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The ability of a finite roughness element to suppress the hypersonic second-mode in-
stability on a cone is explored. A new code for simulating discrete roughness using a
body-fitted grid over an analytic shape is developed. Linear stability analysis is performed
on the Mach 8 meanflow of a 7◦ half-angle straight cone. The resulting N-factor analy-
sis determines the second-mode frequency of 240 kHz to most likely to lead to turbulent
transition. A phase velocity plot of the hypersonic modes is obtained and the resulting
synchronization location of s=0.2436 meters is determined. This led to the design and
placement of a roughness element that will effectively suppress the targeted disturbance
frequency. An unsteady simulation with a blowing-suction actuator, upstream of the rough-
ness element, introduces a pulse with a nominal frequency content up to 1 MHz. FFT’s
of the pulse’s history for a roughness case and a no-roughness case are computed and
compared. Frequencies 218 kHz and higher are suppressed while lower frequencies are
amplified, effectively showing that the roughness element is able to suppress the target
disturbance frequency.

I. Introduction

Understanding high speed laminar-turbulent boundary-layer transition is a long standing goal of hyper-
sonic research. Considerable progress has been made in the past decades by parsing out the problem into
areas of receptivity, linear growth, and nonlinear breakdown. But complete knowledge of the underlying
mechanisms remain elusive.1 Meanwhile, the undesired consequences of boundary-layer transition such as
increased drag and surface heating on hypersonic vehicles remain. Surface heating is especially problematic
for the development of such vehicles, and advocates for a means to predict and ultimately control the onset of
boundary-layer transition. Computational and experimental research into using 2-D finite roughness strips to
delay the onset of transition has shown considerable promise.2–4 To further this research, this paper presents
a newly developed direct numerical simulation (DNS) code to explore the effect surface roughness on the
transition process on a hypersonic cone. Additionally, a simulation of an axisymmetric isolated roughness
strip and its effect on laminar-turbulent transition is explored.

Ongoing research has identified several factors that affect the transition process, this includes, among oth-
ers, receptivity of freestream disturbances, nose bluntness, surface temperature, and isolated and distributed
roughness. Of particular interest is the effect isolated roughness has on transition. Surface roughness is
typically classified in terms of its height with respect to the boundary layer. Heights that expedite natural
transition or cause its immediate onset are often termed ’critical’ or ’effective’ respectively. However there
are unique instances where a height counterintuitively delays transition. A growing body of computational
evidence by Fong and Zhong2,3 is fast proving the existence of this sub-critical phenomenon. The most com-
pelling of which is a collaborative effort with Dr. Steven Schneider at Purdue4 in which a transition-delaying
roughness experiment is designed according to the passive laminar control method patented by Zhong and
Fong.5

Prior to these recent investigations by Fong, there have been reports of experiments encountering the
transition-delaying effect. The first was in 1959 by James who noted that for a given Mach number, an
optimum value of roughness height was found which gave a maximum laminar run.6 In 1964, Holloway and
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Sterrett found in Mach 4.0 and 6.0, that under certain circumstances roughness with a height less than the
boundary layer thickness can delay transition.7 More recently, Fujii found experimentally that 2-D wavy
wall roughness can delay transition.8 Also in 2014, Chynoweth et. al. looked at 3-D isolated roughness
in which at a certain heights were found to interact with the second mode without tripping the boundary
layer.9

The simulation utilized in this paper is based on a collaborative DNS/experimental study with Dr. Katya
Casper at Sandia National Laboratories (SNL). The computational work was carried out to design a transition
delaying arrangement of roughness elements to be validated experimentally. The experiment consists of
a Mach 8 straight blunt cone with axisymmetric roughness elements arranged in a streamwise pattern,
similar to the computational/experimental collaboration previously done with Dr. Schneider’s Lab.4 The
computational work in this previous collaboration, however, used observations of second-mode suppression
taken from a flat plate simulation and, in conjunction with a cone meanflow simulation, extended the flat plate
observations to a compression cone boundary-layer in order to design the transition delaying arrangement.
No simulation of a roughness element on a cone was actually undertaken. With the development of the code
detailed in this paper, the meanflow and unsteady simulations of a finite roughness element on a straight
blunt cone can now be computed completely.

Regarding the collaboration with Dr. Casper, the simulation detailed in this paper was computed using
the code. In order to design the transition-delay roughness element, the computational work had to identify
the second-mode frequency most likely to lead to transition and the synchronization location (the location
where the phase velocity of mode F and mode S are equal) of said frequency. From this information a
roughness element is designed and placed on the cone. An unsteady simulation of the roughness on the cone
is computed. FFT analysis of the unsteady pressure perturbations determines which frequencies are being
suppressed by the roughness element. Currently, only a single axisymmetric roughness strip is considered in
this simulation.

II. Governing Equation and Computational Methodology

The DNS code utilized in this paper is a 5th-order code that uses shock-fitting to accurately compute the
location of the bow shock on a straight blunt cone geometry. This base geometry and high-order shock-fitting
approach has been validated extensively for accuracy.10 The roughness element is implemented by taking
an analytical shape, in this case the difference of two hyperbolic tangents and mapping it to the surface
geometry. In order for the mapping to work the function of the analytical shape must go to zero beyond the
initial shape. By this approach, a global 5th-order accuracy for the entire problem is maintained, making it
suitable for unsteady simulations.

A. Governing Equations

The DNS code solves the conservation-law form of the three-dimensional Navier-Stokes equations in Cartesian
coordinates. Written in vector form, the governing equations are

∂U

∂t
+
∂Fj
∂xj

+
∂Fv,j
∂xj

= 0 (1)

in which U is the state vector of conserved quantities, and Fj and Fv,j are the inviscid flux and viscous flux
in the jth spatial direction respectively,

U = {ρ, ρu1, ρu2, ρu3, e}T (2)

Fj = {ρuj , ρu1uj + pδ1j , ρu2uj + pδ2j , ρu3uj + pδ3j , (e+ p)uj}T (3)

Fv,j = {0, τ1j , τ2j , τ3j , τjkuk − qj}T (4)

The internal energy, e, shear stress, τij , and heat flux, qj , are given as follows,

e = ρ
(
cvT +

ukuk
2

)
(5)

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ

∂uk
∂xk

(6)
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qj = −κ ∂T
∂xj

(7)

For the simulation under consideration, the properties of nitrogen gas are used. This is consistent with
the facilities at SNL and the experimental conditions this simulation is patterned after. Thus, a calorically
perfect gas is assumed to close Eq. (1),

p = ρRT (8)

A specific gas constant of R = 296.8J/kgK for nitrogen gas is used. And the specific heats cp and cv are
held constant with a given specific heats ratio of γ = 1.4. Moreover, the viscosity coefficient, µ, is calculated
by Sutherland’s law in the form:

µ = µr

(
T

To

)3/2
To + Ts
T + Ts

(9)

where µr = 1.7894 × 10−5 N·s/m2, To = 288.0 K, and Ts = 110.33 K. Lastly, λ is taken as −2/3µ and the
thermal conductivity, κ, is computed from the constant Prandtl number,

κ =
cpµ

Pr
(10)

Fong and Zhong,2 Huang and Zhong,11 and Lei and Zhong12 have used the same formulation or similar
formulations for simulating perfect gas hypersonic flow.

B. Shock-fitting Method

A shock-fitting method is used to obtain a defined shock location. The shock-fitting method treats the shock
as the upper boundary of the physical domain by computing the location of the bow shock produced by the
blunt cone. Hence, the physical domain of the simulation is defined by the bow shock from above and the
cone surface below. Eq. (1) is solved in a computational domain with body fitted curvilinear coordinates
(ξ, η, ζ, τ), where ξ is in the direction of the cone surface, η is normal to the cone surface, ζ is in the azimuthal
direction, and τ is time. Treating the shock as a domain boundary, the transient shock movement is solved
as an ODE alongside the governing equation. Thus, in the computational domain surfaces of constant η are
unsteady due to shock movement, while surfaces of constant ξ and ζ are fixed. Therefore, the transformation
relations between the physical domain and computational domain are

ξ = ξ(x, y, z)

η = η(x, y, z, t)

ζ = ζ(x, y, z)

τ = t

⇔


x = x(ξ, η, ζ, τ)

y = y(ξ, η, ζ, τ)

z = z(ξ, η, ζ, τ)

t = τ

(11)

Details of transforming Eq. (1) into the computational domain can be found in Zhong, 1998.10

As mentioned above, the shock-fitting method treats the bow shock as a computational boundary at

η(x, y, z, t) = ηmax = constant. (12)

Accordingly, functions for the shock position and velocity must be obtained of the form H(ξ, ζ, τ) and
Hτ (ξ, ζ, τ) and solved as independent flow variables alongside the governing equations. Stated simply, this
can be done by taking the Rankine-Hugoniot relations, which provide the flow variable boundary conditions
behind the shock, as a function of U∞ and the velocity of the shock front vn. The shock front velocity is
determined by a characteristic compatibility equation at the grid point immediately behind the shock. A
complete derivation of H and Hτ can also be found in Zhong, 1998.10

Lastly, an explicit 5th order finite-difference method is used to discretize the transformed governing
equations, H, and Hτ in the ξ and ζ-directions. A spectral scheme is used for derivatives in the η-direction
for axisymmetric cases and finite-difference is used in non-axisymmetric cases. Meanflow simulations are
advanced using Euler’s method (RK-1) for speed of computation.
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C. Discrete Body-fitted Roughness

The discrete surface roughness elements in this paper is implemented by mapping the function of an analytical
shape to the cones frustum. Choosing the shape of said function allows for a degree of creativity, but the
function must be compatible with the grid transformation, Eq. (11). The use of grid metrics requires that
the shape have a continuous derivative throughout the domain. As a consequence sharp edged geometries
such as diamonds or squares are not possible. Such geometries can be implemented using a finite volume
or immersed interface method approach but at the cost of losing high-order accuracy around the roughness
element. By limiting the geometry to analytical shapes, the high-order accuracy of our solution is maintained.
In this paper, the roughness shape is defined as the difference of two hyperbolic tangents,

y′(x′, z′) =
1

2
h
{

tanh
[
q
(
x′ +

w

2

)]
− tanh

[
q
(
x′ − w

2

)]}
(13)

where x′, y′, and z′ are Cartesian coordinates prior to being mapped to the cone surface. The parameters
h and w control the height and width of the roughness and q is a free parameter that controls the edge
steepness.

Equation (13) is mapped to the cones frustum using the following rotation and translation equations,

x = cos(θ 1
2
)x′ − sin(θ 1

2
)y′ + xc

y = [sin(θ 1
2
)x′ + cos(θ 1

2
)y′ + yc]cos(θ)

z = [sin(θ 1
2
)x′ + cos(θ 1

2
)y′ + yc]sin(θ)

(14)

in which x, y, and z are the Cartesian coordinates in the physical domain, θ 1
2

is the cone half-angle, θ is
the angle in the azimuthal direction about the cone, and xc and yc is the surface location of the roughness
center at θ = 0.

X

Y

Z

Figure 1: Roughness shape generated by Eq. (13) for q = 1500 after being mapped to a cone surface.

Figure 1 plots Eq. (13) as it would appear on a cone frustum. The figure shows that applying Eq.
(14) produces a circumferential roughness. This surface geometry is similar to that used in the Purdue
experiment.4 Investigations of the roughness effect, thus far, have only investigated the importance of an
elements overall height and width with little attention paid to the physical geometry (e.g. elliptical strips
vs. square strips). Experiments and simulations with comparable results but different shapes suggests the
physical geometry has little bearing on the suppression effect when compared to overall height.3,4

D. Direct Numerical Simulation of Disturbances

To simulate unsteady disturbances, a blowing-suction actuator is use to introduce a pulse into a resolved
meanflow with surface roughness. The actuator extends circumferentially around the cone and is placed
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upstream of the roughness element. The pulse has a Gaussian shape in time and is sinusoidal in space.
The sinusoid shape avoids introducing additional mass into the mean flow. The frequency spectrum of the
pulse is chosen to be broad enough as to include the most unstable mode frequencies for the given flow
conditions. Downstream of the roughness, the frequencies are examined for roughness induced amplification
or suppression. This technique of using a Gaussian pulse to examine mode amplification/suppression was
previously implemented by Fong et al.13

Equation (15) below is the function used to generate the unsteady pulse,

vp(x, t) = 10−3U∞exp

(
−(t− µ)2

2σ2

)
sin

(
2π
x− xs
l

)
(15)

for xs < x < xs+ l and t > 0. In which µ is the mean, σ is the standard deviation, xs is the starting location
for the actuator, and l is the length of the actuator. The peak amplitude of the pulse is scaled as 10−3U∞.
The mean of the pulse is defined in terms of velocity ‘tolerance’, vtol, which is the initial pulse velocity at
t=0. Naturally, vtol is very small, preferably close to zero, however not too small that an appreciable amount
of computational time passes before the pulse is fully developed. The equation for µ is given as,

µ =

√
−2σ2ln

(
vtol

10−3U∞

)
. (16)

By defining µ in this way, µ can be fixed with a reasonable vtol regardless of the simulation conditions.
Thus, by design, the only remaining free parameter in Eq. (15) is σ which permits direct control over the
frequency content of the pulse. Hence, when designing the pulse for a particular case, only the standard
deviation needs to be modified. The pulse parameters used in this paper are given in Table 1, moreover the
time history of Eq. (15) and its corresponding FFT are given in Fig. 2.

Table 1: Pulse parameters

Parameter Value Unit

10−3U∞ 1.0931 m/s

vtol 10−10 m/s

σ 0.3 µs

µ 2.0398 µs

xs 0.1976 m

l 1.9703 mm
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Figure 2: (a) Time history of the maximum wall normal velocity. (b) FFT of maximum wall normal velocity
in (a).
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E. Simulation Approach

The process for DNS of surface roughness in unsteady flow starts with computing the converged meanflow
of the smooth surface case. A roughness element is then added to the converged smooth meanflow and the
meanflow for this case is computed. In order to guide the design of the roughness element, a stability analysis
of the smooth meanflow is performed using linear stability theory (LST).14 With both converged meanflows
in hand, the blowing-suction actuator is added and the unsteady simulation is computed. FFT is performed
on the unsteady results and the cases are compared.

III. Freestream and Simulation Conditions

As previously mentioned, the simulation is based on a straight blunt cone geometry at zero angle-of-attack.
The cone has a 7◦ half-angle and a nose radius of 0.5 mm with a total length of 0.534 m measured from
the blunt nose tip. The simulation is axisymmetric. The freestream conditions are taken from a previous
experiment performed in SNL Hypersonic Wind Tunnel for the same cone geometry.15 The freestream
conditions are listed in Table 2.

Table 2: Simulation Parameters

Parameter Value Unit

M∞ 8.0 -

ρ∞ 0.024803 kg/m3

p∞ 330.743 Pa

T∞ 44.9 K

To 620.0 K

Tw 279.0 K

γ 1.4 -

Pr 0.72 -

Re∞/l 9584257 m−1

IV. Results and Discussion

The DNS simulation begins by first computing the smooth cone meanflow for the case described in
Table 2. From this result, LST is performed to determine the stability characteristics of the flow. These
results in turn guide the design of the transition-delaying roughness element. A rough case meanflow is then
computed with a single circumferential roughness element in place. With the converged meanflows, unsteady
simulations using the blowing-suction actuator are computed for both the smooth and rough cases. An FFT
analysis of the unsteady results is performed and the cases are compared.

A. Smooth cone meanflow results

Figures 3 and 4 contain the pressure and density contours from the meanflow simulation. As the simulation
is axisymmetric, a single slice of the physical domain is presented. The domain is bounded at the top by the
bow shock and below by the cone surface.

The pressure contours in Fig. 3 are typical of blunt cone results. As expected there is an increase in
pressure across the shock with a significant increase near the stagnation point and a moderate pressure
increase across the shock along the frustum.

Likewise, the density contours in Fig. 4 are also typical of blunt cone results. The density increases across
the shock from the freestream as expected, with the highest contour values localized near the stagnation
point. The other flow quantities, such as temperature and velocity are also typical of blunt cone results.
The boundary layer profiles for performing LST analysis are taken from this meanflow simulation.
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(a) (b)

Figure 3: Pressure contour behind bow shock over (a) the blunt nose and (b) cone frustum.

(a) (b)

Figure 4: Density contour behind bow shock over (a) the blunt nose and (b) cone frustum.

B. Stability analysis of meanflow and LST at 240 kHz

From the smooth cone meanflow data, an N-factor plot for mode S is computed. Using the empirical eN

method, disturbances in the boundary layer are measured by integrating the amplitude growth at a fixed
frequency as the disturbance propagates downstream. The amplitude growth is found from LST using a
steady parallel flow boundary layer profile, which is obtained from the meanflow data. The N-factor results
are compared to experimental results to determine the frequency responsible for transition. The N-factor is
defined below, where s is the distance along the surface, so is the first critical point, ω is the disturbance
frequency and αi is the growth rate.

N(ω, s) =

∫ s

so

−αids (17)

The N-factor plot in Fig. 5 below contains a frequency range from 180 to 400 kHz. Based on a previous
experiment by Casper et. al.,15,16 the intermittent turbulence results for the same cone geometry with
the same Mach number and similar unit Reynolds number indicated that at 0.340 m, the instability wave
intermittency began to drop as turbulent intermittency picked up. Comparing this 0.340 m location on Fig.
5 below, the location corresponds to an N-factor of 5.19 for a frequency of 240 kHz.
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Figure 5: N-factor of mode S growth rate.

Taking 240 kHz as the mode S frequency most likely to cause turbulent transition, it can be targeted
and suppressed using transition-delay roughness elements. This is done by locating the synchronization
location—the point where the phase velocity of mode F crosses mode S—and placing a roughness element
at that location or downstream of it. This approach of identifying the target frequency’s synchronization
location is the main idea behind Zhong’s patented passive laminar flow control method.5

The phase velocity plot for the target frequency is given in Fig. 6 below. The point at which the modes
cross could not be obtained directly from LST, which is known to occur, however, enough information was
obtained to interpolate the synchronization location by connecting the ends of mode F and noting where it
crosses mode S. A synchronization location of s = 0.2436 m along the cone surface was determined.

Along with the phase velocity, the growth rate for mode F and mode S at the target frequency is also
determined. Figure 6 shows that mode S becomes unstable at s = 0.1589 m (RF = 0.1737) and becomes
stable again at s = 0.3452 m (RF = 0.2566), meanwhile mode F remains entirely stable at the target
frequency.
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Figure 6: (a) Phase velocity and (b) growth rate for mode F and mode S at 240 kHz.
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It is well known that the second mode and higher modes are the acoustic instability waves in hypersonic
boundary-layers,17 and that mode S transitions from the first mode to the second mode after crossing mode
F.18 Hence, from Fig. 6 is it presumed that since all of the locations considered are downstream of the
240 kHz synchronization location, that the acoustic instability wave in question is the second mode. This
presumption can be verified by examining the eigenfunctions at these locations. Figure 7, contains the
pressure and temperature eigenfunctions for two locations: the synchronization location (s = 0.2436 m) and
the experimental location where Casper et. al.15 determined the turbulent intermittency begin to dominate
(s = 0.340 m). The pressure eigenfunction for both locations are indicative of the second mode—comprising
of one peak and one valley.18 Moreover, the eigenfunctions have a negative growth rate and are consequently
unstable. Thus, it has been shown that the instability wave considered in this simulation is the unstable
second mode.
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Figure 7: (a) Pressure and (b) temperature mode shapes at s = 0.340m (RF = 0.2541). And (c) pressure
and (d) temperature mode shapes at s = 0.2436m (RF = 0.2157).

In addition to the N-factor analysis, a growth rate map of mode S for the majority of the smooth meanflow
over a range of frequencies was constructed. From the map given in Fig. 8, the neutral curve can be viewed
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alongside the peak unsteady growth rate. Within the confines of the neutral curve, the growth rates are
unstable and those outside are stable. The peak unstable growth rate occurs around a frequency of 417 kHz,
while the target frequency of 240 kHz and the frequencies most likely to lead to transition are quite lower.
This is because the width of the neutral curve, for a given frequency, is wider for lower frequencies. As can be
inferred from Eq. (17), one means of obtaining a large N-factor is for a given frequency to remain spatially
unstable longer. Frequencies higher than 400 kHz were not considered in the the N-factor analysis, as they
would have only produced smaller and smaller values of N and are not likely to lead to transition. Lastly,
the neutral stability curve provides the range of relevant unstable second mode frequencies. Any unsteady
pulse should contain the range of unstable second mode frequencies between 180 and 650 kHz. As seen in
Fig. 2b, the pulse FFT nominally contains frequency content up to 1MHz, which is sufficient for covering
the unsteady frequencies.

Figure 8: Growth rate map of mode S overlain with the neutral stability curve ( ). Solid contours ( )
denote unstable growth rates, dashed contours ( ) denote stable growth rates.

Lastly a note on Fig. 8 itself, the figure contains several gray spaces and artifacts. The gray area to
the left of R < 425 was not computed since the closer the analysis gets to the blunt nose, the more the
parallel flow assumption of LST is violated by the cone geometry. Moreover, the gray area below 180 kHz
and in the upper right hand corner were not computed because the LST software could not track the mode
S eigenvalue. Lastly, there are some artifacts within the map itself that are presumably caused when the
software ‘loses’ the eigenvalue amongst the branches of the continuous spectrum before finding it again. In
spite of these issues, the neutral curve and the space within it are well defined and free of artifacts.

C. Transition-delay roughness element design

Moving on to the design of the transition-delay roughness element; the location, height, and width of the
element must be defined. In a previous computational/experimental collaboration, Fong et. al.4 placed
the element 5 cm downstream of the synchronization location. The rational for this was to guarantee
the suppression of the target frequency. A parametric study by Fong et. al.3 found that placing the
roughness element at the synchronization location, suppressed frequencies higher than the target frequency
while amplifying lower frequencies. Hence by placing the element further downstream, at essentially the
synchronization location of a lower frequency, suppression of the target frequency was guaranteed. Moreover,
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in the aforementioned computational/experiment collaboration, the height and width of the element were
set to half the local boundary-layer thickness in height, and is twice the local boundary-layer thickness in
width.

Following the convention set by Fong et. al.,4 the surface location of the element is placed 5 cm down-
stream of the synchronization location at s = 0.2936 m. Figure 9 contains the boundary-layer profile at
s = 0.2936 m extracted from the meanflow. The δ99 measure of the profile is used as the boundary-layer
height. Table 3 contains the roughness element parameters.
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Figure 9: Velocity boundary-layer height at s = 0.2936

Table 3: Roughness Parameters

Parameter Value Unit

s 0.2936 m

δ99 1.627 mm

h 0.8135 mm

w 3.254 mm

D. LST analysis at 218 kHz

Since the physical location of roughness element has been placed further downstream at s = 0.2936 it is
only proper that some LST results be provided for this location. As mentioned previously, placing the
roughness element downstream guarantees the suppression of the target frequency by essentially placing the
element at the synchronization location of a lower frequency. Thus, we wish to determine the frequency
whose synchronization location corresponds to s = 0.2936 m. After searching through a range of frequencies,
218 kHz provides a synchronization location closest to the roughness location. Figure 10 contains the phase
velocity and growth rate plots for this frequency. As with the phase velocity plot in Fig. 6, the point where
mode F and mode S cross could not be obtained directly from LST. Thus the synchronization location was
determined by interpolating between the ends of mode F.
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Figure 10: (a) Phase velocity and (b) growth rate for mode F and mode S at 218 kHz.

E. Rough cone meanflow results

With the element dimensions defined, the rough case meanflow can be computed. Figures 11 and 12 provide
an overall view of the meanflow pressure contour for the surface and the flow cross-section. This meanflow
computation is an intermediate result in obtaining the full unsteady roughness simulation. But because
the roughness introduces significant non-parallel flow in the vicinity of the roughness, LST analysis on this
meanflow is not possible. Thus phase velocity plots and growth rate plots cannot be constructed, but that
does not mean the rough meanflow is not without significant features.

Figure 11: Meanflow pressure contours on cone surface.
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Figure 12: longitudinal cross-section of meanflow pressure contours.

The meanflow pressure contour plot nearest the element in Fig. 13 shows a Mach wave on the elements
upstream edge with an expansion fan on the downstream edge. From this figure it can been seen that
the presence of the element influences the upstream pressure field significantly by at least four element
widths while the downstream pressure field shows less influence. This is a notable departure from flat
plate simulations in which the influence of the element was felt nearly equally upstream and downstream.2

The reason for the decreased downstream influence can be seen in the stream trace plot in Fig. 14. The
downstream recirculation zone is not only smaller than in flat plate cases but is nearly nonexistent when
compared to the extent of the upstream recirculation zone.

Figure 13: Meanflow pressure contours around roughness element.

The existence of the diminutive downstream separation zone is an interesting result, as it has been
proposed by Tang et. al.19 that it is this separation zone that is responsible for the second mode suppression
via an application of Miles’ Theory, in which the second mode undergoes amplitude reduction by reflecting
off the zone. As will be seen later, despite the downstream separation zone’s diminutive size, the roughness
element is more than capable of suppressing its target frequency.
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Figure 14: Stream trace around roughness element.

F. Unsteady results on a smooth cone

Moving forward from the meanflow simulations, a blowing-suction actuator is added to the smooth cone
meanflow results and the pulse defined by Eq. (15) and Table 1 is imposed on the flow field. Figures 15
and 16 show the familiar second mode wave packet as it propagates downstream. As illustrated by Fig. 15,
the unsteady results are axisymmetric. The blowing-suction actuator wraps circumferentially around the
cone and thus produces a circumferential instability wave. Figure 16 shows the cross-sectional view of the
instability wave. The surface location in the figure is in the vicinity of the element in the rough case and
was chosen for better comparison with the roughness case.

Figure 15: Surface view of second mode surface pressure perturbation on a section of cone frustum. The
blowing suction actuator is located out of view at s = 0.198 m
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Figure 16: Pressure perturbation, p’, of the second mode instability wave on a smooth cone.

In addition to the instantaneous view of the pressure perturbations provided in Fig. 16, the time history
of the surface pressure perturbation can be extracted from the unsteady simulation. Figure 17 plots the
instability wave for the smooth case at five separate locations over the same time period and the same
pressure perturbation range. The figure highlights the instability waves constant wave speed and amplitude
growth as it propagates downstream. The wave speed is calculated to be 1039 m/s, which is below the 1093
m/s of U∞ but also above the 956 m/s of U∞ − a∞, putting the wave speed in the slow acoustic range.
Moreover, the waves amplitude grows 4.54 times over 8.1 cm, indicative of the unstable growth rate.
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Figure 17: Time history of pressure perturbation at several surface locations on a smooth cone.
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Fourier analysis of the time histories in Fig. 17 can provide insight into the amplitude growth of specific
frequencies. Applying the transform to the entire surface produces the non-dimensional frequency spectrum
map featured in Fig. 18. From the shape of the maps contours, it is clear that the instability waves frequency
content changes as it propagates. Higher frequencies grow and then dampen out while lower frequencies,
which initially have a background amplitude, eventually begin to grow at downstream locations. This brings
to light that at any one location, only a narrow band of frequencies make up the instability, with the frequency
content shifting to lower frequencies downstream.

Figure 18: Non-dimensional frequency spectra of surface pressure perturbation along a smooth cone.

Overlaying the frequency spectrum in Fig. 18 are two sets of curves: the neutral curve and the syn-
chronization location curve. The neutral curve is the same curve from Fig. 8. As expected the instability
grows downstream of the first branch of the neutral curve. And close examination of the contour lines for
a fixed frequency show that the pressure perturbation begins to dampen after crossing the second neutral
curve branch as expected. The synchronization location curve depicts a handful of synchronization locations
at fixed frequencies. As with synchronization locations described previously, the points were found by inter-
polating where mode F crosses mode S. An interesting and unexpected result is how well the curve follows
the contour of the frequency spectrum. It would suggest that it is the interaction of the second mode with
mode F that kick starts the growth of the instability wave. It should be noted that the appearance of the
first contour at its most upstream location is probably due to the location of the blowing-suction actuator at
s = 0.198 m. Presumably, if the actuator were moved farther upstream, and the domain of Fig. 18 included
more of the cone surface, we would see the synchronization location curve track the upstream edge of the
frequency spectrum.

Lastly, Figs. 19 and 20 contain select FFT results for fixed frequency and fixed location from the frequency
spectrum. For fixed frequency, Fig. 19 looks at a range that covers the whole of the instability including the
target frequency of 240 kHz. As already noted, the higher frequencies tend to grow and then dampen out,
this can be seen for the frequencies of 270, 260, 250 and 240 kHz. Moreover, the lower frequencies, such as
210, 220 and 230 kHz, start low and eventually grow at downstream locations. Notably, the location where
the spatial evolution reaches its maximum corresponds to the second branch of the neutral stability curve.

Figure 20 looks at four fixed locations: the synchronization location for the target frequency (0.243 m),
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0.268 m, the roughness location (0.293 m) and where the experimental turbulent intermittency begins to
dominate (0.340 m). As noted previously, for any given location, the prevailing instability frequencies consist
of a narrow band. Moreover, the peak amplitude of this narrow band increases downstream. More subtly,
however, the frequency of the peak decreases moving downstream.
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Figure 19: Spatial evolution of fixed frequency FFT results for smooth case.
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Figure 20: Fixed location frequency spectrum for a smooth case.

17 of 27

American Institute of Aeronautics and Astronautics



G. Unsteady results on a rough cone

Just as with the smooth cone meanflow, a blowing-suction actuator is added to the rough cone meanflow
and a pulse is imposed on the flow field. Figure 21 shows an overview of the second mode as it propagates
downstream toward the roughness element.

Figure 21: Surface view of second mode surface pressure perturbation on a section of cone frustum. The
blowing suction actuator is located out of view at s = 0.198 m.

(a) Overview.

(b) Upstream of element.

(c) Traveling over element. (d) Downstream of element.

Figure 22: Rough case cross-sectional view of second mode pressure perturbation.
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Figure 22 features the second mode pressure perturbations at several instances: once when the disturbance
is upstream of the element, another when it is passing over the element, and lastly when it is downstream of
the element. Comparing Fig. 22b with Fig. 16 shows a much stronger disturbance in the rough case than in
the smooth case. This is consistent with previous flat plate simulations in which the trend is to amplify the
disturbance frequency band immediately upstream of the element before suppressing the desired range.3 In
Fig. 22c, the disturbance is stretched and deformed as it passes over the element. On close examination the
weaker pressure perturbation seen above the main perturbation would appear to grow in amplitude as the
wave packet negotiates the slope of the element. These newly amplified perturbations dampen out quickly;
disappearing just as they pass over the element. They should not be confused with the strong off-the-wall
perturbations seen in Fig. 22d, which are ‘shed’ from the main disturbance as it passes down the backside
of the element and carried away in the expansion fan. These ‘shed’ features notwithstanding, the most
important feature of Fig. 22d is the significant suppression of the second mode on the wall when compared
to the incoming second mode in Fig. 22b.

Just as in the smooth case results, the time history of the surface pressure perturbation can be extracted
from the unsteady simulation. Figure 23 plots the time history at five separate locations. The plots share the
same domain and range as the plots in Fig. 17 for ease of comparison. The figure shows that the disturbance
grows considerably between the first two locations, dampens after passing the roughness location (s = 0.2936
m), and then proceeds to grow again. Examined more closely, between s = 0.262 m and s = 0.283 m the
perturbation amplitude grows 139% over 2.1 cm. Between s = 0.283 m and s = 0.303 m, the disturbance
passes over the roughness element which in turn suppresses the packets amplitude by 57%. From this new
state, the perturbation amplitude grows 150% between s = 0.303 m and s = 0.343 m. This amounts in a
total amplitude growth of 159% over the span of 8.1 cm.
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Figure 23: Time trace of pressure perturbation at several surface locations on a cone with a finite roughness
element.

Comparing the last location (s = 0.343 m) between Figs. 17 and 23, the disturbance packet in the
rough case is 39% times smaller than in the smooth case. The same reduction in magnitude can also be
noted for the s = 0.303 m and 0.324 m locations as well. Comparison of the time histories between the
two cases illustrates quite clearly the surface elements ability to suppress the second mode. It should be
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noted, however, that the roughness element does not, in actuality, stabilize the second mode. For all intents
and purposes the growth rate remains unstable, as seen by its amplification before and downstream of the
roughness. It is only in the vicinity of the element that its amplitude is reduced. Previous discourse on this
topic has left the impression that surface elements stabilize the flow downstream of the element. This is
why in the experimental undertakings of this topic, successive roughness strips have been employed to delay
transition.

Moving on to the Fourier analysis of the time histories, Fig. 24 is the non-dimensional frequency spectrum
map of the rough case. As in the smooth case, the map is overlaid with the neutral curve and synchronization
location curve. These curves come from the stability analysis done on the smooth cone. Due to the non-
parallel flow in the vicinity of the roughness, stability analysis using LST is not valid. Thus, the curves serve
to compare how the unsteady flow with roughness differs from the nominal case. The most notable feature of
the spectrum are the contour wiggles in the vicinity of the roughness element denoted by the red line. It would
appear the surface perturbation enters an irregular state in which the perturbation spreads and contracts
to higher and lower frequencies, all the while undergoing an overall reduction. Aside from this prominent
feature, the general shape of the contours is reminiscent of the smooth case with some distinct differences.
The first is the magnitude of the contours; both Figs. 24 and 18 share the same contour scaling. Notably,
the case with roughness is less amplified, never reaching the same peak amplitude. Another difference is
the growth of frequencies below the synchronization curve. This growth below the synchronization curve,
however, suggests that the range of frequencies that can undergo growth is not bounded as is implied by the
smooth case in Fig. 18. More downstream results are needed to support this speculation however and to
determine its significance.

Figure 24: FFT map with neutral curve and the synchronization location of multiple frequencies.
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Figure 25: FFT map with neutral curve and the synchronization location of multiple frequencies.

In addition to Fig. 24, Fig. 25 is the same contour plot but with lines denoting features important
to this paper. The first is the vertical line denoting the synchronization location for the target frequency
of 240 kHz. As the N-factor and LST analysis showed, 240 kHz was determined to be the first frequency
responsible for causing transition. As expected the dashed line denoting 240 kHz intersects the vertical line
on the synchronization curve. Further down this horizontal line we see an overall suppression of the 240 kHz
frequency, which is very apparent in Fig. 26 and is the desired outcome of the roughness design. Moreover,
at this intersection point of synchronization location and target frequency is also the first place where we
see frequency growth below the synchronization curve. Also in featured in Fig. 25 is the roughness location
and its synchronization frequency. For this frequency of 218 kHz there is marginal suppression but more
importantly frequencies lower than it start to amplify downstream. The last horizontal line in the figure is
the dash-dot line at 178 kHz, which denotes the first neutral point at the roughness location. There has
been some argument and speculation that it is the neutral point with respect to the roughness location that
dictates which frequencies are suppressed or amplified. But as the frequency spectrum shows, there is both
growth and suppression at frequencies greater than the neutral point frequency. And as seen in the figure,
the first branch of the neutral curve is generally far removed from the observed frequency response.

Lastly, Figs. 26 and 27 contain FFT results for fixed frequency and fixed location. For fixed frequency,
Fig. 26 looks at the same range considered in the smooth case plotted over the same range and domain.
But unlike the smooth case there is obvious suppression especially for 240 kHz and higher and moderate
suppression for 230 and 220 kHz. There is however some growth for 210 kHz not seen in the smooth case.
This growth is expected as the frequency is lower than the roughness synchronization location frequency
of 218 kHz. If the unsteady simulation were extended downstream we would expect to see more growth of
frequencies below 218 kHz. Also evident is the disturbance amplification upstream of the roughness element,
which is consistent with flat plate simulations.
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Figure 26: Spatial evolution of wall pressure perturbation at fixed frequency FFT results for a rough cone.

Figure 27 also looks at the same four fixed location considered in the smooth case. Here, again the
suppression of the narrow band of frequencies is obvious. There is some amplification of the 0.268 m band
but not so much as to dominate the already suppressed bands. In the next section the rough and smooth
cases will be compared and contrasted more closely with more definitive conclusions on the effect of roughness
on this cone.
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Figure 27: Fixed location frequency spectrum results for a smooth cone.
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H. Comparison of smooth and rough case FFT results

For a clearer understanding of the effect of transition-delaying roughness, the frequency spectrum results
for both the smooth and rough cases are reproduced here side-by-side. Figure 28 contains both frequency
spectrum maps with letters in different region denoting important features. The first region is A, which
denotes an area upstream of the roughness in which the frequency is higher than the local synchronization
frequency. Between the smooth cone contour on the left and rough contour on the right, there is a mild overall
amplification of all frequencies before reaching the roughness. Moving downstream, region B is entered. This
region denotes an area where frequencies are suppressed significantly. It is this behavior which promotes
surface roughness as an approach to passive transition-delay. Moving onto regions below the synchronization
curve, region C sees some amplification between the smooth and rough case. This behavior may not be
as notable however since it is consistent with the amplitude growth in region A. Some of the frequencies
in region C, being above the roughness synchronization frequency, will be suppressed while the others will
be amplified. This brings us to region D in which frequencies previously unamplified are amplified. This
behavior can be detrimental to the passive transition-delay approach as these amplified frequencies can lead
to transition on their own, but can be resolved easily by using successive roughness strips.4

Figure 28: Comparison of FFT maps for both instances of the smooth and rough cases.
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Figure 29: Comparison of FFT results for smooth and rough cases

Lastly, the results for fixed frequency and fixed location are compared together. Figure 29a compares
several fixed frequencies in which the frequencies chosen are the target frequency (240 kHz), a frequency below
the target frequency (220 kHz) but above the roughness synchronization frequency, and a frequency below
the roughness synchronization frequency (210 kHz). For 240 kHz the instability is significantly suppressed

24 of 27

American Institute of Aeronautics and Astronautics



by the roughness. For 220 kHz the instability is mildly suppressed by the roughness, which is to be expected
since the frequency is only slightly higher than the roughness synchronization location frequency. And lastly,
for 210 kHz the instability is slightly amplified by the roughness since its frequency is below the roughness
synchronization location frequency. Note that these last two results bound the synchronization location
frequency of 218 kHz, show the intended suppression/amplifying behavior, and differ by only 10 kHz. This is
indicative of the precision to which the passive laminar flow control method can be applied. In hindsight, it
may not have been necessary to follow Fong’s convention of placing the roughness element 5 cm downstream
in order to guarantee suppression of the 240 kHz frequency—in future applications this step may be omitted.

Moreover, Fig. 29b compares several fixed locations of the frequency spectrum. At s = 0.243 m, the
synchronization location of the target frequency, there is only the slightest amplification across the entire
band. This is not surprising since the location is upstream of the roughness element. The next location at
s = 0.268 m is also upstream of the roughness and here too the frequency band is amplified. From peak to
peak the amplification is 28%. The next location at s = 0.293 m is at the roughness location, here there is
clear suppression and some modulation of the band. From peak to peak the suppression here is nearly 40%.
And lastly at s = 0.340 m, the experimental location where turbulent intermittency begins to dominate,
there is a peak-to-peak suppression of 54%. An interesting observation of this comparison plot is slight
growth of frequencies greater than 260 kHz for s = 0.293 m. This higher frequency growth is not apparent at
s = 0.340 m in which the amplified frequencies are below 215 kHz. This growth above 260 kHz at s = 0.293
m may be due to the proximity of the roughness element.

V. Summary

This paper presents a newly developed DNS code to explore the effect of isolated surface roughness on
the transition process on a hypersonic cone. The code solves the three-dimensional Navier-Stokes equations
under a perfect gas assumption. The axisymmetric roughness element is replicated using a body-fitted
grid over an analytical shape. This approach along with shock-fitting allows for a uniform 5th-order global
accuracy throughout the domain. Unsteady results are produced using a blowing-suction actuator, which
introduces a Gaussian pulse to stimulate the second mode instability.

This is the first time transition-delay roughness has been simulated on a blunt cone. Previous computa-
tional investigations of transition-delay roughness are limited to flat plate simulations. Moreover, previous
simulations of roughness on a cone were not investigating transition-delay roughness, were not using higher
order methods, or using simulations that did not include the effect of the bow shock in their simulations. The
ability for this code to combine high-order finite-difference methods with shock-fitting in order to simulate
transition-delay roughness is what makes this code unique.

The new code is then put to work investigating the finite roughness effect on modal growth of a Mach 8
blunt cone. The method patented by Zhong for hypersonic laminar flow control is used to identify the fre-
quency likely to lead to transition.5 This entails computing the meanflow’s N-factor for a range of frequencies,
identifying the target frequency, finding its synchronization location and then designing a roughness-element
to delay transition.

The findings of the simulation are consistent with the findings of Fong and Zhong2–4 for a hypersonic
flat plate. Before this cone simulation, there was no guarantee that what is true for the synchronization
location hypothesis in a planer flow is true in a conical flow. The findings in this paper reinforce and
role the synchronization location plays in suppressing the second-mode instability with roughness—mainly,
that roughness elements shorter than the local boundary layer height can suppress frequencies within the
instability wave bandwidth. Moreover, the roughness suppresses frequencies above the synchronization
frequency of the roughness location, while amplifying those below it. The findings also show that without
additional roughness elements placed downstream, the suppressed frequencies will continue to grow.

One instance, however, in which the cone simulation differs remarkably from flat plate simulations is
the downstream separation zone behind the roughness: the separation zone is significantly smaller for the
cone. The reason for this was not extensively investigated but could be because the cone is axisymmetric.
But the reason this result is curious is because the downstream separation zone has been suggested as a
damping mechanism. The mechanism posits that a vortex sheet between the separation zone and the rest
of the boundary layer prevents the second mode from penetrating into the zone, thus reflecting it back in to
the boundary layer towards the sonic line.19 This reflection incurs an amplitude reduction via Miles’ law,
thus suppressing the second mode. This may be all well and true, however the extent of the vortex sheet
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downstream would suggest that the amount of damping is dependent on the size of the separation zone.
Thus with a diminutive separation zone, minimal suppression would be expected, which is not the case in
this simulation. Instead, the suppression of the second mode on a cone is comparable with the suppression of
a flat plate. Again the diminutive separation zone is only a cursory observation but its role as a suppression
mechanism has merit and deserves further investigation.

Future work on this data set will include extending the frequency spectrum map over the entire cone
length—the purpose of which is to better evaluate the correlation between the synchronization location curve
and evolution of the instability bandwidth for both smooth and rough cases. Furthermore, an additional
data set will explore successive roughness strips placed downstream, with the purpose of suppressing all
transition causing frequency growth. This effort is part of the computational/experimental collaboration
with Dr. Casper, an effort that will hopefully further validate our simulation approach and lead to new ideas
on transition-delaying roughness. And lastly, and heretofore unmentioned, is the new DNS code capability
of simulating discrete 3-D isolated roughness in much the same manner as the axisymmetric roughness
previously described. To this point, only 2-D and axisymmetric simulations of transition-delay roughness
have been explored, the next logical step is expand the simulations to include 3-D isolated roughness.
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