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Conventional hypersonic transition prediction relies upon the highly empirical eN method, which is predicated on

theoretical approximations of relative disturbance growth. This does not account for the receptivity mechanism and

the high degree of variability present in experimental wind-tunnel conditions, which itself leads to high degrees of

variability in transition N factors. The amplitude method, which better approximates the broadband nature of

boundary-layer disturbances, was previously proposed to account for the effects of receptivity. In this study,

high-fidelity simulated second-mode receptivity data for two blunt cones at Mach 10 to broadband disturbances

are applied to an iterative approximation of the amplitude method tuned for second-mode dominated flows. The

studied geometries consist of 9.525- and 5.080-mm-nose-radius 7 deg half-angle straight cones based on experimental

cases from Arnold Engineering Development Center’s wind tunnel 9. Amplitude method predictions show

improvement over the accuracy of eN estimates using standard threshold N factors. In particular, the less blunt

5.080 mm cone demonstrates the best agreement due to its stronger second-mode response. The results of this work

provide a preliminary framework for applying high-fidelity receptivity simulations to the amplitude method for

transition prediction in hypersonic flows.

Nomenclature

A = nondimensional disturbance amplitude
Crec = receptivity coefficient
f = frequency, Hz
L� = boundary-layer thickness parameter, m
M = Mach number
N = N factor
T = temperature, K
Re = Reynolds number
s� = streamwise position, m
α = spatial wave number, 1/m
β = spanwise wave number
γ = freestream noise amplitude
ω = circular frequency

Subscripts

e = boundary-layer edge
i = imaginary component
r = real component
T = transition location
w = wall
0 = branch I neutral point
∞ = freestream

I. Introduction

T HE primary objective of contemporary hypersonic stability
analysis is the development of more efficient and accurate

models for transition prediction. The transition to turbulence is
known to increase the aerodynamic drag, to significantly affect the
control of the vehicle, and to significantly increase heating loads
experienced by the vehicle [1–3]. In particular, at these high speeds,

thermal loads become the dominant design constraint with turbulent
heating rates that can reach upward of three times their laminar
counterparts [4,5]. Thus, being able to readily predict the transi-
tionary behavior of a given configuration is critical to designing
and optimizing a hypersonic vehicle, particularly in the design of
the thermal protection systems necessary for the projectile to survive
the extreme conditions encountered during hypersonic flight.
In hypersonic flows, the transition to turbulence is governed by

several mechanisms. In the case of weak environmental forcing,
through a process called “natural transition,” the pathway to turbu-
lence can be broken down into three distinct stages: 1) boundary-
layer receptivity to external disturbances, 2) linear growth of
small-amplitude disturbances, and 3) nonlinear breakdown of the
boundary layer at finite disturbance amplitudes [6]. In the first stage,
external disturbance sources such as surface roughness or freestream
noise perturb the boundary layer and generate the initial instability
waves within the boundary layer through the receptivity mechanism
[7,8]. This process involves the conversion of long wavelength
external disturbances to the short wavelength boundary-layer modes
through a wavelength conversion mechanism. Goldstein described
the basic mechanisms of this process, wherein rapidly changing
surface geometries at the leading edge and near roughness elements
serve to effectively couple these large length-scale external disturb-
ances to the small length-scale boundary-layer modes [9,10].
Although these previous studies were primarily focused on relatively
low-speed incompressible flows, the processes have been found to
also hold at high speeds and hypersonic flows in particular [11].
However, flow at supersonic and hypersonic conditions results in

additional flow features that significantly complicate the receptivity
process and the development of boundary-layer instabilities. For one,
the presence of a bow shock predicates the direct interaction of
external forcing with the boundary layer. Instead, these freestream
perturbations first interact with the bow shock to generate complex
flow environments behind the shock that then propagate to and force
the boundary layer. Due to these shock–disturbance interactions,
freestream perturbations composed purely of acoustic, entropy, or
vorticity modes can generate shock-layer perturbations consisting of
all of the disturbance types behind the shock [12]. Additionally,
vehicle designs often incorporate leading-edge bluntness to reduce
peak heating loads experienced by the body. In these cases, hyper-
sonic flows about blunted bodies also result in the emergence of
significant entropy gradients in the resulting shock layer, which
extend outside of the boundary layer until more downstream loca-
tions. These entropy layers have been found to reduce local unit
Reynolds numbers at the boundary-layer edge, effectively stabilizing
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the primary second-mode instability in different blunt cone cases
[13]. However, recent studies, such as those by Wan et al. [14], have
found that isolated low-frequency disturbances excited upstream
inside of the entropy layer can be carried to and force primary modal
instabilities downstream along the cone after the entropy layer is
swallowed.
Due to the importance and complexity of the receptivity process in

terms of defining the transitionary pathway for hypersonic boundary
layers, it has been studied extensively. In particular, more recent
studies have begun to include the effects of more broadband disturb-
ances that better represent the disturbance profiles present in exper-
imental conditions and actual flight. An example of this includes
prior work by Balakumar and Kara [15], who attempted to model the
broadband receptivity over several sharp and blunt cones using
packets composed of multiple discrete frequency waves. Similarly,
Goparaju et al. [16] investigated the receptivity of blunted flat plates
to stochastic, broadband acoustic forcing to account for potentially
unknown tunnel noise conditions. He and Zhong [7,8] instead inves-
tigated the receptivity to broadband pulses consisting of freestream
acoustic, entropy, and vorticity modes over a selection of blunt cones
and identified complex spectral structures in the boundary layer that
resulted directly from the broadband freestream forcing. However,
although receptivity has been widely studied, there has been rela-
tively little work directly linking the results of receptivity studies to
developing transition prediction schemes.
Current transition prediction procedures, such as the eN method,

focus on step 2 of the natural transition pathway and primarily
concern themselves with the development of primary modal disturb-
ances. These methods rely on using growth rates for modal instabil-
ities derived from linear stability theory (LST) or the parabolized
stability equations (PSEs) to determine the relative amplification of
the most unstable boundary-layer disturbance frequencies. Empiri-
cally determined amplification threshold values are then used to
predict the onset of turbulent transition [15,17,18]. This prediction
approach assumes that this relative amplification is the most critical
factor in determining transition and often ignores the aforementioned
receptivity mechanisms that govern the initial amplitudes of the
disturbances themselves. Although this assumption can providegood
internal consistency in a given testing environment, transition thresh-
olds based on this methodology can vary significantly between
different experiments. For instance, Schneider [19] described experi-
ments with similar nominal freestream conditions that had threshold
N factors of five and eight. This difference is attributed to the high
degree of variability in freestream noise profiles between different
experimental environments. Conventional hypersonic wind-tunnel
facilities operatewith environmental noise levels far in excess ofwhat
is expected in atmospheric flight, andwhich have not been rigorously
quantified. Only recently have more advanced “quiet” wind-tunnel
facilities been constructed [20], and more focus been made to char-
acterize the noise profile present in experimental setups [21–23]. In
general, the freestream noise in the environment in ground-test
facilities is often dominated by acoustic waves radiated from turbu-
lent boundary layers on the tunnel walls [20,21], although freestream
turbulence and temperature spottiness can generate vorticity and
entropy disturbances as well. Thus, it can be seen that neglecting
the receptivity mechanisms that govern the initial shock-layer
and boundary-layer disturbance responses can cause significant
discrepancies in conventional transition prediction methodologies.

Although the standard eN method is still widely used due to its
simplicity, the results of such predictions remain highly empirical
and cannot be easily generalized between different test environments
without significant corrections.
A number of improved transition prediction methodologies have

seen increased interest to overcome some of the limitations of the
traditional eN method. To account for the effects of varying noise

levels in the environment, corrected eN methods have been proposed.
Mack [24] initially proposed a variable threshold N factor based on
the freestream turbulent intensity of the given experimental environ-
ment. This has the advantage of requiring minimal additional com-
putations after the disturbance response and linear growth (N factor)
data are first obtained. Crouch and Ng [17] expanded on this

methodology to encompass more geometrically complex flows domi-
nated by crossflow instabilities. Although these corrected variable
N-factor methods do include the critical effects of receptivity and
improve on previous methods with minimal additional complexity,
they remain highly empirical and do not sufficiently account for the
distributed nature of disturbances in a hypersonic boundary layer. In a
more recent development, Paredes et al. [25] also used N-factor
correlations combined with a neural network model to predict tran-
sition. In their study, they trained a convolutional neural network
model using canonical blunt cone cases, which they found to be
capable of accurately predicting transition over a wider range of cases.
Recently, there has been some renewed interest on the develop-

ment of more mechanism-based transition prediction methods that
more accurately account for both the receptivity mechanisms and the
broadband disturbance profiles present in actual flow. These are
based on the amplitude method that was also originally proposed
by Mack [24]. The N-factor-based methods discussed previously
generally focus on the relative amplification of the single most
amplified disturbance frequency. However, this does not adequately
represent the highly broadband nature of disturbances that are present
in a hypersonic boundary layer [15,24]. Mack’s proposed amplitude
method suggests integrating across both the spanwise wave number
and frequency spectra, centered about the most unstable wave num-
ber and frequency, in order to directly estimate the disturbance
amplitude level in the boundary layer at a given position.When taken
with experimentallymeasured and correlated breakdown amplitudes,
these could then be used to better gauge the beginning of transition in
a hypersonic boundary layer. Although similar amplitude method
frameworks can potentially be applied to different hypersonic insta-
bility mechanisms such as crossflow or Goertler instabilities, current
and historical work on the amplitude method has primarily focused
on second-mode dominated flows.
Although the general idea behind the amplitudemethod is straight-

forward, the broadband dependencies of the governing relation make
its efficient application difficult. For instance, although the method
requires the disturbance data to be integrated across the frequency
and wave number spectra, for a highly amplified discrete mode, only
a finite band of disturbances actually contributes in any appreciable
amount to the overall amplitude of the perturbation. Correctly iden-
tifying and integrating across these variable bands can lead to sig-
nificant complications in the amplitude method when compared to
conventional schemes. As such, recent studies have primarily
focused on attempting to simplify the governing amplitude method
relation such that it is almost computationally equivalent to the
standard eN methods. Fedorov and Tumin [26] proposed a simplifi-
cation of the governing integral based on an asymptotic approach to
increase the computational efficiency of the method without relying
on overly extreme assumptions. Marineau [27], however, expanded
upon Mack’s original ad hoc approach [24] to suggest a simple
iterative approximation for the amplitude method that uses correla-
tions based on both experimental and computational data.Marineau’s
iterative method [27] in particular remains the most straightforward
to apply, with significant experimental and computational results to
compare against. As such, this iterative method will be the focus of
this study.
In either case, using the amplitudemethod for transition prediction

requires the direct application of receptivity data. However, well-
defined environmental noise and high-fidelity receptivity data remain
significant limiting factors to the widespread application of the
amplitudemethod [24,26,27].As such,many prior amplitudemethod
studies used either arbitrarily assumed values or highly empirical
correlations for the necessary receptivity response data. Although the
receptivity mechanism has been studied extensively, there has been
relatively little work directly applying the results of receptivity
studies to transition prediction techniques. The primary goal of this
work is to link the results of prior high-fidelity receptivity simulations
from the broadband studies by He and Zhong [7,8] to Marineau’s
[27] proposed iterative amplitude method. Contrary to many con-
temporary broadband receptivity studies, these prior works by He
and Zhong [7, 8] produce spectral second-mode receptivity coeffi-
cients that directly represent the initial modal instability response to
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broadband freestream forcing of different disturbance types. Simu-
lations in this vein can be used to create general receptivity response
databases in a much less resource- and time-intensive manner than
conventional experiments. Marineau’s iterative method [27] is
chosen for its relative simplicity and availability of experimental
results for comparison. Additionally, although this iterative ampli-
tude method may be able to be generalized to other disturbances, the
correlations in this study are tuned primarily for second-mode domi-
nated flows and do not hold for other disturbance conditions that may
be present over a hypersonic body. This study presents a preliminary
framework to link future, more robust databases of receptivity data
with which the amplitude method can be further generalized for
engineering application.

II. Flow Conditions

Marineau’s iterative approximation [27] of the amplitude method
is applied to twoblunt cones at 0 deg angles of attack. These consist of
9.525- and 5.080-mm-nose-radius cones with 7 deg half-angles at
Mach 10. The flow conditions for the cases in this study are summa-
rized in Table 1 and correspond to runs 3752 and 3746, respectively,
from experiments at the Arnold Engineering Development Center
(AEDC) wind tunnel 9 facility [28].
Transitionary behavior on these test cases is determined through

application of the amplitude method through the iterative scheme
proposed in Ref. [27]. Receptivity data are taken from prior work by
HeandZhong [7,8] on thesecases, inwhich themean flow is converged
using a high-order shock fittingmethod for the laminar direct numerical
simulation (DNS). The receptivity of these cases to different broadband
freestream disturbances was studied using both linear stability theory
and unsteady DNS. The reader is asked to refer to the aforementioned
receptivity studies from He and Zhong for additional details on the
stability and mean-flow profiles of the investigated cone cases.

III. eN-Method-Based Transition Prediction

The eN method is based on amplification factors, calledN factors,
which are derived from stability theory results. A short overview of
the derivation of the linear stability system and the pertinentN-factor
relation is given in the following, and the reader may refer to prior
work by He and Zhong [7,8] for additional details. First, we begin
with the Navier–Stokes system for a compressible, perfect gas flow.
The calorically perfect gas assumption is based on the low freestream
stagnation enthalpies of the considered cases in Table 1. The system
of equations consists of one mass conservation, three momentum
conservation, and one energy conservation relation. This can be
represented in conservation form as Eq. (1):

∂U
∂t

� ∂Fj

∂xj
� ∂Gj

∂xj
; �j � 1; 2; 3� (1)

Although the stability of a system can be studied by solving the full
Navier-Stokes system, this can be prohibitively expensive. A sim-
plified version of this system is used in linear stability theory to
estimate the growth of the primary disturbance modes in a given
flowfield. The LST relations can be derived from the governing
Navier–Stokes equations in Eq. (1) by substituting in the instanta-
neous flow, which can be decomposed into a mean and fluctuating
component as in Eq. (2):

q�x; y; z; t� � �q�x; y; z� � q 0�x; y; z; t� (2)

Here, q�x; y; z; t� is the total instantaneous flow for a given dis-
turbance variable, �q�x; y; z� represents the mean-flow component,

and q 0�x; y; z; t� is the fluctuating flow component. This instanta-
neous flow decomposition is next reintroduced into the governing
equations. Because the steady mean-flow component is assumed to
satisfy the governing equations, the mean-flow contribution can be
subtracted out of the total system. To further simplify the calcula-
tions, the mean flow is then assumed to be both axisymmetric/two-
dimensional (2-D) and quasi parallel to reduce any remaining
mean-flow terms to functions of only y. Using a small disturbance
assumption, the system is then linearized to eliminate quadratic and
higher-order perturbation q 0 terms. The system is further simplified
by the introduction of a normal mode wave solution in the form of
q 0 � q̂�y� exp�i�αx� βz − ωt��, whereω is the circular frequency of
the disturbance and α and β are the spatial wave numbers of the x
streamwise and z spanwise coordinates, respectively. For a spatial
stability approach, the circular frequency of a disturbance mode ω,
defined asω � 2πf, is manually set at a real number, whereas β is set
to zero for a two-dimensional disturbance. Thisω is chosen based on
whatever particular disturbance frequency is of interest. From these
simplifications, the linearized system is further reduced into a set of
five ordinary differential equations in the form of Eq. (3):

A
d2

dy2
� B

d

dy
� C ϕ � 0 (3)

Here, the vector ϕ � �û; v̂; P̂; T̂; ŵ�T comprises the disturbance
eigenfunctions of the system; and A, B, and C are complex square
matrices of size five. The system can be solved using conventional
eigenvalue solution methods, from which the complex spatial wave
number of the disturbance can be found. The complex spatial wave
number α can be written as α � αr � iαi, from which −αi is defined
as the growth rate of the disturbance.
Although LST can be used to identify both the growth rates of the

disturbances, it does not directly specify their exact amplitudes.
Instead, the relative amplification of a given disturbance frequency
is represented through the N factor, which is derived by integrating
the spatial growth rates in the streamwise direction. This is shown in
Eq. (4):

eN�s;f� � A�s; f�
A0�f�

� exp
s

s0

−αi�s; f�ds (4)

Here, A�s; f� is the local disturbance amplitude, A0�f� is the initial
modal disturbance amplitude, s0 is the location where the disturbance
first becomes unstable at the branch I neutral point, and −αi is the
spatial amplification rate obtained from LST or other stability theory

results. Conventional eN-method-based transition prediction methods
simply assume a threshold value forN, which is based on experimental
observations. In the case of noisy wind tunnels, it has been found that
thresholds ofN factors of approximately 5.5 have provided sufficiently
accurate transition location estimates [27,29,30].

IV. Amplitude-Method-Based Transition Prediction

As discussed previously, transition predictions have convention-
ally been done using the eN method, in which disturbance amplifi-
cation factors taken from LST or PSE calculations are compared to
experimentally correlated threshold values. This process focuses
solely on the relative amplification of disturbance waves, and it
ignores the absolute amplitudes of disturbances in a hypersonic
boundary layer, as well as their highly broadband nature. Due to
the varying freestream noise environments and receptivity mecha-
nisms in different flows, this can lead to significant difficulties in
relating results between different experiments or flightmeasurements

Table 1 Freestream flow conditions for DNS simulations

Case Rn, mm M∞ h0;∞, MJ/kg ρ∞, kg∕m3 ρ∞, kPa T∞, K U∞, m/s Re∕m, 1E-6∕m
B 9.525 9.79 1.07 0.0427 0.65 51.0 1426 18.95
I 5.080 9.81 1.06 0.0422 0.64 50.8 1425 19.11
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with the same nominal mean-flow conditions [19]. These stability-
theory-based mechanisms have also seen significant difficulty in
addressing the blunt-body paradox [13]. More advanced transition
prediction schemes like the amplitude method, as proposed byMack
[24], arose in order to better take into account the effects of receptivity
and the multifrequency dependency of instabilities in a hypersonic
flow. The governing amplitude method relation used to estimate the
local amplitude of an arbitrary disturbance mode is given as Eq. (5):

A2
d�R� �

∞

0

d
ωΛ
U1

∞

−∞
A2
0

ωΛ
U1

; βΛ

×
A

A0

ων

U2
1

; β
νx

U1

1∕2
;R

2

d�βΛ� (5)

The relation in Eq. (5) is a generalized expression used to estimate

the square of the local disturbance amplitudeA2
d at a given streamwise

position. This streamwise position is denoted in the relation by the

local unit Reynolds number R � �U1x∕ν�1∕2. Additionally, Λ repre-
sents an external disturbance length scale,ω is the circular frequency
of the disturbance, U1 refers to the freestream velocity, and β is the
spanwise wave number of the disturbance of interest. As the ampli-
tude ratioA∕A0 is representative of the relative amplification, or theN
factor of a given disturbance mode, this relation can be further recast
in dimensionless form as Eq. (6):

A2
d�R� �

∞

0

dω
∞

−∞
A2
0�ω; β�e2N�ω;β;R�dβ (6)

In essence, the relations here estimate the local amplitude of a
boundary-layer disturbance mode by integrating both its total fre-
quency and spanwise wave number spectra. Although current appli-
cations of the amplitudemethod have focused on estimating the local
amplitudes of the second mode in particular, this general methodol-
ogy may be applied to a wide variety of boundary-layer disturbance
modes as long as the necessary receptivity and amplification data can
be acquired. This can include more three-dimensional disturbances
like crossflow modes, or even other discrete Mack mode instabilities
in the flow. This work will continue to primarily focus on the second-
mode disturbance because this mode is generally expected to domi-
nate at most conditions.
Although the generalized amplitude method relation in Eq. (5) and

in Eq. (6) is not particularly complex, some difficulties remain that
prevent easy widespread engineering application. Among these is a
difficulty in identifying relevant frequency and wave number bands
because the primary instability modes are highly centered about the
most unstable frequencies or wave numbers. Although peak disturb-
ance frequencies can be estimated using boundary-layer edge con-
ditions and general stability profiles, careful selection of pertinent
disturbance bandwidths is critical to the amplitude method. This is
because the bandwidths can vary significantly between different
flows, and overextending the integrated portions of the spectra can
dramatically increase the computational cost of the amplitude
method. The direct integration of these relations can also be some-
what inefficient when compared to conventional eN methods, and so
contemporary works regarding the amplitude method have presented
approximations for these generalized relations to make them more
affordable for engineering application. Fedorov and Tumin [26],
for instance, suggested an approximation based on an asymptotic
approach. This method uses the maximum N factor at a given
sampling position, as well as its second-order derivatives in both
frequency and spanwise wave number space based on the most
optimally amplified frequency and wave number. Although this
method ismore generalized, it requires significant additional stability
computations in the form of N-factor gradients.
Marineau [27] developed an interactive method based on sug-

gested simplifications of the governing relation in Eq. (6) by Mack
[24], which are combined with correlated simulation and experimen-
tal data. The following analysis will be based on this iterative method
because it presents the clearest avenue to directly applying the
previously derived receptivity coefficients for case B and case I.

The governing relation can be approximated in a form such as
Eq. (7) due to the highly concentrated nature of modal instabilities:

A2
d�R� ≈ A2

0�ωmax; βmax�e2NmaxΔωΔβ (7)

This approximation is also centered about the most unstable
frequency and spanwise wave number of the disturbance, and the
broadband scaling is approximated by variable spectral bandwidths
of the disturbance in theΔω andΔβ terms. Although this generalized
approximation is widely applicable to many disturbance modes, for
the analysis in this study, the primary mode of interest is the second
Mack mode. The second mode is two-dimensional in nature, and
although it can vary with the azimuthal wave number, this effect is
negligible for the preliminary 0 deg angle-of-attack cases considered
here. As such, the disturbance amplitude relation can be further
simplified by removing the spanwise wave number β dependency.
The resulting 2-D amplitude method relation is found in Eq. (8). In
this formulation, the integral limits are reduced to a user-defined
envelope of frequencies encompassing themost unstable disturbance
at a given streamwise position:

A2�s� �
f2

f1

A2
0�f�e2N�s;f�df (8)

Following the simplification suggested by Mack [24] for Eq. (7),
the two-dimensional amplitudemethod relation can be approximated
as Eq. (9). Here,C1 is assumed to be a constant of value 0.48 because
Marineau et al. [23] found that this parameter demonstrates minimal
variance among the experimental cases corresponding to the simu-
lations considered here. When combined with receptivity as well as
linear stability data, this relation can be used to approximate second-
mode disturbance levels in the boundary layer:

A2�s� � C2
1A

2
0�f�e2N�s;f�Δf (9)

This relation can be used to establish a variable transitionN-factor

criterion, which is much more in line with conventional eN methods
in terms of its computational efficiency. Following experimental
findings that show that the second-mode amplitudes at breakdown
are approximately 60% of the maximum measured disturbance
amplitudes [23,27], the final relation is expressed as a transition
N factor in Eq. (10). Although the method once more reduces to an
N-factor criterion, the breakdown threshold is not defined through
the N factor in this case. Instead, the total growth of the initial
disturbance modes from the receptivity response is compared to
correlated breakdown amplitudes. The resulting N factor is simply
compared to the stability profile of the given flow to determine a
transition location:

NT � ln
1.25Amax

A0�fT�
(10)

Beginning with an initial estimate of the expected transition
location, correlations are used to predict both the maximum disturb-
ance amplitude near breakdown as well as the initial amplitude of
second-mode disturbances in the boundary layer. These values are
applied to the final transition N-factor relation in Eq. (10), which
when combined with the LST-derived maximum N-factor envelope
can be used to iteratively prediction the transition location of the
given flow. The necessary correlations and results of this implemen-
tation are discussed and compared with Marineau’s results [27] in
the following sections.

V. Receptivity Coefficients

To directly use the amplitude method to predict transition, recep-
tivity data are critical to determine the initial disturbance levels in the
boundary layer. By using a generalized database of receptivity coef-
ficients along with measured or computationally derived tunnel
noise conditions, the initial broadband disturbance levels in a given
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hypersonic boundary layer can be estimated. Although the derivation
of these generalized receptivity relations and noise profiles is critical
to the development of amplitudemethod-based tools, the current state
of available data remains somewhat limited. In this study, prior
broadband receptivity data from He and Zhong [7,8] are used, which
consist of the boundary-layer responses to freestream broadband fast
acoustic, slow acoustic, entropy (temperature), and vorticity disturb-
ances. The derivation and results of this receptivity analysis are
discussed in a condensed form here for completeness, but the reader
is asked to refer to the aforementioned papers for additional details.
The response of the system to each freestream disturbance envi-

ronment can be represented through a receptivity coefficient. The
receptivity coefficient in this study Crec�f� is defined as the initial
amplitude of the second-mode disturbance at the branch I neutral
point for a given discrete frequency f normalized by the freestream
disturbance content of the same frequency. This coefficient is deter-
mined using a combination of LST and unsteady DNS through a
decomposition recommended by Schneider [20] and Huang [31].
The purpose of this decomposition is to attempt to isolate the con-
tribution of the primary second-mode disturbance from the highly
broadband boundary-layer profile excited by the freestream pulse
disturbances. By selectively sampling the unsteady DNS data at a
streamwise location expected to be dominated by the primary mode
of interest, the local N factor as derived from stability theory can be
used to calculate the approximate initial amplitude of the disturbance
at the branch I neutral point. Assuming significant second-mode
amplification, the receptivity coefficients for the second mode can
be derived in this manner through Eq. (11):

Crec�fn� � A0�fn� �
A�s�; fn�
eN�s�;fn� (11)

Here,A�s�; fn� is the Fourier decomposed surface pressure ampli-

tude and eN�s�;fn� is the exponentiated N factor determined through
LST for a given frequency fn and a streamwise sampling point s�.
Because the most dominant instability mode for the investigated
cases is expected to be the two-dimensional second mode and the
cases of interest are held at a 0 deg angle of attack, spanwise variation
in both the unsteady DNS and LST results was ignored.
When this process is repeated for each frequency in the destabi-

lized second-mode band, the full second-mode receptivity spectra
can be derived. An example of the receptivity coefficient spectra
used in this work is shown in Fig. 1. Data for the 9.525-mm-nose-
radius case (case B) are taken from Ref. [7], and data for the 5.080-
mm-nose-radius case (case I) are taken from Ref. [8]. The recep-
tivity coefficients for case I were compared against simulations for a
similar 5.08 mm cone case from Balakumar and Chou [15], which

demonstrated good agreement with available data for the slow

acoustic disturbances.
Slightly different definitions of the receptivity coefficient are also

quite prevalent in the literature. Similar to theworks of Balakumar and

Chou [15] and Kara et al. [32], a standard receptivity coefficient is

defined as the boundary-layer disturbance normalized by the free-

stream noise level at the computed branch I neutral location. This

essentially ignores the decomposition method presented earlier in this

paper and incorporates the full broadband disturbance profile present

in the boundary layer, including any potential nonmodal components.

Because the receptivity coefficients for the planar pulses in these cases

were found to vary significantly between the decomposed and un-

decomposed methods [7,33,34], the un-decomposed receptivity coef-

ficients are also used. These are plotted for both cones in Fig. 2.

A. Correlations for Marineau Iterative Amplitude Method

Marineau’s iterative process [27] requires the use of several corre-

lations to approximate the freestream noise profile present in the

flowfield, the initial amplitude of the second-mode disturbance in the

boundary layer, the maximum boundary-layer disturbance ampli-

tudes near breakdown, and the resulting N factors near breakdown.

These correlations are derived from a combination of LST data, DNS

data, and experimental measurements. First, the second-mode break-

down amplitudes will be considered. Citing prior work by Fedorov

and Kozlov [35] and Casper et al. [36], it was found that the maxi-

mum breakdown amplitude of the second-mode disturbances can be

correlated with the edge Mach number of the flow. Although these

prior studies suggested a linear variation between maximum second-

mode breakdown amplitudes, the AEDCwind tunnel 9 results over a

selection of sharp and blunt cones are best fit using a power law

variation. This correlation is shown in Fig. 3, which demonstrates

good agreement between the fit and the experimental data.
To correctly apply this breakdown amplitude correlation, the edge

Mach number conditions must be accurately defined. The boundary-

layer thickness δe has traditionally been described using a velocity

criterion that stipulates that the boundary-layer edge is located where

the local velocity reaches 99% that of the freestream. Although this is

applicable in general to low-speed flows, it is not necessarily valid for

hypersonic conditions. Instead, a stagnation enthalpy criterion is used

due to the fact that the stagnation enthalpy is expected to remain

constant in the inviscid flow outside of the boundary layer [37]. The

boundary-layer edge is assumed to be the point at which the stagnation

enthalpy of flow reaches 99.5% of the freestream value. The resulting

profiles for case B and case I are compared against calculated results

for corresponding cases from Paredes et al. [38] and Marineau [27] in

Fig. 4. The resulting edge Mach number profiles are observed to

Fig. 1 Decomposed receptivity coefficient spectra for planar pulse disturbances in a) case B and b) case I. Results for case B are reproduced with
permission from He and Zhong [7] (copyright by the authors). Data for case I reproduced with permission from He and Zhong [8] (copyright by the
authors).
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demonstrate excellent agreement with both Paredes et al.’s [38] and

Marineau’s [27] presented profiles, and as such will be applied to the

generalized second-mode breakdown amplitude correlation.

Now, amethod to approximate the initial amplitudes of the second-

mode disturbances is required. This is done by applying receptivity

correlations to estimates or measurements of the freestream noise

spectrum present in the flowfield. Following the simplifications

suggested by Mack [24], the reduced amplitude method integral in

Eq. (7) is seen to be centered about themost amplified frequencywith

an assumed bandwidth parameter of Δf � fmax∕4. Again, because
these cases are primarily concerned with two-dimensional disturb-

ances, the contribution of the spanwisewave number β is disregarded.
This maximum second-mode frequency can be determined using

either an LST- or PSE-derived stability profile for the given mean

flow, along with initial guess of the transition location. The resulting

maximum disturbance frequency profiles derived from LST results

for both case B and case I are depicted in Fig. 5.

After this maximum LST frequency is taken from the LST data, it

is used to find the amplitude of the incident freestream disturbance at

the same frequency. Marineau et al. [23] provided the approximate

freestream noise profile as a corrected fit of pitot pressure measure-

ments from other AEDC wind tunnel 9 experiments under similar

conditions. This is given in Fig. 6.

Fig. 3 Correlation of edge Mach number vs maximum breakdown
amplitude based on experimental data. Reproduced from works of
Marineau et al. [27,28].

Fig. 2 Un-decomposed receptivity coefficient spectra for planar pulse disturbances in a) case B and b) case I.

Fig. 4 EdgeMachnumber profile using 99% total enthalpy criterion for a) case B compared towork of Paredes et al. [38] and b) case I compared towork
of Marineau [27].
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The low-frequencydisturbances for each casedemonstrate excellent

agreement with an f−1 frequency fit. Following this, the spectral noise
roughly matches an f−3.5 fit at frequencies higher than approximately

40kHz.Thehigher-Reynolds-number cases demonstrate distortions in

this slope, aswell as strong noise at higher frequencies.Marineau et al.

[23] attributed these to increased noise sensitivity due to the higher

Mach numbers of these cases, as well as acoustic wave reflection

between the probe and the local shock. Assuming that such distortions

do not necessarily reflect the actual freestream spectra, we elect to

continue using the linear fit as suggested by Marineau [27] and

Balakumar and Chou [15]. The freestream noise amplitude, referred

to as γ0, at the maximum disturbance frequency is given in Eq. (12):

γ0 �
C

2
Δf�fmax�−3.5 (12)

The γ0 term is the incident amplitude of the freestream disturb-

ance, C � 126.5E6 is a linear fit parameter from Ref. [15] based on

data reported in Ref. [23], and fmax is the maximum second-mode

frequency at the given streamwise location taken from the LST

profile. The receptivity magnitude coefficients are simply defined

as the disturbance amplitude response at a given frequency normal-

ized by the freestream disturbance level. To convert between these

data and the freestream noise amplitude correlations as provided by

Marineau et al., the receptivity coefficients are further renormalized

with respect to the boundary-layer edge pressure. Therefore, fol-

lowing the same procedures as Marineau [27], the total initial

amplitude at the local maximum disturbance frequency is simply

defined as A0�fmax� � Crec�fmax�γ0.
Finally, the total maximumN-factor envelope is necessary in order

to iterate on and refine the initial estimate of the transition location.

The resulting LST-derivedN-factor envelopes are shown in Fig. 7 for
both the case B and case I mean flows. Due to the reduced nose

bluntness, the second-mode response is expected to be significantly

stronger for case I. This is reflected well in theN-factor plots because

the overall N factors for case I are shown to be significantly larger

than that of case B throughout the cone domains. At the end of the

cones, case I has a peakN factor of approximately 14.6, whereas case

B peaks at an N factor of 9.3. This further reinforces contemporary

and historical findings that nose bluntness delays the development of

the primary second-mode instability [13,28,39].

B. Iterative Amplitude Method Results

Following themethodology and correlations discussed previously,

the transition locations of case I and case B can be estimated using

receptivity field data for each of the four canonical disturbance types

in the freestream. These consist of freestream fast acoustic, slow

acoustic, temperature (entropy), and vorticity disturbances. The finite

pulse results from Refs. [7,8] are not used because the isolated nose

forcing is not expected to as accurately replicate the extensive noise

profile present in a wind-tunnel test environment. First, an initial
estimate ismade of the transition location.Using this initial guess, the

local maximum second-mode frequency as well as the edge Mach

number are calculated from LST and DNS profiles. From these

values, the local second-mode breakdown amplitude as well as the

freestream noise amplitude are estimated using the correlations pre-

sented in the previous section. Receptivity coefficient data are com-

bined with the freestream noise correlations to generate initial

second-mode amplitudes, which are used in concert with the break-

down amplitude estimates to calculate the local transition N factor.

Using the N-factor envelope taken from LST, this value is used to

identify an updated guess for the transition location, which is iterated
upon through the same process until convergence.
The predicted transition locations using the iterative method

described previously are plotted for case B in Fig. 8. Additionally,

due to the strong variations in the receptivity spectra found between

the decomposed and un-decomposed data, results using both

approaches are presented. The un-decomposed spectral receptivity

coefficients are derived by directly sampling the unsteady DNS at the

Fig. 5 Maximum LST second-mode frequency vs streamwise location for a) case B and b) case I.

Fig. 6 Normalized pitot pressure noise measurements for freestream
disturbances, reproduced from work of Marineau et al. [23].
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LST-calculated branch I neutral stability points. Additional details on

the differences between the decomposed and un-decomposed recep-

tivity coefficients applied here can be found in Refs. [7,34]. An error

bar for the uncertainty in the experimentally measured transition

location is also shown in the figure. This error is derived from the

limited distribution of pressure transducers in the original experiment

[28]. The case B results demonstrate significant divergence from

Marineau’s [27] reported experimental and numerical transition

results, and for the most part lie outside of the reported uncertainty

region. On average, this ranges from 60 to 30% error for the un-

decomposed results, whereas the decomposed results range from

approximately 60 to 40% error when compared to the experimentally

measured transition location of 1.04 m. In both cases, the acoustic

pulse data convergemost readily toward the experimental result, with

the fast acoustic pulse complyingwith the best in the un-decomposed

receptivity coefficient cases and the slow acoustic results complying

with the best for the decomposed receptivity coefficient cases.

Similar transition location results are plotted for case I in Fig. 9.

Once again, Marineau’s results [27] along with the same experimen-

tal error are shown in the figure. The uncertainty in the transition

location is fixed due to similar limitations in sensor placement. It can

be observed that the agreement for the case I transition location is

significantly better than it was in caseB,withmore of the planar pulse

results remaining within the estimated uncertainty range. Looking at

the un-decomposed receptivity case in Fig. 9a, every data point other

than the vorticity pulse lies within the experimental uncertainty

range. The errors here range from approximately 21% for the vor-

ticity pulse to 12% for the fast acoustic pulse. The decomposed

receptivity coefficient results in Fig. 9b diverge more from the

measured transition position, with only the slow acoustic pulse result

falling within the uncertainty range. Here, the error ranges from

approximately 39% for the temperature pulse to 17% for the planar

slow acoustic pulse. These errors are relative to the experimental

transition location of 0.68 m. Similar to case B, the acoustic pulses

demonstrate the best agreement. This is likely attributed to the greater

receptivity response observed at the primary second-mode frequen-

cies for the acoustic pulses in both case B and case I.
The results of this iterative amplitude method can be compared

against predictionsmade using the conventional eN method. Tomake

this comparison, a standard noisy wind-tunnel transition N factor of

5.5 is used [27,29,30]. Using the LST-predicted N-factor curves in

Fig. 7, the predicted transition locations for the eN method are at

streamwise positions of 1.55m for caseB and 0.83m for case I. These

eN method predictions have errors of approximately 40% for case B

and 22% for case I. In both cases, this is comparable to the temper-

ature and vorticity pulse results using the un-decomposed receptivity

coefficients, whereas the acoustic receptivity data resulted in

improved accuracy. This indicates that the amplitude method, even

in this highly preliminary form, is capable of improving on common

established practices.
Figure 10 similarly shows the transition pointN factor predicted by

the iterative method vs the N factor at the measured transition

Fig. 8 Predicted transition locations vs measured results for case B (9.525 mm) after planar pulse forcing using a) un-decomposed and b) decomposed

second-mode receptivity coefficients.

Fig. 7 Maximum LSTN factor vs streamwise location for a) case B and b) case I.

1934 HE AND ZHONG

D
ow

nl
oa

de
d 

by
 U

C
L

A
 L

ib
ra

ry
 L

ic
. &

 E
-R

es
. A

cq
. o

n 
Se

pt
em

be
r 

26
, 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
35

74
2 



location for case B using both decomposed and un-decomposed

receptivity data. The uncertainty here is taken from Marineau et al.

[28], and it is once again based on the uncertainty in the measured

transition location due to pressure sensor placement. Once more,

significant disagreement is observed for every disturbance type,

although the acoustic disturbances are closest to the measured results

for both the decomposed and un-decomposed receptivity data. Quali-

tatively, the accuracy of the transitionN factor ismuchworse than the

transition location results. This is directly related to the disagreement

in the prior transition location results because the previously

observed overprediction of the transition location directly causes

overprediction in the transition N factor due to the monotonicity of

the N-factor profile for case B in Fig. 7a. This may be partially

explained by the relatively weak second-mode amplification

observed in case B and its respective experimental counterpart in

the work of Marineau et al. [28].

Similar transition N factors for case I are presented in Fig. 11.

Again, case I adheres more closely to the experimental result due to

the stronger second-mode response. However, the overprediction of

the transition location for case I in Fig. 9 also uniformly results in

overprediction for the transitionN factor because theN-factor curves

in Fig. 7 increase monotonically against the streamwise position for

both cones. The un-decomposed results in particular are closest to

both the experimental transition location and transition N factor in

both case B and case I. This is due to the overall larger receptivity

coefficient from the un-decomposed spectra, which results in larger

initial disturbance amplitudes that are more in line with what

Marineau [27] observed. This requires less modal amplification to

reach the necessary breakdown amplitudes.

The general disparity between the computed results here and

Marineau’s measured result [27] can be attributed directly to

differences in the initial input receptivity coefficients. In particular,

the receptivity coefficients taken from Refs. [7,8] seem to under-

predict the receptivity coefficients of the optimal disturbance

Marineau [27] used. For Marineau’s run 3752, which corresponds

to case B,Marineau reported a peak receptivity coefficient of approx-

imately 3.7. For run 3746, which corresponds to case I, he saw a

slightly lower peak receptivity coefficient of 2.85. These were calcu-

lated by solving Eq. (10) for A0�fT� using the measured maximum

breakdown amplitude Amax and an N factor calculated through

stability theory. The peak case B planar pulse receptivity coefficients

were found to be approximately 1.2 for the most amplified frequency

in the un-decomposed spectra, which correspond to the planar fast

acoustic result. At the same conditions for case I, the peak coefficient

was found to be approximately 1.9, which again corresponded to the

fast acoustic disturbance in the un-decomposed spectra. The lower

receptivity coefficients from this study signify reduced boundary-

layer disturbance responses, and subsequently lower-amplitude

Fig. 10 Predicted transition N factors vs measured results for case B (9.525 mm) after planar pulse perturbation using a) un-decomposed and
b) decomposed second-mode receptivity coefficients.

Fig. 9 Predicted transition locations vs measured results for case I (5.080 mm) after planar pulse forcing using a) un-decomposed and b) decomposed

second-mode receptivity coefficients.
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initial disturbances in the boundary layer. These require additional
amplification before they reach the experimental breakdown ampli-
tudes and trigger transition. This, in turn, pushes the expected tran-
sition location further downstream and increases the expected N
factor at transition, which explains the large overprediction of both
the transition location and transition N factor demonstrated in the
results here. The overall larger receptivity coefficients of the un-
decomposed spectra, which are due to the included influence of more
disturbances outside of the second mode, explain the better general
agreement between the computed transition location using the un-
decomposed receptivity data vs the decomposed receptivity data.
Additionally, there are some differences between the computational
cases here and Marineau’s own study, which may also contribute to
the divergence of results. Namely, different approaches to calculating
freestream viscosity led to unit Reynolds numbers in case B and case
I, being up to 15% higher than their experimental counterparts [7,8].
This leads to stronger second-mode growth, which itself results in an
upward shift of transition N factors.

VI. Discussion

In this work receptivity data for a selection of broadband, free-
stream pulse disturbances are applied to an iterative approach to the
amplitudemethod.Although there has been a long history of research
in both the receptivity mechanism as well as in developing improved
transition prediction methods, there has been relatively little work
attempting to link the two. In particular, although the amplitude
method requires receptivity data to directly estimate boundary-layer
disturbance amplitudes, the source of these data is often based on
assumed values or highly empirical correlations. This study presents
a preliminary attempt to apply high-fidelity receptivity data taken
from simulation to an approximation of the amplitude method that
is more directly applicable to contemporary experimental cases.
Although some deficiencies have been identified, the results have
laid a framework for the further improvement of the amplitude
method through the integration of analytical receptivity data taken
fromDNS. The receptivity data used herewere taken from prior work
by He and Zhong [7,8] for broadband pulse disturbances consisting
of canonical fast acoustic, slow acoustic, entropy, and vorticity
disturbances in the freestream. The approximate amplitude method
is based on simplifications originally suggested by Mack [24] and
Marineau [27] for flows dominated by the two-dimensional second
mode. The correlations for threshold breakdown amplitudes and
freestream noise levels are based on experiments performed at the
AEDC wind tunnel 9 facility [28].
Prior observations demonstrated significant differences in the

receptivity spectra based on whether or not a decomposition method
was used to attempt to isolate the primary second-mode disturbances

[7,33]. As such, both decomposed and un-decomposed receptivity data
were applied to the iterative scheme used in this work. In both case B
and case I, the un-decomposed receptivity data resulted in significantly
better agreement with both the computed transition locations for
Marineau [27] and the measured transition locations from Marineau
et al. [28]. In particular, the resulting errors for the acoustic pulse cases
were significantly improved against conventional eN predictions using
threshold N factors of 5.5 [27,29,30]. The un-decomposed receptivity
data resulted in better predictions primarily due to the higher overall
receptivity coefficients found in that case. However, in general, the
results using the broadband spectral receptivity coefficients from
He and Zhong [7,8] demonstrate notable divergence from the exper-
imentally measured transition location when compared to Marineau’s
[27] own computed results.
This disagreement can be traced to differences in the receptivity

coefficients used to solve for the initial second-mode amplitudes. In
particular, although the broadband pulse receptivity coefficients from
He and Zhong [8] were found to compare well against slow acoustic
results fromBalakumar andChou [15], theyweremuch lower than the
receptivity coefficients reported by Marineau [27]. The question now
remains, “What is the source of this large disparity in the receptivity
coefficients?”For one,Marineauused a decomposition based on linear
stability that was applied to experimentally measured breakdown
amplitudes. At these points, there could have been significant non-
linear disturbance interactions that were not captured in the receptivity
studies by He and Zhong [7, 8]. Additionally, uncertainties exist with
the general freestream profile that are critical to correctly determining
the receptivity response of the flow. The freestream noise profile,
presented as normalized pitot tube measurements in Fig. 6, was not
directly measured for the investigated cases and was instead based
upon measurements for prior experiments with similar freestream
Reynolds numbers [23,40]. This leads to someuncertainty in the actual
freestream noise conditions of the given cases. Furthermore, it is well
known that the types of incident disturbances can have dramatic
differences on the overall receptivity behavior, both in terms of the
peak magnitudes of the boundary-layer disturbances as well as the
disturbance bands that are excited [6,8,41].Although the data provided
here give a distribution of environmental pressure disturbance ampli-
tudes, they do not depict the composition of disturbances present in the
experimental environment. Previous work has shown that acoustic
radiation from turbulent wall boundary layers is expected to dominate
in similar tunnel environments fields [21,22], althoughmore thorough
characterization of the environmental noise through both experimental
measurements and simulations is critical to the correct application of
receptivity coefficient data on a case-by-case basis.
The phase coherence of the incident pulse disturbances may also

play a significant role in terms of the receptivity data. Recent work by
Egorov et al. [42] has shown that the receptivity response over flat

Fig. 11 Predicted transition N factors vs measured results for case I (5.080 mm) after planar pulse perturbation using a) un-decomposed and
b) decomposed second-mode receptivity coefficients.
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plates can be highly dependent on the coherence of the forcing. In
particular, they showed that incoherent forcing with a randomized
disturbance phase can result in much stronger disturbance growth
than similar conditions for coherent disturbances. He [34] found that
broadband pulse disturbances with a coherent phase, such as those
used for the receptivity data applied here, can generate significant
modal interference in the boundary layer. In some cases, this inter-
ference can result in significant reductions in second-mode disturb-
ance amplitudes, whereas other modal instabilities are instead
amplified. This may partially explain the reduced receptivity coef-
ficient found for caseB and case I inHe andZhong’swork [7, 8]when
compared to the experimentally derived result fromMarineau’s work
[27]. However, these findings are fairly novel and have not been
confirmed over a wide range of conditions. As such, they require
additional study to confirm, especially in the more complex flow
environment present over a blunt cone.

VII. Conclusions

This study documents an initial attempt to link high-fidelity recep-
tivity simulations to a more direct engineering-oriented application of
Mack’s amplitude method [24]. Using this method, the transitionary
behavior of a given hypersonic vehicle can, ideally, be predicted in an
accurate and efficient manner in cases where the second mode domi-
nates. It should be noted that the framework shown here is not
necessarily applicable to other sources of hypersonic transition such
as crossflow, Goertler, or attachment line stabilities without additional
consideration. Receptivity modeling remains a significant bottleneck
to the continued development of the amplitude method. Improvement
has been shown using the simple broadband receptivity coefficients
here with regard to baseline estimates from the conventional eN

method. Nonetheless, there remains significant room for improvement
in this implementation of the amplitude method. For instance, due to
the preliminary nature of this work, the used broadband receptivity
coefficients remain focused on two-dimensional disturbances and do
not represent the flow response profiles for cases with more oblique
profiles, such as flight at angles of attack. Additionally, uncertainties
remain with regard to factors such as disturbance phase coherence and
the freestream noise profiles present in different experimental envi-
ronments that require additional study before further generalizations
can bemade.Although these challengesmust be addressed to continue
developing the amplitude method for engineering application, this
preliminary study’s results indicate the potential for integrating high-
fidelity analytical receptivity data taken from simulation into transition
prediction.
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