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There has been a renewed interest in studying the stability of the supersonic mode
in hypersonic boundary layers. The supersonic mode, sometimes also referred to as the
spontaneous radiation of sound, is associated with an unstable Mack’s second mode syn-
chronizing with the slow acoustic spectrum, causing the disturbance to travel upstream
supersonically relative to the meanflow outside the boundary layer. Recent theoretical
results have shown the possibility of the supersonic mode existing in hot-wall flows, which
is contrary to the known research on the supersonic mode suggesting it is an artifact of
hypersonic cold-wall (Tw/T∞ < 1) flows. This work aims to use thermochemical nonequi-
librium Direct Numerical Simulation (DNS) along with thermochemical nonequilibrium
Linear Stability Theory (LST) to replicate the flow conditions used in the theoretical study
to obtain a more complete investigation of the supersonic mode in hot-wall flow conditions.
The simulation is Mach 10 flow over a 1mm nose radius axisymmetric cone. LST results
indicate that the supersonic mode does not exist in the hot-wall flow, however unsteady
DNS results indicate the presence of the spontaneous radiation of sound, going against
LST predictions. Further FFT analysis indicated that this sound radiation was an artifact
of the interaction of stable mode S and mode F1 with the slow acoustic spectrum. This
interaction very briefly produced the unstable supersonic mode. The supersonic mode
quickly became stable after its initial creation, and the sound radiation ceased. As men-
tioned in previous research, the sound radiation may act as an energy sink and can cause
an asymmetric frequency response to the disturbance. The complex interaction of modes
implies the traditional transition prediction tools like LST used in the eN method may not
be suitable for use in these types of flows.

I. Introduction

It has long been known that boundary layer transition from laminar to turbulent has a considerable
impact on the design of hypersonic vehicles. Transition to turbulent flow drastically increases drag and
heating to the vehicle surface, and can have a prominent effect on control of the hypersonic vehicle. It also
affects engine performance and operability as well as vehicle structure and weight. The heating to the vehicle
surface is one of the primary considerations in hypersonic vehicle design. Thermal protection systems (TPSs)
are required to prevent the surface of the vehicle from overheating and failing. TPSs are usually specified
with a large factor of safety to ensure protection of the vehicle, although this often adds unnecessary weight,
reducing the maximum payload. The ability to predict accurately or even to delay the onset of transition
and maintain laminar flow can have a significant payoff in terms of the reduction in aerodynamic heating,
higher fuel efficiency, and weight of the thermal protection system.

Mack1 found that the major instability waves leading to transition to turbulence in a perfect gas flow are
the first and second modes, which Fedorov2 recently described as acoustic rays physically trapped between
the wall and sonic line. Researchers have subsequently developed numerical tools to predict transition to
turbulence due to the first and second mode. Malik3 implemented multiple numerical methods for solving
the Linear Stability Theory (LST) equations for a perfect gas. Chemical nonequilibrium effects in the LST
framework were studied numerically by Stuckert and Reed.4 Hudson et al.5 incorporated thermal nonequilib-
rium effects in addition to chemical nonequilibrium for LST. Johnson et al.6–8 studied hypersonic boundary
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layer transition in thermochemical nonequilibrium using the Parabolized Stability Equations (PSE), which
account for nonparallel flow effects that are ignored in LST. Overall, the researchers determined that disso-
ciation of air species is stabilizing to the first mode, but destabilizing to the second mode. Additionally, it
was determined that thermal nonequilibrium has a slight destabilizing effect on the first mode, and a slight
stabilizing effect on the second mode. These contemporary studies have primarily focused on flows with rela-
tively modest levels of wall cooling with the wall-to-edge temperature ratio greater than unity. (Tw/Te > 1).
This motivated Bitter and Shepherd9 to examine the effect of highly cooled walls on hypersonic boundary
layer stability.

Flows with highly cooled walls are of interest in high-enthalpy flows, such as shock tube experiments
in which the wall temperature remains ambient during the short test duration, as well as some real flight
cases.10,11 It has long been known through studies by Lees12 and Mack13,14 that wall cooling stabilizes the
first mode but destabilizes the second mode. Bitter and Shepherd9 took these studies a few steps further
and have shown through a chemical equilibrium, thermal nonequilibrium LST analysis that high levels of
wall cooling on a flat plate lead to unique features, in particular an unstable second mode traveling upstream
supersonically relative to the free stream. The supersonic modes cause second-mode instabilities over a wider
range of frequencies than subsonic modes. The unstable supersonic modes cause acoustic waves to radiate
from the wall into the free stream. This phenomenon has been referred to as the spontaneous radiation of
sound.15 Figure 1 compares contours of temperature fluctuations at two different locations and frequencies.
Note that the perturbations are confined to within the boundary layer for the subsonic mode, but extend
well into the free stream for the supersonic mode.

(a) (b)

Figure 1: Contours of temperature fluctuations. Tw/T∞ = 0.2, Tw = 300K, M∞ = 5: (a) Subsonic mode:
s = 0.302m, f = 800 kHz. (b) Supersonic mode: s = 0.733m, f = 550 kHz.16

A schematic of the supersonic mode is presented in Figure 2 for further elaboration. A useful parameter
describing the speed of propagation of the disturbance relative to the mean flow is the relative Mach number

Mr(y) =
u(y)− cr
a(y)

(1)

where u(y) is the local mean flow velocity tangential to the wall, cr = ω/
√
β2 + α2

r is the disturbance prop-
agation speed, and a(y) is the local mean flow speed of sound. Near the wall, u is small and the disturbance
is traveling supersonically downstream relative to the mean flow, indicated below a relative Mach number
of Mr < −1. The sonic line Mr = −1 acts as a wave guide for the acoustic rays,2 resulting in the tra-
ditional Mack modes. Outside of Mr = −1, the disturbance is traveling subsonically with respect to the
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freestream, and creates a “rope-like” wave pattern observed by many researchers both experimentally17,18

and numerically.19–21 In some flows (specific flow conditions to be examined), a second supersonic region
can be present. Previous researchers9 have attributed this second supersonic region to a highly-cooled wall,
however this may not always be the case. Outside of Mr = 1, the disturbance is traveling upstream super-
sonically with respect to the freestream. This creates the “slanted” wave pattern outside of the boundary
layer shown in Figure 1(b). The angle created by this wave pattern is analogous to a Mach wave angle from
traditional compressible flow theory, and is given by µ = arcsin(1/Mr).
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Figure 2: Schematic of supersonic mode.

Chuvakhov and Fedorov15 confirmed Bitter and Shepherd’s9 findings through LST analysis as well as
unsteady direct numerical simulation (DNS) analysis. Knisely and Zhong16 have subsequently extended the
study of the supersonic mode to a blunt cone using thermochemical nonequilibrium DNS and LST analyses,
and determined the relative Mach number to be a critical parameter in the behavior of the boundary layer
disturbance. Supersonic modes are not a new finding, however, and have in fact been identified in a number
of other flow configurations. Mack13 commented on neutral supersonic waves in flow over a flat plate.
Chang, Vinh, and Malik22 reported supersonic modes in Mach 20 flow over a 6 degree wedge with wall
temperature ratio Tw/Tad = 0.1. Fedorov, Soudakov, and Leyva23 found unstable supersonic modes in flow
with gas injection. Fedorov et al.24 encountered unstable supersonic modes in flow with resonating micro-
cavities. Bres et al.25 also found this phenomenon in flow over a wall with a porous coating. Wagnild26

observed the spontaneous radiation of sound, although the focus of his study was the effect of vibrational
nonequilibrium. Salemi et al. modeled configurations typical of the T5 tunnel at Caltech and investigates
second mode synchronization with the slow acoustic spectrum. They investigated the effect of nonlinear
disturbances,27,28 a flared cone geometry,29 and high-temperature effects,30 although the Prandtl number
and ratio of specific heats were fixed in their real gas model.

Despite the evidence presented by Bitter and Shepherd9 and Chuvakhov and Fedorov,15 it is possible that
the impact of the highly-cooled wall on the spontaneous radiation of sound may have been overstated because
chemical nonequilibrium was not accounted for. Recent theoretical results by Anatoli Tumin31,32 indicate
the spontaneous radiation of sound in flows with Tw/Te > 1. Edwards and Tumin32 recently conducted a
numerical study of boundary layer receptivity to kinetic fluctuations, in which all external forcing (freestream
waves and surface disturbances) is negligible. Instead, additional fluctuating terms appear in the momentum
and energy equations using the same formulation as Fedorov and Tumin.33 Edwards and Tumin32 found that
the supersonic mode existed in hot-wall flows only when chemical nonequilibrium effects were included in the
meanflow calculation, but nonequilibrium effects in the stability solver were not as significant. Specifically,
the supersonic mode was prominent on a Tw = 1000 K isothermal flat plate with boundary layer edge
conditions Te = 834 K, pe = 0.0433 atm, and Me = 9.91. Edwards and Tumin32 suggested that the chemical
nonequilibrium effects in the meanflow may have a significant role in the creation of the supersonic mode in
hot-wall flows. This study aims to examine the impact of real gas effects on the mechanism of the creation of
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the spontaneous radiation of sound through DNS and LST studies of a blunt cone with similar flow conditions
as Edwards and Tumin.32

II. Simulation Conditions

The flow conditions for this study are summarized in Table 1 and are intended to be similar to “Case 3”
of Edwards and Tumin.32 The geometry is a 5 degree half-angle axisymmetric blunt cone 1 meter in length
with a nose radius of 1 mm. The DNS simulation used 256 points in the wall-normal direction and roughly
5 points per millimeter on the surface of the cone in the streamwise direction. In the azimuthal direction,
four points are used. LST simulations interpolated the DNS meanflow onto the LST grid defined by the
stretching methods discussed in the following sections.

Table 1: Flow conditions for DNS simulation.

Parameter Value

M∞ 10

H0,∞ 14.78 MJ/kg

ρ∞ 1.91 E-2 kg/m3

p∞ 4 kPa

Tw 1000 K

Tw/T∞ 1.43

As will be explained in the following sections, the DNS code used in this study utilizes a shock-fitting
method. Thus, the parameters in Table 1 are the free stream conditions upstream of the shock formed over
the body.

III. Governing Equations and Gas Model

The governing equations for the DNS and LST codes are those developed by Mortensen and Zhong,34–39

which are formulated for thermochemical nonequilibrium assuming a two-temperature model. Their formu-
lation is presented here for clarity. The rotational mode is assumed to be fully excited with up to eleven
non-ionizing species with finite-rate chemistry. Two-temperatures are used to represent translation-rotation
energy and vibration energy. There are two species models: an eleven-species model (N2, O2, NO, C3, CO2,
C2, CO, CN, N, O, C) used for ablation studies and a five-species model (N2, O2, NO, N, and O) used to
simulate air. The five species model is used here. The Navier-Stokes equations in conservative form consist of
five species mass conservation equations, three momentum conservation equations, the total energy equation,
and the vibration energy equation. The governing equations in vector form are written as

∂U

∂t
+
∂Fj
∂xj

+
∂Gj
∂xj

= W (2)

where U is the state vector of conserved quantities and W is the source terms defined by

U =



ρ1

...

ρns

ρu1

ρu2

ρu3

ρe

ρev


, W =



ω1

...

ωns

0

0

0

0∑nms
s=1 (QT−V,s + ωsev,s)


.
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The inviscid and viscous flux vectors, Fj and Gj , respectively, are defined by

Fj =



ρ1uj
...

ρnsuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(p+ ρe)uj

ρevuj


, Gj =



ρ1v1j

...

ρnsvnsj

τ1j

τ2j

τ3j

−uiτij − kT ∂T
∂xj
− kV ∂TV

∂xj
+
∑nms
s=1 ρshsvsj

−kV ∂TV

∂xj
+
∑nms
s=1 ρsev,svsj


.

where vsj is the species diffusion velocity, and

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij (3)

is the viscous stress. The total energy per unit volume, ρe, is defined as

ρe =

ns∑
s=1

ρscv,sT + ρev +
1

2
ρ
(
u2

1 + u2
2 + u2

3

)
+

ns∑
s=1

ρsh
o
s (4)

where hos is the species heat of formation, ev,s is the species specific vibration energy, and cv,s is the species
translation-rotation specific heat at constant volume, defined as

cv,s =

 5
2
R
Ms

s = 1, 2, . . . , nms

3
2
R
Ms

s = nms+ 1, . . . , ns.
(5)

The vibration energy per unit volume, ρev, is defined as

ρev =

nms∑
s=1

ρsev,s =

nms∑
s=1

ρs
R
Ms

θv,s
exp (θv,s/TV )− 1

(6)

where θv,s denotes the characteristic vibrational temperature of each vibrational mode. The characteristic
vibration temperatures are taken from Park.40

To model chemical nonequilibrium, three dissociation reactions and three exchange reactions are used.
Each reaction is governed by a forward and backward reaction rate determined from

kf = CfT
η
a exp (−θd/Ta) (7)

kb = kf/Keq (8)

where all forward reaction rates are obtained from Park.40 The equilibrium coefficient, Keq, is determined
using

Keq = A0 exp

(
A1

Z
+A2 +A3 ln(Z) +A4Z +A5Z

2

)
, Z =

10000

T
(9)

which is a curve fit to experimental data from Park.40

The Landau-Teller formulation is used to calculate the source term in the vibration energy equation
representing the exchange of energy between the translation-rotation and vibration energies

QT−V,s = ρs
ev,s(T )− ev,s(TV )

< τs > +τcs
(10)

where < τs > is the Landau-Teller relaxation time given by Lee.41 The term τcs is from Park40 to more
accurately model the relaxation time in areas of high temperatures occurring just downstream of the bow
shock.
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The viscosity of each species is computed using a Blottner curve fit shown in Eq. 11. The coefficients
are obtained from Blottner et al.42 The mixture viscosity is then found using each species viscosity from
Wilke’s43 mixing rule (Eq. 12). The total heat conductivities for each energy mode are computed in a similar
fashion as viscosity. The diffusion velocity is calculated using Fick’s law and a constant Schmidt number of
0.5.

µs = 0.1 exp [(Aµs ln(T ) +Bµs ) ln(T ) + Cµs ] (11)

µ =

ns∑
s=1

Xsµs
φs

(12)

Xs =
cs
Ms

(13)

φs =

∑ns
r=1Xr

[
1 +

(
Ms

Mr

)1/4
]2

[
8
(

1 + Ms

Mr

)]1/2 (14)

IV. Numerical Methods

A. DNS

The thermochemical nonequilibrium code developed by Mortensen and Zhong34–39 utilizes a high-order
shock-fitting method extended from a perfect gas flow version by Zhong44 to compute the flow field between
the shock and the body. The numerical method is repeated here for clarity. For shock-fitting computations
the shock location is not known a priori, so its position is solved along with the flow field. Since the shock
position is not stationary, the grid used to compute the flow field is a function of time. This leads to the
coordinate transformation 

ξ = ξ(x, y, z)

η = η(x, y, z, t)

ζ = ζ(x, y, z)

τ = t

⇐⇒


x = x(ξ, η, ζ, τ)

y = y(ξ, η, ζ, τ)

z = z(ξ, η, ζ, τ)

t = τ

(15)

where y is normal to the body, x is in the streamwise direction, z is in the transverse direction, ζt = 0, and
ξt = 0. The governing equation can then be transformed into computational space as

1

J

∂U

∂τ
+
∂E′

∂ξ
+
∂F ′

∂η
+ +

∂G′

∂ζ
+
∂E′v
∂ξ

+
∂F ′v
∂η

+ +
∂G′v
∂ζ

+ U
∂(1/J)

∂τ
=
W

J
(16)

where J is the Jacobian of the coordinate transformation and

E′ =
F1ξx + F2ξy + F3ξz

J
(17)

F ′ =
F1ηx + F2ηy + F3ηz

J
(18)

G′ =
F1ζx + F2ζy + F3ζz

J
(19)

E′v =
G1ξx +G2ξy +G3ξz

J
(20)

F ′v =
G1ηx +G2ηy +G3ηz

J
(21)

G′v =
G1ζx +G2ζy +G3ζz

J
. (22)
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A seven point stencil is used to discretize the spatial derivatives

∂fi
∂x

=
1

hbi

3∑
k=−3

αi+kfi+k −
α

6!bi
h5

(
∂f6

∂6x

)
(23)

where

αi±3 = ±1 +
1

12
α, αi±2 = ∓9− 1

2
α

αi±1 = ±45 +
5

4
α, αi = −5

3
α

bi = 60

and where h is the step size, α < 0 is a fifth order upwind explicit scheme, and α = 0 reduces to a sixth
order central scheme. Here the inviscid terms use α = −6 which yields a low dissipation fifth order upwinded
difference and the viscous terms are discretized using α = 0. The derivatives in the transverse direction,
if required, are treated with Fourier collocation. To compute second derivatives, the first order derivative
operator is applied twice.

Flux splitting is used for the inviscid flux terms resulting in

F ′ = F ′+ + F ′− (24)

where

F ′± =
1

2
(F ′ ± ΛU) (25)

and Λ is a diagonal matrix that ensures F ′+ and F ′− contain only pure positive and negative eigenvalues,
respectively. For thermochemical nonequilibrium, the eigenvalues of Λ were derived by Liu and Vinokur.45

Conditions behind the shock are calculated from Rankine-Hugoniot relations. In the freestream, the flow
is assumed to be in thermal equilibrium and the chemical composition of the flow is frozen. The shock is
assumed to be infinitely thin which means that the flow has no time to relax as it crosses the shock as
relaxation rates are finite. This leads to the chemical composition remaining constant across the shock, as
well as the vibration temperature. Since neither process has any time to relax across the shock, the relaxation
zone is entirely downstream of the shock. A complete derivation of thermochemical nonequilibrium shock
fitting can be found in Prakash et al.46 A low storage 3rd-order Runge-Kutta method from Williamson47 is
used to advance the solution in time.

B. LST

The linear stability analysis used here is largely based on the LST code developed by Mortensen,39 however
here the assumption of zero wall-normal velocity is relaxed (i.e. v 6= 0), and new freestream boundary con-
ditions incorporating a shock at the computational boundary are used. A body-fitted orthogonal curvilinear
coordinate system is used for axisymmetric bodies where x is in the streamwise direction, y is in the wall-
normal direction, z is in the transverse direction, and the origin is located on the body surface. Curvature
in the streamwise and transverse directions is included similar to Malik and Spall.48 Elemental lengths are
defined as h1dx, dy, and h3dz where

h1 = 1 + κy (26)

h3 = rb + y cos(θ) (27)

and where κ is the streamwise curvature, rb is the local radius of the body, and θ is the local half angle of
the body. The coordinate system for a flat plate is recovered by setting h1 and h3 to unity. For a straight
cone, only h3 is required and h1 is set to unity.

The derivation of the thermochemical nonequilibrium LST equations follows the work of Hudson.5,49 The
main difference in the derivation is that here the equation for each species velocity is substituted into the
governing equations before they are linearized, similar to Klentzman et al.50 The LST equations are derived
from the governing equations (Eq. 2) where the instantaneous flow is comprised of a mean and fluctuating
component q = q + q′. Here q represents any flow variable such as velocity, density, temperature, etc. The
instantaneous flow is then substituted into the governing equations where the steady flow is assumed to
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satisfy the governing equations and is subtracted out. The mean flow is assumed to be a function of y only
i.e. q(x, y, z) = q(y) and the flow disturbances are assumed to be small i.e. linear. The perturbations are
then assumed to be in the form of a normal mode described by

q′ = q̂(y) exp [i (αx+ βz − ωt)] (28)

where ω is the circular frequency of the disturbance and α and β are the wavenumbers. Commonly ω and
β are assumed to be real and the wavenumber α is assumed to be complex which means the disturbances
grow in space rather than time. If ω is complex and α and β are real then the disturbances grow in time
rather than space. For comparison to direct numerical simulation the spatial stability approach is used i.e.
α is complex which results in the dispersion relation α = Ω(ω, β). Substituting in the normal mode form for
the perturbation reduces the problem to a coupled set of ns+ 5 ordinary differential equations(

A
d2

dy2
+ B

d

dy
+ C

)
~φ = ~0. (29)

where ~φ =
[
ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂ , T̂V

]T
and A, B and C are complex square matrices of size ns+5. This

is now a boundary value problem where the derivative operators can be discretized and the equations solved
numerically.

For hypersonic compressible boundary layers it is important to have high grid resolution near the gener-
alized inflection point.1 The grid used by Mortensen39 uses two different functions to cluster points around
the inflection point and near the wall. It is called the cosine-exponential grid. For some boundary layers,
there is a sharp increase in the eigenfunctions near the wall for the temperatures and densities that was not
captured correctly with the grid that only clustered points near the inflection point, such as a grid similar to
the one used by Hudson et al.5 Mortensen’s39 cosine-exponential grid was much more effective for boundary
layers with strong changes in the eigenfunctions near the wall.

In hypersonic flows in which the spontaneous radiation of sound occurs, the cosine-exponential grid may
not provide enough grid resolution in the free stream or near the outer shock boundary. The continuous
modes oscillate to the computational boundary in many cases. Therefore, it is helpful to use an additional
exponential grid stretching function at the edge of the computational boundary. This second exponential
grid stretching function gave better grid spacing in the freestream and clustered points near the edge of the
computational boundary, which is desirable when a shock coincides with the boundary. The cosine-double-
exponential grid retains the benefits of capturing the sharp increases in eigenfunctions at the wall and at
the generalized inflection point, while adding additional resolution in the freestream and near the outer edge
boundary.

With the grid defined, Eq. 29 can be transformed into computational space and a numerical representation
of the derivatives can be given. The first and second derivative operators in the wall-normal direction are
discretized by taking derivatives of Lagrange polynomials in physical space. These derivative operators
are applied in physical space rather than computational space to avoid Runges phenomena where spurious
oscillations can occur for a one-sided stencil with a high order of approximation. Mortensen’s39 scheme can
be applied for variable stencil sizes and can be used to obtain high-order approximations. Here, a five-point
stencil is used, resulting in a 4th order method similar to the one used by Malik.3

After discretization, nonlinearities exist in α so the global method suggested by Malik3 is used to compute
the eigenvalue spectrum with α2 = 0. This method computes the eigenvalues from a generalized eigenvalue
problem Ã~φ = αB̃~φ where the LAPACK51 subroutine ZGGEV is used here for solution. From the eigenvalue
spectrum an initial guess can be obtained for the local method which results in A~φ = B and the eigenvalue
is found iteratively without dropping the α2 terms. The LAPACK subroutine ZGESV is used to solve the
local problem. It is also possible to avoid the computationally intensive global method and obtain an initial
guess for α from a nearby streamwise location or a DNS simulation assuming the unsteady DNS results are
available.

The boundary conditions are required for the freestream and the wall. The wall boundary conditions
are linearized non-catalytic conditions for density, no slip, and zero temperature perturbation, although
more complex surface boundary conditions can be used for ablation studies.35,39 In the freestream, the
shock boundary conditions developed by Knisely and Zhong16 were considered, however they had virtually
no impact on the stability results because the supersonic mode was shown not to exist in the LST results.
Therefore, the standard “zero” boundary conditions in the freestream were suitable for this study.
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LST gives information about what disturbance frequencies are unstable and the corresponding growth
rates of those frequencies, but there is no information on the amplitude of the incoming disturbance. To
estimate boundary-layer transition using LST, the eN transition criterion is used which is defined as

eN =
A(s)

A0
= exp

[∫ s

s0

−αi(s, f)ds

]
(30)

where A(s) is the integrated disturbance amplitude, A0 is the initial disturbance amplitude, s0 is the location
where the disturbance first becomes unstable, and αi is the spatial amplification rate obtained from LST. The
integration is performed for a constant frequency f , and is done numerically using trapezoidal integration.
Note that a negative imaginary part of the wave number α results in disturbance growth while a positive
value results in disturbance decay. The N-factor is specifically the exponent of eN . In-flight transition
N-factors are commonly understood to be around 10. Malik11 showed that 9.5 and 11.2 correlated with
transition onset for two high Mach number flight tests. In ground test facilities the transition N-factor is
usually lower.

V. Steady DNS Results

The Mach 10 flow over a hot-wall (Tw/T∞ = 1.43) cone produced significant thermochemical nonequi-
librium in the nose region. Steady DNS translation-rotation temperature, vibration temperature, and mass
fraction contours for the nose region of the cone are shown in Figure 3. Figures 3a and 3b indicate the
flow is in thermal nonequilibrium in the nose region, and Figures 3c and 3d indicate the flow is in chemical
nonequilibrium. Specifically, O2 dissociation is the predominant reaction in this flow field, with O2 mass
fraction going nearly to zero near the stagnation point. N2 dissociation is not negligible due to the higher
enthalpy freestream flow, however the N2 mass fraction only varies approximately 9% from its freestream
value. Similar contours are shown in Figure 4 for a downstream region of the cone.
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(a) (b)

(c) (d)

Figure 3: Steady DNS contours in nose region. (a) T . (b) TV . (c) Mass fraction of O2. (d) Mass fraction of
N2.
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(a) (b)

(c) (d)

Figure 4: Steady DNS contours in a downstream region. (a) T . (b) TV . (c) Mass fraction of O2. (d) Mass
fraction of N2.

The thermal and chemical nonequilibrium is visible from the contours in Figure 4, however the meanflow
profiles in Figure 5 show the nonequilibrium effects more clearly. The boundary layer profiles for temperature,
vibration temperature, tangential velocity, and species density of N2 and O2 at a streamwise distance from
the stagnation point of s = 0.4 m are shown in Figure 5. Again, y denotes the wall-normal distance.
The meanflow does not reach thermal equilibrium in the free stream, thus demonstrating the necessity of
accounting for the vibrational mode in these types of flows. The species densities of N2 and O2 follow
similar trends to one another in the boundary layer, but ρN2 specifically does not reach a constant value
outside of the boundary layer. This demonstrates the need for simulations accounting for thermochemical
nonequilibrium flows for high enthalpy freestream conditions.
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(a) (b)

Figure 5: Meanflow boundary layer profiles at s = 0.4 m. (a) u, T , and TV . (b) Species density ρs of N2 and
O2 species. u denotes the component of velocity tangential to the surface of the cone. y is the wall normal
distance.

VI. LST Results

The freestream values used in nondimensionalizing the LST results were:

u∗∞ = 5.303E + 03 m/s, ρ∗∞ = 1.991E − 02 kg/m3, µ∗∞ = 3.320E − 05 kg m/s.

The growth rate and phase speed for a frequency of f = 1 MHz is shown in Figure 6. These results
indicate that mode S is unstable, rather than mode F1. The necessary condition for the supersonic modes is
an unstable mode F1 with phase speed cr < 1−1/M∞. Because mode S is the unstable mode, the supersonic
mode will not exist under these flow conditions. The discontinuity in mode F1 in Figure 6 is a result of
mode F1 synchronizing with the entropy/vorticity spectra and getting “lost” numerically. Because mode F1
is stable during synchronization with the entropy/vorticity spectra at cr = 1, it is difficult to distinguish the
discrete eigenvalues from the continuous eigenvalues, and the numerical scheme cannot converge to a single
solution within any reasonable tolerance. More detail on the interaction between the discrete and continuous
modes can be found in Fedorov.2 To show unequivocally that mode S is unstable and mode F is stable,
similar growth rate and phase speed results are presented in Figure 7 for a frequency of f = 600 kHz.
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(a) (b)

Figure 6: LST phase speed and growth rate for Modes F1, F2, and S at f = 1 MHz. (a) Phase Speed. (b)
Growth Rate.

(a) (b)

Figure 7: LST phase speed and growth rate for Modes F1, F2, and S at f = 600 kHz. (a) Phase Speed. (b)
Growth Rate.

The stability results for f = 600 kHz (Figure 7) also indicate mode S as the unstable mode. Mode F1 is
not able to be resolved in the vicinity of cr = 1 for the f = 600 kHz stability analysis (Figure 7) for the same
reasoning as the f = 1 MHz analysis. However, from the linear interpolation across the entropy/vorticity
spectra, it is reasonable to assume that mode F1 will be stable throughout the synchronization region. In
any case, mode F1 is stable for cr < 1− 1/M∞, and no supersonic mode exists.

For a complete picture of the second mode, the stability of mode S for a range of frequencies over the
entire length of the cone was computed, resulting in the neutral stability map for mode S (Figure 8). The
neutral stability map indicates the locations and frequencies at which mode S is unstable. The region of
instability of the second mode is the area inside the thick black curve. At the lowest frequencies and near the
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nose of the cone (left-hand side of Figure 8), the numerical solver is not stable and a physical solution is not
obtained. The maximum growth rate occurs at approximately s = 0.24 m at a frequency of f = 840 kHz.
Because mode S is the unstable mode for these conditions, there can exist higher modes that are amplified.
Specifically, the third mode amplification is apparent in the upper right corner of Figure 8. The third mode
is amplified after the synchronization of mode F2 with mode S, however this amplification is not sufficient to
make the third mode unstable. The second mode is significantly more amplified, and is the predicted cause
of transition.

Figure 8: Neutral stability map for mode S. Dashed lines indicate negative growth rates. Thick black line
indicates points of neutral stability.

To relate the mode S instability to empirical estimates of transition to turbulence, the N-factor curve
was calculated, shown in Figure 9. A maximum N-factor of approximately 6 due to a frequency of f = 475
kHz is achieved by the end of the 1 m long cone.
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Figure 9: N-factor for unstable second mode frequencies. Frequencies are in increments of ∆f = 25 kHz.
The green line is an approximation of the edge of the N-factor curve.

VII. Unsteady DNS Results

To study stability using DNS, it is required that the meanflow be perturbed in order to study the growth,
or decay, of the perturbation. Here, the flow is perturbed with a suction/blowing slot at the cone surface.
The equation for the mass flux of the slot is

ρv(x, t)′w = εb(ρu)∞ exp

{
− (t− µb)

2σ2
b

}
sin

{
2π(x− xb)

lb

}
(31)

where lb is the length of the slot, xb is the center of the slot measured from the leading edge of the cone, εb
scales the function, µb shifts the Gaussian component to avoid negative times, and σb adjusts the spectral
content of the function. Notice the time dependent Gaussian portion of the function. When transformed to
frequency space, this yields a continuous range of frequencies with non-zero amplitudes making this particular
approach for perturbing the meanflow an effective strategy when studying a wide range of frequencies.

The parameters for the unsteady pulse, given by Equation 31, are summarized in Table 2. The Gaussian
pulse and its Fourier transform (Figure 10) show the majority of the frequency content of the pulse is below
1.2 MHz.
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Table 2: Gaussian pulse parameters for unsteady DNS

εb µb σb xb lb

1E − 4 3E − 6 3E − 7 0.1m 0.002m

(a) (b)

Figure 10: Gaussian pulse for unsteady DNS. (a) Nondimensional mass flux amplitude. (b) Frequency
content of pulse.

The evolution of the Gaussian pulse downstream is visualized in Figure 11 using snapshots in time of
contours of the pressure perturbation normalized by the local meanflow pressure (∆p

p ). The same value at the
surface of the cone is included to more clearly visualize the growth of disturbances. The traditional second
mode growth can be seen in Figure 11(a) prior to x = 0.27 m. However, contrary to the LST predictions,
the start of the spontaneous radiation of sound appears in Figure 11(b) between x = 0.30 m and x = 0.33
m. When the pulse travels farther downstream, the spontaneous radiation of sound becomes much more
apparent, shown in Figure 11(c-d). The radiation continues to grow into the freestream as the pulse continues
downstream (Figure 12). Figure 12(b) in particular shows the sound radiation very clearly between x = 0.73
m and x = 0.87 m. Further Fourier decomposition analysis is required to determine whether or not this
sound radiation is an artifact of the supersonic mode, or is due to other modal interaction.
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(c)

(d)

Figure 11: Snapshots in time of pressure perturbation ∆p/p contours and surface pressure perturbation from
Gaussian pulse. ∆t = 1.959 E-5 seconds.
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(b)
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(c)

Figure 12: Snapshots in time of pressure perturbation ∆p/p contours and surface pressure perturbation from
Gaussian pulse. ∆t = 5.246 E-5 seconds.

An FFT was performed on the time-history of the surface pressure perturbation at all streamwise loca-
tions, resulting in the contour map in Figure 13. This contour shows the most unstable excited frequencies
due to the Gaussian pulse. The neutral stability curve predicted by LST from Figure 8 is overlayed in Figure
13 for comparison.The most amplified frequency from the Gaussian pulse is approximately f = 475 kHz and
appears most prominently for s > 0.95 m. This result agrees remarkably well the the N-factor results from
LST. The FFT results follow the LST predictions reasonably closely despite the absence of the radiation of
sound in the LST results. It is likely that the amplitude of the supersonic mode is relatively weak in this
flow, and the traditional 2nd mode is the dominant instability.

20 of 31

American Institute of Aeronautics and Astronautics



Figure 13: Fourier transform of unsteady surface pressure perturbation time history of Gaussian pulse. The
black line is the neutral curve predicted by LST.

It is useful to compare the FFT results to those obtained by Chuvakhov and Fedorov15 for a cold-wall flat
plate. Although the wall temperature ratio and blowing/suction slot are different than the current study,
similar trends are observed for their supersonic mode. The Fourier transform of the unsteady pressure
perturbation vs frequency for fixed streamwise locations is shown in Figure 14. Near the blowing/suction
actuator (s ≤ 0.201 m), the curve shape is similar to a bell curve. However, as the pulse travels downstream,
the frequency content shifts and becomes asymmetrical. At each location s ≥ 0.250 = 2 m, there is a main
peak frequency with at least one smaller peak frequency greater than that main frequency. Chuvakhov and
Fedorov15 also obtained similar results for their study, in which they noted that rather than the typical
bell-shaped curves, multiple peaks are formed. Chuvakhov and Fedorov15 observed three peaks at most in
their FFT, which largely agrees with the results presented in Figure 14.
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Figure 14: Fourier transform of unsteady surface pressure perturbation time history of Gaussian pulse as a
function of frequency for various streamwise locations s.

It is possible to determine the growth rate and phase speed of an unsteady disturbance in DNS. The
Fourier decomposed perturbation variables can be used to reconstruct the perturbation flow field via

φ′(x, y, t) = ∆φ(x, y) exp [i(ψ(x, y)− 2πft)] (32)

where φ′ is the perturbation of some variable, ∆φ is the amplitude of that variable, ψ is the corresponding
phase angle, and f represents a single dimensional frequency. The response of the entire flow field for a
particular frequency as a result of the unsteady pulse can be given directly by Equation 32, provided FFT
data is available for all data points in the flow field.

The FFT of the entire flow field was performed and is shown in Figure 15 for 500 kHz and Figure 16
for 700 kHz. Both frequencies clearly show the extension of the disturbance outside of the boundary layer,
which is typical of the supersonic mode. The onset of the radiation into the freestream for f = 500 kHz is
near x = 0.7 m, and for f = 700 kHz the onset is near x = 0.35 m. For the f = 700 kHz frequency, there is
a clear amplification in the freestream for x > 0.7 m while there is very little amplification near the wall in
this region.
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Figure 15: FFT of unsteady pressure perturbation at all points in the flow field for f = 500 kHz.

Figure 16: FFT of unsteady pressure perturbation at all points in the flow field for f = 700 kHz.

Multiple boundary layer modes are present simultaneously in DNS, however as one mode becomes dom-
inant, it is possible to derive growth rate, wave number, and phase speed equations for a given frequency f
from Equation 32, resulting in

−αi =
1

∆φ(f)

d

ds
∆φ(f) (33)

αr =
d

ds
ψ(f) (34)

cr =
2πf

αr
(35)

(36)

where s is the streamwise coordinate, ∆φ(f) represents a variable amplitude frequency f , and ψ(f) repre-
sents the corresponding phase angle at frequency f . Similar to previous researchers,52 the surface pressure
perturbations from DNS are used to compute −αi and cr.

The phase speed and growth rate calculated from DNS is compared to the LST predictions for a frequency
of f = 500 kHz in Figure 17, and for f = 700 kHz in Figure 18. The DNS matches the LST predictions
reasonably well, with a few areas of exception. For f = 500 kHz, the phase speed for DNS and LST agree
closest in the range 0.6 < s < 0.85 m, although the DNS phase speed is consistently lower than the LST
prediction. The growth rate is also closest in this range, and the DNS growth rate is consistently greater
than the LST predictions. The areas where the agreement is not as strong are s < 0.6 m and s > 0.85 m.
These regions correspond to synchronization regions with the fast acoustic mode F1 and the slow acoustic
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spectra, respectively. The DNS results are a combination of all discrete and continuous modes present in the
flow, whereas the LST results focus on a single mode and neglect all other modes. In regions where there
are competing modes, LST is unable to capture the interaction between these modes, whereas DNS exhibits
the oscillatory behavior due to the interaction between modes.

(a) (b)

Figure 17: Comparison of DNS to LST phase speed and growth rate at f = 500 kHz. (a) Phase speed, cr.
(b) Growth rate, −αi.

The phase speed and growth rate for f = 700 kHz in Figure 18 draw largely similar comparisons as
the f = 500 kHz results. The stable boundary layer modes F1 and F2 are also included for comparison.
There are a few notable differences compared to the 500 kHz case, however. The region of mode S between
the interaction with mode F1 and the slow acoustic spectrum is 0.3 < s < 0.45 m, and the DNS and LST
mode S results are similar, although the DNS phase speed is slower than predicted by LST, and the DNS
growth rate is larger than predicted by LST. Downstream of s = 0.45 m, the DNS results oscillate about
the LST mode S predictions for both phase speed and growth rate. Again, this oscillatory behavior is the
result of multiple modes existing simultaneously in the DNS simulation that are ignored in LST. However,
the agreement between DNS and LST is still strong considering the largely different methods used to obtain
the results.
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(a) (b)

Figure 18: Comparison of DNS to LST phase speed and growth rate at f = 700 kHz. (a) Phase speed, cr.
(b) Growth rate, −αi.

From the growth rate and phase speed comparison between DNS and LST, it appears that the DNS
phase speed is below 1 − 1/M∞ in some cases, which is the key requirement of the supersonic mode. The
eigenfunctions between LST and DNS can be compared to determine to what extent there is oscillatory
behavior in the freestream at these locations, indicating the presence of the supersonic mode. Figure 19
compares the pressure eigenfunctions from LST mode S and DNS at three streamwise locations for f = 500
kHz. At s = 0.6 m, mode S has just synchronized with mode F1 and the DNS eigenfunction exhibits some
oscillatory behavior in the freestream, although the amplitude is quite small. This oscillatory behavior in
the freestream is distinct from the supersonic mode because the phase speed of the disturbance is greater
than 1 − 1/M∞. Further downstream at s = 0.7 m, the effects of the interaction between modes S and F1
are much smaller and the DNS and LST eigenfunctions are nearly identical. The LST growth rate in Figure
17(b) predicts mode S to be dominant at s = 0.7 m, so the good agreement between DNS and LST was
expected at this location. At s = 0.9 m, it appears from Figure 17(a) that the DNS phase speed may be
supersonic (cr < 1 − 1/M∞). However, the pressure eigenfunction in 19(c) does not show any oscillatory
behavior in the freestream, so the extension of the disturbance into the freestream in the FFT contour in
Figure 15 is not due to a supersonic mode S. Rather it is likely due to the interaction of mode S, mode F1,
and the slow acoustic spectrum.
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(a) s = 0.6 m (b) s = 0.7 m

(c) s = 0.9 m

Figure 19: Comparison of DNS to LST mode S pressure eigenfunction at f = 500 kHz at different streamwise
locations.

The eigenfunctions at f = 700 kHz were also compared to the LST mode S, mode F1, and mode F2
predictions at different streamwise locations, shown in Figure 20. Similar to the 500 kHz cases, locations for
eigenfunction comparison were selected to be just downstream of the synchronization of mode S with mode
F1 (s = 0.35 m), and in the region where cr < 1−1/M∞ (s = 0.45 m). The third location was selected based
on Figure 16 where there are two distinct wall-normal locations of amplification (s = 0.6 m). At s = 0.35 m,
the synchronization of mode S with mode F1 causes small oscillatory behavior in the freestream, although
the amplitude is very small. At s = 0.45 m, the DNS phase speed is supersonic (cr < 1− 1/M∞), however
the DNS and LST mode S eigenfunctions do not exhibit any oscillatory behavior outside the boundary
layer. Mode F1, however, exhibits strongly oscillatory behavior in the freestream due to its proximity to the
slow acoustic spectrum, but nevertheless it is predicted to be stable. Because mode F1 was not able to be
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resolved between 0.3 < s < 0.4 m, it is possible that the interaction of the unstable mode S, stable mode
F1, and the slow acoustic spectrum cause mode F1 to be briefly unstable while traveling supersonically with
respect to the freestream. This could explain the brief radiation of sound shown in Figure 16. At s = 0.45
m, the mode S and DNS growth rates are near zero, and no significant unstable supersonic mode S exists.
Interestingly, however, the eigenfunction at s = 0.6 m displays a clear second peak that is not predicted by
LST despite a subsonic phase speed and a negative growth rate. It is possible that this behavior in DNS is
the result of the brief radiation of sound upstream of this location. In other words, it is likely that somewhere
between 0.3 < s < 0.4 m there is a modal energy exchange causing mode F1 to become briefly unstable while
traveling supersonically with respect to the meanflow. This briefly unstable supersonic mode radiates sound
away from the wall. The sound radiation outside of the boundary layer continues to travel downstream
and its amplitude becomes slowly damped. Near the wall, however, the supersonic mode F1 becomes stable
very quickly after its creation, and mode S becomes stable as well. This scenario would explain the sound
radiation in the freestream and the decay of the perturbation at the wall observed in Figure 16. This type of
modal interaction is indeed very similar to the creation of the supersonic mode, however it is not predicted
by LST because of the assumption that each mode acts independently. In the creation of the supersonic
mode, the discrete mode undergoes significant modulation and can be predicted by LST. However, when the
discrete mode S is not affected significantly by the slow acoustic spectrum, and mode F1 is not able to be
resolved as it is in this case, it is not possible to determine accurate stability predictions with traditional
LST solvers. Therefore, because the supersonic mode in this flow is the result of the interaction of modes, it
is not expected that the radiation of sound will be apparent in the LST results. To investigate the relative
contribution of each mode to the DNS disturbance, a multimode decomposition using methods and tools
developed by Gaydos and Tumin53 and Miselis, Huang, and Zhong54 must be performed.
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(a) s = 0.35 m (b) s = 0.45 m

(c) s = 0.6 m

Figure 20: Comparison of DNS to LST pressure eigenfunction at f = 700 kHz at different streamwise
locations.

Modal interactions have been examined in a number of circumstances. The interaction of the discrete
mode S and mode F1 with the slow and fast acoustic spectra, respectively, near the leading edge of a flat
plate has been examined by Fedorov and Khokhlov55,56 using a mathematical model for the freestream
acoustic waves exciting modes F1 and S. Later, Fedorov57 noted acoustic disturbances near leading edge can
transfer energy to the discrete boundary layer modes, inducing oscillatory behavior. The synchronization of
mode F1 with the entropy/vorticity spectra was also analyzed by Fedorov and Khokhlov,56 who found that
oscillations in mode F1 can exist outside of the boundary layer near the synchronization location with the
entropy/vorticity spectra. They found that mode F1 crossing entropy/vorticity spectra can cause mode F1
to become less stable (or even unstable), which eventually interacts with mode S, causing the second mode
instability. Lastly, this synchronization between mode F1 and mode S has been modeled by Gushchin and
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Fedorov58 and later by Fedorov and Tumin,59 indicating that the second mode instability is created by the
energy exchange between mode F1 and mode S.

To date, there have been no investigations of the effects of tri-modal interactions (to the author’s knowl-
edge). It is indeed uncommon to encounter a synchronization between mode S, mode F1, and the slow
acoustic spectrum as is the case in this study. However, the mathematical framework for such a study has
already been laid out by Fedorov.57 Studying a tri-modal interaction with the LST tool used here is not
possible; rather similar tools used by Fedorov57 are more appropriate. However, the most accurate method
of determining the influence of each mode is to use a multimode decomposition technique similar to Gaydos
and Tumin53 or Miselis, Huang, and Zhong.54 However, these tools currently assume a perfect gas model
and would need to be altered to incorporate a thermochemical nonequilibrium model similar to the one used
in this study.

The implications of the radiation of sound from the boundary layer into the freestream in this particular
case are the same as for the longer-lasting supersonic mode observed by Knisely and Zhong.16 However,
because the supersonic mode in this case is relatively short-lived, it may not have as significant of an
impact on the stability results. The sound radiation may act as an energy sink for the boundary layer
disturbance,15 and could affect stability prediction solvers such as LST. The presence of this sound radiation
caused an abnormal dispersion of the frequency content of the disturbance as opposed to the traditional
bell-shaped curve, which, as noted by Chuvakhov and Fedorov,15 brings into question the applicability of
the eN method of transition prediction. Nevertheless, LST calculations applying the eN method to flows
with the spontaneous radiation of sound should be treated with caution, as it is likely that this tool will not
resolve this physical artifact and may inaccurately predict the transition location.

VIII. Summary and Conclusions

The flow conditions considered here induced significant thermochemical nonequilibrium in the flow down-
stream of the stagnation point. The LST results indicate that mode S is the unstable mode for this case, and
therefore no supersonic mode was expected to exist. This conclusion goes against the suggestion by Edwards
and Tumin32 that chemical nonequilibrium effects may be responsible for the supersonic mode. However,
unsteady DNS results did indicate the presence of sound radiation away from the wall. Further FFT analysis
indicated that this sound radiation was not due to a supersonic mode S directly, but was actually due to
the interaction of mode S and mode F1 with the slow acoustic spectrum; a subtle but important distinction.
The unstable mode S may interact with a stable mode F1 and the slow acoustic spectrum, causing the su-
personic mode F1 to very briefly become unstable and radiate sound away from the boundary layer. Further
downstream, both mode S and F1 are stable, but the sound radiation from the upstream interaction is still
decaying as it travels downstream. Because mode S is stable and subsonic when this interaction occurs,
and mode F1 was not distinguishable from the continuous spectra, most LST solvers will not predict the
radiative behavior and could affect boundary layer transition prediction. The radiated sound from the wall
may have an impact on the stability of the boundary layer, and it is possible the sound radiation acts as
an energy sink for the 2nd mode, as suggested by Chuvakhov and Fedorov.15 Transition prediction tools
such as the eN method should be used with caution when applied to hypersonic boundary layers with the
spontaneous radiation of sound.
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