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The supersonic mode in hypersonic boundary layers has been shown to be associated
with an unstable Mack’s second mode synchronizing with the slow acoustic spectrum,
causing the disturbance to travel upstream supersonically relative to the mean flow out-
side the boundary layer. The flow conditions leading to the supersonic mode have not
been thoroughly and systematically investigated. As a result, it is unknown whether or
not the supersonic mode can become the dominant boundary layer instability over the
traditional second mode. This work uses thermochemical nonequilibrium Linear Stability
Theory (LST) to obtain a more complete investigation of the supersonic mode using both
nonequilibrium and perfect gas models. The mean flow is obtained from Direct Numerical
Simulation (DNS) assuming both thermochemical nonequilibrium and frozen flow models.
The purpose is to analyze the real gas effect on the supersonic mode at conditions typical
of experimental conditions. The simulation is Mach 5 flow over a 1 mm nose radius axisym-
metric cone 1 meter in length. The LST results indicate that vibrational nonequilibrium
effects are stabilizing to the second and supersonic modes. The nonequilibrium effects
in the mean flow, however, are not as critical. Overall, the LST results demonstrate the
importance of accounting for nonequilibrium effects when studying the supersonic mode.

I. Introduction

The boundary layer transition location in hypersonic flow has long been known to be critical in the design
of hypersonic vehicle.1–3 Turbulent flow is associated with significantly higher skin drag and surface heating
rates compared to laminar flow. Therefore, accurately predicting the onset of transition to turbulence allows
for a more accurate specification of thermal protection system (TPS) thickness, reducing vehicle weight and
enabling a larger payload.

The dominant hypersonic boundary layer transition mechanism in axisymmetric, zero angle-of-attack
flows is Mack’s second mode.4 Physically, the second mode has been visualized as a trapped acoustic wave
between the wall and the relative sonic line.3,5 However, this description of the second mode assumes a
neutral mode with large wave number, which is not particularly realistic. Although the physical phenomena
differs from this mathematical definition, it is still instructive to visualize the behavior of the second mode
with acoustic-like behavior in mind for comparison to 2D LST and DNS contours as well as experimental
imaging techniques.

The local relative Mach number provides insight into the boundary layer disturbance structure. It is
expressed as

M(y) =
u(y) − cr
a(y)

(1)

where u(y) is the local mean flow velocity tangential to the wall, cr = ω/
√
β2
r + α2

r is the real component of
the disturbance propagation speed with ω the circular frequency, βr the spanwise wavenumber, and αr the
real component of the streamwise wave number, and a(y) is the local mean flow speed of sound. The region
of acoustic-like modulation between the wall and the relative sonic line is characterized by a region in which
M(y) < −1, indicating the disturbance is traveling downstream supersonically w.r.t. the local flow. Outside
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of the sonic line ya where M(ya) = −1, the disturbance travels subsonically w.r.t. the local flow. At the
critical layer yc where M(yc) = 0 the disturbance phase speed is equal to the local mean flow velocity and
the “rope-like” structures are observed.6–10

The supersonic mode can be visualized using similar reasoning, however it is characterized by a second
relative sonic line at M = 1. Outside of this second relative sonic line the disturbance is traveling up-
stream supersonically w.r.t. the local flow, resulting in the decaying Mach-wave like structures shown in the
schematic in Fig. 1. This wave pattern is analogous to the Mach wave from traditional compressible flow
theory and is indeed approximated by µ ≈ arcsin(1/M). The relation for the angle is not exact due to the
imaginary component of the wavenumber α.

Wall

𝑀"(𝑦)y

x

𝑀" 𝑦& = 0

Relative Sonic Line:𝑀" 𝑦)* = −1

Relative	Sonic	Line:
𝑀" 𝑦)- = 1

Acoustic	
Wave-Like	
Modulation

Decaying	Mach	Waves

𝜇 ≈ arcsin	
1
𝑀"

Supersonic	Region
𝑀"	>	1	or

𝑐 < 𝑢: 𝑦 − 𝑎:(𝑦)

Subsonic	Region
-1	<	𝑀" <	1	or

𝑢: 𝑦 − 𝑎: 𝑦 < 𝑐 < 𝑢: 𝑦 + 𝑎: 𝑦

Subsonic	“Rope-like”	Structures

Supersonic	Region
𝑀" <	-1	or

𝑐 > 𝑢: 𝑦 + 𝑎: 𝑦

𝑀" = 1

𝑀" = 0

𝑀" = −1

Figure 1. Visualization of supersonic mode (not strict mathematical model).

Although the supersonic mode has been known to exist since the mid-1980’s by Mack11,12 and Reshotko,1

the general consensus was that the supersonic mode had a significantly smaller peak growth rate than the
traditional second mode, and therefore was not a serious factor in transition to turbulence. Since then, only
a few studies have been performed with the supersonic mode as the direct focus of the investigation,13,14

although many researchers have encountered it in other contexts.15–21 A recent renewal of interest in the
supersonic mode was sparked by the thermal nonequilibrium LST analysis by Bitter and Shepherd in 2015.22

The following year, Chuvakhov and Fedorov23 largely confirmed Bitter and Shepherd’s22 findings through
perfect gas LST analysis as well as unsteady DNS analysis on a flat plate, although they used different free
stream conditions. In 2017, Edwards and Tumin24 incorporated additional source terms in their mean flow
equations accounting for kinetic fluctuations in the flow, but used a perfect gas stability solver. Edwards
and Tumin suggested that these kinetic fluctuations may generate a discrete mode in vicinity of the neutral
point. Depending on the flow parameters, the excited mode can become supersonic far downstream in vicinity
of the upper neutral branch curve. In addition, in 2018 Knisely and Zhong25 performed thermochemical
nonequilibrium LST and DNS studies using similar hot wall flow conditions on a 5-degree half-angle blunt
cone and confirmed the existence of the supersonic mode, although it was quite weak and was due to the
interaction of mode S, mode F1, and the slow acoustic continuous spectrum. This phenomenon may be
attributed to the real gas effect and may have been overlooked in previous simulations assuming chemical
equilibrium. Later in 2018, Knisely and Zhong26 and Mortensen27 showed the supersonic mode can have a
higher growth rate than the traditional second mode under certain conditions, demonstrating the importance
of investigating this mechanism.

Overall, the impact of nonequilibrium chemistry and vibrational effects on the supersonic mode are not
fully understood. With respect to the second mode, Linear Stability Theory (LST) and Parabolized Stability
Equations (PSE) for nonequilibrium gases have been widely used.28–32 Overall, it has been determined that
dissociation of air species is stabilizing to the first mode, but destabilizing to the second mode. Additionally,
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it was determined that thermal nonequilibrium has a slight destabilizing effect on the first mode, and a slight
stabilizing effect on the second mode. This study performs an investigation of the impact of thermochemical
nonequilibrium on the supersonic mode. Mean flow from DNS is obtained using both thermochemical
nonequilibrium and frozen flow models. Additionally, the impact of a perfect gas vs. a thermochemical
nonequilibrium LST solver is examined.

II. Simulation Conditions

The flow conditions for this study are summarized in Table 1 and are intended to be similar to those used
by Bitter and Shepherd.22 These flow conditions were also used by Knisely and Zhong in 2017.33 Case 1
uses a thermochemical nonequilibrium model, while Case 2 assumes frozen flow. The geometry is a 5 degree
half-angle axisymmetric blunt cone 1 meter in length with a nose radius of 1 mm. The DNS simulations
used 256 points in the wall-normal direction and roughly 5 points per millimeter on the surface of the cone
in the streamwise direction. In the azimuthal direction, four points are used. LST simulations interpolated
the DNS meanflow onto the LST grid defined by the stretching methods discussed in the following sections.

Table 1. Freestream flow conditions for DNS simulations.

Parameter Value Parameter Value

M∞ 5 H0,∞ 9.17 MJ/kg

ρ∞ 2.322 E-2 kg/m3 p∞ 10 kPa

T∞ 1500 K U∞ 3882.42 m/s

cN2
0.78 cO2

0.22

As will be explained in the following sections, the DNS code used in this study utilizes a shock-fitting
method. Thus, the parameters in Table 1 are the free stream conditions upstream of the shock formed over
the body.

III. Governing Equations and Gas Model

The governing equations for the DNS and LST codes are those developed by Mortensen and Zhong,34–39

which are formulated for thermochemical nonequilibrium assuming a two-temperature model. Their formu-
lation is highlighted here for clarity. The rotational mode is assumed to be fully excited with up to eleven
non-ionizing species with finite-rate chemistry. Two-temperatures are used to represent translation-rotation
energy and vibration energy. There are two species models: an eleven-species model (N2, O2, NO, C3, CO2,
C2, CO, CN, N, O, C) used for ablation studies and a five-species model (N2, O2, NO, N, and O) used to
simulate air. The five species model is used here. The Navier-Stokes equations in conservative form consist of
five species mass conservation equations, three momentum conservation equations, the total energy equation,
and the vibration energy equation. The governing equations in vector form are written as

∂U

∂t
+
∂Fj

∂xj
+
∂Gj

∂xj
= W (2)

where U is the state vector of conserved quantities, W is the source terms, and Fj and Gj are the inviscid
and viscous flux vectors, respectively. For further details of the governing equations and thermochemical
model, see the work of Knisely and Zhong25,33 and Mortensen.39

IV. Numerical Methods

A. DNS

The thermochemical nonequilibrium code developed by Mortensen and Zhong34–39 utilizes a high-order
shock-fitting method extended from a perfect gas flow version by Zhong40 to compute the flow field between
the shock and the body. The numerical method is summarized here for clarity. For shock-fitting computations
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the shock location is not known a priori, so its position is solved along with the flow field. Since the shock
position is not stationary, the grid used to compute the flow field is a function of time. The Navier-Stokes
equations are transformed into computational space

1

J

∂U

∂τ
+
∂E′

∂ξ
+
∂F ′

∂η
+ +

∂G′

∂ζ
+
∂E′v
∂ξ

+
∂F ′v
∂η

+ +
∂G′v
∂ζ

+ U
∂(1/J)

∂τ
=
W

J
(3)

where J is the Jacobian of the coordinate transformation. Further details of this transformation can be
found in Knisely and Zhong25,33 and Mortensen.39 A seven point stencil is used to discretize the spatial
derivatives

∂fi
∂x

=
1

hbi

3∑
k=−3

αi+kfi+k − α

6!bi
h5
(
∂f6

∂6x

)
(4)

where h is the step size, α < 0 is a fifth order upwind explicit scheme, and α = 0 reduces to a sixth order
central scheme. Here the inviscid terms use α = −6 which yields a low dissipation fifth order upwinded
difference and the viscous terms are discretized using α = 0. The derivatives in the transverse direction,
if required, are treated with Fourier collocation. To compute second derivatives, the first order derivative
operator is applied twice. Flux splitting is used for the inviscid flux terms with the eigenvalues of Λ for
thermochemical nonequilibrium derived by Liu and Vinokur.41

Conditions behind the shock are calculated from Rankine-Hugoniot relations. In the free stream, the
flow is assumed to be in thermal equilibrium and the chemical composition of the flow is frozen. The shock
is assumed to be infinitely thin which means that the flow has no time to relax as it crosses the shock as
relaxation rates are finite. This leads to the chemical composition remaining constant across the shock, as
well as the vibration temperature. Since neither process has any time to relax across the shock, the relaxation
zone is entirely downstream of the shock. A complete derivation of thermochemical nonequilibrium shock
fitting can be found in Prakash et al.42 A low storage 1st-order Runge-Kutta method from Williamson43 is
used to advance the solution in time.

B. LST

The perfect gas LST solver is based on Malik’s44 and has been verified and utilized extensively.45–47 The
thermochemical nonequilbrium linear stability analysis used here has been derived and verified by Knisely and
Zhong.33 The LST equations are derived from the governing equations (either perfect gas or thermochemical
nonequilbrium) in which the perturbations are assumed to be in the form of a normal mode described by
q′ = q̂(y) exp [i (αx+ βz − ωt)], where ω is the circular frequency of the disturbance and α and β are the
wavenumbers. For comparison to direct numerical simulation the spatial stability approach is used i.e. α is
complex which results in the dispersion relation α = Ω(ω, β). Substituting in the normal mode form for the
perturbation reduces the problem to a coupled set of ordinary differential equations(

A
d2

dy2
+ B

d

dy
+ C

)
~φ = ~0. (5)

where ~φ is the disturbance eigenvectors and A, B and C are complex square matrices. This is now a boundary
value problem where the derivative operators can be discretized and the equations solved numerically.

With the grid defined, Eq. 5 can be transformed into computational space and a numerical representation
of the derivatives can be given. The perfect gas LST solver uses a multi-domain spectral collocation method,
whereas the thermochemical nonequilibrium LST solver is discretized by taking derivatives of Lagrange
polynomials in physical space. Here, a five-point stencil is used, resulting in a 4th order method similar to
the one used in the perfect gas LST solver.

After discretization, nonlinearities exist in α so the global method suggested by Malik44 is used to compute
the eigenvalue spectrum with α2 = 0. This method computes the eigenvalues from a generalized eigenvalue
problem Ã~φ = αB̃~φ where the LAPACK48 subroutine ZGGEV is used here for solution. From the eigenvalue
spectrum an initial guess can be obtained for the local method which results in A~φ = B and the eigenvalue
is found iteratively without dropping the α2 terms. The LAPACK subroutine ZGESV is used to solve the
local problem. It is also possible to avoid the computationally intensive global method and obtain an initial
guess for α from a nearby streamwise location or a DNS simulation assuming the unsteady DNS results are
available.
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The boundary conditions are required for the freestream and the wall. The wall boundary conditions are
pressure extrapolation, no slip, and zero temperature perturbation, although more complex surface boundary
conditions can be used for ablation studies.35,39 In the freestream, the shock boundary conditions developed
by Knisely and Zhong33 were used for the thermochemical nonequilibrium LST solver, and Dirichlet (zero)
boundary conditions were used for the perfect gas LST solver. It has been shown that the shock free stream
boundary conditions are virtually indistinguishable from the Dirichlet when the computational domain is
large.33

V. Steady Flow Field Solution

The steady DNS temperature and pressure contours for both Case 1 and Case 2 are shown in Fig. 2.
There is a very clear disagreement in temperature between the nonequilibrium gas and frozen flow models
(Fig. 2a), although the discrepancy between the pressure contour (Fig. 2b) is not as severe. Additionally,
Case 1 (Noneq. model) has a slightly smaller shock height than Case 2 (Frozen Gas).

(a) (b)

Figure 2. Comparison of steady flow field contours in nose region. Case 1 (Noneq. Model). Case
2 (Frozen Gas Model). (a) Temperature, T (K). (b) Pressure, p (Pa).

Farther downstream, the difference between the nonequilibrium model and perfect gas flows diminish in
the free stream, however there is still some difference within the boundary layer. Fig. 3 compares mean
flow variables as a function of the wall-normal coordinate, y, with the axis limits modified to highlight
the boundary layer region. The velocity and temperature of the perfect gas case differ slightly from the
nonequilibrium case (Fig. 3a), particularly the peak temperature in the boundary layer, where there is
approximately a 100 K difference between the models. Additionally, in the perfect gas model the vibration
temperature is assumed to be zero, and is not included for comparison. The density of the flow follows
similar trends (Fig. 3b), with the perfect gas model deviating slightly from the nonequilibrium gas model in
the boundary layer. These seemingly small differences may have a significant impact on the stability of the
flow.

VI. LST Results

The free stream values used in nondimensionalizing the results for Case 2 were the same as those for
Case 1. In order to assess the impact of thermochemical nonequilibrium, the LST analysis of Case 1 was
reproduced with a perfect gas LST solver, i.e. a perfect gas LST code was used to analyze the stability of the
mean flow obtained from the nonequilibrium DNS. The perfect gas solver is based on Malik’s multi-domain
spectral method44 and has been verified extensively.45 Additionally, the perfect gas stability solver was used
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(a) (b)

Figure 3. Case 1 (Noneq. Model) and Case 2 (Frozen Gas) mean flow boundary layer profiles at s = 0.4 m.
(a) u, T , and TV . (b) Density ρ. u denotes the component of velocity tangential to the surface of the cone. y
is the wall normal distance.

to analyze the stability of the mean flow obtained from the frozen flow DNS in Case 2. The phase speed and
growth rate for a frequency of f = 700 kHz are shown in Fig. 4. It is apparent from the phase speeds in Fig.
4a that for mode F1+, the perfect gas LST using nonequilibrium mean flow and the perfect gas LST using
frozen mean flow both agree with the fully nonequilibrium mode F1+. That is, it appears that the phase
speed of mode F1+ is not impacted largely by nonequilibrium effects. Lastly, there appears to be only a
small difference in phase speed between the perfect gas LST with nonequilbrium mean flow and with frozen
mean flow. Using frozen flow compared to nonequilibrium mean flow with the perfect gas LST solver did
not affect the phase speed significantly for both mode F1+ and mode S.

The growth rates in Fig. 4b, on the other hand, show significant differences depending on the LST
gas model as well as the mean flow model. Regardless of the mean flow, the perfect gas LST predicts a
significantly higher peak growth rate. Accordingly, this causes the supersonic mode “kink” in the perfect gas
solver to have a higher magnitude than the nonequilibrium LST solver. The perfect gas solver having a larger
magnitude growth rate than nonequilibrium is expected, as it is known that vibrational nonequilibrium effects
are damping to the second mode. However, chemical nonequilibrium is known to be slightly destabilizing to
the second mode. As mentioned by Knisely and Zhong33 and Bitter and Shepherd,22 the chemical effects
in Case 1 are relatively weak, whereas the vibrational nonequilibrium is significant. Therefore, the perfect
gas LST predicting a larger growth rate than the nonequilibrium LST is due to the vibrational energy mode
absorbing some of the disturbance energy. This result suggests that the supersonic mode is affected by
nonequilibrium effects in a similar manner as the traditional second mode.

Lastly, in Fig. 4b the maximum growth rate of the perfect gas LST with frozen mean flow is slightly
lower in amplitude and occurs slightly upstream of the perfect gas LST with nonequilibrium mean flow.
However, this difference is minimal and suggests the mean flow nonequilibrium effects are not as significant
as they are in LST. This one case is far from sufficient to reach this conclusion, however, and the impact of
nonequilibrium effects in the mean flow must be examined at higher enthalpy conditions.

Although the supersonic mode is visible with the perfect gas LST solver in Fig. 4, the new discrete mode
F1- was not able to be resolved. This raises the question of the perfect gas LST solver’s ability to capture
the oscillatory eigenfunctions of supersonic modes. First, however, the comparison between the subsonic
mode F1+ is compared between the nonequilibrium LST and the perfect gas LST with both nonequilibrium
and frozen mean flow (Fig. 5). From Fig. 5a, it is clear that the nonequilibrium model has little effect on
the shape of the pressure eigenfunction. The temperature eigenfunction in Fig. 5b, however, shows that the
nonequilibrium LST solver produces a qualitatively similar shape, although the local maxima are of different
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(a) (b)

Figure 4. LST phase speed and growth rate for Mode F1 at f = 700 MHz. (a) Phase Speed. (b) Growth Rate.

amplitudes than the perfect gas LST. These maxima are known to occur in regions where nonequilibrium
activity occurs; therefore the difference in temperature eigenfunctions between the solvers is not surprising.
There appears to be very little variation between the perfect gas LST using nonequilibrium mean flow vs.
frozen mean flow in temperature eigenfunction, however.

The eigenvalues for the subsonic unstable mode F1+ are included in Table 2. The imaginary component
of the wavenumber is the most differing parameter between the methods, with the fully nonequilibrium case
showing the lowest value, followed by the perfect gas LST solver using frozen mean flow. The real component
of the wavenumber does not vary as significantly, with the fully nonequilibrium case and the perfect gas LST
solver using nonequilibrium mean flow showing nearly the same value. However, the perfect gas LST solver
using frozen mean flow shows a slightly higher αr, translating into a slightly lower phase speed. These trends
in wavenumber were also visible in the phase speed and growth rate plots in Fig 4.

(a) (b)

Figure 5. Case 2 eigenfunctions normalized by local mean flow value for unstable second mode at f = 700 kHz,
s = 0.4224 m. (a) Pressure. (b) Temperature.

The eigenvectors and eigenvalues of the supersonic mode at s = 0.50 m for f = 700 kHz are examined
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Table 2. Eigenvalues for Case 2 subsonic unstable mode F1+ at f = 700 kHz, s = 0.4224 m.

LST Gas Model Mean Flow Gas Model αr (1/m) −αi (1/m)

Noneq. Noneq. 1366.12 30.73

Perfect Noneq. 1367.00 47.25

Perfect Frozen 1378.70 42.68

in Fig. 6 and Table 3, respectively. From the pressure eigenfunction in Fig. 6a, it is clear that the perfect
gas LST solver does not display the amplification of the disturbance into the free stream as prominently as
the nonequilibrium LST solver. That is, the amplitude of the pressure eigenfunction of the perfect gas LST,
regardless of mean flow, decays to zero more rapidly outside the boundary layer than the nonequilibrium
solver. Again, however, the perfect gas LST solver does not appear to be as dependent on the mean flow
gas model. The perfect gas LST solver with nonequilibrium mean flow and frozen mean flow are virtually
indistinguishable. The temperature eigenfunction in Fig. 6b shows similar trends. The perfect gas LST shows
the amplitude of the temperature eigenfunction decaying to zero more rapidly than the nonequilibrium LST
solver. Similar to the subsonic mode in Fig. 5b, the local maxima in the temperature eigenfunction are of
different amplitude for the nonequilibrium LST solver than for the perfect gas solver.

The imaginary component of the wavenumber for the supersonic mode (Table 3) is again the most differing
parameter between the methods, with the fully nonequilibrium case showing the lowest value, followed by
the perfect LST solver using frozen mean flow. However, the difference in αi is significantly greater for the
supersonic mode than for the subsonic mode. Similar to the subsonic mode, however, the real component of
the wavenumber does not vary as significantly, with the fully nonequilibrium case and the perfect gas LST
solver using nonequilibrium mean flow showing nearly the same value. However, the perfect gas LST solver
using frozen mean flow shows a slightly higher αr, translating into a slightly lower phase speed. These trends
in wavenumber were also visible in the phase speed and growth rate plots in Fig 4. Because αr, and by
extension the phase speed, of the supersonic mode obtained from the perfect gas LST solver agree reasonably
with the nonequilibrium solver, it is possible that the perfect gas LST solver can be used to determine the
relative location of the supersonic mode. However, because the perfect gas and the nonequilibrium gas LST
solvers show wildly different values for αi, it is inadvisable to use the perfect gas LST solver to predict
supersonic mode growth rates.

(a) (b)

Figure 6. Eigenfunctions normalized by local mean flow value for unstable supersonic mode at f = 700 kHz,
s = 0.50 m. (a) Pressure. (b) Temperature.
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Table 3. Eigenvalues for supersonic unstable mode F1+ at f = 700 kHz, s = 0.50 m.

LST Gas Model Mean Flow Gas Model αr (1/m) −αi (1/m)

Noneq. Noneq. 1520.71 2.623

Perfect Noneq. 1521.40 27.31

Perfect Frozen 1542.40 24.64

VII. Summary and Conclusion

There has been a resurgence of interest in studying the supersonic mode due to its presence and large
amplification in some unexpected flow conditions.24,26,27 However, the impact of thermochemical nonequi-
librium effects on the stability of the supersonic mode is not fully understood. This study used Direct
Numerical Simulation (DNS) with both thermochemical nonequilibrium and frozen flow models as mean
flow inputs to Linear Stability Theory (LST) solvers. Both perfect gas and thermochemical nonequilbrium
stability models were used to evaluate the impact of thermochemical nonequilbrium on the stability of the
supersonic mode.

Overall, the supersonic mode appears to be stabilized and destabilized in a similar fashion as the second
mode. Specifically, it was shown here that vibrational nonequilibrium is stabilizing to the supersonic mode.
This result is expected as the supersonic mode is simply a special case of the second mode when the wave
speed is slow enough such that the disturbance travels upstream supersonically with respect to the local
mean flow. However, the more rapid decay of the eigenfunctions in the perfect gas LST solver indicates that
it may not always be suitable for use in studying the supersonic mode. Furthermore, because the supersonic
stable mode F1- was not able to be resolved with the perfect gas LST, it suggests that traditional LST
solvers that do not account for nonequilibrium effects or oscillatory behavior in the free stream may provide
inaccurate results when studying the supersonic mode. Although the location of the supersonic mode may
be reasonably predicted by perfect gas LST, the amplitude is not as reliable and results should be used with
caution.
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