. Decomposition results
confirm that the discrete mode S being the dominant mode in downstream of the second mode
unstable region while the discrete entropy layer mode and the discrete mode F both contribute
to the flow near the synchronization region.

I. Introduction
Boundary layer transition has always been a critical topic of study in the field of fluid mechanics especially for

the hypersonic flow over aerospace vehicles. Since the turbulent boundary layer can cause a higher aerodynamic
drag and heating on a hypersonic vehicle, an accurate prediction on the laminar-turbulent transition location is crucial
for the design of the vehicle in the placement of thermal protection. The study of stability of the boundary layer is
divided into various paths depending on the amplitude of disturbance, depicted by Morkovin [1]. For all paths, the
transition is initiated by the initial perturbations generated from ambient forcing disturbances through the receptivity
mechanism. Depending on the amplitude of the disturbance, the instability waves can experience a linear modal growth,
a transient growth of non-orthogonal modal interaction effect, or bypass to turbulence. In order to control and suppress
the transition to turbulence, understanding the transition mechanism and its underlying pathways is paramount for
controlling and suppressing turbulence onset.

This work focuses primarily on the small perturbation regime, which is closely resemble flight environments. In this
regime, the disturbances from the freestream enter the boundary layer and give rise to initial perturbations during the
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receptivity process. These weak initial disturbances experience linear growth, leading to nonlinear mode interactions
and eventual breakdown. To predict the transition location in path A, current prediction procedures include methods
such as the 𝑒𝑁 method and the amplitude method by Mack [2]. The widely applied 𝑒𝑁 method uses the ratio of the initial
amplitude and the maximum amplitude, known as 𝑁 factor growth rate, to obtain the amplified disturbance amplitude
at a particular location. While this method can be easily implemented, various drawbacks exist for improvements.
First, this method relies on the validation of LST, which only accounts for the linear growth under the parallel flow
assumption. Secondly, this analysis is frequency dependent and does not account for broadband effects. Furthermore,
the 𝑒𝑁 method does not consider the receptivity mechanism at work. In another word, the 𝑒𝑁 method can not predict
the generation of instability by external disturbances. The amplitude method, proposed by Mack, provides a better
prediction to boundary layer transition due to disturbance by including receptivity, nonlinear, and broadband effects.
Integrating across the wavenumber and frequency spectra, this method directly estimates the maximum disturbance
amplitude at a given position of the boundary layer with the initial amplitude. Yet, Mack’s method can be difficult
to implement without assumptions. Marineau [3] made several assumptions to implement the amplitude method in
his work. First, since the disturbances have a finite bandwidth, the integration across the frequency spectra can be
approximated into a sum. This reduces the required amount of the receptivity data in the spectra. Furthermore, the
non-linearity of the breakdown region is estimated with correlations of experimental data. Marineau also attempted to
account for the effects of experimental freestream noises. Nevertheless, the receptivity data plays an important role in
the amplitude method and the accurate evaluation of receptivity coefficient is necessary.

The receptivity mechanism, which introduces the initial amplitude into the boundary layer for all paths, can include
both forced and freestream receptivity. Forced receptivity mechanisms are referred to surface nonuniformities that
interact with the boundary layer itself or freestream disturbances, such as the scattering of freestream acoustic waves by
a local or distributed surface roughness [4]. Freestream receptivity mechanisms, on the other hand, involve disturbances,
such as acoustic waves, vorticity and entropy waves, and turbulent spots, that originate from the freestream flow and
interact with the instability waves of the boundary layer [5]. In this chapter, the freestream receptivity, which the
external disturbances enter the flow and excite instability, is focused on. During the freestream receptivity process, an
energy transfer happens between the disturbance waves and the instability waves in the boundary layer and the such
mechanism involved is investigated. Extensive work including theoretical, experimental, and numerical approaches
are conducted in the investigation of freestream receptivity. Substantial progress has been made in receptivity studies
by the theoretical approach, which includes the use of asymptotic theory alone or in combination with bi-orthogonal
decomposition [6] [7] [8] [9]. Yet, the analytical solutions are limited to simple flow geometry and conditions due to
the complexity of the analysis. Since the focus of this paper is on the numerical and theoretical analysis, previous
studies in the experimental approach will not be reviewed in detail, with an exception of Marineau’s experimental work.
In his investigation of a Mach 10 boundary layer flow over sharp and blunted cones using the AEDC Hypervelocity
Wind Tunnel 9 [10] [11], Marineau observed, for a large bluntness, no significant second mode instability was observed
at the start of the transition. In this case, the transition might be linked to tunnel noises or non-modal effects. The
latter indicates the need for multimode method in the theoretical analysis for validation. Furthermore, Marineau then
implemented the amplitude method in which he evaluated receptivity coefficient by correlating the Reynolds number
with the initial amplitude, 𝐴0, of the second mode with the transition wave amplitude from his experimental data [3].

Recently, significant improvements on numerical simulations, such as direct numerical simulation (DNS), can
provide detailed insight into the flow physics and allow for the investigation of complex flow configurations. The
computational approach also has its own drawbacks such as the cost of computational and the requirement of data
analysis [12] [13] [5] [14]. For hypersonic flows, Zhong [12] developed a high-order finite difference (FD) shock-fitting
method and later applied this method to study the receptivity of freestream planar acoustic, entropy, and vorticity wave
with fixed frequencies for a two dimensional flow over a parabola [15]. Findings from the study showed agreement with
the theoretical results which the acoustic disturbance waves are held responsible for the generation of instability waves
near the leading edge. Later, Ma and Zhong [13] investigated the receptivity of a Mach 4.5 flow over a flat plate. Ma and
Zhong identified discrete modes I, II, and higher that arise from the fast acoustic spectra, and also observed the presence
of the 1st, 2nd, and higher modes originating from the slow acoustic spectra. These discrete modes were named the
discrete F and S modes accordingly by Fedorov [16] and this nomenclature will be used throughout the remainder of
this chapter. In addition to the family of discrete modes, Ma and Zhong also discovered through DNS that although
mode F decays, it experiences initial amplitude growth caused by excitation from fast acoustic waves and participates
in an inter-modal energy exchange with mode S further downstream, validating the theoretical result by Fedorov [7].
Moreover, the study investigated the effects of different types of freestream disturbances such as acoustic, entropy, and
vorticity waves. From each discrete frequency of disturbance implemented, the growth rate and the phase speed of
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the perturbation variables can be determined. In the study, the computed phase speed corresponds to the propagation
speed of the unstable mode only if the wave is dominated by the unstable mode. When the result contains contributions
from different wave modes, the phase speed of a mode will not represented correctly by the computed phase speed.
Using this procedure, results revealed that the second mode instability is more receptive to the freestream slow acoustic
waves, whereas the fast acoustic waves interact with the decaying mode only. In the case of freestream fast acoustic
waves, the discrete mode F interacts directly with the fast acoustic waves, resulting in oscillations in the computed
phase speed along the fast acoustic phase speed. This oscillation is the indication of inter-modal energy exchange and a
possible solution to extract modal information would be a multi-mode decomposition on the result. The slow acoustic
waves directly induce discrete mode S or the Mack modes, which are much stronger than the stable discrete mode F.
Furthermore, in his computed growth rate results, an oscillation of growth rate exists near the −𝛼𝑖 = 0 line indicating
a strong contribution of a neutral, non-decaying boundary layer mode such as the fast acoustic mode. Hence, these
observed oscillations in the phase speed and the growth rate do not represent the true phase speed and the growth rate of
the dominating unstable mode and a multi-mode analysis such as the bi-orthogonal decomposition would be required for
a more accurate prediction of the unstable mode behavior.

Extending the work, Huang and Zhong [17] studied the receptivity due to the interaction between a freestream
entropy hotspot of broadband frequencies and the bow shock over a blunt cone and compared simulated results with
LST. Since previous studies have been focusing on the receptivity to forcing in discrete frequencies, the broadband
effects have been neglected. To study the broadband effects to receptivity, Huang and Zhong utilized a Gaussian shaped
pulse as the disturbance pulse to contain a band of frequencies. Similar to the DNS result from Ma and Zhong, the
broadband receptivity results exhibits an oscillating behavior of the phase speed near the fast acoustic phase speed
indicating significant contribution from the fast acoustic wave in the region near the synchronization point. After the
synchronization point, the second mode instability dominates and the oscillation converges to the second mode. The
same behavior can be observed in the growth rate as well. Furthermore, Huang and Zhong proposed an approach for
obtaining the receptivity coefficient of the second mode.This method approximates the initial amplitude of the dominant
mode by dividing the disturbance amplitude at a later location where the unstable mode is dominant with the 𝑁 factor
growth rate. The procedure computes the 𝑁 factor used in the 𝑒𝑁 method with an integration of the spatial growth rate,
obtained with LST, from the neutrally stable location 𝑠0 to an arbitrary streamwise location 𝑠,

𝑁 =

∫ 𝑠

𝑠0

−𝛼𝑖 d𝑠, (1)

where 𝛼𝑖 is the computed growth rate. The receptivity coefficient or the initial amplitude is then defined as the ratio
between the disturbance amplitude, 𝐴 (𝑠, 𝑓𝑛), obtained from the unsteady DNS data, and the 𝑒𝑁 value,

𝐶rec ( 𝑓𝑛) = 𝐴0 ( 𝑓𝑛) =
𝐴 (𝑠, 𝑓𝑛)
𝑒𝑁 (𝑠, 𝑓𝑛 )

. (2)

Here, the non-dimensional amplitude spectral density, 𝐴 (𝑠, 𝑓𝑛), is normalized by the freestream pulse density
perturbation. This transcribes to a normalized 𝐶rec as well. This definition is similar to the receptivity coefficient
used in Marineau’s work [3] and can be applied in the amplitude method directly. He and Zhong [14], [18], [19], [20]
extended further on the broadband receptivity research. They considered the broadband freestream disturbances of
various types, including finite and planar acoustic, entropy, and vorticity pulses over a blunt cone of 9.525 𝑚𝑚 radius
(referred as case B). Here, the planar disturbance corresponds to a pulse infinite in the 𝑦 − 𝑧 plane. Similarly, the DNS
result obtained by He and Zhong can not be applied directly to compute the receptivity coefficient since various normal
modes contribute to the disturbance near the second mode branch I location. Figure 1 shows the phase speed and growth
rate results obtained from He which contains oscillations in the region before the second mode domination as a result of
multimode contribution.
Following the back tracking method, He was able to compute the second mode initial amplitude and the receptivity
coefficient. Consistent with prior research, the receptivity result indicates that the second mode instability being more
receptive to a slow acoustic disturbance while the other disturbance types tend to excite unstable frequencies outside of
the second mode band. Yet, a direct multimode decomposition at the neutral stability location is necessary to enhance the
understanding of receptivity. The receptivity results from He’s computation was then applied in the amplitude method
implemented by Marineau [3] to improve the accuracy of the transition prediction method. With the numerical results,
He was able to generate the receptivity coefficients directly for various flow conditions and scenarios. However, since
the method used by He to obtain the receptivity coefficient relies on backtracking to approximate the initial amplitude at
the receptivity location, which heavily depends on the 𝑁 factor, rather than direct calculation, the approach is subject to
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Fig. 1 (a) Phase speed and (b) growth rate obtained with DNS data showing multimode contribution, adopted
from He [20]

incorrect assumptions such as non-parallel effects. Furthermore, since at the neutral stability location, modes other than
the second mode can contribute to the instability via synchronization and inter-modal energy exchanges, understanding
the modal behavior of these other modes by the means of a multimode decomposition would effectively enhance the
understanding in receptivity.

The bi-orthogonal decomposition has been proposed as an enhancement to asymptotic and numerical methods for
solving the receptivity problem [17] [20]. Proven in the works of Salwen and Grosch [21] and Tumin and Fedorov
[22], the solutions to both temporal and spatial problems of linear growth in boundary layer include various normal
modes, discrete and continuous. Another set of solutions, which are adjoint and orthogonal to the original problem,
exists and forms a bi-orthogonality relationship with the original solution. The BES approach involves using the adjoint
fields, which are orthogonal to the original solution, to obtain the amplitude coefficients for each modal solution. In
this context, the discrete modes are referred to as two types of waves, referred to as mode F and mode S by Fedorov
[16]. The discrete fast mode (mode F) represents a family of high-speed Tollmien-Schlichting (T-S) waves growing in
the downstream direction, whereas the second type is made of a family of acoustic waves trapped between the wall
and the relative sonic line in the boundary layer. The second mode or discrete slow mode (mode S) is often called the
Mack mode as a result of Mack’s discovery of this inviscid instability [23]. In addition, the continuous modes are
referred to as the non-decaying entropy, vorticity, and fast/slow acoustic waves. These continuous modes originate from
the boundary layer and extend to the outer shock layer. The vorticity and entropy modes travel with the phase speed
equal to the freestream velocity while the acoustic modes travel at the speed of sound relative to the freestream velocity.
Furthermore, the inter-modal energy exchange, known as synchronization, between discrete and continuous modes
plays a significant role in the transition. More specifically, the energy exchange between the discrete first mode and
second/higher order modes leads to the well-known second mode instability in both computational [13] and theoretical
[24] studies.

A survey of applications to receptivity problem in computational and experimental work was presented by Tumin
[25]. Saikia et al. [26] used the BES to examine the amplification of the supersonic discrete mode of a high enthalpy
flow over a flat plate. Hasnine et al. [27] studied a particulate-induced disturbance over a plate boundary layer of a
high-speed flow. Furthermore, the bi-orthogonal eigenfunction system can be modified to include real gas effects. The
discrete mode decomposition for a hypersonic reacting gas flow was studied by Ulker [28] and Klentzma [29]. Recently,
Luna [30] continued the development of the multimode decomposition of the reacting boundary layer to obtain the
bi-orthogonal eigenfunction system, including both discrete and continuous modes, for a hypersonic flow over a flat
plate. However, in the work mentioned above, the bi-orthogonal eigenfunction system was formulated into an initial
value problem and computed with an integration-based method. This initial value problem approach, while offering a
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local solution with individual eigenmode computation, contrasts with Zou and Zhong’s method [31], which solves the
BES as a boundary value problem. Zou and Zhong’s approach allows for both global and local methods and is more
suited to high-order finite difference computations.

The primary goal of this paper is to demonstrate a direct and accurate evaluation of the initial disturbance amplitude
at the branch I neutral stability point by deploying bi-orthogonal decomposition. Implementing the high-order finite
difference method used by Zou [31], the bi-orthogonal eigenfunction system for a hypersonic flow over a blunt
cone including discrete and continuous acoustic modes is obtained. Preliminary result of the receptivity flow field
decomposition has shown agreement between the decomposed mode S amplitude and the back-traced mode S amplitude
based on the 𝑒𝑁 method. With the initial amplitudes obtained with the bi-orthogonal decomposition, the receptivity
coefficient can be computed to further improve the amplitude method in transition prediction. Furthermore, an additional
discrete mode, in addition to the discrete F and S modes, is found with behavior aligning with an entropy layer mode.
The influence of such disturbance on the transition is limited and needs further investigation.

II. Governing Equations

A. Navier-Stokes equations
The Navier-Stokes equations for a viscous compressible flow of ideal gas in Cartesian Coordinates are

𝜕𝜌∗

𝜕𝑡∗
= ∇∗ · (𝜌∗u∗) = 0 (3)

𝜌∗
[
𝜕u∗

𝜕𝑡∗
+ (u∗ · ∇∗) u∗

]
= −∇∗𝑝∗ + ∇∗ ·

[
𝜆∗ (∇∗ · 𝑢∗) I + 𝜇∗

(
∇∗u∗ + ∇∗u∗𝑇

)]
(4)

𝜌∗𝑐∗𝑝

[
𝜕𝑇∗

𝜕𝑡∗
+ (u∗ · ∇∗) 𝑇∗

]
= −∇∗ · (𝜅∗∇∗𝑇∗) + 𝜕𝑝∗

𝜕𝑡∗
+ u∗ · ∇∗𝑝∗ +Φ∗ (5)

where viscous dissipation function is

Φ∗ = 𝜆∗ (∇∗ · u∗)2 + 𝜇∗

2
[
∇∗u∗ + ∇∗u∗𝑇 ]2

. (6)

The ideal gas law is expressed as

𝑝∗ = 𝜌∗𝑅∗𝑇∗. (7)

In the above equations, the asterisk, ∗, represents the dimensional form of the variables. The coefficients, 𝑐𝑝 is the
specific heat and 𝜅 is the heat conductivity. We also make use of the Stokes’ hypothesis of 𝜆∗ = −2𝜇∗/3. The viscosity
𝜇 is given by the Sutherland formula.

𝜇 = 𝜇𝑟𝑒 𝑓

(
𝑇

𝑇𝑟𝑒 𝑓

)3/2 𝑇𝑟𝑒 𝑓 + 𝑆𝜇

𝑇 + 𝑆𝜇
. (8)

The thermal conductivity 𝑘 is also formulated by the Sutherland formula with the Sutherland temperature 𝑆𝑘 .

B. Linear Stability Theory
To study the property of instability waves in the boundary layer flow, a small perturbation is assumed. From the

Navier-Stokes equations, we can derive the stability equations by assuming a small disturbance added on to the flow
variables,

For small disturbances:
𝑢 = �̄� + �̃�, 𝑣 = �̄� + �̃�, 𝑤 = �̄� + �̃�

𝑝 = �̄� + 𝑝, 𝜏 = 𝑇 + �̃�, 𝜌 = �̄� + �̃�

𝜇 = �̄� + �̃� 𝑘 = �̄� + �̃� .

(9)

where the disturbance variable is small comparing to the mean variables, for example, �̃� ≪ �̄�. Here, the "bar" quantities
represent the meanflow variables and the "bar" symbol is dropped in the following text. For the compressible boundary
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layer flow, all flow variables are non-dimensionalized by their corresponding boundary layer edge values, velocities by
𝑢𝑒, pressure by 𝜌𝑒𝑢

2
𝑒, density by 𝜌𝑒. A reference length scale 𝐿 is assumed for all lengths and the time variable, 𝑡, is

scaled by 𝑙/𝑢𝑒. The quasi-parallel assumption, which assumes the mean variable dependence is on the wall normal
direction such as, 𝑈 ≈ 𝑈 (𝑦) and 𝑉 = 0, is applied. By neglecting the higher order terms such as �̃�2 and subtracting the
meanflow equations, we can obtain the non-dimensional linear stability equations. For a flat plate profile, the assumption
of 𝑑𝑃/𝑑𝑦 → 0 causes the pressure profile to be constant, 𝑃 = 1/𝛾𝑀2. For meanflow profiles of other geometry, as
suggested by Miselis [32], the assumption is not applicable and the meanflow pressure distribution has to be accounted
for in the linearized equations. The meanflow velocity boundary condition at the wall will be the no slip condition. The
meanflow temperature boundary condition can be adiabatic or isothermal at the wall

𝑈𝑤𝑎𝑙𝑙 = 0
𝑑𝑇𝑤𝑎𝑙𝑙

𝑑𝑦
= 0 or 𝑇𝑤𝑎𝑙𝑙 = constant

(10)

For the fluctuations, the velocity at the wall will still have the no slip condition. However, the fluctuation temperature
boundary condition is set to be zero because of the thermal inertia of the wall.

�̃�𝑤𝑎𝑙𝑙 , �̃�𝑤𝑎𝑙𝑙 , �̃�𝑤𝑎𝑙𝑙 = 0
𝜃 = 0

(11)

In the freestream, the meanflow is uniform for a flow over a flat plate while the freestream meanflow is determined by
the shock using the Rankine- Hugoniot condition in the DNS [12]. The freestream perturbations are bounded allowing
the existence of neutral continuous modes [21],

𝑦 → ∞ :
���̃�, �̃�, �̃�, 𝑝, 𝜃�� < ∞, (12)

as well as the corresponding spatial derivatives in the streamwise and spanwise direction.
From the set of linear stability equations, a periodic-in-time perturbation is assumed, which leads to a solution

in form of exp(−𝑖𝜔𝑡) after a Fourier transformation in time is performed. After the transformation, the perturbation
variables and their corresponding spatial derivatives are defined in a column vector, 𝐴, with 16 components,

A(𝑥, 𝑦, 𝑧) = (𝑢, 𝜕𝑢/𝜕𝑦, 𝑣, 𝑝, 𝜃, 𝜕𝜃/𝜕𝑦, 𝑤, 𝜕𝑤/𝜕𝑦, 𝜕𝑢/𝜕𝑥, 𝜕𝑣/𝜕𝑥
𝜕𝜃/𝜕𝑥, 𝜕𝑤/𝜕𝑥, 𝜕𝑢/𝜕𝑧, 𝜕𝑣/𝜕𝑧, 𝜕𝜃/𝜕𝑧, 𝜕𝑤/𝜕𝑧)𝑇 .

(13)

The �̂� notation is dropped and written as 𝑢 for simplicity in notation. Following Tumin [33], the linearized Navier-Stokes
system is rewritten in the following matrix form. Again, the wall boundary conditions are no slip velocity and zero
temperature perturbation while the freestream boundary condition is a bounded condition because of the existence of
neutral oscillating modes.

𝜕

𝜕𝑦

(
L0

𝜕A
𝜕𝑦

)
+ L1

𝜕A
𝜕𝑦

= H1𝐴 + H2
𝜕A
𝜕𝑥

+ H3
𝜕A
𝜕𝑧

𝑦 = 0 : 𝑢 = 𝑣 = 𝑤 = 𝜃 = 0,
𝑦 → ∞ : | (A)𝑖 | < ∞, 𝑖 = 1, . . . , 16,

(14)

where the subscript 𝑖 denotes the 𝑖th component of the vector A(𝑦) at a 𝑦 location. The matrices L0, L1,H1, H2, and
H3 are 16 by 16 matrices of coefficients with their components shown in Appendix. In this study, the perturbation is
assumed to take form of a travelling wave, such as the following streamwise velocity disturbance variable, �̃�,

�̃� = �̂�(𝑦) exp[𝑖(𝛼𝑥 + 𝛽𝑧 − 𝜔𝑡)] (15)

where 𝛼 and 𝛽 are the streamwise and spanwise wave numbers, 𝑐 is the wave propagation speed, and 𝜔 = 𝛼𝑐 is the
wave frequency. The wave shapefunction is denoted by �̂�(𝑦). In the temporal problem, both wavenumbers, 𝛼 and
𝛽 are assumed real and the complex frequency 𝜔 is determined. On the other hand, for the spatial problem, the
spanwise wave number 𝛽 and the frequency 𝜔 are real valued and the streamwise wavenumber 𝛼 is complex. For
discrete modes, the streamwise wavenumber 𝛼 is solved as a complex eigenvalue. For continuous modes, however, the
streamwise wavenumber 𝛼 is determined from the branch cuts in the solution of the Cauchy problem presented in the
later section. Substituting the solution form of Eq.(15) into the linear stability equations of Eq. (14) and eliminating the
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exp[𝑖(𝛼𝑥 + 𝛽𝑧 − 𝜔𝑡)] on both sides of the equation, the system with A𝛼𝛽 being the transformed variable of A in Eq.
(13) can be written as

𝜕

𝜕𝑦

(
L0

𝜕A𝛼𝛽

𝜕𝑦

)
+ L1

𝜕A𝛼𝛽

𝜕𝑦
= H1A𝛼𝛽 + 𝑖𝛼H2A𝛼𝛽 + 𝑖𝛽H3A𝛼𝛽

𝑦 = 0 : (Z𝛼𝛽)𝑖 = 0, 𝑖 = 1, 3, 5, 7
𝑦 → ∞ :

��(A𝛼𝛽)𝑖
�� < ∞, 𝑖 = 1, . . . , 16.

(16)

where the boundary conditions of Eq. (14) are also transformed into the boundary conditions in Eq. (16). The elements
of L0, L1,H1, H2, and H3 are given in Appendix. For implementation, Eq. (16) can be recast as a first-order system of
eight components of the following with the corresponding boundary conditions,

𝑑z𝛼𝛽
𝑑𝑦

= H0z𝛼𝛽

𝑦 = 0 : (z𝛼𝛽)𝑖 = 0, 𝑖 = 1, 3, 5, 7
𝑦 → ∞ :

��(z𝛼𝛽)𝑖 �� < ∞, 𝑖 = 1, . . . , 8,

(17)

with z𝛼𝛽 defined as

z𝛼𝛽 = (𝑢, 𝜕𝑢/𝜕𝑦, 𝑣, 𝑝, 𝜃, 𝜕𝜃/𝜕𝑦, 𝑤, 𝜕𝑤/𝜕𝑦). (18)

Here, H0 is a 8 by 8 coefficient matrix. The elements of H0 can be found in Appendix A. The solutions of Eq. (17) can
be classified into two types, discrete and continuous modes, according to the freestream boundary conditions. For the
condition at the freestream, the boundedness condition allows for the existence of neutral waves oscillating outside of
the boundary layer known as continuous modes. For the discrete modes, on the other hand, the freestream boundary
condition is limited to the decaying behavior only. The two types of solutions combine to form a complete set of
solutions as a superposition of discrete and continuous eigenfunctions accordingly,

A =
∑︁
𝑛

𝐶𝑛A𝛼𝑛
(𝑦)𝑒𝑖𝛼𝑛𝑥 +

∑︁
𝑗

∫ ∞

0
𝐶 𝑗A𝛼𝑗

(𝑦)𝑒𝑖𝛼𝑗 (𝑘 )𝑥𝑑𝑘. (19)

with 𝐴𝛼𝑛 representing the discrete modes and 𝐴𝛼 𝑗 being the continuous modes, containing a superposition of the
fundamental solution U. Since any perturbation can be decomposed into discrete and continuous modes, the bi-
orthogonal decomposition procedure can be formulated. The numerical implementation to obtain both discrete and
continuous modes using finite difference method will be discussed in Section III.

C. Adjoint Problem and Bi-orthogonal Eigenfuncion System
Let the operator L be the linear operator of the direct spatial problem from Eq. (16). We can introduce the general

adjoint operator L† from the inner product of a general vector LX and Y.

⟨LX,Y⟩ =
〈
X,L†Y

〉
. (20)

where Y is the set of eigenvectors for the adjoint operator L†. Here, the inner product is defined on the range of [𝑎, 𝑏] as

⟨X,Y⟩ =
∫ 𝑏

𝑎

X(𝑦)Y(𝑦)𝑑𝑦, (21)

Here, the inner product is without the complex conjugate since the complex conjugate will be introduced in the definition
of the adjooint solutions later. Now, let A𝛼𝛽 of Eq. (16) equal to X of the adjoint definition in Eq. (20). With the same
assumptions and corresponding boundary conditions, the following adjoint system with B𝛼𝛽 = Y, where the overbar
notation denotes the complex conjugate, from Eq. (21) can be introduced,

𝜕

𝜕𝑦

(
L𝑇

0
𝜕B𝛼𝛽

𝜕𝑦

)
− L𝑇

1
𝜕B𝛼𝛽

𝜕𝑦
= H𝑇

1 B𝛼𝛽 + 𝑖𝛼H𝑇
2 B𝛼𝛽 + 𝑖𝛽H𝑇

3 B𝛼𝛽

𝑦 = 0 : (𝐵𝛼𝛽)𝑖 = 0, 𝑖 = 2, 4, 6, 8
𝑦 → ∞ :

��(𝐵𝛼𝛽)𝑖
�� < ∞, 𝑖 = 1, . . . , 16.

(22)
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Here, the transpose is the conventional transpose without conjugation since the complex conjugate is introduced in the
definition of B𝛼𝛽 . The boundary conditions for the adjoint problems are also obtained from the inner product definition
with the direct problem boundary conditions. The adjoint system can also be recast in the following form of first order
equations, with Y𝛼𝛽 being the solution across the entire boundary layer,

− dY𝛼𝛽

d𝑦 = 𝐻𝑇
0 Y𝛼𝛽 .

𝑦 = 0 : (𝑌𝛼𝛽)𝑖 = 0, 𝑖 = 2, 4, 6, 8
𝑦 → ∞ :

��(𝑌𝛼𝛽)𝑖
�� < ∞, 𝑖 = 1, . . . , 8

(23)

The transformation between B𝛼𝛽 and Y𝛼𝛽 can be referred to Tumin [33]. With the dual systems, the orthogonality
condition exists as

𝑖 (𝛼 − 𝛼′)
∫ ∞

0

(
H2A𝛼𝛽 ,B𝛼′𝛽

)
𝑑𝑦 = 0. (24)

This orthogonality relation can be obtained by an integration by part of the dot product between B𝛼′𝛽 and Eq. (16). The
above equation can be rewritten into this form,〈

H2A𝛼𝛽 ,B𝛼′𝛽
〉
=

∫ ∞

0

( (
H2A𝛼𝛽

)
,B𝛼′𝛽

)
𝑑𝑦 = ΓΔ𝛼𝛼′ . (25)

According to [21], for the discrete modes , the term Δ𝛼𝛼′ represents a Kronecker Delta, which equals to 1 if the
eigenvalues of the two modes are the same. This is because the decaying behavior of the discrete modes and the integral
should result in a constant Γ value depending on the normalization. For the continuous modes, the same term represents
a Dirac Delta. One can also derive the following inner product relation between A𝛼𝛽 and 𝑧𝛼𝛽 . This would be helpful in
the numerical implementation [33], 〈

𝐻2𝑨𝛼𝛽 , 𝑩𝛼𝛽

〉
= −i

〈
𝜕𝑯0
𝜕𝛼

𝑧𝛼𝛽 ,𝒀𝛼𝛽

〉
. (26)

To verify the bi-orthogonality of the modes, the orthogonality relationship is evaluated numerically in the later section.
Subsequently, the coefficients for each modes can be obtained using the following relation assuming local parallel flow,

𝐶𝑚𝑜𝑑𝑒 =

−i
〈
𝜕𝑯0
𝜕𝛼

𝑧𝐷𝑁𝑆 ,𝒀𝛼𝛽

〉
Γ

. (27)

III. Numerical Methods

A. Discrete and Continuous Modes
The general high-order finite difference method on a non-uniform grid by Zou [31] is applied to obtain the discrete

and continuous modes. The domain in wall normal direction is non-uniform enabling a direct dicretization. The
distribution of 𝑁 number of grid points over the domain [𝑎, 𝑏] will follow Kosloff [34], Zhong [35], and Shukla [36],

𝑦 𝑗 =
𝑏 + 𝑎

2
+ (𝑏 − 𝑎)

sin−1 (−𝛼𝑔 cos(𝜋 𝑗/𝑁))
2 sin−1 𝛼

, 𝑗 = 0, . . . , 𝑁. (28)

where 𝑎 = 0 and 𝑏 = 𝑦∞. In Eq. (28), 𝛼𝑔 refers to the grid stretching parameter and does not relate to the streamwise
wavenumber mentioned in other parts of the paper. The grid stretching parameter, 𝛼𝑔 is set to be 0.9995 to ensure
stability [35]. Let the operator 𝐷 be the discrete difference operator obtained using the high-order finite difference
method by Zou [31], along with boundary conditions, Eq. (17) can be written as

(D −
(
A + 𝛼B + 𝛼2C)

)
z𝛼𝛽 = 0

𝑦 = 0 : (z𝛼𝛽)𝑖 , 𝑗 = 1, 3, 5, 7
𝑦 = 𝑦(𝑁) :

��(z𝛼𝛽)𝑖 �� < ∞, 𝑖 = 𝑁 ∗ 8, . . . , 𝑁 ∗ 8 − 7.
(29)

where (z𝛼𝛽)𝑖 is the 𝑖th component of the discrete vector z𝛼𝛽 of length 𝑁 × 8. The problem can then be described as a
set of linear equations taking form in [A] [x] = [b], where [A] = [D −

(
A + 𝛼B + 𝛼2C)

)
], [x] = [z𝛼𝛽], and [b] = 0.
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Note that Eq. (29) has a nonlinear dependence on the spatial wavenumber 𝛼. If the nonlinear term is omitted or 𝛼2 is set
to 0, a global eigenvalue decomposition can be performed. The discrete adjoint operators can be obtained in the same
way. Following Eqs. (23), the discrete adjoint formula can be written as

−DY𝛼𝛽 − H𝑇Y𝛼𝛽 = 0
𝑦 = 0 : (Y𝛼𝛽)𝑖 = 0, 𝑖 = 2, 4, 6, 8

𝑦 = 𝑦(𝑁) :
��(Y𝛼𝛽)𝑖

�� < ∞, 𝑖 = 𝑁 ∗ 8, . . . , 𝑁 ∗ 8 − 7.
(30)

For the implementation of boundary conditions, Zou and Zhong presented a detailed formulation and implementation
procedure for both discrete and continuous modes [31]. With the discrete system, the sparse LU decomposition from
MATLAB is used to solve the linear system. With the discrete and continuous modes computed, the bi-orthogonal
decomposition method to obtain receptivity coefficients is described.

B. DNS
With the goal to perform the bi-orthogonal decomposition for the hypersonic receptivity flow over a flat plate, both

the steady and unsteady flow field are required. The meanflow profile is obtained with the flat plate boundary layer
flow formulation from Malik [37] and a shooting method while the unsteady flow field will be obtained by DNS. A
receptivity simulation is performed with a high-order shock-fitting direct numerical simulation developed by Zhong [12]
for a hypersonic flow over a flat plate . In the DNS code, the conservative Navier Stokes equations are transformed
into a computational space with the coordinates (𝜉, 𝜂, 𝜁). The physical domain is described by a curvilinear grid that
matches the geometry. From Zhong, the shock is treated as a moving boundary and the flow condition behind the shock
is determined with the Rankine-Hugoniot relations. The numerical scheme used is a fifth order upwind scheme for
the inviscid fluxes and a sixth order central scheme for the viscous fluxes. Additional details of the general numerical
method used for the DNS simulation and the shock-fitting scheme can be found in Zhong [12]. For steady meanflow, a
parallel assumption is applied such that the meanflow variables are functions of the wall normal direction coordinate
only. Under this assumption, the flow field data is divided into wall normal snapshots for each streamwise location and
each snapshot at these streamwise sampling locations is analyzed.

For the unsteady receptivity simulation, the perturbed flow field is obtained by imposing a propagating Gaussian
distribution freestream disturbance throughout the domain.

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = |𝑞′ |∞ exp
(
− (𝑅𝑐)2

2𝜎2

)
+ 𝑞∞. (31)

The term 𝑞 is the disturbance variable and |𝑞′ |∞ stands for the peak freestream perturbation. The term 𝑅𝑐 refers to
the radial distance from the center of the pulse to a point in the flow field. The variable 𝜎 controls both the spatial
width of the pulse as well as the frequency bandwidth of the disturbance. To study the receptivity behavior to various
disturbances, the perturbed flow field resulting from each pulse is decomposed into their spectral frequency components.
The unsteady DNS flow field is analyzed with Fourier Transform to obtain the disturbance information in the discrete
frequency spectrum. The Fast Fourier Transform (FFT),

ℎ (𝑡𝑘) ≡ ℎ𝑘 ≈
𝑁−1∑︁
𝑛=0

𝐻 ( 𝑓𝑛) 𝑒−2𝜋𝑖 𝑓𝑛𝑡𝑘 , (32)

is used to transform all the time dependent perturbation variables, 𝑢, 𝑝, 𝑣, 𝜌. The perturbation variables are inputted as
ℎ(𝑡𝑘) and outputted as the complex coefficient 𝐻 ( 𝑓𝑛) for the 𝑛𝑡ℎ frequency in a total of 𝑁 discrete frequencies. With
the amplitude of the disturbance, the DNS local growth rate can be computed as

−𝛼𝑖 =
1

|𝐻 ( 𝑓𝑛) |
𝑑 |𝐻 ( 𝑓𝑛) |

𝑑𝑠
(33)

where 𝑠 is the streamwise coordinate starting from the nose of the cone. Figure (b) 1 shows the growth rate computed
with the local unsteady surface pressure amplitudes. The oscillations are attributed to the multimode influences in
existing literature [17] [14] [20]. To recover the LST growth rate of a particular mode, the bi-orthogonal decomposition
is deployed to obtain the modal amplitude for the evaluation of Eq. (33).
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C. Bi-orthogonal Decomposition for Receptivity
Taking the newly formulated solutions as orthogonal modes, any perturbation can be written as a combination of

discrete and continuous modes from Eq. (19). Let us consider a decomposition of the computational data A𝐷 with the
discrete modes and the continuous modes. The components of A𝐷 are the spectral components of the perturbation
variables for a given frequency, 𝑓 , arranged in the order defined in Eq. (13). These perturbation variables can be
obtained from the numerical result of DNS. For experiments, Tumin also showed an example of the bi-orthogonal
decomposition using limited data from measurement [38]. Eq. (19) of any perturbation can be expressed as follows,
where 𝑃 = 2 represents the number of discrete modes (F and S), and 𝑄 = 5 represents the number of continuous modes
(fast and slow acoustic modes, two vorticity modes, and entropy mode).

A𝐷 (𝑥, 𝑦, 𝑓 ) ≈
𝑃∑︁
𝑛

𝐶𝑛A𝛼𝛽𝑛 (𝑦)𝑒𝑖𝛼𝑛𝑥 +
𝑄∑︁
𝑗

∫ ∞

0
𝐶 𝑗A𝛼𝛽 𝑗

(𝑦)𝑒𝑖𝛼𝑗 (𝑘 )𝑥𝑑𝑘. (34)

where𝐶𝑛 corresponds the modal coefficient of the 𝑛th discrete mode and A𝛼𝛽𝑛 (𝑦) being the discrete mode eigenfunction.
The coefficients 𝐶 𝑗 refers to the coefficient of the 𝑗 th continuous mode and A𝛼𝛽 𝑗

(𝑦) is the corresponding wave
shapefunction. Let the vector z𝐷 be the first eight components of A𝐷 , the coefficients for each mode can be obtained
with Eq. (27). The modal coefficient, 𝐶𝑚, where 𝑚 = 𝑛 for the 𝑛th discrete mode and 𝑚 = 𝑗 for the 𝑗 th continuous
mode, is as follow

𝐶𝑚 =

〈
𝜕𝑯0
𝜕𝛼

z𝐷 ,Y𝑚
𝛼𝛽

〉〈
𝜕𝑯0
𝜕𝛼

z𝑚
𝛼𝛽

,Y𝑚
𝛼𝛽

〉 . (35)

With z𝑚
𝛼𝛽

being the direct eigenfunction of the 𝑛th discrete mode or the 𝑗 th continuous mode from Eq. (34) and Y𝑚
𝛼𝛽

being the adjoint eigenfunction obtained from from Eq. (23) for the corresponding discrete or continuous mode. In
practice, the inner products from Eq. (35) can be written as〈

𝜕𝑯0
𝜕𝛼

zD,𝒀
𝑚
𝛼𝛽

〉
=

∫ ∞

0

(
𝜕𝑯0
𝜕𝛼

zD,𝒀
𝑚
𝛼𝛽

)
𝑑𝑦, (36)

and 〈
𝜕𝑯0
𝜕𝛼

zm
𝛼𝛽 ,𝒀

𝑚
𝛼𝛽

〉
=

∫ ∞

0

(
𝜕𝑯0
𝜕𝛼

zm
𝛼𝛽 ,𝒀

𝑚
𝛼𝛽

)
𝑑𝑦. (37)

Using a non-uniform trapezoidal rule, the integration can be numerically implemented as the following. Let 𝑓 be the
function of the dot product inside the integral for Eq. (37),∫ ∞

0
𝑓 𝑑𝑦 ≈

𝑁∑︁
𝑘=1

𝑓 (𝑦𝑘−1) + 𝑓 (𝑦𝑘)
2

Δ𝑦𝑘 , (38)

where∞ is approximated at the freestream upper bound 𝑦𝑚𝑎𝑥 location of the domain. Note that a consistent normalization
across the modes is necessary as the normalization is dependent on the normalization boundary conditions mentioned
above.

For each continuous branch, The integral in Eq. (34) can be approximated with a Riemann sum or other numerical
integration scheme over the discrete branch parameter 𝑘𝑙 , 𝑙 = 1, · · · , 𝑁 for 𝑁 discrete points in the range of 𝑘 . For the
𝑗 th mode, the corresponding branch can be approximated as∫ ∞

0
𝐶 𝑗A𝛼𝑗

(𝑦)𝑒𝑖𝛼𝛽 𝑗 (𝑘 )𝑥𝑑𝑘 ≈
𝑁∑︁
𝑙

𝐶 𝑗 (𝑘𝑙)A𝛼𝛽 𝑗
(𝑦, 𝑘𝑙)𝑒𝑖𝛼𝑗 (𝑘 )𝑥Δ𝑘. (39)

For every discrete branch parameter of 𝑘 , the continuous mode coefficient, 𝐶 𝑗 (𝑘), and the continuous mode functions,
A𝛼𝛽 𝑗

(𝑘), from Eq. (39) need to be computed and summed in order to account for the contribution of the whole branch.
Substituting Eq. (39) into Eq. (34), the numerical result from DNS can be approximated as

A𝐷 (𝑥, 𝑦, 𝑓 ) ≈
𝑃∑︁
𝑛

𝐶𝑛A𝛼𝛽𝑛 (𝑦)𝑒𝑖𝛼𝑛𝑥 +
𝑄∑︁
𝑗

𝑁∑︁
𝑙

𝐶 𝑗 (𝑘𝑙)A𝛼𝛽 𝑗
(𝑦, 𝑘𝑙)𝑒𝑖𝛼𝑗 (𝑘𝑙 )𝑥Δ𝑘. (40)
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Utilizing the bi-orthogonal decomposition shown above, the individual amplitude of perturbation variables can be
obtained for each mode and the result can be used to aid receptivity studies, particularly in the computation of receptivity
coefficient.

Since the role of receptivity coefficient in the amplitude method is significant to the prediction of transition location
[2] [3], an accurate computation to obtain the receptivity coefficient is essential. Theoretically, the receptivity coefficient
is defined as the ratio of initial perturbation amplitude of the unstable mode, 𝐴I, where the subscript I corresponds to the
data measured at the branch I location of the neutral stability curve given a frequency, over the freestream disturbance
amplitude, 𝐴∞, in the works of Marineau [3] and He and Zhong [14], given by

𝐶rec =
𝐴I
𝐴∞

(41)

where 𝐴I is the unstable mode amplitude of a perturbation variable, which can be 𝑢, 𝑣, 𝑝, 𝜃, in the vector A from Eq.
(13), for a specific frequency 𝜔. This amplitude 𝐴I contains both magnitude and phase angle. Most applications using
the initial amplitude, such as the computation of receptivity coefficient, only require the magnitude of 𝐴I. In DNS
studies, the phase angle is also significant to the simulation result [14]. The pressure component at the wall 𝑝wall,
which is 4th component of A at 𝑦 = 0, is used by He and Zhong as 𝐴I in his cases while the freestream pulse density
perturbation of the same frequency is used for 𝐴∞ in Eq. (41) [14].

To obtain the initial amplitudes of the unstable mode at the branch I location, the bi-orthogonal decomposition
described is applied. Using the𝑚th mode amplitude coefficient of𝐶𝑚 from Eq. (27) and the solution of the corresponding
mode, z𝑚

𝛼𝛽
or A𝑚

𝛼𝛽
, evaluated at the branch I location, the receptivity coefficient of the 𝑚th discrete or continuous mode

for the 𝑚th mode can be formulated as

𝐶rec =
𝐶𝑚A𝑚

𝛼𝛽
(𝑦 = 0)

𝐴∞
=
𝐶𝑚z𝑚

𝛼𝛽
(𝑦 = 0)

𝐴∞
(42)

Note that the bi-orthogonal eigenfunctions formulated above are normalized by the wall pressure. Thus, 𝐶𝑚A𝑚
𝛼𝛽

(𝑦 = 0)
is multiplied by the wall pressure amplitude obtained by DNS to recover the absolute amplitude at the wall. The above
presents the procedure of obtaining the receptivity coefficient of an unstable mode by bi-orthogonal decomposition. A
case of receptivity analysis for a hypersonic flow over a blunt nose cone will be discussed in the later section.

IV. Results

A. Decomposition for Mode S
In this section, the numerical result of mode S amplitude obtained from the bi-orthogonal decomposition over

various streamwise locations for a hypersonic flow over a blunt cone subject to an acoustic pulse is presented. The flow
conditions are presented in Table 1.

Table 1 Freestream Conditions of hypersonic flow over a blunt nose cone following He [14].

𝑅𝑛 ( mm) 𝑀∞ ℎ0,∞ (MJ/kg) 𝜌∞
(
kg/m3) 𝑝∞ (kPa) 𝑇∞ (K) 𝑈∞ (m/s) 𝑇𝑤/𝑇0,∞ Pr

5.080 9.81 1.06 0.0422 0.64 50.8 1425 0.3 0.72

With the flow parameters shown in Table. 1, Fig. 2 shows the meanflow contours of Mach number, pressure, and
temperature. From Fig. 2a, the boundary layer development can be observed near the wall. Furthermore, the shock
layer was converged with the shock as the upper boundary through the Rankine-Hugoniot relations. The meanflow
pressure near the nose region is shown in Fig. 2b, normalized by the freestream value. The pressure contour indicates
that the pressure throughout the shock layer is nearly constant downstream from the centerline distance 𝑋 = 0.01 m,
which is relatively upstream compared to the full domain length of 1.5 m. Moreover, the temperature contour in Fig. 2c
depicts an entropy layer being present and extending downstream. This entropy layer is associated with the transition
reversal process observed in nose bluntness studies [39] [40]. Before the reversal, the increasing nose bluntness reduces
the local Reynolds number and delays the transition. However, when the nose bluntness exceeds a critical value, this
reduction is reversed with no significant contribution from the second-mode instability waves [40], suggesting other
forms of excitation. Traditionally, the existence of entropy-layer instabilities observed by Stetson at low frequencies was
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identified with small amplification rates [41]. Yet, Another type of entropy-layer disturbance was found by Dietz and
Hein located at a second generalized inflection point outside the boundary-layer edge [42]. Wan, Su, and Chen [43]
further concluded with the comparison between DNS and LST that this entropy-layer disturbance is dominant after the
first mode decay and further induces instability when the entropy layer is swallowed by the developing boundary layer.
Subsequently, this entropy-layer instability is identified as an entropy-layer mode [44]. The bi-orthogonal decomposition
at the second mode branch I neutral stability location in the later section also indicates that an higher order discrete
mode other than mode S contributes to the entropy layer disturbance.

(a) Mach number contour. (b) Pressure contour. (c) Temperature contour.

Fig. 2 a) Mach number, b) Normalized pressure, and c) Normalized temperature contour near the blunt nose
region. Note that the full domain of the cone ends at the central line distance of 𝑋 = 1.5 m.

Subsequently, the unsteady simulation is performed to obtain the perturbed flowfield for bi-orthogonal decomposition.
This unsteady simulation introduces a freestream pulse in front of the blunt nose and the flowfield is recorded as the
pulse propagates downstream. The finite spherical pulse parameters and schematic setup are provided in [19] and
[14], referred to as Case I. The slow acoustic disturbance in the freestream has a peak density perturbation amplitude,
|𝜌′ |∞, of 1 × 10−6 as well as a peak pressure perturbation amplitude |𝑃′ |∞ = |𝜌′ |∞ 𝛾. The parameter 𝜎 for the finite
spherical pulse is set to 1 × 10−3. The pulse is set to start the advection at a location 𝑥0 = −0.02 𝑚 with a slow acoustic
disturbance speed of 𝑐∞ = 𝑢∞ − 𝑎∞. Temporal snapshots of the unsteady flowfield at various streamwise locations
are transformed by using FFT to obtain the spectral components for the bi-orthogonal decomposition. Utilizing the
FFT perturbation data at a particular frequency, a projection onto the discrete and continuous modes can be performed,
enabling a comprehensive analysis of the flowfield’s modal composition.

To validate the accuracy of the decomposition result, the amplitude of 𝐶𝑠𝐴𝑠 is plotted against the backtracked
amplitude |𝐴| = |𝐴(𝑠∗, 𝑓𝑛)/𝑒𝑁 (𝑠∗, 𝑓𝑛 ) | where 𝑁 =

∫ 𝑠∗
𝑠

−𝛼𝑖𝑑𝑠
′ and 𝑠∗ is a downstream second mode dominant location

in Fig. 3. Here, 𝐶𝑠 is the modal coefficient from the bi-orthogonal decomposition, used to only account for the mode S
amplitude. In this comparison, the downstream location of 𝑠∗ = 1m is regarded as second-mode dominant. This can be
observed from Fig. 1 where the DNS result aligns with the LST growth rate for mode S. The branch I location is located
at 𝑠∗ = 0.575m for the 200khz spectral component in this example, Moreover, the red line represents the downstream
amplitudes computed by combining the initial amplitude from the decomposition and the 𝑒𝑁 method. The alignment of
these three results suggests that only the initial amplitude is required to predict downstream modal amplitudes and the
modal amplitude can be recovered near the branch I location.
Moreover, the modal amplitudes obtained from the decomposition are used to compute the growth rate for the discrete
mode S with Eq. (33). Figure 4 compares the DNS growth rate of He and Zhong to the growth rate obtained with the aid
of bi-orthogonal decomposition. Near the branch I location, the DNS result of He and Zhong contains high oscillations
due to multimode effects. With the bi-orthogonal decomposition, the mode S amplitudes at various locations can be
extracted and the oscillation of the resultant growth rate near the branch I location is reduced. Note that near the branch
I location, the numerical integration of the decomposition is performed up to the boundary layer edge for the discrete
modes. Furthermore, oscillations still exist in the decomposed result primarily due to resolution. More streamwise
locations can be sampled to achieve less numerical error in the numerical differentiation for calculating the growth rate.
Yet, the current result has demonstrated the capability of recovering the mode S amplitude near the branch I location.
Subsequently, the spectral receptivity coefficient for each of the disturbances is calculated from Eq. (42) using
decomposed surface pressure perturbation data. Following Eq. (42), the decomposed spectral disturbance data is
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(a) Mode S amplitudes at the unstable region.
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(b) Mode S amplitudes zoomed near branch I location.

Fig. 3 Mode S amplitudes at various streamwise locations compared with 𝑒𝑁 results

(a) DNS result from He[20].
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-80
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-20
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20
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Result

Ref-He-S

Ref-He-F

(b) Decomposition result.

Fig. 4 Mode S growth rate compared with LST results.

normalized by the amplitude spectra of the incident pulse. From He and Zhong [14], the receptivity coefficient obtained
with the backtracking method is not a direct evaluation and oscillations in the receptivity coefficient result suggests
multimode contribution. Thus, the receptivity coefficient calculated directly using the decomposed mode S amplitude
at the branch I neutral stable location is plotted in Fig. 5. From the figure, receptivity coefficients computed using
the decomposed amplitude agrees with the overall behavior of the DNS result and demonstrates a smooth trend with
frequencies shown. Furthermore, the receptivity coefficient is increasing toward the peak near 240khz, aligning with
previous result [20]. Since the paper is a demonstration of the procedure in computing the receptivity coefficient with
the aid of bi-orthogonal decomposition, a small band of frequencies with low resolution is applied. The consideration of
broader frequency band is necessary to fully recover the true receptivity coefficient for amplitude method.

After computing the growth rate and receptivity coefficients, individual streamwise decompositions are presented
with modal eigenfunctions for further investigation. Figure 6 presents the decomposition result at a second-mode
dominant location at 𝑠∗ = 1.25m, previously presented in [31]. At this location, the decomposition result indicates that
a higher mode S amplitude, aligning with LST. On the other hand, the discrete mode F amplitude is negligible at this
region. Similar behavior of small contribution is observed for the continuous fast and slow acoustic modes [31]. The
reconstructed signal has a slightly higher amplitude than the FFT result due to numerical errors from the integration
[31].
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Fig. 5 Receptivity coefficients of discrete mode S plotted against results from He [20].
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(a) Streamwise Velocity.
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(b) Pressure.
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(c) Temperature.

Fig. 6 The streamwise velocity component, pressure, and temperature projection Magnitudes compared with
the spectral component of the unsteady DNS data at 𝑠∗ = 1.25m, reproduced from Zou and Zhong [31]

Furthermore, Fig. 7 shows the projection of discrete mode S on to the FFT data at a streamwise location near the branch
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I neutral stable location, 𝑠∗ = 0.600m. In contrast with the flowfield at the second-mode dominant region, the flowfeid
at the upstream region is more complex, comprising of different peaks inside both the boundary layer and entropy layer
around 𝑦/𝐿 = 0.2. From Fig. 6a, the discrete mode S is responsible for the first peak of disturbance inside the boundary
layer. However, the discrete mode S decays outside of the boundary layer while the FFT flowfield shows high magnitudes
of perturbation. Furthermore, the pressure eigenfunction in Fig. 6b, normalized by the wall pressure, suggests that the
wall pressure has a 40 percent contribution from modes other than mode S. The temperature perturbation of Fig. 6c
further indicates a high amplitude entropy disturbance exist in this streamwise region. This observation aligns with
previous findings in [43] that the mode S instability could be induced by an entropy layer instability mode, referred to as
the discrete entropy layer mode in the later section.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

10

20

30

40

50

60

(a) Streamwise Velocity.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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(b) Pressure.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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1500
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(c) Temperature.

Fig. 7 The streamwise velocity component, pressure, and temperature projection Magnitudes compared with
the spectral component of the unsteady DNS data at 𝑠∗ = 0.600m.

B. Discrete Entropy Layer Mode
In addition to the analysis of discrete mode S, the flow physics near the synchronization regions of discrete and

continuous modes is less understood due to the lack of a multimode decomposition [20]. In these synchronization regions,
various discrete and continuous normal modes interact and participate in intermodal energy exchanges. Specifically, the
synchronization between the discrete modes F and S is attributed to giving rise to the second mode instability [45] [20].
However, a recent study by Wan, Su, and Chen [43] suggests a possibility of second mode excitation due to the entropy
layer instabilities. Thus, the bi-orthogonal decomposition of the unsteady flowfield with three discrete modes: F, S, and
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a newly discovered entropy-layer mode is performed with the goal to better understand the modal contributions.
In addition to the discrete modes F and S, an entropy layer mode has been identified near the synchronization region.

The phase speed and growth rate of the entropy layer mode are plotted over streamwise locations in Fig. 8. From the
phase speed plot, a discrete mode that is not modes F and S exists near the synchronization region. This mode emerges
upstream and approaches the phase speed of an entropy/vorticity mode (𝑐𝑟 = 1). Similarly, the growth rate shows a
trend approaching a neutral wave similar to the vorticity and entropy continuous modes. Although such entropy layer
mode has been shown to exist before the emergence of discrete mode S in a previous study [44], the current result
indicates the possibility of co-existence for a small bluntness.

(a) Phase speed (b) Growth rate

Fig. 8 (a) Phase speed and (b) growth rate of the entropy layer mode plotted against mode S and previous result
from He and Zhong [14]

Figure 9 presents the eigenfunctions of the discrete entropy layer mode. From the eigenfunction, the discrete entropy
layer mode demonstrates an extended perturbation into the entropy layer around 𝑦/𝐿 = 0.15.

Fig. 9 The streamwise velocity eigenfunction of the new entropy-layer mode at 200 khz near the synchronization
point (𝑠∗ = 0.4 m).

From the results shown, this discrete mode aligns with the behavior of discrete entropy layer modes described in [44].
The inclusion of this entropy layer mode in the bi-orthogonal decomposition near the synchronization region is also
performed. With the discrete modes F, S and the entropy layer mode, Fig. 10 presents the decomposition result of
the unsteady flowfield near the synchronization region at 200 khz. A dominance of mode F can be observed inside
the boundary layer while the discrete entropy layer mode is responsible for the second peak of the unsteady DNS
flowfield. Beyond the second peak of the DNS flow field, wave structures suggest the existence of continuous modes
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and supersonic modes which require additional investigation [20].

(a) Reconstructed signal (b) Individual mode amplitude

Fig. 10 Decomposition results with (a) the overall reconstructed signal and (b) individual mode amplitude
plotted against the unsteady FFT flowfield at 200 khz near the synchronization point (𝑠∗ = 0.4m).

V. Conclusion and Future Work
The bi-orthogonal decomposition of the unsteady DNS flowfield data stemming from a freestream receptivity

simulation by He and Zhong [19] has been performed with preliminary results shown. This procedure involved applying
the orthogonality relation to Fourier-transformed flowfield data at a specified frequency. By projecting the perturbation
variables onto the bi-orthogonal eigenfunctions, the modal perturbation amplitudes can be obtained. Remarkably, from
the preliminary results of the mode S decomposition over streamwise locations, an overall trend of the discrete mode
S amplitude agrees with previous results. From the growth rate comparison, the bi-orthogonal decomposed result
has reduced oscillations near the branch I neutral location than previous DNS results [20] and aligns more with LST.
Moreover, the discrete mode S receptivity coefficients for a small band of frequencies are computed and aligns with the
trend of previous work while reducing the oscillation. Further consideration of a boarder band of frequencies with higher
resolution would be the immediate next step to fully recover the true receptivity coefficient for the amplitude method.

Furthermore, the decomposition results at a downstream location aligned with the observation of the discrete mode
S being dominant while the decomposition of the flowfield near the branch I neutral location indicates multimode
contribution with perturbations in the entropy layer. In addition, near the synchronization region, the existence of a
discrete entropy layer mode is demonstrated. This mode is obtained with the very high-order finite difference scheme
proposed by Zou and Zhong [31]. Although such entropy layer mode has been shown to exist before the emergence
of discrete mode S in a previous study [44], the current result indicates the possibility of co-existence for a small
bluntness. The influence of such disturbance on the transition is limited and needs further investigation. The continuous
development of the bi-orthogonal decomposition analysis includes further computation of various higher discrete modes
and continuous modes such as entropy and vorticity modes. Moreover, the bi-orthogonal decomposition of various
types of freestream broadband disturbances and more streamwise locations would give more insight into the behavior
of these discrete and continuous modes. The subsequent implementation of the amplitude method would follow to
systematically obtain accurate transition predictions.

A. The Matrix Elements
The matrix elements of H0 in Eq. (17) are presented here. Similar to Ref. [32], [33], we define 𝑟 = 2(𝜖 + 2)/3 and

𝑚 = 2(𝜖 − 1)/3 where 𝜖 is the ratio of bulk viscosity to dynamic viscosity and equals to 0 following Stoke’s hypothesis.
For entries not specified, the coefficients are equal to zero. We first define,
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− 𝑖�̂�𝑟

𝑃

]−1

�̂� = 𝜔 − 𝛼𝑈.
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