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The receptivity of a 1.9 m long, 7-degree half-angle circular cone with a 9.525 mm nose
radius at mach 10 to planar and axisymmetric freestream disturbances was investigated
using a high-order shock-fitting method formulated for a perfect gas. After the meanflow
was converged, unsteady Direct Numerical Simulations (DNS) were performed to study
the receptivity of the flow to a variety of freestream disturbances with the same broad-
band, continuous frequency spectrum. These freestream disturbances were modelled as
Gaussian pulses and include axisymmetric hotspot, fast acoustic, and slow acoustic pulse
disturbances, as well as planar fast acoustic and slow acoustic pulse disturbances. The
axisymmetric pulses were finite in three dimensions, while the planar disturbances were
infinite in the y-z plane. Linear Stability Theory (LST) analysis was used to validate the
unsteady DNS, study the receptivity mechanisms of the cone to the freestream pulses,
and finally produce receptivity coefficients for the tested disturbances. Unsteady DNS re-
sults for the axisymmetric cases were found to agree well with the LST and indicated that
the amplified 2nd mode instability corresponded the discrete mode F. All of the tested
freestream pulse cases were shown to excite fast acoustic disturbances upstream of the
2nd mode region. The axisymmetric fast acoustic disturbance was found to generate the
largest initial 2nd mode amplitudes, followed by the axisymmetric hotspot and then the
axisymmetric slow acoustic pulse. The planar fast and slow acoustic pulses were also found
to excite the 2nd mode, though these cases showed strong phase speed and growth rate
modulations attributed to forcing waves. Spectral receptivity coefficient distributions were
also produced. For the axisymmetric pulses, sampling location was shown to have lit-
tle impact on the receptivity coefficients due to the negligible influence of forcing waves,
while the planar acoustic cases saw large variations between disturbance sampling loca-
tions. The receptivity response for the axisymmetric disturbances was again strongest for
the fast acoustic pulse, followed by the hotspot and then the slow acoustic pulse. For the
planar pulses, the planar slow acoustic disturbance was found to have higher receptivity
coefficients and to also fit the expected 2nd mode trend more closely.

I. Introduction

Understanding the process of high-speed boundary layer transition has been an enduring research goal in
the hypersonics community. Transition to turbulence is known to dramatically increase aerodynamic drag
and heating on the vehicle’s surface as well as significantly affect the control of the vehicle.1–3 Delaying
transition and accurately predicting its behavior in hypersonic vehicles will allow for greater specificity in
the design of thermal protection systems (TPS). This in turn would help minimize the weight impact of
TPS, allowing for expanded payload capacities and improved overall performance of hypersonic vehicles.

Hypersonic boundary layer transition is governed by several mechanisms and can be broken down into
three distinct stages: (i) boundary layer receptivity, (ii) linear growth of small amplitude instabilities, and (iii)
nonlinear breakdown of the at finite disturbance amplitudes.4 Traditionally, studies on laminar-turbulent
transition at hypersonic speeds have been focused on the linear growth of Mack5 modes, for which the
2nd mode instability has been found to dominate in hypersonic speeds. Fedorov1 recently described these
instability modes as acoustic rays trapped between the wall and sonic line in the boundary layer. Depending
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on flow geometry, resonant interactions can occur between these disturbance modes at different points
along the domain and cause instability.3 This study focuses on the receptivity mechanisms associated with
weak environmental forcing (stage i), which are commonly encountered in both real flight and experimental
conditions, and the linear instability growth that this forcing excites (stage ii). Figure 1 provides a schematic
diagram depicting the general receptivity process in hypersonic flow over a blunt body.

Figure 1. Schematic diagram of freestream receptivity.3

Receptivity mechanisms dictate the initial amplitudes of disturbances in the boundary layer that result
from environmental forcing, which greatly impacts the general stability behavior of the flow. The receptivity
of hypersonic boundary layers to freestream acoustic disturbances has been extensively studied in hyper-
sonic flows over flat plate4,6–9 and cone geometries.10–13 For a flat plate case, Ma and Zhong4,6, 7 found that
freestream acoustic disturbances generate initially stable modes near the leading edge, which then become
unstable after synchronization. This synchronization point is where the discrete modal disturbances origi-
nating from the continuous freestream fast and slow acoustic spectra interact and exchange energy, which
can eventually destabilize one of the discrete modes to cause an amplifying Mack mode instability. Ma and
Zhong4 labeled the discrete modes originating from the freestream fast acoustic spectrum as mode I, II, etc.
continuing downstream in accordance with their appearance, while they labeled the disturbances originating
from the freestream slow acoustic spectrum as the 1st mode, 2nd mode, and so on in accordance with the
Mack mode instabilities. Based on their asymptotic leading edge behavior, Fedorov and Tumin14 renamed
the discrete acoustic modes emerging from the continuous fast acoustic spectrum sequentially as mode F1,
F2, etc... (described by Mack as the multiple-viscous solutions15). Similarly, mode S referred to the discrete
slow acoustic mode originating from the continuous slow acoustic spectrum and corresponds to the Mack
mode instabilities presented in Ma and Zhong.4 It has been found that, depending on flow conditions, both
mode F and mode S instabilities are capable of becoming unstable.

In their studies, Ma and Zhong4 found that freestream acoustic, vorticity, and entropy waves modelled
as discrete fourier modes could all excite modal disturbances in flat plate boundary layers. They showed
that a freestream entropy disturbance excited strong stable mode I (F1) disturbances upstream on the flat
plate. These waves would then be converted into mode II (F2) mode instabilities by synchronization, though
the disturbance modulations were found to be relatively weak near synchronization. The freestream fast
acoustic disturbance, however, experienced significantly stronger modal interaction after synchronization.
Furthermore, the freestream slow acoustic disturbance was shown to successfully excite an unstable 2nd
mode, which was found to be the discrete mode S by LST, while the fast acoustic disturbance became a
strong mode II (F2) disturbance downstream of synchronization. This indicates very diffierent receptivity
paths for these different disturbance types, and necessitates a wide parametric space of disturbances in order
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to fully characterize the receptivity response of a flow. Ma and Zhong4,7 also found that the acoustic waves
in the shock layer, which resulted from shock-disturbance interactions, would be reflected by the boundary
layer and generate secondary acoustic, entropy, and vorticity disturbances after additional shock interactions.
The resulting combined disturbances greatly effected the receptivity of the boundary layer in their flat plate.

Fedorov has also conducted both theoretical and numerical studies on the receptivity of flat plate bound-
ary layersl. Fedorov’s8 theoretical treatment focused on the mechanisms associated with the scattering and
diffraction of acoustic waves near the leading edge of a flat plate. He found that the dominant mechanism
in leading edge receptivity behavior varied between scattering and diffraction oeffects depending on wave
incidence angles, and that leading edge receptivity could result in stronger disturbances than intermodal
exchanges for flat plate geometries. The numerical study by Fedorov et a.9 focused on the receptivity of
a flat plate to temperature spot disturbances induced both in the freestream upstream of the shock, and
near the boundary layer behind the shock. When the temperature disturbance was imposed directly on the
boundary layer, they found that a discrete mode F was generated. This mode then experienced intermodal
interactions, exciting the unstable mode S. The conventional freestream disturbance instead excited acous-
tic waves through shock-disturbance interactions, which then propagated through the boundary layer and
excited the unstable mode S disturbance. They found that this shock-disturbance interaction generated per-
turbation amplitudes that were an order of magnitude higher than those associated with the pure boundary
layer disturbance.

Several numerical studies on the receptivity behaviors of conical geometries have also been performed.
Zhong and Ma16 performed a numerical study of the receptivity of a blunt cone with discrete fast acoustic
waves at Mach 7.99. Contrary to what they observed for the flat plate case4,7 the boundary layer disturbances
were initially highly oscillatory near the nose, but became dominated by 2nd mode instabilities downstream of
synchronization, even though the 2nd mode corresponded to mode S in this case. This receptivity process was
significantly different to what they had found for a flat plate case, indicating that geometry plays a significant
role in receptivity. They further pointed out how factors such as bow shock interactions, nose bluntness,
and entropy layer instabilities could affect the receptivity mechanisms for blunt cones when compared to flat
plates.

Similarly, Balakumar and Kegerise10 found that both vortical and acoustic disturbances excited the 2nd
mode instability in cones, and that the receptivity response was stronger for acoustic disturbance waves.
They also reported that wave incidence had some effect on the receptivity response, indicating a need to
account for more complex disturbance conditions to fully approximate the envelope of conditions found in
flight. Kara et al.12 and Lei and Zhong17 attempted to use receptivity calculations to predict transition on
sharp and blunt cones. They found that while freestream waves readily generated 2nd mode instabilities
downstream on the cone, 2nd mode amplification was unable to accurately predict the transition behavior
observed in blunt cone experiments. Possible explanations for this include non-modal disturbance growth,
such as transient growth,18 or a failure to accurately capture the effects of freestream environmental noise.17

Past studies investigated receptivity by using planar freestream disturbances modelled as discrete fourier
modes.4,10 However, continuous broadband disturbances from the freestream would more accurately repre-
sent noise environments found both in actual flight and experiment.19 Balakumar and Chou11 approximated
these broadband frequency disturbances through carefully chosen combinations of discrete two-dimensional
planar slow acoustic waves. The amplitudes of each of the wave disturbances in the packet was determined by
equating the energy of each discrete wave with a chosen frequency in the experimentally measured freestream
noise spectrum. They found that doing so allowed the transition location to predicted with a reasonable accu-
racy for the sharp nose cases, though the accuracy of the threshold criterion they used decreased significantly
for the blunter cone. They also found that larger nose bluntness decreased receptivity coefficients, which was
defined as the wall pressure perturbation at the neutral point normalized by the freestream acoustic noise
level.

Huang20,21 instead modeled a broadband disturbance through the use of an axisymmetric freestream
hotspot over a compression cone, and found that this hotspot was effective in exciting 2nd mode instabilities
in the boundary layer. Huang found that the resulting disturbance growth rate and phase speed compared
well to LST, and corroborated the results from the experimental study the simulation was based on. The
receptivity mechanism for the entropy spot over a compression cone was also found to be very similar to
that of discrete acoustic waves over a blunt cone, but different from entropy spot disturbances for flat plates.
This further reinforces the significance of geometry for receptivity mechanisms. Huang was then able to
use the LST-derived N-factors along with the surface perturbations from the unsteady DNS to calculate the
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receptivity coefficients for the 2nd mode disturbance. This was done by sampling the total DNS boundary
layer perturbation at a point inside the LST-predicted 2nd mode region, and then normalizing the DNS
data by the N-factor corresponding local N-factor to extract the initial 2nd mode perturbation amplitude.
He found that this process was successful in isolating the receptivity response of the 2nd mode disturbance,
even though the total disturbance was highly multimodal.21 Furthermore, he was also able to extract the
phase angle spectrum of the resulting boundary layer disturbances. With these results, initial boundary layer
disturbances for this particular case should be able to be reconstructed. While these studies showed that
Gaussian pulses could successfully approximate continuous frequency spectrum disturbances and also excite
significant modal instabilities in hypersonic flows over cones, they were very limited in the disturbances they
considered. Additional investigation into the receptivity of acoustic waves must also be made as experimental
environments are often dominated by acoustic noise as well.22 Further expanding the receptivity database
to include acoustic and vorticity disturbances, as well as more complex three-dimensional disturbances will
be necessary in order to fully categorize the response of the flow to the freestream noise conditions that may
be found in experiment and in flight.

LST has historically been used to track the spatial and temporal development of discrete instability
modes, though parabolized stability equations (PSE) have also risen in prominence recently to account
for nonparallel and nonlinear effects.23 Current transition prediction procedures, such as the eN method,
rely on using growth rates for these modal instabilities derived from LST or PSE to determine the relative
amplification of the disturbance amplitudes. Empirically determined threshold values are then used to
predict the onset of turbulent transition.11,24,25 This prediction approach assumes that the boundary layer
disturbances operate solely in the linear growth regime of transition and ignore the effects of both nonlinear
interactions and receptivity mechanisms on the flow. Essentially, these schemes assume that the transitionary
behavior of the flow is governed solely by linear growth. While this assumption can provide good internal
consistency in a given environment, transition thresholds based on this methodology often vary significantly
between different experiments. Schneider19 described similar experiments with threshold N-factors of 5 and
8, demonstrating the potential impact of noise environments on transition. This freestream noise comes
primarily in the form of acoustic waves radiated from turbulent boundary layers on experimental tunnel
walls.22,26 Thus, neglecting the initial amplitudes generated by receptivity mechanisms prevents a more
general application of transition prediction results.

Receptivity data has potential applications in several areas. For instance, the initial disturbance ampli-
tudes derived from receptivity studies can be used to provide initial forcing conditions to nonlinear breakdown
studies such as Sivasubramanian’s and Fasel’s.27 These studies simulate the nonlinear interactions of finite
amplitude disturbance modes in the boundary layer and investigate how these mechanisms can also lead
to turbulence outside of the linear growth regime. Similarly, more robust transition estimation schemes
require a combined consideration of both receptivity mechanisms and linear instability growth to improve
their accuracy. Crouch24 proposed a variable N-factor method that corrects the traditional eN method
through fitting a variation of the N-factor with a simplified model of the freestream response. This has the
advantage of requiring no additional computations after the receptivity data and linear growth (N-factor)
data are first obtained. Another improved transition model is based on the amplitude method proposed
by Mack,28 which also uses receptivity data to correlate initial disturbance amplitudes to freestream noise
environments. Marineau29 used this amplitude method, experimental receptivity correlations, and simula-
tion results in an iterative process to estimate transition on a selection of sharp and blunt nosed cones. He
showed that this method could predict transition for blunt cones and cones at angle of attack much more
accurately than more traditional eN methods. Ustinov30 also extended this amplitude method to investigate
laminar-turbulent transition on a swept wing using a combined amplitude criterion for steady state and time
dependent perturbations in the flow. He found that this method successfully reproduced experimentally
observed dependencies on Reynolds number, local surface roughness, and freestream turbulence. The recep-
tivity results applied in Crouch’s and Marineau’s studies used empirical, experimentally fitted receptivity
correlations. Utilizing receptivity spectra derived from DNS simulations would provide improved precision
to the initial ampitude calculations and potentially help to further improve the accuracy of these alternative
transition prediction methods.

Finally, while the method used by Huang21 is able to isolate the 2nd mode response to freestream forcing,
the multimodal nature of boundary layer disturbances indicates that this also ignores a large spectrum of
other perturbations that can contribute significantly to transition. Therefore, understanding the receptivity
response of all of the instability modes in the flow will be necessary to apply these results to transition
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prediction. More rigorous modal decomposition methods, such as the bi-orthogonal decomposition used by
Tumin31 and Miselis32 can be used to decompose the receptivity spectra into components associated with the
discrete and continuous modal instabilities found in the boundary layer and allow these individual modes to
be studied in more detail. This rigorous modal decomposition would provide additional much needed insight
into the physics of hypersonic flows over aerodynamic geometries.

The current study expands on previous work by Huang20,21 through the inclusion of additional freestream
disturbance types in order to generate a more complete view of the broadband receptivity behavior of cones to
continuous, broadband frequency freestream disturbances. The receptivity mechanisms for the axisymmetric
fast acoustic, slow acoustic, and hotspot freestream pulses have been studied alongside the planar fast and
slow acoustic pulses. This work aims to use steady and unsteady DNS along with LST to study the effects
of freestream pulse disturbances of varying complexity on a straight cone. The goal is to then use these
DNS and LST results to generate receptivity coefficients for the 2nd mode disturbance for each of these
conditions, and provide a database of the initial disturbance response to freestream noise. This database
would be directly applicable for future transition prediction and nonlinear breakdown studies.

II. Simulation Conditions

This study aims to expand on previous work by Huang and Zhong20,21 which detailed the receptivity
response of flow over a flared cone at Mach 6 to freestream hotspot pulses, and used a combination of
LST and unsteady DNS to generate receptivity coefficients. The current study focuses on the receptivity
of a 9.525 mm nose radius circular, straight cone with a half-angle of 7 degrees at mach 10 to freestream
axisymmetric fast acoustic, slow acoustic, and hotspot pulse disturbances as well as freestream planar fast
and slow acoustic disturbances. The perturbations were modelled as Gaussian pulses in the freestream,
providing for continuous, broadband frequency disturbances. Additionally, the cone studied here was 1.9m
in length. The DNS simulations used 240 points in the wall-normal direction and roughly five points per
millimeter on the surface of the cone in the streamwise direction. In the azimuthal direction, four points are
used for the base axisymmetric flows. The flow conditions for this study are summarized in Table 1 and are
based on the tunnel conditions reported by Marineau33 for run 3752.

Table 1. Freestream flow conditions for DNS simulations.

Parameter Value Parameter Value

M∞ 9.79 h0,∞ 1.07 MJ/kg

ρ∞ 4.27 E-2 kg/m3 p∞ 0.65 kPa

T∞ 51.0 K U∞ 1426 m/s

Tw/T0,∞ 0.3 Pr 0.72

Re/m (1E6/m) 18.95 Angle of Attack 0◦

The DNS code used in this study utilizes a shock-fitting formulation with the parameters in Table 1
defining the freestream conditions upstream of the shock formed over the body. Marineau et al.33 used
curve fits of experimental data to generate the viscosity used for the Reynolds number calculations instead
of Sutherland’s Law. This lead to approximately a 10% difference in the calculated freestream unit Reynolds
numbers between this study and Marineau’s.

The meanflow was first converged with the steady DNS, after which the pulse disturbances were intro-
duced in the freestream. The unsteady DNS was then run until the pulse and any resulting perturbations
were convected out of the meanflow domain, after which a Fast Fourier Transform (FFT) was used to de-
compose the surface pressure perturbation data for each disturbance case into their frequency spectra. The
meanflow was also used in LST to identify modal instabilities in the flow. The FFT decomposed data
was then normalized with LST-derived N-factors in order to produce receptivity coefficient spectra for the
primary 2nd mode disturbance for each case.
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III. Governing Equations

The solution methods for the DNS and LST codes were originally developed and implemented by Ma and
Zhong4,34 and are formulated for a perfect gas. This assumption was made based on the low freestream stag-
nation enthalpy reported in Table 1. Their formulation is highlighted here for clarity. The three-dimensional
Navier-Stokes equations in conservative form consist of a single species mass conservation equation, three
momentum conservation equations, and the energy equation. The governing equations in vector form are
written as

∂U

∂t
+
∂Fj
∂xj

+
∂Gj
∂xj

= 0, (j = 1, 2, 3) (1)

where U is the state vector of conserved quantities and Fj and Gj are the inviscid and viscous flux vectors,
respectively. Here, the j indices indicate Cartesian coordinates in the streamwise, radial, and azimuthal
directions about the cone. The conservative vector U is comprised of five conservative flow variables for
mass, momentum, and energy:

U =
[
ρ ρu1 ρu2 ρu3 e

]T
(2)

Additionally, the inviscid Fj and viscous Gj flux vectors are written as:

Fj =


ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(e+ p)uj

 (3)

Gj =


0

τ1j

τ2j

τ3j

τjkuk − qj

 (4)

Since this study assumes a perfect gas flow, the equation of state and the transport equations are

p = ρRT (5)

e = ρ(CvT +
1

2
ukuk) (6)

τij = µ(
∂ui
∂xj

+
∂uj
∂xi

)− λ∂uk
∂xk

δij (7)

qj = −κ ∂T
∂xj

(8)

Furthermore, the viscosity coefficent µ is calculated through Sutherland’s law for nitrogen gas

µ = µr

(
T

T0

) 3
2 Tr + Ts
T + Ts

(9)

In these equations R is the gas constant while cp and cv are the specific heats, which are assumed to
be constant for a given ratio of specific heats γ. The coefficient λ is assumed to be −2µ/3 and the heat
conductivity coefficient κ is computed through a fixed Prandtl number of 0.72.
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IV. Numerical Methods

A. DNS

The DNS code utilizes a high-order shock-fitting method for a perfect gas flow that was developed and
validated extensively by Zhong4,34 to compute the flow field between the shock and the body. The numerical
method is summarized here for clarity. For shock-fitting computations the shock location is treated as an
additional unknown, so its position is solved along with the flow field. Since the shock position is not
stationary, the grid used to compute the flow field is a function of time. First, the Navier-Stokes equations
are transformed into computational space

1

J

∂U

∂τ
+
∂E′

∂ξ
+
∂F ′

∂η
+ +

∂G′

∂ζ
+
∂E′v
∂ξ

+
∂F ′v
∂η

+
∂G′v
∂ζ

+ U
∂(1/J)

∂τ
= 0 (10)

where J is the Jacobian of the coordinate transformation and (ξ, η, ζ) are the transformed computational
coordinates in the streamwise, radial, and azimuthal directions of the cone. A seven point stencil is used to
discretize the spatial derivatives

∂fi
∂x

=
1

hbi

3∑
k=−3

αi+kfi+k −
α

6!bi
h5
(
∂f6

∂6x

)
(11)

where the coefficients α and b are defined as

αi±3 = ±1 +
1

12
α, αi±2 = ∓9− 1

2
α

αi±1 = ±45 +
5

4
α, αi = −5

3
α

bi = 60

Here, h is the step size, α < 0 is a fifth order upwind explicit scheme, and α = 0 reduces to a sixth
order central scheme. In this study the inviscid terms use α = −6 which yields a low dissipation fifth order
upwinded difference, and the viscous terms are discretized using α = 0. The derivatives in the azimuthal
direction are treated with Fourier collocation. To compute second derivatives, the first order derivative
operator is applied twice. Flux splitting is applied with a local Lax-Friedrichs formulation. Additional
details of the numerical methods of this study can be found in Zhong.34

In the shock-fitting formulation the shock itself is treated as a computational boundary at

η(x, y, z, t) = ηmax = constant (12)

and flow conditions behind the shock are calculated from Rankine-Hugoniot relations and a characteristic
compatibility equation from the flow behind the shock. Additionally, the position H(ξ, ζ, τ) and velocity
Hτ (ξ, ζ, τ) of the bow shock in computational coordinates are also concurrently solved as independent flow
variables using high-order finite difference. The details of this shock-fitting method can also be found in
Zhong.34 Finally, the simulations are advanced in time using Euler’s method (RK-1) for computational
speed.

B. LST

LST is commonly used to study the linear growth stage of the transition process, and tracks the growth of
a disturbance that is governed by the linearized Navier-Stokes equations.15 The LST equations are derived
from the governing equations (Equation 1) where the instantaneous flow can be decomposed into a mean
and fluctuating component q = q+ q′. Here q denotes flow variables such as velocity, pressure, temperature,
etc. This instantaneous flow is then reintroduced into the governing equations. Since the steady mean flow is
assumed to satisfy the governing equations it can be subtracted out. Furthermore, the mean flow is assumed
to be a function of y only i.e. q(x, y, z) = q(y) and the flow disturbances are assumed to be small enough
such that higher order perturbations can be cancelled out. This assumption allows for the linearization
of the equations. The perturbations are then assumed to be in the form of a normal mode described by
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q′ = q̂(y) exp [i (αx+ βz − ωt)], where ω is the circular frequency of the disturbance and α and β are the
wavenumbers. In this study a spatial stability approach is used. Thus α is complex and results in the
dispersion relation α = Ω(ω, β). For the spatial stability approach, the circular frequency of a disturbance
mode, ω, must be manually set to be a real number, based on the disturbance frequency being studied, and
the complex spatial wavenumber α can be written as α = αr + iαi. Here, −αi is the growth rate of the
disturbance. Substituting in the normal mode form for the perturbation reduces the problem to a coupled
set of 5 ordinary differential equations (

A
d2

dy2
+ B

d

dy
+ C

)
~φ = ~0. (13)

where ~φ =
[
û, v̂, P̂ , T̂ , ŵ

]T
and A, B and C are complex square matrices of size 5. This is now a boundary

value problem where the derivative operators can be discretized and the equations solved numerically. The
system of equations is solved using using a multi-domain spectral based on Malik.35 This was implemented
and validated for a perfect gas flow over a circular cone by Lei and Zhong.17

LST gives information about what disturbance frequencies are unstable and the corresponding growth
rates of those frequencies, but there is no information on the amplitude of the incoming disturbance. To
estimate boundary-layer transition using LST, the eN transition criterion is used which is defined as:

eN =
A(s)

A0
= exp

[∫ s

s0

−αi(s, f)ds

]
(14)

where A(s) is the integrated disturbance amplitude, A0 is the initial disturbance amplitude, s0 is the location
where the disturbance first becomes unstable at the branch I neutral point, and αi is the spatial amplification
rate obtained from LST. The integration is performed for a constant frequency f , and is done numerically
using trapezoidal integration. Note that a negative imaginary the wave number α results in disturbance
growth while a positive value results in disturbance decay. The N-factor is specifically the exponent of eN .
In-flight transition N-factors are commonly understood to be between 5 and 10. However, this transition
N-factor seems to hold only for sharp cones. Lei17 and Aleksandrova et al.36 found that N factors decreased
considerably at similar streamwise locations for blunter cones, while Marineau33 found that blunt nose N
factors calculated at the beginning of transition were significantly lower than those for sharp nose cases,
reaching as low as 0.5.

C. Freestream Disturbance Model

The stability of the flow can also be studied by perturbing the meanflow and tracking the development of
the resulting disturbances. Here, the flow is perturbed with freestream hotspot, fast acoustic, and slow
acoustic disturbances in the form of Gaussian pulses. Freestream acoustic disturbances have been widely
studied and can effectively introduce 2nd mode instability waves into flows about cones.10–12,16 In these
prior studies, freestream acoustic disturbances were modeled with discrete Fourier modes. While this does
allow for the simulations to approximate the continuously radiating disturbances found in experiments,
the discrete nature of the equations makes it difficult to capture the broadband frequency spectrum of
noise found in windtunnel and flight environments. Balakumar and Chou11 attempted to model broadband
freestream disturbances by combining discrete fourier mode disturbances into wave packets. While this
does approximate broadband frequency disturbance behavior, this treatment still relies heavily on a manual
selection of the necessary frequency bin size and the impinging acoustic mode amplitudes. On the other hand,
Huang20 implemented a freestream entropy spot (hotspot) disturbance modelled as a Gaussian pulse and
found that these hotspot disturbances can excite strong acoustic modes in the boundary layer that continue
to propagate downstream, eventually becoming the amplified 2nd mode. This shows that such a pulse model
could be used to approximate continuous and broadband frequency freestream disturbances, and study the
development of 2nd mode instabilities in cone geometries. The disturbances used in this study build upon
the original work by Huang.21 We first begin with the entropy spot disturbance given in Equation 15.

T (x, y, z, t) = ε T∞exp

(
− R2

c

2σ2

)
+ T∞ (15)

where the Gaussian parameters are given in Table 2.
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Table 2. Gaussian pulse parameters for DNS.

Pulse Geometry ε σ x0

Axisymmetric 5E − 4 1E − 3 −0.02m

Planar 1E − 6 1E − 3 −0.02m

Here, εT∞ refers to the maximum freestream temperature perturbation amplitude. This amplitude was
chosen to ensure that disturbances remained small enough to be applicable to remain in the linear growth
regime.4,20 The term σ controls the width of the pulse and also determines the frequency content of the
disturbance. The term Rc refers to the radial distance from the entropy spot to a point (x, y, z) in the flow
field.

Rc =
√

(x− xspot)2 + (y − yspot)2 + (z − zspot)2 (16)

In Eq. 16 the coordinates (xspot, yspot, zspot) correspond to the center of the hotspot. We assume that the
hotspot propagates purely in the streamwise direction such that yspot = zspot = 0 and xspot = x0 + u∞t
where x0 is the initial location of the hotspot in the unsteady simulation. For a perfect gas the equation of
state can be used to show that the resulting perturbed freestream density is

ρ(x, y, z, t) =
p∞
RT

(17)

The parameters given in Table 2 for the axisymmetric cases result in the pulse shown in Figure 2.This
model for the freestream hotspot perturbation allows for potentially more complex freestream disturbances,
as the shape, incidence location, and intensity of the disturbance can be tuned accordingly. The cases
presented here were perturbed with uniform axisymmetric and planar disturbances propagating along the
center-line of the cone, using the parameters in Table 2 where the pulse width parameter σ was chosen
to encompass significant freestream disturbances at frequencies up to 600 kHz, as shown in Marineau’s
study.33 The spectral distribution (in frequency) of the planar disturbances followed the same trends as
the axisymmetric cases, with the only difference being in the reduction of the peak disturbance amplitude.
The amplitude of the planar disturbances were reduced so as to ensure that the downstream perturbations
remained linear, as the planar disturbances caused shock-disturbance interactions along the entire length of
the cone.

(a) (b)

Figure 2. Freestream disturbance distributed over (a) time and (b) frequency for axisymmetric pulse.

The acoustic freestream disturbances were also modelled using the same Gaussian model. A simple planar
acoustic disturbance assumes a disturbance amplitude distribution in the form of Eq. 18.

q(x, y, z, t) = |q′|∞exp

(
− (x− C∞)2

2σ2

)
+ q∞ (18)
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For acoustic disturbances, the coefficient q corresponds to any perturbed variable in the freestream.
Additionally, q’ represents the perturbation amplitude of each of these variables normalized by the freestream
value. In the case of a fast acoustic disturbance, the freestream disturbance amplitudes follow the dispersion
relations given by:

|ρ′|∞ =
|P ′|∞
γ

= |u′|∞M∞ = εM∞ |s′|∞ = |v′|∞ = |w′|∞ = 0 (19)

A slow acoustic disturbance in the freestream is governed by a very similar dispersion relation:

|ρ′|∞ =
|P ′|∞
γ

= −|u′|∞M∞ = εM∞ |s′|∞ = |v′|∞ = |w′|∞ = 0 (20)

Furthermore, these acoustic disturbances propagate in the freestream at a phase speed of C∞, which is
defined as

C∞ = u∞ ± a∞ (21)

for fast(+) and slow(-) acoustic waves respectively. In equation 21 u∞ is the freestream velocity and a∞ is
the speed of sound. The axisymmetric acoustic pulse is defined in a similar manner in Eq. 22.

q(x, y, z, t) = |q′|∞exp

(
− (Rac)

2

2σ2

)
+ q∞ (22)

The variables and disturbance amplitudes here are the same as those for the 1-D convected pulse, with
the exception of the Rac term. Similar to the axisymmetric pulse, this variable is given by the expression:

Rac =
√

(x− xpulse)2 + (y − ypulse)2 + (z − zpulse)2 (23)

In this case the pulse was centered along the cone, requiring ypulse = zpulse = 0, while being convected
downstream through the term

xpulse = x0 + C∞t (24)

Again, x0 corresponds to the initial x position of the pulse which is set during the beginning of the
simulation.

D. Boundary Layer Receptivity

The pulse disturbances imposed onto the cone in the unsteady simulations were chosen to induce broadband
frequency perturbations in the boundary layer of the cone. LST was used to validate the results of the
unsteady DNS analysis, which requires decomposing the disturbances into individual frequency components.
For an unsteady, time-dependent disturbance a temporal Fourier spectral analysis was used on the boundary
layer perturbations.

The time-dependent perturbation variables can be expressed in terms of their Fourier spectral compo-
nents, obtained through FFT:

h(tk) ≡ hk ≈
N−1∑
n=0

H(Fn)e−2πiFntk (25)

where H(Fn) is the frequency space Fourier coefficient corresponding to the nth discretized frequency Fn.
Additionally, N corresponds to the total number of Fourier collocation points used to discretize the time-
dependent function h(t) in Fourier space. The discretized time function hk is defined as being the value of
the function h(t) at a given time t = tk.

In this study, the variable h(t) corresponds to local boundary-layer perturbations in flow variables such
as pressure, velocity, density, and temperature. The complex Fourier coefficients H(Fn) correspond to the
frequency space distribution of these perturbation variables, and |H(Fn)| are the perturbation amplitudes
for these variables at a given frequency.

Since LST was used to validate the results of the unsteady DNS analysis, local growth rates and wavenum-
bers need to be calculated from the Fourier decomposed perturbation data. Following Mack,15 the local
growth rates for each frequency are determined by

−αi =
1

|H(Fn)|
d|H(Fn)|

ds
(26)
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and the local wave numbers are determined by

αr =
dψn
ds

(27)

where s corresponds to the local streamwise coordinates and ψn is phase angle of the nth frequency. The
phase speed of a given disturbance at a given frequency is defined as

cr =
2πFn
αr

(28)

The response of the system to each freestream disturbance environment is can be represented through
a receptivity coefficient. This receptivity coefficient, defined here as the initial amplitude of the 2nd mode
disturbance A0(f) = Crec(f), is found by

A0(f) = Crec(f) =
A(f)

eN(f)
(29)

where A(f) is the normalized fourier decomposed pressure disturbance at a given frequency and eN (f) is the
amplification factor (N-factor) determined through LST analysis for a given frequency f. The streamwise
sampling locations of both the N-factor data and the unsteady pressure perturbation data are the same in
order to isolate the initial amplitude of the 2nd mode disturbance. By doing so, the multimodal nature of
the boundary layer disturbances can be removed. Thus, the spectrum of receptivity coefficients for linear
2nd mode growth can be produced using a combination of LST and unsteady DNS data. We see later that
the choice of sampling location does have some influence on the resulting receptivity coefficients by this
definition.

V. Steady Flow Field Solution

The steady DNS pressure and mach number contours for the cone are shown in Figure 3 for the first
zone at the nose, and the second zone at the beginning of the cone frustum. Figure 4 presents the grids used
at this location. A total of 240 points were used in the η direction, while the distribution in the ξ ranged
from 30 points per mm at the nose to 5 points per mm at the end of the geometry. These distributions were
chosen to esnure that sufficiently low wavenumber disturbances could be captured by the simulation and
to provide sufficient resolution in the meanflow data so as to reduce numerical inconsistencies in the LST
analysis. A total of 10,080 points were used in the ξ direction to resolve the cone to 1.9 m.

(a) (b)

Figure 3. Partial view of meanflow (a) pressure and (b) mach number for zones 1 and 2 near nose region.
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Similar pressure and mach number contours for the full cone are shown in Figure 5. The mach number
contours in Figure 3b and Figure 5b show evidence of a moderate entropy layer extending to approximately
x = 0.4m as a band of relatively low Mach numbers behind the shock. These entropy layers reduce local
flow velocities, and in turn reduce local Reynolds numbers. Since transition locations have been correlated
with larger local Reynolds numbers, this process has been used to explain the transition delaying mechanism
for intermediate nose bluntness.37 However, this fails to explain transition reversal effects observed in
large bluntness flows.17 Zhong and Ma16 also showed the emergence of an additional generalized inflection
point due to the entropy layer as a possible outcome, along with non-modal disturbance growth. Further
investigation of the effects of freestream receptivity in the entropy layer may be of interest in resolving this
problem.

Marineau33 studied cones up to lengths of 1.5m. The domain here was lengthened to study the further
downstream development of disturbances excited by the freestream pulses considered in this work, and to
determine if a significant supersonic mode could be observed in this low enthalpy case. The steady solution
for this case was then used to study the development of boundary layer disturbances through both LST and
unsteady DNS analysis.

Figure 4. Partial view of grid distribution for zones 1 and 2 near nose region.

(a) (b)

Figure 5. Meanflow (a) pressure and (b) mach number for entire cone.
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VI. LST Results

LST results have indicated an strong amplified 2nd mode band between frequencies of 118 kHz and 238
kHz. At the reported experimental transition location of 1.037m for this case,33 the unstable 2nd mode is
found between frequencies of 150 and 185 kHz. This compares well to Marineau’s results. The growth rate
contours are shown in Figure 6a and the neutral curve is shown in Figure 6b. The negative growth rates
in Figure 6a are the unstable frequencies and the neutral curve was generated by fitting the branch I and
branch II neutral stability points shown in Figure 6a.

(a) (b)

Figure 6. LST results (a) Growth Rate Contour (b) Neutral Curve

For discrete frequencies, an N factor can be calculated using Equation 14. Given the experimentally
determined transition locations from Marineau,33 transition N-factors and their associated peak frequencies
can be obtained. Figure 7a presents N-factor curves for frequencies ranging from 120 to 240 kHz.

(a) (b)

Figure 7. (a) N-factor data ranging between 120 kHz to 220 kHz with ∆f = 10 kHz. (b) Current LST N-factors
vs. Marineau’s33 reported PSE N-factors.

For this case (which corresponds to Run 3752), Marineau33 reported an experimentally determined tran-
sition location of s = 1.037m, along with a corresponding N factor of 1.6. A direct comparison between
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the fitted profile of the LST N-factors in Figure 7a and Marineau’s PSE derived N-factors are shown in
Figure 7b, which was made by fitting the curve profiles for each of the sampled LST frequencies. Our LST
reports a peak disturbance frequency of 176 kHz at the experimental transition location, with an N-factor
of approximately 1.7. This is consistent with Marineau’s reported results for this case. In general, the LST
results correlate reasonably well with those reported by Marineau, with our LST overpredicting the N-factors
slightly throughout the downstream sections of the domain. This difference can be attributed to non-parallel
effects that the LST formulation neglects compared to the PSE package utilized by Marineau.

Several of the higher frequency N-factor curves in Figure 7a show some deviation from the expected
smooth Nfactor shape. This is indicative of discontinuities in the growth rate, and may attributed to either
numerical resolution issues in the LST solution algorithm or interaction with additional disturbance modes
that were not captured in the current analysis. These can include additional discrete modes such as mode
F2 originating from the fast acoustic spectrum.

(a) (b)

Figure 8. Streamwise LST results at f = 176 kHz for (a) Phase Speed (b) Growth Rate.

(a) (b)

Figure 9. Streamwise LST results at f = 150 kHz for (a) Phase Speed (b) Growth Rate.
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The streamwise LST results for the case are also presented in Figure 8 for the 176 kHz disturbance. From
Figure 8a and Figure 8b it is apparent that the unstable disturbance here originates from the fast acoustic
spectrum and that Mode F corresponds to the unstable 2nd mode for this case. In addition, Figure 8b shows
the disturbance being amplified between s = 0.79 m and s = 1.22 m for the 176 kHz case. The discontinuities
in these figures can be attributed to the synchronization between Mode F and Mode S disturbances, which
can be difficult to resolve numerically.35

An additional result is shown in Figure 9 for a 150 kHz disturbance, which is one of the most amplified
frequencies predicted by LST near the end of the domain. Again, it is shown that the primary 2nd mode
disturbance originates from the fast acoustic spectrum and is the mode F disturbance. Additionally, Figure
9 shows that this particular frequency demonstrates an extensive synchronization region between mode F
and mode S, lying between 1.1 and 1.7 m along the cone. The discontinuity at s = 0.75m in Figure 8b is
due to synchronization. The discontinuities at s = 0.5m and in Figure 8 and at s = 0.8m in Figure 9 can be
attributed to issues in the numerical resolution of the LST algorithm near synchronization.

(a) (b)

Figure 10. Velocity and pressure streamfunctions for the 176 kHz disturbance at (a) 1.037m and (b) 1.41m

(a) (b)

Figure 11. Velocity and pressure streamfunctions for the 150 kHz disturbance at (a) 1.037m and (b) 1.41m
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The eigenfunctions for the unstable mode F are presented in Figure 10a and Figure 10b for the 176 kHz
disturbance. Figure 10a shows the pressure and velocity eigenfunctions for the 176 kHz disturbance at the
experimental transition location of s = 1.037m while Figure 10b depicts the same results at s = 1.41m,
which corresponds to the peak amplification point for the 150 kHz disturbance. Figure 11a and Figure 11b
present the same results for the 150 kHz disturbance at s = 1.037m and s = 1.41m respectively.

The pressure eigenfunction curve in Figure 10a is indicative of a discrete mode F1 instability, containing
one apparent peak and one apparent valley.6 The same pressure eigenfunction at the downstream location in
Figure 10b sees significant oscillations, which may be indicative of multimodal influences at this disturbance
frequency. This is likely because the sampled location is outside of the unstable 2nd mode region for the 176
kHz disturbance, causing the LST algorithm to have difficulties latching onto a dominant mode. Figure 11a
for s = 1.037m and Figure 11b similarly depict the eigenfunctions of the unstable Mode F. Each of these
results also show that the modes decay quickly after exiting the boundary layer, and depict strong 2nd mode
eigenfunction shapes when the unstable mode is dominant.

VII. Unsteady DNS Results and LST Comparison

The receptivity of the cone was studied in response to a variety of freestream pulse disturbances. First, the
pulse was introduced upstream of the nose and then convected through the domain in a streamwise manner.
The resulting boundary layer disturbances on the cone’s surface were studied by using FFT to decompose
the surface pressure perturbations into their spectral frequency components. The specific disturbance cases
and their respective labels are given in Table 3. The disturbances are differentiated by both their freestream
perturbation type and by their spatial extent. The fast acoustic, slow acoustic, and hotspot (entropy spot)
disturbances are defined by their freestream dispersion relations discussed previously in Equations 18, 19,
and 20. The axisymmetric pulses are finite in three dimensions, while the planar pulses are again semi-infinite
in the y-z plane but finite along x. The frequency distribution of the pulses was chosen to be the same in
each case.

Table 3. Freestream flow conditions for DNS simulations.

Disturbance Type Case

Axisymmetric Fast
Acoustic

B1

Axisymmetric Slow
Acoustic

B2

Axisymmetric
Hotspot

B3

Planar Fast
Acoustic

B4

Planar Slow
Acoustic

B5

Figure 12 for the finite axisymmetric hotspot (Case B3) shows the pressure disturbance contours near
the end of the cone after perturbation by an axisymmetric hotspot (Case B3). Similar results are observed
for the other planar and axisymmetric disturbance cases as well. The rope-like wave structures shown here
are indicative of a perturbation growing in accordance with Mack’s 2nd mode.4 Figure 13 similarly shows
the pressure perturbation contours for the planar slow acoustic disturbance (Case B5) which show similar
rope-like structures indicative of the 2nd mode.
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Figure 12. Pressure perturbations near s = 1.5 m after the finite axisymmetric hotspot perturbation (Case
B3).

In addition to the conventional 2nd mode, mach wave-like radiating structures can be observed near the
tail end of the disturbance wavepacket. This behavior is characteristic of a supersonic mode, in which the
phase speed of the disturbance is supersonic with respect to the mean flow.38 Recent studies have shown
that these supersonic modes may have disturbance amplitudes similar in strength to the 2nd mode instabil-
ities, and may be of significant importance in the process of transition.38–41 Of particular note is that the
supersonic mode observed here has occurred in a perfect gas case whereas Knisely38–40 and Mortensen41 ob-
served significant supersonic modes in high-enthalpy flows with strong thermochemical nonequilibrium. This
indicates that a significant supersonic mode may be present in a wider range of conditions than previously
believed. While the downstream location of these supersonic modes makes it unlikely that they affect the
transition behavior of this particular case, they may play a role in mechanisms such as nonlinear breakdown
from finite amplitude disturbances that occur far downstream.

Figure 13. Pressure perturbations near s = 1.5 m after the planar slow acoustic perturbation (Case B5).

A. FFT Decomposed Pressure PSD

The total surface pressure perturbations along the downstream regions are presented in Figure 14 for the
axisymmetric hotspot (Case B3). The disturbance wave packet is shown to decay upstream of the 2nd
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mode region, before experiencing amplification. These surface disturbances can be decomposed into spectral
frequency data using a FFT. The resulting normalized surface pressure power spectral density (PSD) contours
for the axisymmetric fast acoustic (Case B1), slow acoustic (Case B2), and hotspot (Case B3) disturbances
are shown in Figure 15. Additionally, the surface pressure PSD for the planar fast acoustic (Case B4)
and slow acoustic (Case B5) disturbances are presented in Figure 16. These fourier decomposed pressure
disturbances are normalized by the spectral content of the initial freestream disturbance in Figure 2b.

1

Figure 14. Time history of pressure perturbations in downstream region of Case 2 for an axisymmetric hotspot
disturbance (Case B3).

Figure 15 shows that the three axisymmetric pulses similarly excite the 2nd mode in the downstream
portions of the cone. An additional disturbance band between 100 kHz and 200 kHz is shown at the beginning
of the domain and corresponds to the forcing waves generated by the shock-disturbance interaction upstream.
This initial perturbation is attenuated until the 2nd mode region, where amplification begins. The initial
forcing waves seem strongest for the axisymmetric fast acoustic disturbance (Case B1), followed by the
hotspot (Case B3) and then the slow acoustic (Case B2) disturbances.

The PSDs for the planar acoustic pulses in Figure 16 show similar phenomena. In particular, Figure 16b
for the planar slow acoustic pulse (Case B5) depicts a similar initial disturbance near the beginning of the
plotted domain that is partially attenuated before 2nd mode amplification. However, an additional narrow
disturbance band neighboring the 2nd mode here can be seen, and may be attributed to the continuous
forcing provided by the planar disturbance front propagating through the domain. On the other hand,
Figure 16a shows that while the planar fast acoustic disturbance (Case B4) also generates a 2nd mode
disturbance band between 100 and 200 kHz in the upstream regions, the frequencies associated with the
forcing seem to experience amplification instead of attenuation as they move downstream.
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(a) (b)

(c)

Figure 15. Surface FFT pressure distribution for (a) Case B1, (b) Case B2, and (c) Case B3.

(a) (b)

Figure 16. Surface FFT pressure distribution for (a) Case B4 and (b) Case B5.
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Figure 16a for the planar fast acoustic (Case B4) pulse also shows an additional instability between 160
kHz and 260 kHz that isn’t observed in the planar slow acoustic or any of the axisymmetric cases, indicating
that Case B4 is able to much more readily excite a variety of instabilities in the boundary layer here. A
rescaled contour plot for Case B4 in Figure 17 shows that the strongest disturbance is still associated with
the 2nd mode. However, the strongest perturbation at the experimentally determined transition location
of s = 1.037 m for this case does not lie within the 2nd mode frequency band. Instead, a lower frequency
disturbance at 76 kHz and a higher frequency disturbance at 252 kHz both have perturbations five to six
times stronger than those found in the 2nd mode region predicted by LST for this point. It is apparent that
for Case B4, these other instability modes have significant effects on the receptivity response off the flow
to the planar fast acoustic disturbance (Case B4) both at the experimentally determined transition location
and downstream on the cone.

Figure 17. Rescaled FFT contours of surface pressure perturbations for Case B4.

A further comparison can be made by comparing these PSD contours with the neutral stability curve
derived from LST. The resulting comparison figures are shown in Figure 18 for Cases B1 through B3 and
Figure 19 for Cases B4 and B5. From Figure 18 and Figure 19 it can be seen that there is an extensive
frequency band of disturbances contained between 135 to 175 kHz centered around the branch II neutral
point in the downstream portion of the cone in each of the five disturbance cases. This indicates a strong
amplification of 2nd mode disturbances at these downstream locations.
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(a) (b)

(c)

Figure 18. Surface FFT pressure distribution vs. LST neutral curve for (a) Case B1, (b) Case B2, and (c)
Case B3.

Additionally, while N-factor amplification is typically calculated through integrating LST-derived growth
rates, they can also be extracted directly from the unsteady results. Equation 14 defines the N-factor
both through an integrated LST growth rate, as well as the ratio between an arbitrary location and the
initial disturbance amplitude in the 2nd mode region. Using the latter definition, the N-factors can also
be extracted from the unsteady DNS results. The DNS-derived N-factor contours are presented in Figure
20 for the axisymmetric and planar fast acoustic disturbance cases (Case B2 and Case B4).These unsteady
N-factor contours are very similar to the FFT decomposed surface pressure distributions shown in Figures
15 through 19. The primary instabilities in the unstable 2nd mode region still experience the strongest
downstream amplification in frequencies ranging between 140 kHz to 150 kHz. It was found that Case B2’s
results shown in Figure 20a correlated very well with the LST results in Figure 7a. The peak N-factor from
LST at the end of the domain was found to be approximately 9.21, while the DNS results showed a maximum
N-factor of 9.11. The results for Case B4 showed a significantly smaller peak amplification of 6.54 at the
same location and frequency. This can be explained by the modulation of the initial 2nd mode waves in
the planar acoustic case due to the additional forcing from the extended shock-disturbance interactions seen
in the planar disturbance cases. These additional disturbances can significantly increase the perturbation
levels at the branch I neutral point that are used to normalize other disturbances in the plotted region.
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(a) (b)

Figure 19. Surface FFT pressure distribution vs. LST neutral curve for (a) Case B4 (b) Case B5.

(a) (b)

Figure 20. Unsteady DNS-derived N-factor contours for (a) Case B1 and (b) Case B4.

The FFT decomposed surface pressure perturbations at different streamwise locations are also presented
in Figure 21 for cases B1 through B3 and Figure 22 for cases B4 and B5. The spectra of the surface pressure
perturbations are plotted at several locations both upstream and downstream of the 2nd mode amplification
region. As expected, the spectral surface pressure distributions for the axisymmetric cases are very similar
to each other. Again, we see that Case B1 excites the strongest overall pressure perturbations downstream
in the 2nd mode region. Case B1 also generates stronger initial disturbance waves upstream of the 2nd
mode amplification region as observed the PSD contours. Distinctive peaks in the disturbance amplitude
can also be seen here, initially centered around frequencies of approximately 170-180 kHz. As we move
further downstream this peak disturbance band shifts to center around lower frequencies while also growing
in overall amplitude. This peak eventually centeres around 145-150 kHz near the end of the computational
domain. The amplitude peaks observed here correspond to the primary 2nd mode instability for this flow.
This shift to lower frequencies in the downstream regions can also be seen in the LST results in Figure 6, as
optimal disturbances are expected to follow with the branch II neutral point. Additionally, the disturbance
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spectra at the earlier sampling locations show much smaller peaks near the second mode frequencies that
dampen as they move downstream. These are seen to begin amplifying again after s = 0.915m and confirms
the initial decay and eventual amplification of 2nd mode instabilities expected for this cone geometry. While
the spectral amplitudes for Cases B2 and B3 are smaller, the same general trends are observed there.

(a)

(b) (c)

Figure 21. FFT decomposed surface pressure spectra at various streamwise locations for (a) Case B1, (b)
Case B2, and (c) Case B3.

The results for Cases B4 and B5 in Figure 22 follow a similar trend. Case B5 shown in Figure 22b follows
closely with the behavior observed in the axisymmetric cases, though the low frequency results throughout
the sampling locations show significantly more oscillations. These can again be attributed to the additional
forcing waves that result from the planar disturbance cases. Furthermore, the disturbance spectrum at
the end of the domain shows a stronger secondary peak near 300 kHz that may be attributed to a more
strongly excited 3rd mode instability. Case B4 also clearly demonstrates the appearance of strong second
mode amplification. However, significant disturbance amplitudes are also observed throughout the high and
low frequency spectra. At the s = 1.061m sampling location near the experimental transition location, it is
again observed that the 2nd mode disturbance is noticably weaker than disturbances found at 76 kHz and
250 kHz.
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(a) (b)

Figure 22. FFT decomposed surface pressure spectra at various streamwise locations for (a) Case B4 and (b)
Case B5.

B. Comparison of LST Results with Unsteady DNS

(a) (b)

Figure 23. Case B1 unsteady DNS vs. LST predicted results for 150 kHz disturbances (a) Phase Speed (b)
Growth Rate.

Through Equations 26, 27, and 28 the Fourier decomposed unsteady DNS can be used to calculate the
growth rates and phase speeds of different throughout surface perturbations the disturbance spectrum. These
were directly compared to the instability modes predicted by LST. The results for the 150 kHz frequency
disturbance for the axisymmetric, fast acoustic (Case B1), slow acoustic (Case B2), and hotspot (Case B3)
pulses are presented in Figures 23, 24, and 25 respectively.
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(a) (b)

Figure 24. Case B2 unsteady DNS vs. LST predicted results for 150 kHz disturbances (a) Phase Speed (b)
Growth Rate.

The unsteady DNS results for case B1 show good agreement with LST, demonstrating that the discrete
mode F is unstable for this case. The LST predicts an extensive synchronization range for this frequency
between streamwise locations of 1.1 m and 1.8 m. Prior to this synchronization region, significant oscillations
in both the phase speed and growth rate plots can be observed in the DNS results. This oscillation is
indicative of modal interactions, though it is still apparent that the unstable mode F dominates the flow.
These oscillations dampen out significantly as the disturbance propagates through the end of the domain for
Case B1 in Figure 23. However, the DNS also shows a rapid destabilization of the 150 kHz disturbance at
the end of the domain that the LST seems to under-predict.

(a) (b)

Figure 25. Case B3 DNS vs. LST predicted results for 150 kHz disturbances (a) Phase Speed (b) Growth
Rate.

The results for Case B2 in Figure 24 and Case B3 in Figure 25 similarly follow the unstable mode F
disturbance, though strong confined oscillations in the unsteady DNS results are also observed at the end of
the synchronization between the discrete mode F and mode S at this frequency. The DNS results here also
show a rapid destabilization following the end of synchronization at this frequency, contrary to the strong
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stable growth rate predicted by the LST. This may be indicative of an additional instability mode that the
LST has difficulty capturing. One potential source of downstream instability is the supersonic mode, which
is characterized by an an disturbance wave propagating with a phase speed that is supersonic relative to the
local mean velocity. This supersonic mode can be observed through acoustic radiation from the boundary
layer into the shock layer in the form of decaying mach wave.38 Figure 12 and Figure 13 show the emergence
of some of these radiating mach waves starting near s = 1.4m for the Case B3 and Case B5 respectively.
It remains to be seen whether this abrupt change in the DNS growth rates and phase speeds is due to
an additional instability mechanism, or simply a numerical oscillation occurring at the branch point of the
discrete boundary layer disturbances.

Similarly, the DNS and LST comparisons for the 150 kHz disturbance are given in Figure 26 for Case B4
and Figure 27 for Case B5. The boundary layer disturbances resulting from Case B4 do not seem to become
dominated by 2nd mode instabilities until the far downstream regions of the cone. The growth rate shown
in Figure 26b is highly oscillatory and centered around a neutrally stable disturbance until approximately
s = 1.6m. Furthermore, the phase speed plot in Figure 26a shows similar oscillations while a significant
section of the unsteady DNS disturbance is centered around the freestream fast acoustic spectrum. The
oscillatory nature of these disturbances are again indicative of the influence of multiple coupled modes at
these relatively upstream locations. This is likely the influence of the freestream forcing dominating the
disturbance field before resonant interactions sufficiently amplify the 2nd mode.

(a) (b)

Figure 26. Case B4 unsteady DNS results vs. LST predicted results for 150 kHz disturbances (a) Phase Speed
(b) Growth Rate.

The planar slow acoustic case (Case B5) correlates much better with the LST results. Figure 27a shows
that the phase speed of the 150 kHz disturbance in the unsteady DNS matches very well with the LST
predicted phase speed for the fast acoustic instability at this frequency. The growth rate shown in 27b further
corroborates this, though the results prior to 1.4 m still show signifcant oscillations in the DNS results. From
this it can be seen that the planar slow acoustic disturbance behaves similarly to the axisymmetric hotspot
and acoustic disturbances, and primarily excites the 2nd mode instability at this frequency. The rapid
destabilization effect observed in the axisymmetric disturbance cases, however, was not seen at the end of
the domain here in for the planar slow acoustic case.
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(a) (b)

Figure 27. Case B5 unsteady DNS results vs. LST predicted results for 150 kHz disturbances: (a) Phase
Speed (b) Growth Rate.

(a) (b)

Figure 28. Case B1 unsteady DNS results vs. LST predicted results for 176 kHz disturbances: (a) Phase
Speed (b) Growth Rate.

Similar results are presented for the 176 kHz disturbance for Case B1 in Figure 28, for Case B4 in Figure
29, and for Case B5 in Figure 30. This frequency was determined through LST to correspond to the most
amplified 2nd mode instability at the experimental transition location. The other axisymmetric disturbance
cases at this frequency have been omitted as they share very similar characteristics to Figure 28.

Figure 28a shows that Case B1 generates significant fast acoustic disturbances in the boundary layer
upstream on the cone. The boundary layer disturbances then experience strong modulations at the syn-
chronization point and another downstream location before the disturbances become dominated by the fast
acoustic waves generated from forcing. The growthrate plot in Figure 28b shows that this second modulation
occurs near the branch II neutral point, which indicates that the boundary layer disturbances quickly become
dominated by the freestream forcing after the 2nd mode stabilizes for this frequency.
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(a) (b)

Figure 29. Case B4 unsteady DNS results vs. LST predicted results for 176 kHz disturbances: (a) Phase
Speed (b) Growth Rate.

(a) (b)

Figure 30. Case B5 unsteady DNS results vs. LST predicted results for 176 kHz disturbances: (a) Phase
Speed (b) Growth Rate.

Figure 29a shows a similar behavior for Case B4, though the DNS depicts the boundary layer disturbances
tracking the continuous fast acoustic spectrum much further upstream. The growth rate plot in Figure 29b
for Case B4 shows the DNS perturbation is largely dominated by a neutrally stable disturbance. Oscillations
in this case are centered again around the synchronization point and the branch II neutral point, indicating
that while the 2nd mode is not the dominant boundary layer instability at this case, its interactions still
affect the instabilities at 176 kHz. This behavior can be attributed to the stronger freestream forcing waves
that result from the planar disturbances.

The results in Figure 30 show that Case B5 similarly generates fast acoustic waves upstream on the cone.
However, these quickly experience strong modulations and begin tracking the continuous entropy/vorticity
spectrum in the phase speed plot in Figure 30a. The growth rate plot in Figure 30b shows strong oscillations
near the synchronization and branch II neutral points, similar to Case B4 with what appears to be a
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neutrally stable/slightly unstable general boundary layer disturbance. The results indicate that, at least
at this frequency of 176 kHz, Case B5 significantly excites entropy disturbances in the boundary layer.
This is contrary to the results for Case B5 at 150 kHz and the results for the other cases at both of these
frequencies. Thus, the transition in this blunt nose geometry is likely not solely governed by the 2nd mode,
and corroborates Marineau’s33 original conclusions regarding this case.

VIII. Receptivity Results

The primary goal of this study is to calculate and present the receptivity coefficients resulting from a
variety of freestream pulse disturbances with broadband, continuous frequency spectra for the current cone
geometry. The receptivity coefficient spectra for each of the disturbances was calculated from Equation 29
using surface pressure perturbation data taken from unsteady DNS, as well as N-factor data derived from
LST. This method was originally proposed by Huang20,21 in order to decompose the perturbation amplitudes
and specifically extract the receptivity spectrum of the 2nd mode instability. Furthermore, isolating the
contributions of different modal disturbances to the total initial disturbance amplitudes and would allow
for greater specificity when tracking the development of instabilities across a flow domain. An example
of a more rigorous method for determining the receptivity coefficients for different modal disturbances is
the bi-orthogonal decomposition method developed by Tumin31 and Miselis et al.32 Miselis et al. showed
that this bi-orthogonal decomposition could be used to isolate receptivity coefficients for even more of the
different discrete and continuous instability modes in a flow, rather than just the 2nd mode like the method
used by Huang and this study. However, this much more rigorous decomposition model requires additional
development before it can be applied here.

Using Huang’s method, the receptivity coefficients were calculated for each of the disturbance cases.
Additionally, we were also able to generate the phase angle spectra for the disturbance cases. With the data
from the receptivity coefficient spectra and the phase angle spectra, the total initial receptivity response to
a freestream disturbance can be reconstructed. These initial disturbances can then be used as inputs for
more advanced transition predicted methods like Mack’s amplitude method,28 Crouch’s variable N-factor
method,24 Marineau’s iterative method,29 and Ustinov’s implementation of the amplitude methods.30

The receptivity coefficient spectra for each of the cases are plotted below in Figures 31 through 33.
Additionally, since these receptivity calculations may be sensitive to sampling location,21 a comparison of
the receptivity spectra for different sampling locations was made for each of the axisymmetric and planar
disturbances. The receptivity spectra for Case B1 and Case B2 are presented in Figure 31a, while Case 3 is
presented in Figure 32.

(a) (b)

Figure 31. Receptivity coefficients at different sampling locations for (a) Case B1 (b) Case B2.

The sampling locations were chosen to be at the branch I neutral stability point xbrI , the branch II neutral
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stability point xbrII , and an intermediate location defined at xsample = 1.3 ∗xbrI for a given frequency. This
was chosen to ensure the sampling location remained within the unstable region for the 2nd mode. The
branch I point was chosen to compare directly to Balakumar11 and Huang.21 Huang stated that simply
using the pressure perturbations at the branch I neutral point may cause the signal to be dominated by the
multimodal content of the disturbance. This may make it difficult to apply the receptivity results for general
transition studies. Figures 31 and 32 however show that 2nd mode disturbances dominate for the freestream
axisymmetric pulse cases. While the branch I sampling case does show significantly more oscillations, which
are indicative of multimodal disturbances,21 the general shape and magnitude of the receptivity coefficients
is in line with the other sampling locations.

The branch II sampling location spikes near 140 kHz to 150 kHz, which correlates to the most amplified
frequencies at the end of the computed domain. This spike may be due to the influence of a potentially
unstable supersonic mode in the downstream region of the cone. However, the supersonic mode is only
observed far enough downstream that it is unlikely to have an effect on the primary transition observed in
the experiment. Additional studies into the impact of the supersonic mode are necessary for this case before
its significance can be fully determined. It can be concluded that, for the axisymmetric disturbances studied
here so far, sampling location does not have a significant impact on the resulting receptivity coefficients,
and the 2nd mode disturbance dominates. This is likely because any extraneous forcing waves are primarily
isolated to and damped out in the upstream regions of the cone near the nose. As a result, they do not
interfere with the development of 2nd mode disturbances far downstream for these cases.

Figure 32. Case B3 receptivity coefficients for different sampling locations.

The results also show that for axisymmetric pulse disturbances, Case B1 generates the strongest initial
disturbance amplitudes followed by Case B3 and then Case B2. This is in line with the LST and unsteady
DNS results which show that the unstable 2nd mode corresponds to the discrete mode F originating from
the fast acoustic spectrum.

Figure 33 presents the same data for the planar freestream disturbance cases. The receptivity coefficients
for the Case B5 show significantly different shapes from the axisymmetric pulse cases. The magnitudes of
the receptivity coefficients are also significantly higher. This is because the planar disturbances continually
introduce additional perturbations throughout the domain as the shock-disturbance front propagates along
with the freestream disturbance. The Fourier decomposition results presented in this study also do not
account for the difference in wavenumber distributions between the finite axisymmetric and semi-infinite
planar freestream disturbances. Here, Case B5 seemed to again more readily excite the 2nd mode disturbance.
Additionally, the Case B5 excited low frequencies much more readily than Cases B1 through B3, likely due to
forcing waves again. This can also be seen in the FFT contour shown in Figure 19b. The branch I sampling
location shows the influence of this much more significantly, indicating that receptivity results are much more
sensitive for planar disturbances to lower frequency forcing waves. On the other hand, the intermediate and
branch II sampling locations show very similar results, peaking at frequencies between 125 and 145 kHz, and
matches well with the LST prediction.
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(a) (b)

Figure 33. Receptivity coefficients at different sampling locations for (a) Case B4 and (b) Case B5.

The results for Case B4 in Figure 33a also differ significantly from the Cases B1 through B3. Here, the
branch I sampling location produces a continuous broadband receptivity coefficient distribution, similar in
overall shape to our input pulse. This indicates that at this point, the forcing waves excited by the planar
fast acoustic pulse are sufficiently strong as to mask the initial 2nd mode instability at the branch I neutral
point. The resulting combined disturbances at this location result in disturbance amplitudes far larger than
those expected of the pure 2nd mode. The under-prediction of the DNS-derived N-factor in Figure 20b can
be attributed to the strong multimodal nature of the DNS disturbance at the branch I neutral point. The
other sampling locations also show that the receptivity coefficients are highest near 200 kHz, contrary to
the axisymmetric cases. Looking again at Figure 19a it can be seen that an additional band of amplified
disturbances can be found at these frequencies. The receptivity results indicate that these disturbance
frequencies also are excited very readily in contrast to the LST predicted 2nd mode for this case. The planar
results indicate that transition for this intermediate bluntness case is likely not dominated by 2nd mode
instabilities for freestream environments with more distributed noise.

(a) (b)

Figure 34. Spectral phase angle plots for (a) Case B2 and (b) Case B4.
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The phase angle spectra for Case B2 and B4 are also presented in Figure 34. These spectra can also
be used to directly identify modes in the flow. A regular pattern occurs in the phase angle distribution
until a more coherent structure is formed between frequencies of 135 kHz and 150 kHz in Figure 34a for
Case B2, corresponding to the band of the most unstable frequencies at this streamwise location. A similar
pattern is seen in Figure 34b between 145 and 155 kHz for Case B4, and throughout the other disturbances
as well. Using the receptivity coefficients in Figure 31 through Figure 33 along with phase angle spectra,
such as those presented in Figure 34, the initial disturbance response to a freestream perturbation can be
reconstructed.21

IX. Discussion

The receptivity of a 7-degree half-angle, 9.525 mm nose radius cone at mach 10 to a variety of freestream,
continuous broadband frequency disturbances was investigated in this study. The goals of this study were
to investigate the receptivity mechanism in this blunt cone flow, and to produce receptivity coefficient
spectra for a variety of continuous broadband frequency disturbances. Generating an extensive database of
these receptivity coefficients would provide improved freestream noise response data to replace the empirical
correlations being used in improved transition prediction methods such as Mack’s amplitude method,28

Crouch’s variable N-factor method,24 and the improved amplitude methods developed by Marineau29 and
Ustinov.30 Similar to Huang,20,21 this study focused on obtaining the receptivity coefficients associated with
the amplified 2nd mode instability, which in this case corresponded to the discrete mode F disturbance.

This process first involved converging the steady meanflow using a high-order shock-fitting method. This
steady solution was then perturbed with freestream axisymmetric fast acoustic (Case B1), slow acoustic
(Case B2), and hotspot (Case B3) disturbances. It was also perturbed with freestream planar fast acoustic
(Case B4) and slow acoustic (Case B5) disturbances. These freestream disturbances were modelled as
Gaussian pulses to approximate the continuous, broadband frequency nature of noise found in experimental
as well as flight conditions. LST analysis was also performed on the meanflow and used to derive disturbance
amplification rates, or N-factors, for the 2nd mode. Finally, using the LST-derived N-factors and the FFT
decomposed unsteady data, the receptivity coefficients for the 2nd mode were extracted from the total
disturbance spectra for each of the cases.

The LST analysis showed that boundary layer disturbances in a band of frequencies extending from
approximately 118 kHz to 238 kHz experienced 2nd mode growth. Furthermore, the unstable 2nd mode in
this case was found to be the discrete mode F, originating from the continuous fast acoustic spectrum. The
N-factor curve derived from LST in this study agrees well with the PSE-derived N-factor curve presented
by Marineau, and the most unstable frequency at the experimental transition location of s = 1.037m was
determined by LST to be 176 kHz. LST analysis predicted an N-factor of 1.7 at this location, compared to
Marineau’s33 reported N-factor of 1.6.

Unsteady DNS results showed that all five of the freestream disturbance cases were capable of exciting
significant 2nd mode disturbances in the boundary layer. Cases B1, B2, and B3 agreed well with LST
for the 150 kHz frequency cases, though significant differences between the DNS and LST were observed
for the 176 kHz disturbance. Similarly, Case B5 also agreed well with LST at 150 kHz, though Case B4
showed evidence of significant modal interactions with fast acoustic forcing waves. Case B5 excited significant
entropy disturbances in the boundary layer at 176 kHz, but excited fast acoustic 2nd mode disturbances at
lower frequencies. The PSD contours for Case B5, and Case B4 in particular, showed significant additional
disturbances that can be associated with these additional freestream forcing waves. In particular, the planar
fast acoustic pulse in Case B4 resulted in significant disturbance amplitudes at frequencies of 76 kHz and
252 kHz, outside of the standard unstable 2nd mode region predicted by LST at the experimental transition
location. This indicates that distributed broadband freestream disturbances, like Cases B4 and B5 here,
may excite strong disturbances outside of the 2nd mode which can significantly impact transition. Unsteady
DNS also showed the development of mach wave-like acoustic radiation from the boundary layer disturbances
downstream on the cone. This phenomenon is characteristic of supersonic mode instabilities. Further study
is required to determine the significance of the supersonic mode in this case.

Receptivity coefficients for 2nd mode disturbances were also calculated for all five disturbance cases. It
was found that the results were generally independent of sampling location for the axisymmetric disturbances
in Cases B1, B2, and B3. Case B1 generated the largest receptivity coefficients, followed by Case B3 and
then Case B2. The planar disturbances in Case B4 and Case B5 were found to be much more sensitive
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to sampling methodology, as the perturbation at the branch I neutral point is a combination of all of
the boundary layer disturbances introduced continuously by the shock-disturbance interaction. Prior to
amplification, the 2nd mode may not necessarily dominate at this point. This caused the branch I sampled
case to have much higher, and much more oscillatory receptivity coefficient distribution. The N-factor
normalization method was shown to more readily extract initial amplitudes for the 2nd mode disturbance
for these planar disturbance cases. Though, the results for Case B4 did not follow the expected trend for a
2nd mode instability and indicated that the 2nd mode is not necessarily dominant in determining transition
for this blunt nose case. Additionally, it was shown that the disturbance phase angles could also be extracted.
Using the receptivity coefficients and phase angle data, the initial amplitude response to freestream noise
cases should be able to be constructed.

X. Conclusion

The receptivity coefficients for a variety of continuous, broadband frequency disturbances has been inves-
tigated in a Mach 10 flow over a blunt cone at 0◦ angle of attack. However, in order to fully encompass the
large envelope of disturbances found in experimental and real flight conditions, the receptivity response to
many more different freestream disturbances must be tested. These include planar hotspot as well as axisym-
metric and planar vorticity waves. In future studies, the receptivity response to more complex continuous
frequency freestream disturbances will also be modelled using a pulse model. These freestream disturbances
include off-axis and oblique pulses and would necessitate the expansion of the current axisymmetric meanflow
to fully simulate the development of three-dimensional perturbations. Additional geometries must also be
studied in order to complete the receptivity database, with the sharper nose geometries based on Run 3742
and Run 3746 in the experiment by Marineau et al.33 being of particular interest.

Overall, it was shown that continuous frequency freestream disturbances could be modelled using Gaus-
sian pulses, and that these pulse disturbances could significantly excite modal instabilities. The instabilities
introduced through unsteady DNS were shown to match well with LST predicted instability modes far down-
stream on the cone. The receptivity coefficient spectra for each of the freestream disturbance cases was also
successfully found. The receptivity coefficients for the axisymmetric cases showed that the resulting bound-
ary layer instabilities were dominated by the 2nd mode in these cases, while the planar disturbance cases
showed that forcing waves generate signficant multimodal behaviors in the perturbations. These results offer
a much more precise measurement of the flow response to freestream noise than empirical correlations, and
will be useful when developing improved transition prediction methods.
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