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Acoustic-like waves are observed emanating from the boundary layer of a Mach 8 slender
blunt cone simulation with a relatively low enthalpy, ho = 597kJ/kg, and a warm wall,
Tw/Te = 4.95. The acoustic-like wave emissions are qualitatively similar to those attributed
to the supersonic mode. The supersonic mode responsible for those emission, however, are
found in high-enthalpy cold wall flows with blunter nose radii, making their appearance
here unexpected. Unsteady simulation are carried out using blowing-suction actuators at
two different surface locations. Analysis of the temporal data and spectral data using FFT
reveals that the emissions are the result of a constructive/destructive interference between
a primary wave packet and a satellite wave packet. Linear stability analysis on the steady
state simulation indicates that the phase velocity of the primary wave is consistent with an
unstable mode S (Mack’s second mode), and that the phase velocity of the satellite wave
packet is consistent with a stable supersonic mode F. Constructive/destructive interference
between the wave packets also appears to have a damping effect on disturbance growth in
one of the unsteady simulations, which prevents it from growing larger downstream.

I. Introduction

This paper is an investigation of primary and satellite wave packet interference with acoustic-like emissions
from the boundary layer of a slender hypersonic cone. While investigating the ability of surface roughness to
attenuate Mack’s second mode instability,1 acoustic-like waves were observed emitting from the boundary
layer in an unsteady simulation with no surface roughness. These acoustic-like rays are qualitatively similar
to those seen by Knisely and Zhong2–4 in their investigation of supersonic modes. Moreover, the unsteady
simulation in question also exhibited an interesting interference pattern which is thought to be caused by
the interference of dispersive primary and satellite wave packets. Primary and satellite wave packets were
are also seen in Knisely and Zhong’s4 unsteady results. Despite the similarities of the observed phenomena,
and the results of Knisely and Zhong the simulation conditions are very different. Based on this limited
observation, the proposed explanation for the acoustic-like boundary layer emissions is a supersonic mode.
And the proposed explanation for the interference pattern is due to the dispersive nature of the boundary
layer where the primary wave packet, consisting of Mack’s second mode, and the satellite wave packet,
consisting of a supersonic mode, spread dispersively into one another creating an interference pattern.

Supersonic modes were first described from numerical investigations performed by Mack in 1984,5 1987,6

and 1990,7 and by Reshotko in 1991.8 Mack showed there exists discrete neutral waves whose phase velocity
caused the wave to propagate upstream supersonically relative to the flow at the boundary layer edge. In
other words cr < 1 − 1/Me, where cr is the nondimensional phase velocity and Me is the Mach number at
the boundary layer edge; this is also some times represented as M̄(y) > 1, where M̄(y) is the relative Mach
number as a function of boundary layer height, and c is the dimensional phase velocity,

M̄ =
M(y)− c
a(y)

. (1)

Mack also showed that supersonic modes transfer energy away from the wall. In simulations this property
is exhibited as acoustic-like emissions from the boundary layer into the freestream (or the shock layer as
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it pertains to this paper). The emissions are described as acoustic-like because they originate not from
an acoustic wave but from discrete modes.9 In Mack’s 19876 numerical investigation he found unstable
supersonic waves—the instability however was weaker that the second mode instability and thus considered
more benign.

Recently, there has been a renewed interest in supersonic modes. Their presence in high-enthalpy impulse
facilities such as Caltech’s T5 shock tunnel motivated Bitter and Shepard’s10 to investigate unstable super-
sonic modes over cold walls. Their numerical investigation looked at high-enthalpy thermal nonequilibrium
on a flat plate with wall-to-edge temperature ratios between 1 and 0.2 with a wall temperature of 300K.
They found that decreasing the wall-to-edge temperature ratio lead to unstable supersonic waves over a
wider frequency band. They also characterized that an unstable discrete mode (like Mack’s second mode
instability) is likely to become supersonically unstable when the complex phase speed has to cross the slow
acoustic branch cut. Their investigation also considered the supersonic modes contribution to the N-factor,
which increased with increasing Reynolds number. Bitter and Shepard concluded that while it contributes
significantly at higher levels, the supersonic mode did not contribute significantly at the levels transition is
experimentally known to occur: Mack’s second mode instability is still the dominate cause of transition in
hypersonic boundary layers.

Mortensen11 also recently investigated supersonic modes and the effect of nose bluntness. The study
focused on high-enthalpy flows with chemical nonequilibrium around slender blunt cones with nose radii
from 1.1mm (the nominally ”sharp” reference case) to 284.8mm. The simulations modeled inflight vehicle
temperatures, which maintain a nominally cool wall (Tw = 460K) and promotes Mack’s second mode
instability. Mortensen’s findings show that increasing the nose radius not only promotes supersonic mode
instability but also increases the severity of the instability, eventually dominating over the traditional second
mode instability. Unlike in Bitter and Shepard’s investigation, Mortensen’s unstable supersonic mode is the
primary contributer to the N-factor and would lead to transition for typical levels.

Knisely and Zhong3,4 also did an extensive DNS study of high-enthalpy flows on slender blunt cones with
cold walls and chemical nonequalibrium. They used both LST and unsteady DNS to investigate unstable
supersonic modes. A notable result of theirs is that, while they were able to detect unstable supersonic
modes with DNS in two cases, LST analysis could only detect the mode in one case and not the other. The
cases were nominally the same (and similar to Bitter and Shepards), but differed primarily in freestream
temperature (T∞ = 1500K and 1000K). They reasoned this was due to modal interaction, and suggested
a combined LST and DNS approach to study the supersonic mode. This result is of particular interest to
the current discussion because while acoustic-like waves are apparent in the DNS results, they could not be
found with LST. The reasons for which are discussed herein.

Knisely and Zhong’s work, like Bitter and Shepard’s also emphasized the importance of the relative sonic
line, M̄(ys) = 1. Their work includes an update diagram of neutral modes in the large wavenumber limit
to include neutral supersonic modes in which acoustic wave-like modulation (M̄ < −1), subsonic rope-like
structures (−1 < M̄ < 1), and decaying Mach waves (M̄ > 1) are visualized. Their work also includes an
extensive background on the supersonic mode.

On the theoretical front, Xuesong and Zhang12 provide results of a high Mach jet flow that emits acoustic-
like waves. The result is qualitatively similar to the unsteady DNS results of Knisely and Zhong and the
unsteady results contained herein.

The present paper looks at a low-enthalpy flow around a slender blunt (nominally sharp, rn = 0.5mm)
cone with a warm wall and perfect gas assumptions. These conditions share some overlap with the pub-
lished cases already discussed, such as the test article geometry, but differ significantly in the areas of wall
temperature, flow enthalpy, and gas chemistry. As already mentioned, the case parameters were not chosen
to specifically study supersonic modes or acoustic radiation from the boundary layer.

Hypersonic laminar-turbulent boundary layer transition is an important area of research. Transition
to turbulence can increase surface heating by a factor of 4-10 which necessitates an outsized thermal pro-
tection strategies.13 The goal of transition research is to study the unsteady boundary layer, understand
the mechanisms behind its behavior, and to reliably predict transition. The supersonic mode and second
mode interference pattern are just one aspect of understanding hypersonic boundary layer behavior. It is
important to know under what conditions the supersonic mode appears and its physical mechanism.
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II. Governing Equation and Computational Methodology

The DNS code utilized in this paper is a 5th-order accurate code that uses shock-fitting to compute the
location of the bow shock on a straight blunt cone. This base geometry and high-order shock-fitting approach
has been validated extensively for accuracy.14

A. Governing Equations

The DNS code solves the conservation-law form of the three-dimensional Navier-Stokes equations in Cartesian
coordinates. Written in vector form, the governing equations are

∂U

∂t
+
∂Fj
∂xj

+
∂Gj
∂xj

= 0, (2)

in which U is the state vector of conserved quantities, Fj is the inviscid flux vectors, and Gj is the viscous
flux vector in the jth spatial direction. The state and flux vectors are defined as,

U = {ρ, ρu1, ρu2, ρu3, e}T , (3)

Fj = {ρuj , ρu1uj + pδ1j , ρu2uj + pδ2j , ρu3uj + pδ3j , (e+ p)uj}T , (4)

and
Gj = {0, τ1j , τ2j , τ3j , τjkuk − qj}T , (5)

where e is internal energy, τij is viscous stress tensor, and qj is the heat flux. The internal energy, viscous
stress, and heat flux, qj , are defined as follows,

e = ρ
(
cvT +

ukuk
2

)
, (6)

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ

∂uk
∂xk

, (7)

and

qj = −κ ∂T
∂xj

. (8)

Equation 2 is closed assuming a calorically perfect gas,

p = ρRT. (9)

Which is a fair assumption for low-enthalpy hypersonic flows. The properties of nitrogen gas are used, which
is consistent with the experimental case from which this simulation takes its parameters.15 The specific
heats cp and cv are held constant with a given specific heats ratio of γ = 1.4. A specific gas constant of
R = 296.8J/kgK for nitrogen gas is used. The viscosity coefficient, µ, is calculated by Sutherland’s law in
the form:

µ = µr

(
T

To

)3/2
To + Ts
T + Ts

(10)

where µr = 1.7894 × 10−5 N·s/m2, To = 288.0 K, and Ts = 110.33 K. Lastly, the Prandtl number is taken
as −2/3µ and the thermal conductivity, κ, is computed from the constant Prandtl number,

κ =
cpµ

Pr
. (11)

Fong and Zhong,16 Huang and Zhong,17 and Lei and Zhong18 have used the same formulation or similar
formulations for simulating perfect gas hypersonic flow.
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B. Numerical Methods

A shock-fitting method is used to obtain a defined shock location. The shock-fitting method treats the
shock as the upper boundary of the physical domain by computing the location of the bow shock produced
by the blunt cone. Eq. (2) is solved in a computational domain with body-fitted curvilinear coordinates
(ξ, η, ζ, τ), where ξ is in the direction of the cone surface, η is normal to the cone surface, ζ is in the azimuthal
direction, and τ is time. Treating the shock as a domain boundary, the transient shock movement is solved
as an ODE alongside the governing equation. The transformation relations between the physical domain
and computational domain are 

ξ = ξ(x, y, z)

η = η(x, y, z, t)

ζ = ζ(x, y, z)

τ = t

⇔


x = x(ξ, η, ζ, τ)

y = y(ξ, η, ζ, τ)

z = z(ξ, η, ζ, τ)

t = τ

. (12)

Applying this transformation to Eq. (2) obtains the governing equations in computational space,

1

J

∂U

∂τ
+
∂E′

∂ξ
+
∂F ′

∂η
+
∂G′

∂ζ
+
∂E′v
∂ξ

+
∂F ′v
∂η

+
∂G′v
∂ζ

+ U
∂(1/J)

∂τ
= 0, (13)

where J is the Jacobian of the coordinate transformation and

E′ =
F1ξx + F2ξy + F3ξz

J
, F ′ =

F1ηx + F2ηy + F3ηz
J

,G′ =
F1ζx + F2ζy + F3ζz

J
,

E′v =
G1ξx +G2ξy +G3ξz

J
, F ′v =

G1ηx +G2ηy +G3ηz
J

,G′v =
G1ζx +G2ζy +G3ζz

J
.

(14)

Full transformation details can be found in Zhong 1998.14

The shock position and velocity must be obtained of the form H(ξ, ζ, τ) and Hτ (ξ, ζ, τ) and solved as
independent flow variables alongside the governing equations. This is accomplished by taking the Rankine-
Hugoniot relations, which provide the flow variable boundary conditions behind the shock, as a function
of U∞ and the velocity of the shock front vn. The shock front velocity is determined by a characteristic
compatibility equation at the grid point immediately behind the shock. A complete derivation of H and Hτ

can also be found in Zhong, 1998.14

An explicit 5th-order upwind scheme and an explicit 6th-order central finite-difference scheme are used
to discretize the inviscid and viscous terms of Eq. 13 in the ξ and ζ-directions. A seven point stencil is used
in both instances;

∂fi
∂x

=
1

hbi

3∑
k=−3

αi+kfi+k −
αh5

6!bi

∂f6

∂6x
, (15)

where

αi = −5

3
α, αi±1 = ±45 +

5

4
α, αi±2 = ∓9− 1

2
α, αi±3 = ±1 +

1

12
α, bi = 60, (16)

and h is the step size. An α = −6 is used to achieve a low dissipation upwind scheme for the inviscid terms,
and α = 0 is used to yields a central scheme for the viscous terms. Second order derivatives are obtained
by applying Eq. (15) twice. Derivatives in the η-direction are computed using Fourier collocation since the
case is axisymmetric. Flux spitting is use on the inviscid flux terms resulting in

F ′ = F ′+ + F ′− where F ′± =
1

2
(F ′ ± ΛU), (17)

and Λ is a diagonal matrix that ensures F ′+ and F ′− contain only pure positive and negative eigenvalues
respectively. A low storage 3rd-order Runge-Kutta method19 is used to converge the steady state and advance
the unsteady solutions.

C. Direct Numerical Simulation of Disturbances

To simulate unsteady disturbances, a blowing-suction actuator is used to introduce a pulse into a converged
steady state. The actuator extends circumferentially around the cone. The pulse has a Gaussian shape
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in time and is sinusoidal in space. The sinusoidal shape prevents introducing additional mass into the
mean flow. The frequency spectrum of the pulse is chosen to be broad enough as to include the most
unstable mode frequencies for the given flow conditions. Downstream of the actuator, each frequency is
examined for amplification or dampening. This technique of using a Gaussian pulse to examine mode
amplification/dampening was previously implemented by Fong and Zhong20 and Knisely and Zhong.3,4

The actuator mass flux follows the equation,

ṁp(s, t) = ε(ρU)∞ exp

(
− (t− µ)2

2σ2

)
sin

(
2π
s− sc
l

)
(18)

for sc < s < sc + l and t > 0. In which µ is the mean, σ is the standard deviation, sc is the starting location
for the actuator along the surface, and l is the length of the actuator. The mass flux is scaled by ε(ρU)∞.
The mean of the pulse is defined in terms of a mass flux minimum, (ρv)min, which is the initial mass flux
at t=0. Naturally, (ρv)min is very small, preferably close to zero, however not too small that an appreciable
amount of computational time has to pass before the pulse fully develops. The equation for µ is given as,

µ =

√
−2σ2ln

(
(ρv)min
ε(ρU)∞

)
. (19)

By defining µ in this way, µ can be fixed with a reasonable (ρv)min regardless of the simulation conditions.
Thus, by design, the only remaining free parameter in Eq. (18) is σ which permits direct control over
the frequency content of the pulse. Hence, when setting the pulse for a particular case, only the standard
deviation needs to be modified. The pulse parameters used in this paper are given in Table 1, moreover the
time history of Eq. (18) and its corresponding FFT are given in Fig. 1.

Table 1: Pulse parameters

Parameter ε (ρv)min [kg m/s] σ [µs] µ [µs] xs [m] l [mm]

Value 10−3 10−10 0.3 2.0398 0.1976 1.9703

(a) (b)

Figure 1: (a) Time history of the maximum wall normal velocity. (b) FFT of maximum wall normal velocity
in (a).

III. Freestream and Simulation Conditions

The simulation is based on a slender straight blunt cone geometry at zero angle-of-attack. The cone has
a 7◦ half-angle and a nose radius of 0.5 mm with a total length of 1.0 m measured from the blunt nose tip.
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The simulation is axisymmetric. The freestream conditions are taken from a previous experiment performed
in SNL Hypersonic Wind Tunnel for the same cone geometry.15 The freestream conditions are listed in
Table 2.

Table 2: Simulation Parameters

Parameter Value Unit

M∞ 8.0 -

ρ∞ 0.024803 kg/m3

p∞ 330.743 Pa

T∞ 44.9 K

To 620.0 K

Tw 279.0 K

γ 1.4 -

Pr 0.72 -

Re∞/l 9584257 m−1

Figure 2a contains the steady state pressure and temperature results for the frustum of the cone. Overall
the results are typical of a straight blunt cone. The pressure results on the top half of the cone show a
moderate pressure ratio, relative to the freestream pressure, along the majority of the cone. The steady
state was deemed converged once the pressure error reached O(εp) = 10−9.

In the bottom half of fig. 2a, the temperature ratio is also typical of a straight blunt cone. The contours
show a high thermal gradient between the boundary-layer and the flow behind the shock, which extends over
the majority of the frustum. This is to be expected as the simulation assumes a constant wall temperature,
which is considerably higher than the freestream temperature.

Taking a closer look at just the blunt nose tip of the cone in fig. 2b, the steady state pressure and
temperatures results are presented together. The pressure contours show a maximum pressure ratio at the
very tip of the cone followed by a favorable pressure gradient moving downstream. It is also apparent that
the moderate pressure ratios seen on the frustum are reached within approximately eight nose radii of the tip.
The temperature contours too show a maximum temperature ratio at the cone tip. The maximum however
is just offset from the cone surface. This is due to the constant wall temperature boundary condition, which
does not consider surface heating. Moving downstream, the temperature ratios seen along the cone frustum
are also reached within eight nose radii.

(a)
(b)

Figure 2: Pressure & temperature contours on the (a) cone frustum at the (b) blunt nose tip. The figures
are split with pressure plotted on the top half and temperature plotted on the bottom half.
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IV. Results

Much of the linear stability analysis of the steady state has been carried out in Haley et al.1 and shall
not be repeated presently. Instead this paper will focus on the new supersonic mode wave structures seen
in the unsteady results.

A. Unsteady results on a smooth cone

Figure 3 shows the propagation of the disturbance downstream as it develops features of the supersonic
mode. The blowing-suction actuator is located at sc = 0.2m. The contour levels are clipped so that the
pressure perturbations in the shock layer are more visible. In general the maximum |∆p| is on the order
of 100. Figure 3a shows the traveling pulse; its appearance is consistent with an unstable second mode.
As the pulse moves further downstream, fig. 3b shows a slight “pulling-apart” of the pulse which would
indicate that the mode families within the pulse are traveling at two different group velocities. fig 3c shows
the acoustic-like waves emanating from the boundary layer which is considered indicative of the supersonic
mode.

(a)

(b)

(c)

Figure 3: (a) The pulse excites Mack’s 2nd mode instability. (b) As the pules propagates downstream, it
develops a primary and satellite wave. (c) Acoustic-like waves propagate into the shock layer from in between
the primary and satellite waves.
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(a)

(b)

(c)

Figure 4: (a) The acoustic-like waves seen in context of the entire wave packet. (b) A dead zone develops
in the boundary layer due the destructive interference of the wave groups. (c) The dead zone is relatively
stationary to the pulse and eventually disappears.
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(a)

(b)

(c)

(d)

Figure 5: Progression of pulse interference patterns.

Figure 4 shows the same pulse as it propagates even further downstream. Here we see that the pulse has
grown in width due to dispersion and the acoustic-like waves are more apparent. These acoustic-like waves
demark the upstream portion, or primary wave, and the downstream portion, or satellite waves. LST results
presented later will show that the primary wave is mode S dominant and the satellite waves are mode F
dominant. Since the primary and satellite waves are dispersive in nature their widths grow. This means the
two parts of the pulse are capable of interfering with one another; this is what we see in fig. 4b as evidenced
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by a dead zone in the wave train. The dead zone originates on the surface due to destructive interference
between the primary and secondary satellite waves. The dead zone is also relatively motionless in the lab
frame and eventually exits the disturbance all together as it propagates downstream as seen in fig. 4c.

Figure 5 provides a more detailed look at the interference phenomenon. Figure 5a shows the pulse before
the interference takes place. In fig. 5b, oscillations below the sonic line centered about x = 0.745m weaken
in strength as they start to cancel. Above the sonic line and the oscillations around x = 0.75 − 0.755m
begin to interfere creating the dead zone. By fig. 5c the weakening oscillations below the sonic line have
canceled out completely and the dead zone appears to move upstream relative to the pulse. By fig. 5d, the
pulse assumes the same appearance as in fig. 5a before the wave interference began. Along the 1m length of
the cone (0.782m if we deduct the length of upstream of the blowing suction slot) the interference pattern
appears six times. All throughout this process acoustic-like waves are emanating from the wave train.

Figure 6: x-t diagram of unsteady pulse for actuator located sc = 0.2m. Contours are clipped to show
weaker satellite wave; max|∆p = 9.635(Pa)|.

One way to view the propagation of the disturbance is to plot in an x-t diagram. Figure 6 plots the
pressure perturbation along the surface of the cone for the entirety of the unsteady simulation; the area
upstream of the actuator at sc = 0.2m is grayed out. The maximum and minimum contour levels are clipped
to highlight the satellite wave. As expected the disturbance fans out downstream as the boundary layer
is inherently dispersive and different frequencies propagate at different speeds. The wavefront propagates
with a speed of 980m/s (cr ≈ 0.897 based on U∞) with following waves propagating at slower speeds.
The x-t diagram exhibits six patches of destructive wave packet interference. The patches occur at nearly
regular intervals increasing slightly downstream. The interference patches also increase in size and duration
downstream. The speed of the patches, measured from first to last is 847.14 m/s (cr ≈ 0.775 based on U∞).
This speed is a slight cheat because the interference patches do not follow a ray originating from the actuator
at t = 0 and sc = 0.2m, but it should illustrate that the satellite wave packet to the left of it is propagating
at supersonic phase speeds (cr < 1− 1/M∞).

One last feature to note in fig. 6 is the speed of the wave train tail; between 0.20m and 0.42m the
tail is steeper and therefore slower, afterwards the tail is shallower indicating a speed up. Temporally this
corresponds to when the primary and satellite wave packet first appears and starts undergoing construc-
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tive/destructive interference (see fig. 6 at t = 0.312ms). Spatially this corresponds with the disturbance’s
maximum pressure perturbation, which occurs earlier in time.
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Figure 7: Propagation of disturbance from actuator located sc = 0.2m.

Although the x-t diagram provides and entire overview of the unsteady disturbance. It is difficult to
discern the structure of the disturbance. Figure 7 features time traces along the surface taken at regular
intervals of 0.163ms. At t = 0.150ms the disturbance appears as a single wave packet; this is typical
of previous unsteady simulations3,4 after the initial forcing by the actuator. Between t = 0.150ms and
t = 0.312ms the disturbance grows, nearly doubling in strength. This is the expected behavior as the
boundary layer is unstable, however, by t = 0.312ms we already see the emergence of a satellite wave packet.
By t = 0.475ms the satellite wave packet is full formed; it is considerably weaker, max|∆p| = 0.44Pa
compared to the primary waves at 5.49Pa. Of particular note is that between t = 0.312ms and 0.475ms
the primary wave weakens and remains weaker for the remainder of the simulation. This is unexpected
behavior, typically disturbances are expected to grow downstream in unstable hypersonic boundary layers.
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For the intervals between t = 0.475ms and 0.800ms the satellite wave packet is clearly present and similar in
strength. Lastly, the intervals in fig. 7 show that the wave train as a whole has lengthened due to dispersion.
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Figure 8: Interference of primary and satellite waves. Actuator located sc = 0.2m.

Figure 8 takes a closer look at the interference between the primary and satellite waves. The interval
from t = 0.400ms and 0.600ms includes the second and third patches seen in fig. 7. At t = 0.400, 0.500,
and 0.600ms, the satellite wave packet appears as a tail of the primary wave packet. It is conjectured that
constructive interference between the wave packets gives rise to the acoustic-like waves radiating into the
boundary layer as seen in figs. 3 and 4. Since the primary and satellite waves are dispersive, occasionally
the waves will interfere destructively, these are the patches seen in fig. 6 and the dead zones seen in fig. 5.
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Figure 9: PSD of disturbance from actuator located s=0.2m.

To see which frequencies undergo constructive and destructive interference, an FFT analysis on the
temporal data in fig. 6 can extract the spectral data. The power spectrum density (PSD) is featured in fig.
9. The spectrum is normalized by the PSD of the blowing-suction actuator in order to evaluate the growth
and decay of each frequency irrespective on its initial strength. The neutral curve for mode S, obtained
from LST analysis, is plotted on top of the PSD contour. There is really good agreement between the FFT
and LST; as expected the PSD of each frequency visibly grows to the left of the branch II neutral curve
and dampens to the right. Since growth rates are unstable between branch I and branch II, and stable
everywhere else, the PSD is expected to grow and decay.

As previously mentioned, the time traces are atypical since the disturbance did not grow steadily down-
stream, but instead shows the greatest growth around s = 0.438m. The reason for this is unclear but its
occurrence and the occurrence of the interference patterns are probably not independent. From the FFT,
the maximum PSD corresponds to a frequency of 213.67kHz. It is thought that the atypical growth is a
result of receptivity at the actuator location. The center of the actuator is located at sc = 0.2m which is
close to the maximum PSD frequency’s branch I neutral point. Making the boundary highly susceptible to
disturbances with this frequency. That said, the initial pulse is appropriately small in order to maintain
linearity, as such the PSD grows nearly three orders of magnitude. If the primary focus on this paper were
on transition, it is likely that a stronger initial pulse would have led to transition (it is worth noting that the
experiment this simulation borrows its conditions from see intermittent turbulence start around 0.30m,15

however that test article does not extend beyond 0.5m).
The FFT also exhibits the constructive/destructive interference and the frequencies they are centered

around for each. The destructive interference occurs around 200kHz, 184 kHz, 171kHz, 161kHz, 152kHz, and
143kHz, with the constructive interference occurring around 192kHz, 178kHz, 166kHz, 156kHz, 147kHz, and
139kHz. Note that the differences between successive frequencies becomes smaller with decreasing frequency.
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Figure 10: x-t diagram of unsteady pulse for actuator located s=0.1m. Contours are clipped to show weaker
satellite wave; max|∆p = 3.098(Pa)|.

A second unsteady simulation was carried out with the blowing-suction actuator closer upstream centered
about sc = 0.10m. The x-t diagram in fig. 10, like the previous x-t diagram, features the complete unsteady
disturbance along the cones surface. The result is more typical of unsteady surface pulses, where the wave
is more tightly confined, with the wave front traveling at ≈ 983.6m/s (cr = 0.900 based on U∞) and the tail
traveling at ≈ 798.6m/s (cr = 0.731 based on U∞). As such, dispersion has caused the wave to lengthen
downstream. Figure 10 also contains the conspicuous interference patches seen with the downstream actuator.
These are also the result of destructive interference between primary and satellite waves, however, this time
the satellite wave is almost non-existent, forming an almost sawtooth-like pattern with the interference
patches. The less prominent satellite wave is thought to be due to a weaker receptivity response from the
actuators location.
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Figure 11: Propagation of disturbance from actuator located s=0.1m.

Examination of individual time traces, like those in fig. 11 reveals that the structure of the disturbance is
more typical for unsteady surface pulses. As expected the unsteady boundary layer causes the disturbance to
grow downstream. From t = 0.150 to 0.800ms the maximum perturbation grows from 1.738Pa to 2.707Pa,
a 59% increase. The growth is very mild compared to the downstream actuator case, which although having
the same actuator strength, saw a larger disturbance perturbation. The satellite wave is also present as a
tail on the primary wave, and is even less prominent that the satellite wave in fig 11.
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Figure 12: PSD of disturbance from actuator located s=0.1m.

As before, an FFT of the temporal data is used to obtain the spectral analysis. Figure 12 contains
both the spectrum and neutral curve for the upstream actuator. Like before the PSD agrees well with the
neutral curve. Overall the PSD increases downstream with decreasing frequency. The initial wobbliness in
the contours is most likely due to the forcing by the actuator. Again the location of the actuator places
it at the branch I neutral point for 292kHz, unlike the downstream actuator there is no strong receptivity
response. Farther downstream there is a slight meandering of the PSD contours, this appears to be a result
of the constructive/destructive interference seen in fig. 10, however since the satellite wave is much weaker
the same local maxima and minima do not appear in the spectrum as they do in fig. 12.

B. LST analysis of steady state.

The unsteady results provide an excellent description of how a disturbance evolves over time in an unsteady
boundary layer. But to understand the boundary layer’s stability we must look to linear stability theory
(LST). LST is applied to the steady state solution of the simulation in order to obtain the discrete boundary
layer modes: mode F and mode S. For this particular spatial analysis a frequency of 160kHz is selected
because it coincides with a downstream interference patch (the fourth patch in particular) as seen in fig.
6. The location is downstream of the peak PSD but also not at the end of the cone. Figure 13a contains
the phase speeds of Mode F and S. Mode F originates in the fast acoustic spectrum (cr = 1 + 1/M∞) by
definition and steadily slows down until it passes through the continuous spectrum (cr = 1) and slow acoustic
spectrum (cr = 1 − 1/M∞). The break in the curve is because the LST code had difficulty resolving the
mode near the continuous spectrum branch cut and near the Mode F/S coupling. Of particular interest to
the paper however is when mode F becomes supersonic at cr < 1 − 1/M∞ after s = 0.605m. The phase
velocity calculated from the x-t diagrams in figs. 6 and 10 indicate that the satellite wave phase velocity
falls in this range.

This means that the satellite wave is comprised of mode F. When the phase velocity of any discrete mode
is supersonic it creates as situation in which acoustic-like waves can emit into the shock layer. A glance
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at fig. 13b, which contains the modal growth rate, however, shows that mode F is stable. Therefore any
acoustic-like waves are unlikely to be sustained; for that we must look at mode S.

(a) (b)

Figure 13: (a) Phase velocity and (b) growth rate at f = 160kHz

Unlike mode F, the LST code had no difficulty resolving the curve. Figure 13a shows that mode S
originates from the slow acoustic spectrum, as it should and takes on a phase velocity between cr = 1 and
cr = 1 − 1/M∞. These phase velocities are consistent with the phase velocities of the primary wave in
figs. 6 and 10 indicating that the primary wave is comprised of mode S. Looking now to the growth rate in
fig. 13b, mode S starts stable and clearly becomes unstable due mode F/S coupling, this is Mack’s second
mode instability (the first mode is stable). It is because of this instability that the disturbance in fig. 7
was expected to grow downstream. Moreover the N-factor, computed from LST results, also expected any
disturbances to grow downstream; as seen in fig. 14 the boundary layer becomes increasing unstable. The
reality is that the disturbance in fig. 7 does not grow downstream because of strong constructive/destructive
interference between mode S and mode F.

Figure 14: N-factor obtained from LST.
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V. Conclusion

This supersonic mode result was found unexpectedly while studying the transition-delaying roughness
effect. The low-enthalpy and warm wall simulation parameters are far removed from the high-enthalpy,
cold wall parameters in which acoustic-like waves emanating from the boundary layer are typically seen.
The acoustic-like waves seen in this paper, however, emerge very differently than those seen in other studies.
Those supersonic modes are typically the result of a discrete mode (either mode F or S) that is both unstable
and propagating with a phase speed less that cr < 1− 1/M∞.3,4, 10,11

The unsteady simulations and LST results in this paper, suggest a different mechanism for the observed
acoustic-like waves. The proposed mechanism appears to start with an unstable mode S, which causes the
wave packet to grow, likewise mode F is stable, which causes the wave packet to decay. The wave packets
trail one another downstream because of there different phase velocities. Dispersion causes the wave packets
to spread out. Mode F and S can now interact with one another. Constructive interference causes mode
F to grow in the presence of mode S. The growth of mode F causes acoustic-like waves to radiate into the
shock layer because of mode F’s supersonic phase speed. This is the proposed mechanisms interpreted from
the results, moreover the description is a linear process.

It is not clear if this result has any far reaching impact on understanding boundary layer transition. That
said, the case in which the downstream actuator, sc = 0.2m, created a disturbance that did not continue to
grow downstream due to strong constructive/destructive interference merits further investigation. Moreover,
future research should include theoretical work in order to verify or disprove the proposed mechanism. Fur-
thermore, the cause of the primary and satellite wave packets needs investigating. The present investigation
suspects it is a consequence of actuator location and its relation to the second mode neutral curve.

In closing this is a peculiar result because the current research holds that the supersonic mode appears
on unstable discrete modes in cold wall, high-enthalpy flows—this result challenges that view.
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