
An Investigation of Sound Radiation by Supersonic

Unstable Modes in Hypersonic Boundary Layers

Carleton P. Knisely∗ and Xiaolin Zhong†

University of California, Los Angeles, California, 90095, USA

There has been a renewed interest in studying hypersonic boundary layer stability in
flows with highly-cooled walls due to its applicability to experiments and some real flight
conditions. One physical phenomenon that occurs in these flows is the creation of a su-
personic mode, also referred to as the spontaneous radiation of sound. The spontaneous
radiation of sound is associated with an unstable Mack’s second mode synchronizing with
the slow acoustic spectrum, causing the disturbance to travel upstream supersonically rela-
tive to the meanflow outside the boundary layer. Previous studies have focused specifically
on a two-dimensional flat plate geometry and have assumed chemical equilibrium, or have
focused on a sharp cone geometry. However, the spontaneous radiation of sound is yet to
be investigated in detail on an axisymmetric blunt cone. This study aims to investigate the
existence of the spontaneous radiation of sound in Mach 5 flow over a 1 mm nose radius
cold-wall cone using thermochemical nonequilibrium LST and DNS studies and investigate
in further detail the impact of supersonic modes on disturbance growth. Results indicate
that the supersonic mode creates an abnormal growth pattern that is not observed in tra-
ditional flows with second-mode transition. This behavior could have an impact on energy
transfer and boundary layer stability.

I. Introduction

It has long been known that boundary layer transition from laminar to turbulent has a considerable
impact on the design of hypersonic vehicles. Transition to turbulent flow drastically increases drag and
heating to the vehicle surface, and can have a prominent effect on control of the hypersonic vehicle. It also
affects engine performance and operability as well as vehicle structure and weight. The heating to the vehicle
surface is one of the primary considerations in hypersonic vehicle design. Thermal protection systems (TPSs)
are required to prevent the surface of the vehicle from overheating and failing. TPSs are usually specified
with a large factor of safety to ensure protection of the vehicle, although this often adds unnecessary weight,
reducing the maximum payload. The ability to predict accurately or even to delay the onset of transition
and maintain laminar flow can have a significant payoff in terms of the reduction in aerodynamic heating,
higher fuel efficiency, and weight of the thermal protection system.

Mack1 found that the major instability waves leading to transition to turbulence in a perfect gas flow are
the first and second modes, which Fedorov2 recently described as acoustic rays physically trapped between
the wall and sonic line. Researchers have subsequently developed numerical tools to predict transition to
turbulence due to the first and second mode. Malik3 implemented multiple numerical methods for solving
the Linear Stability Theory (LST) equations for a perfect gas. Chemical nonequilibrium effects in the LST
framework were studied numerically by Stuckert and Reed.4 Hudson et al.5 incorporated thermal nonequilib-
rium effects in addition to chemical nonequilibrium for LST. Johnson et al.6–8 studied hypersonic boundary
layer transition in thermochemical nonequilibrium using the Parabolized Stability Equations (PSE), which
account for nonparallel flow effects that are ignored in LST. Overall, the researchers determined that disso-
ciation of air species is stabilizing to the first mode, but destabilizing to the second mode. Additionally, it
was determined that thermal nonequilibrium has a slight destabilizing effect on the first mode, and a slight
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stabilizing effect on the second mode. These contemporary studies have primarily focused on flows with rela-
tively modest levels of wall cooling with the wall-to-edge temperature ratio greater than unity. (Tw/Te > 1).
This motivated Bitter and Shepherd9 to examine the effect of highly cooled walls on hypersonic boundary
layer stability.

Flows with highly cooled walls are of interest in high-enthalpy flows, such as shock tube experiments
in which the wall temperature remains ambient during the short test duration, as well as some real flight
cases.10,11 It has long been known through studies by Lees12 and Mack13,14 that wall cooling stabilizes the
first mode but destabilizes the second mode. Bitter and Shepherd9 took these studies a few steps further and
have recently shown through a chemical equilibrium, thermal nonequilibrium LST analysis that high levels of
wall cooling on a flat plate lead to unique features, in particular an unstable second mode traveling upstream
supersonically relative to the free stream. The supersonic modes cause second-mode instabilities over a wider
range of frequencies than subsonic modes. The unstable supersonic modes cause acoustic waves to radiate
from the wall into the free stream. This phenomenon has been referred to as the spontaneous radiation of
sound.15 Figure 1, adapted from Bitter and Shepherd,9 compares contours of temperature fluctuations at
two different frequencies. Note that the perturbations are confined to within the boundary layer for the
subsonic mode, but extend well into the free stream for the supersonic mode.

Figure 1: Contours of temperature fluctuations. Adapted from Bitter and Shepherd.9 R = 2000, Te =
1500K, Tw = 300K, Ma = 5: (a) Ω = 0.35, subsonic mode. (b) Ω = 0.45, supersonic mode.

A schematic of the supersonic mode is presented in Figure 2 for further elaboration. A useful parameter
describing the speed of propagation of the disturbance relative to the mean flow is the relative Mach number

Mr =
u− cr
a

(1)

where u is the mean flow velocity tangential to the wall, cr = ω/
√
β2 + α2

r is the disturbance propagation
speed, and a is the mean flow speed of sound. Near the wall, u is small and the disturbance is traveling
supersonically downstream relative to the mean flow, indicated below a relative Mach number of Mr < −1.
The sonic line Mr = −1 acts as a wave guide for the acoustic rays,2 resulting in the traditional Mack modes.
Outside of Mr = −1, the disturbance is traveling subsonically with respect to the freestream, and creates
a “rope-like” wave pattern observed by many researchers both experimentally16,17 and numerically.18–20 In
some flows in which the wall temperature is significantly less than the freestream temperature, a second
supersonic region can be present. Outside of Mr = 1, the disturbance is traveling upstream supersonically
with respect to the freestream. This creates the “slanted” wave pattern outside of the boundary layer shown
in Figure 1(b). The angle created by this wave pattern is analogous to a Mach wave angle from traditional
compressible flow theory, and is given by µ = arcsin(1/Mr).
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Figure 2: Schematic of supersonic mode.

Chuvakhov and Fedorov15 confirmed Bitter and Shepherd’s9 findings through LST analysis as well as
unsteady direct numerical simulation (DNS) analysis. Supersonic modes are not a new finding, however,
and have in fact been identified in a number of other flow configurations. Mack13 commented on neutral
supersonic waves in flow over a flat plate. Chang, Vinh, and Malik21 reported supersonic modes in Mach 20
flow over a 6 degree wedge with wall temperature ratio Tw/Tad = 0.1. Fedorov, Soudakov, and Leyva22 found
unstable supersonic modes in flow with gas injection. Fedorov et al.23 encountered unstable supersonic modes
in flow with resonating micro-cavities. Bres et al.24 also found this phenomenon in flow over a wall with a
porous coating. Wagnild25 observed the spontaneous radiation of sound, although the focus of his study was
the effect of vibrational nonequilibrium. Salemi et al. modeled configurations typical of the T5 tunnel at
Caltech and investigates second mode synchronization with the slow acoustic spectrum. They investigated
the effect of nonlinear disturbances,26,27 a flared cone geometry,28 and high-temperature effects,29 although
the Prandtl number and ratio of specific heats were fixed in their real gas model.

Despite the evidence presented by Bitter and Shepherd9 and Chuvakhov and Fedorov,15 it is possible that
the impact of the highly-cooled wall on the spontaneous radiation of sound may have been overstated because
chemical nonequilibrium was not accounted for. Recent theoretical results by Anatoli Tumin30 indicate the
spontaneous radiation of sound in flows with Tw/Te > 1. This phenomenon may be attributed to the real
gas effect and may have been overlooked in previous simulations assuming chemical equilibrium. This study
aims to confirm the spontaneous radiation of sound in hypersonic flow over a cold-wall blunt cone using
thermochemical nonequilibrium LST and DNS studies. The goal is to verify that the techniques used here
are appropriate in studying supersonic modes and can be used in future studies of the spontaneous radiation
of sound in flows with Tw/Te > 1.

II. Simulation Conditions

The flow conditions for this study are summarized in Table 1. The geometry is a 5 degree half-angle
axisymmetric blunt cone 1 meter in length with a nose radius of 1 mm. The DNS simulation used 256 points
in the wall-normal direction and roughly 10 points per millimeter on the surface of the cone in the streamwise
direction. In the azimuthal direction, four points are used. LST simulations interpolated the DNS meanflow
onto the LST grid defined by the stretching methods discussed in the following sections.
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Table 1: Flow conditions for DNS simulations.

Parameter Value

M∞ 5

H0,∞ 9.17 MJ/kg

ρ∞ 2.322 E-2 kg/m3

p∞ 10 kPa

Tw 300 K

Tw/T∞ 0.2

As will be explained in the following sections, the DNS code used in this study utilizes a shock-fitting
method. Thus, the parameters in Table 1 are the free stream conditions upstream of the shock formed over
the body. The flow conditions for this study are intended to be similar to those used by Bitter and Shepherd.9

The overall goal of this study was to confirm the DNS and LST methods were capable of producing the same
physical artifacts on a blunt cone observed by Bitter and Shepherd9 on a flat plate.

III. Governing Equations and Gas Model

The governing equations for the DNS and LST codes are those developed by Mortensen and Zhong,31–36

which are formulated for thermochemical nonequilibrium assuming a two-temperature model. Their formu-
lation is presented here for clarity. The rotational mode is assumed to be fully excited with up to eleven
non-ionizing species with finite-rate chemistry. Two-temperatures are used to represent translation-rotation
energy and vibration energy. There are two species models: an eleven-species model (N2, O2, NO, C3, CO2,
C2, CO, CN, N, O, C) used for ablation studies and a five-species model (N2, O2, NO, N, and O) used to
simulate air. The five species model is used here. The Navier-Stokes equations in conservative form consist of
five species mass conservation equations, three momentum conservation equations, the total energy equation,
and the vibration energy equation. The governing equations in vector form are written as

∂U

∂t
+
∂Fj
∂xj

+
∂Gj
∂xj

= W (2)

where U is the state vector of conserved quantities and W is the source terms defined by

U =



ρ1

...

ρns

ρu1

ρu2

ρu3

ρe

ρev


, W =



ω1

...

ωns

0

0

0

0∑nms
s=1 (QT−V,s + ωsev,s)


.

The inviscid and viscous flux vectors, Fj and Gj , respectively, are defined by

Fj =



ρ1uj
...

ρnsuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(p+ ρe)uj

ρevuj


, Gj =



ρ1v1j

...

ρnsvnsj

τ1j

τ2j

τ3j

−uiτij − kT ∂T
∂xj
− kV ∂TV

∂xj
+
∑nms
s=1 ρshsvsj

−kV ∂TV

∂xj
+
∑nms
s=1 ρsev,svsj


.
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where vsj is the species diffusion velocity, and

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij (3)

is the viscous stress. The total energy per unit volume, ρe, is defined as

ρe =

ns∑
s=1

ρscv,sT + ρev +
1

2
ρ
(
u2

1 + u2
2 + u2

3

)
+

ns∑
s=1

ρsh
o
s (4)

where hos is the species heat of formation, ev,s is the species specific vibration energy, and cv,s is the species
translation-rotation specific heat at constant volume, defined as

cv,s =

 5
2
R
Ms

s = 1, 2, . . . , nms

3
2
R
Ms

s = nms+ 1, . . . , ns.
(5)

The vibration energy per unit volume, ρev, is defined as

ρev =

nms∑
s=1

ρsev,s =

nms∑
s=1

ρs
R
Ms

θv,s
exp (θv,s/TV )− 1

(6)

where θv,s denotes the characteristic vibrational temperature of each vibrational mode. The characteristic
vibration temperatures are taken from Park.37

To model chemical nonequilibrium, three dissociation reactions and three exchange reactions are used.
Each reaction is governed by a forward and backward reaction rate determined from

kf = CfT
η
a exp (−θd/Ta) (7)

kb = kf/Keq (8)

where all forward reaction rates are obtained from Park.37 The equilibrium coefficient, Keq, is determined
using

Keq = A0 exp

(
A1

Z
+A2 +A3 ln(Z) +A4Z +A5Z

2

)
, Z =

10000

T
(9)

which is a curve fit to experimental data from Park.37

The Landau-Teller formulation is used to calculate the source term in the vibration energy equation
representing the exchange of energy between the translation-rotation and vibration energies

QT−V,s = ρs
ev,s(T )− ev,s(TV )

< τs > +τcs
(10)

where < τs > is the Landau-Teller relaxation time given by Lee.38 The term τcs is from Park37 to more
accurately model the relaxation time in areas of high temperatures occurring just downstream of the bow
shock.

The viscosity of each species is computed using a Blottner curve fit shown in Eq. 11. The coefficients
are obtained from Blottner et al.39 The mixture viscosity is then found using each species viscosity from
Wilke’s40 mixing rule (Eq. 12). The total heat conductivities for each energy mode are computed in a similar
fashion as viscosity. The diffusion velocity is calculated using Fick’s law and a constant Schmidt number of
0.5.

µs = 0.1 exp [(Aµs ln(T ) +Bµs ) ln(T ) + Cµs ] (11)

µ =

ns∑
s=1

Xsµs
φs

(12)
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IV. Numerical Methods

A. DNS

The thermochemical nonequilibrium code developed by Mortensen and Zhong31–36 utilizes a high-order
shock-fitting method extended from a perfect gas flow version by Zhong41 to compute the flow field between
the shock and the body. The numerical method is repeated here for clarity. For shock-fitting computations
the shock location is not known a priori, so its position is solved along with the flow field. Since the shock
position is not stationary, the grid used to compute the flow field is a function of time. This leads to the
coordinate transformation 

ξ = ξ(x, y, z)

η = η(x, y, z, t)

ζ = ζ(x, y, z)

τ = t

⇐⇒


x = x(ξ, η, ζ, τ)

y = y(ξ, η, ζ, τ)

z = z(ξ, η, ζ, τ)

t = τ

(13)

where y is normal to the body, x is in the streamwise direction, z is in the transverse direction, ζt = 0, and
ξt = 0. The governing equation can then be transformed into computational space as

1

J

∂U

∂τ
+
∂E′

∂ξ
+
∂F ′

∂η
+ +

∂G′

∂ζ
+
∂E′v
∂ξ

+
∂F ′v
∂η

+ +
∂G′v
∂ζ

+ U
∂(1/J)

∂τ
=
W

J
(14)

where J is the Jacobian of the coordinate transformation and

E′ =
F1ξx + F2ξy + F3ξz

J
(15)

F ′ =
F1ηx + F2ηy + F3ηz

J
(16)

G′ =
F1ζx + F2ζy + F3ζz

J
(17)

E′v =
G1ξx +G2ξy +G3ξz

J
(18)

F ′v =
G1ηx +G2ηy +G3ηz

J
(19)

G′v =
G1ζx +G2ζy +G3ζz

J
. (20)

A seven point stencil is used to discretize the spatial derivatives

∂fi
∂x

=
1

hbi

3∑
k=−3

αi+kfi+k −
α

6!bi
h5

(
∂f6

∂6x

)
(21)

where

αi±3 = ±1 +
1

12
α, αi±2 = ∓9− 1

2
α

αi±1 = ±45 +
5

4
α, αi = −5

3
α

bi = 60

and where h is the step size, α < 0 is a fifth order upwind explicit scheme, and α = 0 reduces to a sixth
order central scheme. Here the inviscid terms use α = −6 which yields a low dissipation fifth order upwinded
difference and the viscous terms are discretized using α = 0. The derivatives in the transverse direction,
if required, are treated with Fourier collocation. To compute second derivatives, the first order derivative
operator is applied twice.

Flux splitting is used for the inviscid flux terms resulting in

F ′ = F ′+ + F ′− (22)
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where

F ′± =
1

2
(F ′ ± ΛU) (23)

and Λ is a diagonal matrix that ensures F ′+ and F ′− contain only pure positive and negative eigenvalues,
respectively. For thermochemical nonequilibrium, the eigenvalues of Λ were derived by Liu and Vinokur.42

Conditions behind the shock are calculated from Rankine-Hugoniot relations. In the freestream, the flow
is assumed to be in thermal equilibrium and the chemical composition of the flow is frozen. The shock is
assumed to be infinitely thin which means that the flow has no time to relax as it crosses the shock as
relaxation rates are finite. This leads to the chemical composition remaining constant across the shock, as
well as the vibration temperature. Since neither process has any time to relax across the shock, the relaxation
zone is entirely downstream of the shock. A complete derivation of thermochemical nonequilibrium shock
fitting can be found in Prakash et al.43 A low storage 3rd-order Runge-Kutta method from Williamson44 is
used to advance the solution in time.

B. LST

The linear stability analysis used here is largely based on the LST code developed by Mortensen,36 however
here the assumption of zero wall-normal velocity is relaxed (i.e. v 6= 0), and new freestream boundary con-
ditions incorporating a shock at the computational boundary are used. A body-fitted orthogonal curvilinear
coordinate system is used for axisymmetric bodies where x is in the streamwise direction, y is in the wall-
normal direction, z is in the transverse direction, and the origin is located on the body surface. Curvature
in the streamwise and transverse directions is included similar to Malik and Spall.45 Elemental lengths are
defined as h1dx, dy, and h3dz where

h1 = 1 + κy (24)

h3 = rb + y cos(θ) (25)

and where κ is the streamwise curvature, rb is the local radius of the body, and θ is the local half angle of
the body. The coordinate system for a flat plate is recovered by setting h1 and h3 to unity. For a straight
cone, only h3 is required and h1 is set to unity.

The derivation of the thermochemical nonequilibrium LST equations follows the work of Hudson.5,46 The
main difference in the derivation is that here the equation for each species velocity is substituted into the
governing equations before they are linearized, similar to Klentzman et al.47 The LST equations are derived
from the governing equations (Eq. 2) where the instantaneous flow is comprised of a mean and fluctuating
component q = q + q′. Here q represents any flow variable such as velocity, density, temperature, etc. The
instantaneous flow is then substituted into the governing equations where the steady flow is assumed to
satisfy the governing equations and is subtracted out. The mean flow is assumed to be a function of y only
i.e. q(x, y, z) = q(y) and the flow disturbances are assumed to be small i.e. linear. The perturbations are
then assumed to be in the form of a normal mode described by

q′ = q̂(y) exp [i (αx+ βz − ωt)] (26)

where ω is the circular frequency of the disturbance and α and β are the wavenumbers. Commonly ω and
β are assumed to be real and the wavenumber α is assumed to be complex which means the disturbances
grow in space rather than time. If ω is complex and α and β are real then the disturbances grow in time
rather than space. For comparison to direct numerical simulation the spatial stability approach is used i.e.
α is complex which results in the dispersion relation α = Ω(ω, β). Substituting in the normal mode form for
the perturbation reduces the problem to a coupled set of ns+ 5 ordinary differential equations(

A
d2

dy2
+ B

d

dy
+ C

)
~φ = ~0. (27)

where ~φ =
[
ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂ , T̂V

]T
and A, B and C are complex square matrices of size ns+5. This

is now a boundary value problem where the derivative operators can be discretized and the equations solved
numerically.

For hypersonic compressible boundary layers it is important to have high grid resolution near the gener-
alized inflection point.1 The grid used by Mortensen36 uses two different functions to cluster points around
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the inflection point and near the wall. It is called the cosine-exponential grid. For some boundary layers,
there is a sharp increase in the eigenfunctions near the wall for the temperatures and densities that was not
captured correctly with the grid that only clustered points near the inflection point, such as a grid similar to
the one used by Hudson et al.5 Mortensen’s36 cosine-exponential grid was much more effective for boundary
layers with strong changes in the eigenfunctions near the wall. The cosine-exponential grid is defined so that

y =

yi (1− cos(πη)) /2, 0 ≤ y ≤ yi
yi + aη

b−η , y > yi
(28)

where
a = (ymax − yi)s (29)

b =
1 + a

ymax − yi
(30)

and ymax is the outer domain boundary, yi is the location of the generalized inflection point, η runs from
zero to one, and s is a stretching parameter that stretches towards yi for s < 1 and away for s > 1. Here, s
= 0.5 was used. Grid metrics can be computed directly from Eq. 28.

In hypersonic flows in which the spontaneous radiation of sound occurs, the cosine-exponential grid may
not provide enough grid resolution in the free stream or near the outer shock boundary. The continuous
modes oscillate to the computational boundary in many cases. Therefore, it is helpful to use an additional
exponential grid stretching function at the edge of the computational boundary. The new cosine-double-
exponential grid is defined so that

y =


yi,1 (1− cos(πη)) /2, 0 ≤ y ≤ yi,1
yi,1 + a1η

b1−η , yi,1 < y ≤ yi,2
ymax − a2η

b2−η , y > yi,2

(31)

where
a1 = (yi,2 − yi,1)s1, a2 = (ymax − yi,2)s2 (32)

b1 =
1 + a1

yi, 2− yi,1
, b2 =

1 + a2

ymax − yi,2
(33)

where similar to the original cosine-exponential grid, yi,1 is the location of the generalized inflection point,
η runs from zero to one, and s1 is a stretching parameter that stretches towards yi,1 for s1 < 1 and away
for s1 > 1. Again, s1 = 0.5 was used. The second “inflection point”, yi,2, is chosen to be located 3/4 of
the distance between yi,1 and ymax. The stretching parameter s2 stretches towards ymax for s2 < 1 and
relaxes the stretching for s2 > 1. Here, s2 = 1 is used. This second exponential grid stretching function
gave better grid spacing in the freestream and clustered points near the edge of the computational boundary,
which is desirable when a shock coincides with the boundary. The cosine-double-exponential grid retains
the benefits of capturing the sharp increases in eigenfunctions at the wall and at the generalized inflection
point, while adding additional resolution in the freestream and near the outer edge boundary. Similar to the
cosine-exponential case, grid metrics can be computed directly from Eq. 31.

With the grid defined, Eq. 27 can be transformed into computational space and a numerical representation
of the derivatives can be given. The first and second derivative operators in the wall-normal direction are
discretized by taking derivatives of Lagrange polynomials in physical space. These derivative operators
are applied in physical space rather than computational space to avoid Runges phenomena where spurious
oscillations can occur for a one-sided stencil with a high order of approximation. Mortensen’s36 scheme can
be applied for variable stencil sizes and can be used to obtain high-order approximations. Here, a five-point
stencil is used, resulting in a 4th order method similar to the one used by Malik.3

After discretization, nonlinearities exist in α so the global method suggested by Malik3 is used to compute
the eigenvalue spectrum with α2 = 0. This method computes the eigenvalues from a generalized eigenvalue
problem Ã~φ = αB̃~φ where the LAPACK48 subroutine ZGGEV is used here for solution. From the eigenvalue
spectrum an initial guess can be obtained for the local method which results in A~φ = B and the eigenvalue
is found iteratively without dropping the α2 terms. The LAPACK subroutine ZGESV is used to solve the
local problem. It is also possible to avoid the computationally intensive global method and obtain an initial
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guess for α from a nearby streamwise location or a DNS simulation assuming the unsteady DNS results are
available.

The boundary conditions are required for the freestream and the wall. The wall boundary conditions are
linearized non-catalytic conditions for density, no slip, and zero temperature perturbation, although more
complex surface boundary conditions can be used for ablation studies.32,36 In the freestream, a number of
boundary conditions were examined. In regions in which the spontaneous radiation of sound does not occur,
the perturbations decay rapidly outside of the boundary layer. Therefore, in this case all perturbations are
zero except the wall-normal velocity perturbation which is found from the mass conservation equation similar
to Stuckert.49 This type of boundary conditions is hereafter referred to as the “zero” boundary condition,
and was used by default unless otherwise specified. In regions of the flow where the spontaneous radiation
of sound occurred, a different boundary condition was used that did not force the oscillations at the shock
at the outer edge of the domain to zero. The “shock” boundary conditions based on the Rankine-Hugoniot
relations were derived, following similar methods as Chang et al.21,50

The LST shock boundary conditions make the same assumptions as the DNS shock-fitting scheme. The
flow upstream of the shock is assumed to be in thermal equilibrium with a fixed chemical composition. The
shock is assumed to be infinitely thin, resulting in no relaxation across the shock. In other words, there is
no change in chemical composition or vibrational temperature across the shock. The flow surrounding the
shock is assumed to be inviscid. The governing equations are transformed into a coordinate system of the
shock, illustrated in Figure 3.

Figure 3: Schematic of unsteady position of a shock in (ξ, η) and (x, y, z) coordinate systems.

The position of the shock in Cartesian coordinates is ys = f(x, z, t), with the mean shock position
ys = f(x). Thus the local slope of the shock can be written as

a = tan θ =
df

dx
. (34)

The transformation between (x, y, z) and (ξ, η) is

ξ =
x

b
(35)

η = b [y − f(x, z, t)] (36)

where b = cos θ.
Under this transformation, the governing equations become

∂f

∂t

∂U

∂η
− 1

b2
∂E

∂η
+
∂f

∂x

∂E

∂η
− ∂F

∂η
+
∂f

∂z

∂G

∂η
= 0. (37)

Integrating Equation 37 from η = −ε to η = ε and taking the limit as ε→ 0 results in

∂f

∂t
∆U +

∂f

∂x
∆E −∆F +

∂f

∂z
∆G = 0 (38)
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where the ∆ terms are the jump conditions across the shock. For example, ∆U = U∞ − Ushock where
the subscript ∞ denotes the conditions immediately upstream of the shock and shock denotes conditions
immediately downstream of the shock. All flow variables, including f , are perturbed and linearized such
that φ = φ+ φ′. Assuming the perturbed variables behave as a normal mode, φ′ = φ̂ei(αx+βz−ωt), results in

f̂
(
−iω∆U + iα∆E + iβ∆G

)
+ a∆E′ −∆F ′ = 0 (39)

where

∆E′ =



ρ1û+ ρ̂1u+D1

(
csiα

ns∑
s=1

ρ̂s − iαρ̂1

)
...

ρnsû+ ˆρnsu+Dns

(
csiα

ns∑
s=1

ρ̂s − iαρ̂ns
)

ρ̂u2 + 2ρuû+ p̂

ρ̂uv + ρvû+ ρuv̂

ρ̂uw + ρwû+ ρuŵ

û (ρe+ p) + u (ρ̂e+ p̂)

ρevû+ ˆρevu



, (40)

∆F ′ =



ρ1v̂ + ρ̂1v
...

ρnsv̂ + ˆρnsv

ρ̂uv + ρvû+ ρuv̂

ρ̂v2 + 2ρvv̂ + p̂

ρ̂vw + ρwv̂ + ρvŵ

v̂ (ρe+ p) + v (ρ̂e+ p̂)

ρev v̂ + ˆρevv


(41)

where

ρ̂ =

ns∑
s=1

ρ̂s (42)

p̂ =

ns∑
s=1

(
ρs
R
Ms

T̂ + ρ̂s
R
Ms

T

)
(43)

ρ̂e =

ns∑
s=1

(
ρscv,sT̂ + ρ̂scv,sT

)
+ ˆρev +

1

2
ρ̂ui

2 + ρuiûi

ns∑
s=1

ρ̂sh
o
s (44)

ˆρev =

ns∑
s=1

(
ρ̂sevs + ρs

∂evs

∂TV
T̂V

)
(45)

Note that now Equation 39 introduces an extra perturbation variable f̂ . To eliminate the extra variable, f̂
is solved for in terms of the other perturbation variables using the x-momentum equation. However, this
reduces the system to ns+ 4 equations for ns+ 5 independent perturbation variables. The ns+ 4 equations
can be represented by

ns+5∑
j=1

B̂ij φ̂j = 0, i = 1, 2, . . . , ns+ 4 (46)

where the terms in B̂ are included in the Appendix.
To close the system of equations for the shock boundary conditions, an extra equation is needed, for

which there are a number of options. The mixture continuity equation, y-momentum equation, and the
right-running characteristic equation derived from the 2D Euler equations for a perfect gas were all explored
as the closure equation for the shock boundary conditions. There were only minimal differences in results
depending on which closure equation was used. However since the y-momentum equation was already cast
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into the LST framework and hard-coded into the LST program, it was the simplest closure equation to
implement yet also produced the smoothest solution near the shock. Therefore, the y-momentum equation
was used as the shock boundary condition closure equation.

It should be noted that these freestream boundary conditions differ significantly from the method used by
Bitter and Shepherd,9 who use Mack’s51 method determine the asymptotic behavior of the solutions in the
freestream and integrate toward the wall using a Runge-Kutta method. This allows Bitter and Shepherd9

to use a much smaller computational domain and still capture the oscillatory behavior of the eigenfunctions
when the disturbance is traveling supersonically relative to the freestream. However, despite the differences
in mathematical techniques, the LST performed here produces similar results.

LST gives information about what disturbance frequencies are unstable and the corresponding growth
rates of those frequencies, but there is no information on the amplitude of the incoming disturbance. To
estimate boundary-layer transition using LST, the eN transition criterion is used which is defined as

eN =
A(s)

A0
= exp

[∫ s

s0

−αi(s, f)ds

]
(47)

where A(s) is the integrated disturbance amplitude, A0 is the initial disturbance amplitude, s0 is the location
where the disturbance first becomes unstable, and αi is the spatial amplification rate obtained from LST. The
integration is performed for a constant frequency f , and is done numerically using trapezoidal integration.
Note that a negative imaginary part of the wave number α results in disturbance growth while a positive
value results in disturbance decay. The N-factor is specifically the exponent of eN . In-flight transition
N-factors are commonly understood to be around 10. Malik11 showed that 9.5 and 11.2 correlated with
transition onset for two high Mach number flight tests. In ground test facilities the transition N-factor is
usually lower.

V. Results

Steady DNS translation-rotation temperature, vibration temperature, and mass fraction contours for
the nose region of the cone are shown in Figure 4. Figures 4(a) and (b) indicate the flow is in thermal
nonequilibrium in the nose region, and Figures 4(c) and (d) indicate the flow is in chemical nonequilibrium.
Specifically, O2 dissociation is the predominant reaction in this flow field, whereas N2 does not dissociate as
severely. Similar contours are shown in Figure 5 for a downstream region of the cone. Due to the cold wall,
the boundary layer is thin in relation to the flow domain. Although it may appear that the flow outside of
the boundary layer is in thermal equilibrium, closer inspection reveals otherwise.
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(a) (b)

(c) (d)

Figure 4: Steady DNS contours in nose region. (a) T . (b) TV . (c) Mass fraction of O2. (d) Mass fraction of
N2.
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(a) (b)

(c) (d)

Figure 5: Steady DNS contours in a downstream region. (a) T . (b) TV . (c) Mass fraction of O2. (d) Mass
fraction of N2.

Figure 6 shows the boundary layer profiles for temperature, vibration temperature, tangential velocity,
and species density of N2 and O2 at a streamwise distance from the stagnation point of s = 0.4 m. Hereafter,
y denotes the wall-normal distance. The meanflow does not reach thermal equilibrium in the free stream,
thus demonstrating the necessity of accounting for nonequilibrium effects in these types of flows. The mass
fractions of N2 and O2 follow the same trend in the boundary layer, but do not vary greatly in magnitude
from their freestream values in these flow conditions. Although the effect of chemical nonequilibrium in the
meanflow may be small, it may still have an effect in LST calculations.
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(a) (b)

Figure 6: Meanflow boundary layer profiles at s = 0.4 m (R = 830). (a) u, T , and TV . (b) Species density
ρs of N2 and O2 species. u denotes the component of velocity tangential to the surface of the cone. y is the
wall normal distance.

A. LST Results

LST was performed to determine which modes were unstable. All LST calculations performed here assume
a spanwise wavenumber of β = 0. Unless otherwise stated, 300 wall-normal grid points were used and
the “zero” freestream boundary condition was used. The global method, which assumes α2 = 0, was used
at a fixed streamwise location and frequency to obtain an initial guess for the eigenvalues of the physical
modes. The local method, which does not neglect α2, then used this initial guess and iterated to a converged
solution. Once the eigenvalues of a physical mode have been obtained, it is possible to march in the streamwise
direction using the eigenvalues from the previous location as an initial guess. At each streamwise location,
the spatial growth rate is given by the negative of the imaginary component of the eigenvalue (−αi), and
the phase speed is calculated from the real component of α. The nondimensional phase speed is defined

as cr =
(ω∗/u∗∞)√
β2+α2

r

, where ω∗ = 2πf is the dimensional circular frequency and u∗∞ is the freestream velocity

upstream of the shock. Traditionally, the streamwise distance is presented in nondimensionalized form as
the Reynolds number, R, and frequency as F . Additionally, the growth rate is typically nondimensionalized
by L∗.

R = Re1/2
x =

√
ρ∗∞u

∗
∞s

µ∗∞
=
ρ∗∞u

∗
∞L
∗

µ∗∞
(48)

L∗ =

√
µ∗∞s

ρ∗∞u
∗
∞

(49)

F =
ω∗µ∗∞
ρ∗∞u

∗2
∞

(50)

The relation between R, F , and the nondimensional frequency Ω is simply

Ω = RF. (51)

The freestream conditions were

u∗∞ = 3.388E + 03 m/s, ρ∗∞ = 2.322E − 02 kg/m3, µ∗∞ = 5.244E − 05 kg m/s.
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A phase speed and growth rate plot in the style of Ma and Zhong52 is shown in Figure 7 for a frequency
of F = 9.41E−4 (f = 1 MHz). In hypersonic boundary layer stability, there are a number of physical modes
that are not present in lower speed flows. Mode F1, F2, and higher modes originate in the fast acoustic
spectrum - a continuous spectrum of eigenvalues whose branch cut begins at a phase speed of approximately
cr = 1 + 1/Ma where Ma is the meanflow Mach number outside the boundary layer. Mode S, commonly
referred to as Mack’s mode, originates in the slow acoustic spectrum - a continuous spectrum of eigenvalues
whose branch cut begins at a phase speed of approximately cr = 1 − 1/Ma. Two other continuous spectra
of interest, the entropy and vorticity spectra, have phase speed of approximately cr = 1, and can cause
instabilities when synchronizing with the discrete modes (F1, F2, S, etc.). Mack’s second mode instability
typically occurs downstream of the synchronization point, which is defined as the point where modes F1 and
S have the same phase speed. Following synchronization of modes F1 and S, it is possible for either mode
to become unstable (−αi > 0), while the other remains stable (−αi < 0). The results in Figure 7 indicate
that mode F1 becomes unstable, while mode S is stable. It is conventional to describe the unstable mode
as “Mack’s second mode,” even though mode S is stable here. Therefore, all references to the second mode
hereafter indicate the mode F1 instability. Mode F1 becoming the dominant instability is consistent with
Bitter and Shepherd.9

(a) (b)

Figure 7: LST phase speed and nondimensional growth rate for Modes F1, F2, and S at F = 9.41E − 4
(f = 1 MHz). (a) Phase Speed. (b) Growth Rate.

In order to determine in which frequency and Reynolds number ranges mode F1 is unstable, the stream-
wise marching procedure was repeated for a number of frequencies, producing the neutral stability map for
the second mode in Figure 8. This map indicates the locations and frequencies in which a disturbance grows.
Neutrally stable points (−αi = 0) are shown as the thick black line. All points inside of the curve formed
by the neutral points have positive growth rates. At frequencies below F = 7.5E − 04 (corresponding to
roughly f = 800 kHz) and Reynolds numbers greater than R = 830 (corresponding to streamwise locations
approximately greater than s = 0.4 m), shown by the region inside the white box in Figure 8, the region of
instability broadens. Bitter and Shepherd9 noted the unstable supersonic modes increase the range of in-
stability, therefore this particular region on the neutral stability curve was examined in finer detail through
growth rate and phase speed plots for individual frequencies to determine whether or not the supersonic
unstable modes were present.
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Figure 8: Neutral stability map for second mode. Dashed lines indicate negative growth rates. Thick black
line indicates points of neutral stability. White box indicates region of supersonic mode.

Supersonic unstable modes were found for frequencies below F = 7.53E−04. The growth rate and phase
speed plots for a number of unstable supersonic modes are shown in Figure 9. Similar to Bitter and Shepherd,9

the mode branches into two distinct modes upon synchronization with the slow acoustic spectrum, indicated
by the kink in the growth rate plots. Following similar notation to Bitter and Shepherd9 and Fedorov and
Tumin,53 the unstable mode is denoted as F1+, and the new stable mode as F1−. Synchronization with
the slow acoustic spectrum causes mode F1+ to change from a discrete mode to a continuous mode and
simultaneously creates the discrete mode F1−. The major difference between discrete and continuous modes
is the behavior of the eigenfunctions in the freestream. Discrete modes have eigenfunctions which decay in
amplitude outside of the boundary layer, whereas continuous modes have oscillatory behavior in the free
stream. From Figure 9, mode F1+ (solid line) remains unstable for longer along the streamwise distance,
which may lead to transition earlier on the body. After becoming stable, mode F1+ ceases to exist and
merges with the slow acoustic continuous spectrum, as it does in results presented by Bitter and Shepherd.9

Mode F1− (dotted line) becomes increasingly stable downstream, but exhibits a similar eigenfunction to
mode F1+ at first, as shown in Figure 10 for F = 5.18E − 04 and R = 1120. The pressure eigenfunction is
scaled by local flow values and is equal to unity at the wall. The axis limits for the eigenfunctions shown in
Figure 10 are modified to show details in each oscillatory region. For both the unstable and stable modes, the
fluctuations in the eigenfunctions extend well into the freestream, similar to results presented by Bitter and
Shepherd.9 Due to the oscillatory nature of the eigenfunctions in the freestream, the effect of the “shock”
freestream boundary conditions versus the “zero” boundary conditions was examined here. However, due
to the the large computational zone, the perturbation is very weak at the shock boundary. For this reason
there was no difference visible on the scale of the plot between the zero boundary condition and the shock
boundary condition, provided the grid resolution is high (at least 1500 grid points in this case). The shock
boundary conditions with grid stretching near the shock allowed for fewer grid points to be used, saving
computational cost. For all subsequent analyses of the supersonic modes, the shock boundary conditions
were used.
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(a) (b)

Figure 9: LST phase speed and nondimensional growth rate for supersonic unstable modes. (a) Phase Speed.
(b) Growth Rate. Dashed lines indicate the new modes created by synchronization with the slow acoustic
spectrum.

(a) (b)

Figure 10: Pressure eigenfunction normalized by local pressure for unstable and stable supersonic mode
branches at F = 5.18E − 04 and R = 1120. Phase speed and growth rate for Mode F1+: cr = 0.717,
−αi = 3.47E − 3. Mode F1−: cr = 0.728, −αi = −6.90E − 3. (a) Highly oscillatory boundary layer region.
(b) Weakly oscillatory region near the shock.

In visualizing the merging of mode F1+ with the slow acoustic continuous spectrum, it is instructive
to examine the dispersion relation shown in Figure 11. The data are exactly the same as in Figure 9,
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however the dispersion relation shows the relationship between the nondimensional phase speed cr and the
nondimensional growth rate −αi. Also shown in Figure 11 are the slow acoustic and entropy/vorticity
continuous spectra, which are a function of frequency, Reynolds number, and Mach number in the free
stream. Further discussion of the continuous spectra and their calculation is available from Balakumar and
Malik54 and Tumin.55–57 It should be noted that the continuous spectra calculations performed here are for
a perfect gas and may not be entirely representative of this flow field. They are intended to be used as an
approximation for visualizing synchronization. Mode F1+ begins in the fast acoustic continuous spectrum
(not pictured) and decreases in phase speed as Reynolds number R increases. Near cr = 1, the second mode
synchronizes with the continuous entropy/vorticity spectra (which are actually two overlapping branches).
This interaction with the continuous modes causes a damping effect in mode F1+. Fedorov and Tumin58

note that the boundary layer is particularly receptive to entropy/vorticity disturbances in this synchronism
region. Further downstream, the mode becomes unstable. The point at which the mode first becomes
unstable corresponds to the lower neutral branch on the stability curve. As R increases, the mode behaves
differently for lower frequencies. At F = 7.53E−4 and above, the mode becomes stable before synchronizing
with the slow acoustic spectrum (cr = 1−1/Ma). The point at which the second mode becomes stable again
corresponds to the upper branch of the neutral stability curve. The lower frequencies, however, synchronize
while still unstable. This causes the cessation of mode F1+ being discrete, and causes the creation of the
new discrete mode F1−, shown by the dotted line in Figure 11. Mode F1+ remains unstable for longer along
the body until it finally becomes stable and merges with the rest of the slow acoustic continuous spectrum.
This delay in mode F1+ becoming stable is visualized in the broadening of the region of instability, shown
by the white box on the neutral stability map in Figure 8. The synchronization of mode F1+ with the slow
acoustic spectrum is akin to the synchronization with the entropy/vorticity modes. Similarly, the boundary
layer may be receptive to slow acoustic disturbances in the free stream near this region. However, as Bitter
and Shepherd9 have pointed out, since the synchronism region is near the upper branch of the neutral curve,
it is unlikely to cause significant amplifications to the second mode.

Figure 11: Dispersion relation for second mode. Thick black lines correspond to the continuous spectra
evaluated at Ma = 4.44, R = 1000, and Ω = RF = 0.4. Dashed lines indicate the new mode F1− created
during synchronization with the slow acoustic spectrum.
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The mode F1+ growth rate for each frequency was integrated along the surface numerically using the
trapezoidal method to determine the N-factor curve for this particular case. The N-factor, N = ln(A/A0),
is presented as a function of Reynolds number R. Frequency increments of ∆F = 4.707E − 8 (∆f = 50
kHz) were used to obtain the N-factor results in Figure 12. The maximum Reynolds number for this case
due to the length of the cone is approximately R = 1300. An N-factor of roughly 7 will be achieved by the
end of the length of the 1 meter cone. Note the influence of the supersonic modes in changing the shape
of the peaks of the N-factor for each frequency. For example, at F = 5.65E − 4, the peak does not appear
as smooth as the peak for F = 9.41E − 4. The curve is elongated due to mode F1+ being unstable. These
supersonic modes seem to have only a small impact on the edge of the N-factor curve, however, as shown
by the green line in Figure 12. The maximum N-factor for at particular Reynolds number is encountered
before the maximum N-factor for the corresponding frequency. That is, for example, at R = 1000, the
N-factor is N = 5.13 due to the amplification at the frequency F = 5.65E − 4. However, the maximum
N-factor value for F = 5.65E−4, which is N = 5.63, is encountered at R = 1100, yet the highest N-factor at
R = 1100 is approximately N = 6.15. The largest influence of the supersonic mode comes between R = 1000
and R = 1100 for F = 5.65E − 4, yet it does not have an impact on the maximum N-factor. Therefore,
the supersonic modes contribute very little to the maximum N-factor for this case. However, because this
N-factor curve is only valid for the flow conditions in Case 1, it is difficult to draw a definitive conclusion on
the role of the supersonic modes in N-factor transition prediction methods. More cases with different flow
conditions are necessary to evaluate the effect of the spontaneous radiation of sound on transition using the
eN method.

Figure 12: N-factor for unstable second mode frequencies. Frequencies are in increments of ∆F = 4.707E−8
(∆f = 50 kHz). The green line is an approximation of the edge of the N-factor curve.

To provide a qualitative visual comparison with the unsteady DNS results, the perturbation contour
predicted by LST was created. At each streamwise location, the eigenfunction φ̂ and eigenvalue α were
obtained from the local LST method. The wall-normal eigenfunction at each streamwise location represents
the normalized perturbation in φ at that location. These perturbations are then assembled into a 2D contour
of perturbations. For example, the pressure perturbation field is expressed explicitly as

p′(x, y) = Real
[
p̂(x, y)ei(α(x)x+βz−ωt)

]
(52)

where α(x) is the complex wavenumber at streamwise location x, and p̂(x, y) is the complex pressure eigen-
function at each streamwise location. The pressure perturbation contour at time t = 0 is shown in Figure
13. A similar contour was created for the temperature perturbations, also shown in Figure 13. It should
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be noted that the pressure and temperature contours have been locally scaled by their absolute maximum
value at each streamwise location.

(a) (b)

Figure 13: LST perturbation contours at F = 5.18E − 4 (f = 550 kHz). (a) Pressure perturbation. (b)
Temperature perturbation. Contours have been locally scaled by their absolute maximum value at each
streamwise location. Wall-normal distance has been scaled by the local boundary layer thickness δ99.

The growth rate has been overlayed in Figure 13 to illustrate the fundamental difference in the perturba-
tion field after synchronization with the slow acoustic spectrum (indicated by the “kink” in the growth rate).
Prior to synchronization, the perturbations are largely confined to within the boundary layer and the angle
created by the perturbation with respect to the wall is perpendicular. As the second mode synchronizes with
the slow acoustic spectrum, the perturbation begins to grow into the freestream outside of the boundary
layer, and the angle created by the perturbations moves gradually from perpendicular towards the wall in
the clockwise direction. Additionally, the vertical component of the energy flux vector of the perturbation
outside of the boundary layer is positive, i.e. ey = (v̂rp̂r + v̂ip̂i) /2 > 0. This indicates the radiation of sound
away from the wall.

Lastly, the temperature perturbation contour predicted by LST for a fixed wavenumber and frequency was
created to demonstrate the role of the relative Mach number (Eq. 1) in flows with the supersonic mode. The
contour in Figure 14 is obtained from Eq. 52, however α is the complex wavenumber at the fixed streamwise
location s0 and frequency f0 and T̂ is the complex temperature eigenfunction at the fixed streamwise location
s0 and frequency f0. The streamwise distance s is varied only slightly because in general, α and p̂ are functions
of s, making this technique invalid for regions far from s0. The temperature perturbation contour at time
t = 0 in Figure 14 illustrates very clearly the distinct regions of the disturbance behavior summarized by
the supersonic mode diagram in Figure 2. For both the subsonic and supersonic modes, the first sonic
line Mr = −1 acts as a wave guide for the acoustic waves traveling downstream supersonically relative to
the meanflow velocity. Centered about Mr = 0, the “rope-like” wave structures can be seen for both the
supersonic and subsonic modes. However, outside of these “rope-like” wave structures is where the subsonic
and supersonic modes differ fundamentally. For the subsonic mode (Fig. 2(a)), the relative Mach number
does not exceed Mr = 0.6, meaning the disturbance is traveling subsonically with respect to the meanflow
velocity for the entirety of the flow field outside of the boundary layer. The relative Mach number for
supersonic mode (Fig. 2(b)), on the other hand, exceeds Mr = 1 near the edge of the boundary layer. This
means the disturbance is traveling upstream supersonically with respect to the meanflow velocity. The effect
of this supersonic disturbance propagation is the “slanted” wave pattern in the freestream. Indeed, the angle
this wave pattern makes agrees with the predicted Mach angle µ = arcsin(1/Mr) = 50.3◦.
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(a) (b)

Figure 14: LST pressure perturbation contours. (a) Subsonic mode: s = 0.302m, f = 800 kHz. (b)Supersonic
mode: s = 0.733m, f = 550 kHz.

The results presented in this section indicate that the LST numerical methods used are capable of
capturing the unique physics that occur when the second mode is unstable and traveling supersonically with
respect to the free stream. The supersonic mode has been shown to be the result of mode F1 synchronizing
with the slow acoustic spectrum, splitting mode F1 into a stable mode F1− and a unstable mode F1+. The
relative Mach number has been shown to be a critical parameter in the structure of the boundary layer
disturbances. Specifically, below Mr = −1 the disturbance travels downstream supersonically with respect
to the meanflow and is confined by the sonic line. Between Mr = −1 and Mr = 1, the disturbance travels
subsonically with respect to the meanflow, resulting in “rope-like” structures. For supersonic modes, there
exists a second sonic line at Mr = 1, outside of which the disturbance travels upstream supersonically with
respect to the meanflow, resulting in “slanted” wave patterns at an angle µ = arcsin(1/Mr). Further analysis
through unsteady DNS was performed to verify the phenomena predicted by the LST analysis.

B. Unsteady DNS Results

To study stability using DNS, it is required that the meanflow be perturbed in order to study the growth,
or decay, of the perturbation. Here, the flow is perturbed with a suction/blowing slot at the cone surface.
The equation for the mass flux of the slot is

ρv(x, t)′w = εb(ρu)∞ exp

{
− (t− µb)

2σ2
b

}
sin

{
2π(x− xb)

lb

}
(53)

where lb is the length of the slot, xb is the center of the slot measured from the leading edge of the cone, εb
scales the function, µb shifts the Gaussian component to avoid negative times, and σb adjusts the spectral
content of the function. Notice the time dependent Gaussian portion of the function. When transformed to
frequency space, this yields a continuous range of frequencies with non-zero amplitudes making this particular
approach for perturbing the meanflow an effective strategy when studying a wide range of frequencies.

The pulse parameters are summarized in Table 2. The frequency spectrum of the pulse is presented
in Figure 15. The Fourier transform indicates the majority of the frequency content of the pulse is below
1MHz. From the LST analysis, it was predicted that the unstable supersonic modes will be present below
this frequency. The amplitude of the perturbation is small enough that the disturbance is approximately
linear.
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Table 2: Gaussian pulse parameters for DNS.

εb µb σb xb lb

1E − 4 3E − 6 4E − 7 0.1m 0.002m

(a) (b)

Figure 15: Gaussian pulse for unsteady DNS. (a) Nondimensional mass flux amplitude. (b) Frequency
content of pulse.

The evolution of the Gaussian pulse downstream is visualized in Figure 16 using snapshots in time of
contours of the pressure perturbation normalized by the local meanflow pressure (∆p

p ). The same value at
the surface of the cone is included to more clearly visualize the growth of disturbances. The traditional
second mode growth can be seen in Figure 16(a) in particular between x = 0.3 m and x = 0.45 m. The
start of the spontaneous radiation of sound appears in Figure 16(b) between x = 0.35 m and x = 0.4 m.
When the pulse travels to approximately x = 0.5m, the spontaneous radiation of sound becomes much more
apparent, shown in Figure 16(c). The supersonic modes continue to grow into the freestream as the pulse
continues downstream (Figures 16(d)-(f)). The perturbations near the upper boundary in Figure 16(a) and
(b) are a result of the Mach wave from the pulse traveling downstream and eventually interacting with the
shock. These interactions are weak, however, and disperse before the spontaneous radiation of sound occurs.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 16: Snapshots in time of pressure perturbation ∆p/p contours and surface pressure perturbation from
Gaussian pulse. ∆t = 3.997 E-5 seconds. 25 of 41
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It is worthwhile to compare the results presented in Figure 16 to similar results of a DNS low-frequency
wave packets on a flat plate examined by Chuvakhov and Fedorov,15 where the authors imposed a pulse
targeting a single frequency, rather than impose a Gaussian pulse as used here. Chuvakhov and Fedorov’s
pulse experiences multiple “patches” of radiation from the wall. Here, however, as the disturbance travels
downstream, the disturbance travels in a single pulse, rather than breaking up into patches that separate
from one another and grow. It is difficult to provide a definitive explanation for the discrepancy between
Chuvakhov and Fedorov’s results and the results in Figure 16, however it could be due to the Gaussian pulse
exciting a continuous range of frequencies as opposed to a band around a single frequency and its harmonics.
Additionally, the differing freestream conditions and the nonparallel effects from the conical geometry could
play a role.

The unsteady DNS pressure perturbation at time t = 2.39831E− 04 seconds was compared qualitatively
to the LST pressure perturbation at a fixed frequency of F = 5.65E−04 (f = 600 kHz) evaluated at the same
time (Figure 17). The LST perturbation contour has been transformed back into global (x, y) coordinates
from the streamwise and wall-normal coordinates for better comparison. The aim of this comparison was
to estimate qualitatively which frequencies were contributing the most to the pressure perturbation at an
arbitrary location of x = 0.62m. While the most unstable frequency at this location is approximately
F = 4.71E−04 (f = 500 kHz), the mode associated with this frequency is not predicted to have synchronized
with the slow acoustic spectrum yet. The unstable LST mode associated with F = 5.65E−04 (f = 600 kHz)
was chosen because it is roughly half way between the most unstable frequency and the neutral frequency
at this location.

(a) (b)

Figure 17: Qualitative comparison of pressure perturbation contours at t = 2.39831E − 04 seconds. (a)
DNS. (b) LST at F = 5.65E − 04 (f = 600 kHz). LST contours have been locally scaled by their absolute
maximum value at each streamwise location. DNS contours have been scaled by the local mean flow values.

The first qualitative comparison made from Figure 17 is that the location in which the spontaneous
radiation of sound occurs predicted by the LST contour coincides roughly with the unsteady DNS results.
This indicates that the LST reasonably predicts the onset of the supersonic modes. However, one of the
shortcomings of LST is that only one frequency is considered at a time, whereas in reality the disturbance
is composed of infinitely many frequencies. This drawback is of importance in comparing the wave angle
created by the radiation of sound. The wave angle at x = 0.62 m from the DNS results is θ ≈ 42.2 degrees
with respect to the wall, and the wave angle at the same location for the LST results is θ ≈ 70.8 degrees. This
result indicates that there are other major contributing frequencies to the radiation of sound in the DNS case.
As mentioned in the LST results, the wave angle increases clockwise from perpendicular, or in this context,
the wave angle with respect to the wall will decrease as the perturbation travels downstream. Because the
LST wave angle is greater than the DNS wave angle, this indicates that the frequency F = 5.65E − 04
(f = 600 kHz) is not the major contributor to the spontaneous radiation of sound. For the LST wave
angle to be greater at x = 0.62 m (R ≈ 1030), it would mean that the supersonic mode must be created
further upstream. Referencing the LST neutral stability map in Figure 8, for a fixed location, this would
require the LST frequency to be higher. Therefore, one could conjecture that it is the higher unstable
frequencies that contribute the most to the spontaneous radiation of sound. In this particular example, the
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major contributing frequencies to the spontaneous radiation of sound may be between the neutral frequency
F ≈ 6.0E−04 (f ≈ 640 kHz) and the examined frequency F = 5.65E−04 (f = 600 kHz). Fourier transform
(FFT) analyses of the unsteady DNS are required to determine the influence of each frequency on the growth
of the disturbance. It is likely that there is no major contributing frequency to the spontaneous radiation of
sound; rather, it may be the collective interaction of all of the unstable supersonic modes that causes this
phenomenon.

The mode shape of the pressure disturbance was extracted from the unsteady DNS results for both a
subsonic and supersonic mode. This wall-normal pressure disturbance profile was then compared to the LST
pressure mode shape for a fixed frequency. The DNS pressure disturbance magnitude is normalized by the
magnitude of the pressure disturbance at the wall. A subsonic mode at R = 718 (s = 0.300m) obtained at
t = 0.7994E − 4s is shown in Figure 18(a), and a supersonic mode at R = 1036 (s = 0.624m) obtained at
t = 2.39831E − 04s is shown in Figure 18(b). At R = 718, the dominant frequency predicted by LST is
approximately F = 7.53E − 04 (f = 800kHz), and at R = 1036, the dominant frequency is approximately
F = 5.18E−04 (f = 550kHz). Because at R = 1036 the frequency F = 5.18E−04 is not a supersonic mode,
the supersonic mode associated with the frequency F = 5.65E − 04 (f = 600kHz) was also included for
comparison in Figure 18(b). It appears that the LST mode shape more closely resembles the unsteady DNS
pressure perturbation for the subsonic mode than the supersonic mode. This helps reinforce the notion that
the supersonic mode is a collection of frequencies interacting to create a complex mode shape that cannot
be accurately described by a singular dominant frequency.

(a) (b)

Figure 18: Comparison of magnitude of DNS wall-normal pressure perturbation normalized by magnitude
of pressure perturbation at the wall to LST eigenfunctions. (a) Subsonic mode. R = 752 (s = 0.300m),
t = 0.7994E − 4s, F = 7.53E − 04 (f = 800kHz). (b) Supersonic mode. R = 1036 (s = 0.624m),
t = 2.39831E − 04s, F = 5.18E − 04 and F = 5.65E − 04 (f = 550kHz and f = 600kHz).

To quantitatively determine which frequencies were contributing to the second mode growth, the time
history of the pulse perturbation on the surface of the cone at each streamwise location was recorded.
The pressure perturbation time history for streamwise locations spaced 5cm apart is shown in Figure 19.
Presenting the data in this fashion allows for the visualization of the wave fronts in a similar manner as
Figure 16, however a Fourier transform of the time history yields the frequency content of the pulse rather
than the wavenumber content. From Figure 19, it is clear that the front of the pulse is traveling quicker
than the tail-end of the pulse, resulting in the elongation of the disturbance region.
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(b)

(c)
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(d)

(e)

(f)

Figure 19: Time history of surface pressure perturbation from Gaussian pulse at (a) s = 33.5cm, (b)
s = 38.5cm, (c) s = 43.5cm, (d) s = 48.5cm,(e) s = 53.5cm, (f) s = 58.5cm. ∆x = 5cm.

A FFT was performed for the surface pressure perturbation at all streamwise locations, resulting in the
contour map in Figure 20. This contour shows the most unstable excited frequencies due to the Gaussian
pulse. The neutral stability curve predicted by LST from Figure 8 is overlayed in Figure 20 for comparison.
It appears that there are a number of frequencies that undergo a significant amplification, however the
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most amplified frequency is approximately f = 625 kHz and appears most prominently for s > 0.55 m.
This frequency is near the most unstable frequency predicted by LST, and the location of the maximum
amplification agrees reasonably well with the LST predictions.

Figure 20: Fourier transform of unsteady surface pressure perturbation time history of Gaussian pulse. The
black line is the neutral curve predicted by LST.

Again, it is useful to compare the FFT results to those obtained by Chuvakhov and Fedorov,15 although
their unsteady DNS perturbs the flow with a sinusoidal pulse in time, rather than the Gaussian pulse that
is used here. This essentially targets a specific frequency range (with some harmonic frequencies) to excite
, rather than the broad range of frequencies excited by the Gaussian pulse. In any case, Chuvakhov and
Fedorov15 are able to take a Fourier transform of the unsteady data and present the FFT of the pressure
perturbation vs frequency for fixed streamwise locations. An example of such a figure is shown in Figure
21 for the current investigation, where the curve shape is similar to a bell curve. Chuvakhov and Fedorov15

again obtained somewhat different results for their study. They noted that rather than the typical bell-
shaped curves, multiple peaks are formed. Chuvakhov and Fedorov15 observed three peaks at most in their
FFT, which may have been due to the unsteady pulse only exciting a few frequencies, rather than a broader
range of frequencies. Furthermore, the geometry and flow conditions differ significantly from the current
study. The same authors have suggested the mechanism of sound radiation acts as an energy sink, which may
explain the abnormal behavior of the pulse dispersion. Further detailed investigation into this phenomenon
is required to ascertain the mechanism by which the spontaneous radiation of sound modulates the surface
pressure perturbation, and whether or not the frequency content of the disturbance plays a significant role
in the spontaneous radiation of sound.
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Figure 21: Fourier transform of unsteady surface pressure perturbation time history of Gaussian pulse as a
function of frequency for various streamwise locations s.

It is also useful to examine the FFT of the pressure perturbation as a function of streamwise distance
for a fixed frequency (Figure 22). This shows the growth of the perturbation from some initial amplitude
as the disturbance travels down stream. The single peak seen in the FFT contour are present here as
well. For example, f = 600 kHz is near the most amplified frequency; therefore the neighboring frequencies
f = 660 kHz and f = 560 kHz are observed to be less amplified. Regardless of the maximum amplitude, all
frequencies undergo the exponential-like growth that is characteristic of second mode growth.
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Figure 22: Fourier transform of unsteady surface pressure perturbation time history of Gaussian pulse as a
function of streamwise distance for various frequencies.

It is possible to determine the growth rate and phase speed of an unsteady disturbance in DNS. The
Fourier decomposed perturbation variables can be used to reconstruct the perturbation original flow field
disturbances via

φ′(x, y, t) = ∆φ(x, y) exp [i(ψ(x, y)− 2πft)] (54)

where φ′ is the perturbation of some variable, ∆φ is the amplitude of that variable, ψ is the corresponding
phase angle, and f represents a single dimensional frequency. An instantaneous snapshot of the flow field
can be obtained from the real part of φ′ when t is specified, similar to what was done in constructing the
2D LST contours in Equation 52, provided FFT data is available for all data points in the flow field.

Multiple boundary layer modes are present simultaneously in DNS, however as one mode becomes dom-
inant, it is possible to derive growth rate, wave number, and phase speed equations for a given frequency f
from Equation 54, resulting in

−αi =
1

∆φ(f)

d

ds
∆φ(f) (55)

αr =
d

ds
ψ(f) (56)

cr =
2πf

αr
(57)

(58)
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where s is the streamwise coordinate, ∆φ(f) represents a variable amplitude frequency f , and ψ(f) repre-
sents the corresponding phase angle at frequency f . Similar to previous researchers,52 the surface pressure
perturbations from DNS are used to compute −αi and cr.

As noted from the FFT of the surface pressure perturbation in Figure 20, the frequency f = 700 kHz
undergoes significant amplification due to the supersonic mode. Therefore, this frequency was chosen to
compare the phase speed and growth rate obtained from DNS to those predicted by LST (Figure 23). The
phase speed calculated from DNS matches the LST predictions quite well, with the exception of oscillations
between s < 0.4 m. These oscillations are the result of the synchronization of mode F1 with mode S and
with the entropy/vorticity spectra. The DNS growth rate exhibits much more oscillatory behavior, although
still follows the LST prediction reasonably well. The DNS growth rate is larger than the LST growth rate
because there are contributions from multiple modes. Interestingly, the DNS growth rate also displays the
“kink” predicted by the LST near s = 0.48 m, which indicates synchronization of the mode F1+ with the
slow acoustic spectrum, leading to the spontaneous radiation of sound.

(a) (b)

Figure 23: Comparison of DNS to LST phase speed and growth rate at f = 700 kHz. (a) Phase speed, cr.
(b) Growth rate, −αi.

For comparison to the 700 kHz disturbance, the phase speed and growth rate of a weaker frequency
f = 800 kHz are shown in Figure 24. Overall, the DNS results generally oscillate around the LST predictions,
however the agreement at this frequency is not as strong. Because f = 800 kHz is not as greatly amplified,
the influence of other modes, particularly the acoustic modes, is greater. This is evidenced by the DNS
growth rate oscillating for s > 0.4 rather than following the LST prediction.
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(a) (b)

Figure 24: Comparison of DNS to LST phase speed and growth rate at f = 800 kHz. (a) Phase speed, cr.
(b) Growth rate, −αi.

To investigate the frequency content of the sound radiation outside the boundary layer, unsteady time-
histories and Fourier transform results are presented for the pressure perturbation at a constant wall-normal
index J = 65, which corresponds to a region that is in the center of the sound radiation from the wall.
For example, at s = 0.62, the data is extracted at approximately y = 0.0035 m from the wall. The
pressure perturbation amplitude at this location is nearly two orders of magnitude smaller than the pressure
perturbation at the surface. Despite the smaller amplitude, the overall shape of the disturbance is the same
for the perturbation in the middle of the flow as it is for the perturbation at the wall. The time history of
the pressure perturbation in the middle of the flow is shown in Figure 25, and the FFT of the time history
of the pressure perturbation is shown in Figure 26.
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(c)
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(d)

(e)

(f)

Figure 25: Time history of pressure perturbation at index J = 65 from Gaussian pulse at (a) s = 33.5cm,
(b) s = 38.5cm, (c) s = 43.5cm, (d) s = 48.5cm,(e) s = 53.5cm, (f) s = 58.5cm. ∆x = 5cm.
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Figure 26: Fourier transform of unsteady pressure perturbation time history at index J = 65 of Gaussian
pulse. The black line is the neutral curve predicted by LST.

The frequency content of the pressure perturbation outside of the boundary layer at J = 65 indicates
the most excited frequencies by the Gaussian pulse. Although the magnitude of the disturbance in Figure
26 is about 16 times smaller than in Figure 20, it appears that the same frequencies are excited. The most
amplified frequency in the region outside of the boundary layer where the spontaneous radiation of sound
occurs is approximately f = 625 kHz, which is the same frequency that was most amplified on the wall. This
indicates that the surface pressure perturbation may be a reasonable predictor of the frequencies excited
outside of the boundary layer. This result is intuitive because the perturbation outside of the boundary
layer originates at the wall and radiates outward. One would expect a perturbation due to the most excited
frequency at the wall that results in the spontaneous radiation of sound to not be modulated greatly as the
disturbance moves away from the wall, and therefore retain the same frequency content as the perturbation
at the wall.

The unsteady DNS analysis confirms the predictions made by LST. The excited frequencies in the DNS
results agree with the most amplified frequencies from LST. Furthermore, it was shown through FFT analysis
that the frequencies that are excited in the spontaneous radiation of sound outside of the boundary layer
are nearly identical to the excited frequencies at the wall.

VI. Conclusion and Future Research

The supersonic mode has been shown to exist on an axisymmetric cone with a cold isothermal wall
through both LST and unsteady DNS analysis, reinforcing the results obtained for the flat plate geometry
by Bitter and Shepherd9 and Chuvakhov and Fedorov.15 The formation of the supersonic modes is predicted
by LST for an individual frequency as a product of the interaction between the discrete boundary layer mode
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F1 and the continuous slow acoustic spectrum. Upon synchronization with the slow acoustic spectrum, mode
F1 splits into two simultaneously coexisting modes: the unstable mode F1+ and the stable mode F1−. Mode
F1+ gradually joins the slow acoustic spectrum and becomes stable, whereas mode F1− becomes increasingly
stable as streamwise distance increases.

LST analysis has also shown the relative Mach number plays a critical role in the structure of the boundary
layer disturbances. Specifically, below Mr = −1 the disturbance travels downstream supersonically with
respect to the meanflow and is confined by the sonic line. Between Mr = −1 and Mr = 1, the disturbance
travels subsonically with respect to the meanflow, resulting in “rope-like” structures. For supersonic modes,
there exists a second sonic line at Mr = 1, outside of which the disturbance travels upstream supersonically
with respect to the meanflow, resulting in “slanted” wave patterns at an angle µ = arcsin(1/Mr).

The unsteady DNS results confirmed the supersonic mode existed at approximately the same location as
predicted by LST results. The unstable frequencies predicted by the LST analysis corresponded to the most
amplified frequencies the unsteady DNS results. The major finding from the FFT results of the unsteady DNS
pressure pulse contradict the multiple peak frequencies observed by Chuvakhov and Fedorov.15 Rather than
certain frequencies being more amplified than their neighboring frequencies, the typical bell-shaped curves
were obtained for the pressure perturbation as a function of frequency for a fixed location. The discrepancy in
the results may have been due to Chuvakhov and Fedorov’s unsteady pulse only exciting a single frequency
band, rather than a broader range of frequencies. Furthermore, the geometry and flow conditions differ
significantly from the current study. The mechanism by which the acoustic radiation modulates the pressure
disturbance is not yet well understood, and further studies are required to fully describe this abnormal
behavior and determine the influence of the frequency content of the disturbance on the supersonic mode.

By examining the frequency content of the disturbance outside of the boundary layer, it was determined
that the most excited frequencies outside of the boundary layer correspond to the same excited frequencies at
the wall. This indicates that the frequency content of the perturbation at the wall is a reasonable predictor
for the frequency content of the disturbance outside of the boundary layer.

Overall, it was concluded that the radiation of sound is the physical result of the complex interaction of a
number of physical modes, and cannot be easily represented by a single dominant frequency. The interaction
of the acoustic waves with the boundary layer disturbance is of significance because it could play a role in
energy transfer to the vehicle surface and could have an impact on boundary layer stability. The extent of
the influence of the supersonic mode on these parameters is yet to be determined.

In future studies, the impact of the wall temperature and high-enthalpy freesteam conditions will be in-
vestigated. The flow conditions studied here are not extreme enough to produce significant chemical activity,
and thus no conclusion regarding the influence of chemical nonequilibrium can be drawn. Additionally, a
“hot wall” (Tw/T∞ > 1) may induce more chemical reactions in the boundary layer, which could alter the
stability of the second mode in flows with supersonic modes.

Appendix

The nonzero elements of each complex matrix for the nonequilibrium LST shock boundary conditions
are given below, where ~φ = [ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂ , T̂V ]T and δij is the Kroenecker delta. The subscripts
i, j = 1, 2, . . . , ns, where ns is the number of species in the model. The overbars indicating the steady
meanflow components have been dropped for simplicity.

The shock boundary equations are repeated here for clarity:

ns+5∑
j=1

B̂ij φ̂j = 0, i = 1, 2, . . . , ns+ 4

This represents ns + 4 equations for ns + 5 independent variables, and therefore an additional equation is
required to close the system. The closure equations considered were mixture continuity, y-momentum, and
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the right-running characteristic equations. The following simplifying terms are introduced

Xs = iα∆(ρsu)− iω∆(ρs), s = 1, 2, . . . , ns

Xns+1 = iα∆(ρu2 + p)− iω∆(ρu)

Xns+2 = iα∆(ρuv)− iω∆(ρv)

Xns+3 = iβ∆p

Xns+4 = iα∆(u(ρe+ p))− iω∆(ρe)

Xns+5 = iα∆(uρev)− iω∆(ρev)

where ∆() is the jump condition across the shock. For example, ∆(ρu) = (ρu)∞ − (ρu)shock where the
subscript ∞ denotes upstream of the shock and shock denotes immediately downstream of the shock. The
nonzero components of B̂ are

B̂i,j = Xns+1δij (au− v)−Xi

(
a RMj

T + au2 − uv
)

B̂i,ns+1 = Xns+1aρi −Xi (2aρu− ρv)

B̂i,ns+2 = −Xns+1ρi +Xiρu

B̂i,ns+4 = −Xia
p
T

B̂ns+1,j = Xns+1

(
auv − v2 + R

Mj
T
)
−Xns+2

(
au2 − uv + a RMj

T
)

B̂ns+1,ns+1 = Xns+1aρv +Xns+2 (ρv − 2aρu)

B̂ns+1,ns+2 = Xns+1 (aρu− 2ρv) +Xns+2ρu

B̂ns+1,ns+4 = −Xns+1
p
T −Xns+2a

p
T

B̂ns+2,j = Xns+3

(
uv − a RMj

T − au2
)

B̂ns+2,ns+1 = Xns+3 (ρv − 2aρu)

B̂ns+2,ns+2 = Xns+3ρu

B̂ns+2,ns+3 = aρu− ρv
B̂ns+2,ns+4 = −Xns+3a

p
T

B̂ns+3,j = Xns+1 (au− v)
[
cv,jT + evj + 1

2 (u2 + v2) + hoj + R
Mj
T
]
−Xns+4

(
a RMj

T − uv + au2
)

B̂ns+3,ns+1 = Xns+1 [(au− v) ρu+ a (ρe+ p)] +Xns+4 (ρv − 2aρu)

B̂ns+3,ns+2 = Xns+1 [(au− v) ρv − (ρe+ p)] +Xns+4ρu

B̂ns+3,ns+4 = Xns+1 (au− v)
[
ρcv + p

T

]
−Xns+4a

p
T

B̂ns+3,ns+5 = (au− v)
∑ns
s=1 ρs

∂evs

∂TV

B̂ns+4,j = Xns+1 (au− v) evj −Xns+5

(
a RMj

T − uv + au2
)

B̂ns+4,ns+1 = Xns+1aρev +Xns+5 (ρv − 2aρu)

B̂ns+4,ns+2 = −Xns+1ρev +Xns+5ρu

B̂ns+4,ns+4 = −Xns+5a
p
T

B̂ns+4,ns+5 = (au− v)
∑ns
s=1 ρs

∂evs

∂TV
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