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This paper presents a numerical-simulation study of transient flow over a blunt compression cone under the effect

of freestream hotspot perturbations. This study is motivated by concurrent wind-tunnel laser-spot experiments

carried out at PurdueUniversity. The flow conditions used in the simulationare based on the experimental conditions.

The simulation is performed using a high-order shock-fitting finite-difference scheme. The simulation results show

that the hotspot is able to excite second-mode instability, where the instability growth is found to be dominant in the

boundary layer. The receptivity mechanism is investigated by comparing the simulated results with linear-stability

theory. Fast acoustic waves generated by hotspot–shock interaction excite the boundary-layer disturbances. Also, the

synchronization ofmode F andmode S leads to the dominance of boundary-layer disturbances by the growing second

mode.

Nomenclature

a = phase speed
cv = specific heat in a constant-volume process
d� � = perturbation of a variable
e = total energy per unit volume
F = frequency
Fj = inviscid flux vector in jth direction
Fvj = viscous flux vector in jth direction
H� = local height from the wall
L� = length scale of the boundary-layer thickness
M∞ = freestream Mach number
P = pressure
P∞ = freestream pressure
Pr = Prandtl number
qj = heat flux due to thermal conduction
R = local Reynolds number
R� = gas constant
Re�∞ = freestream Reynolds number per unit length
S = entropy
S∞ = freestream entropy
s = natural coordinate along the body surface
T = temperature
To = total temperature
Tr = reference temperature
Ts = Sutherland’s temperature
Twall = temperature at wall
T∞ = freestream temperature
t = time
u1, u2, u3 = velocity components
u∞ = freestream velocity
yn = normalized local normal distance from the wall
α = streamwise complex wave number
αi = local growth rate
αr = local wave number
γ = ratio of specific heat

ζ = coordinate in azimuthal direction
η = coordinate in the direction normal to the wall
κ = heat conductivity coefficient
μ = viscosity coefficient
μ∞ = freestream viscosity coefficient
μr = reference viscosity coefficient
ξ = coordinate in streamwise direction
ρ = mass density
ρ∞ = freestream density
τ = time in computational domain
τij = shear-stress tensor
φ = phase angle
ω = circular frequency

Superscripts

� = dimensional variable
0 = perturbation of a variable

I. Introduction

I N THE process of designing the aerodynamic and heat protec-
tion configurations of hypersonic aerospace vehicles, accurate

prediction of the boundary-layer laminar–turbulent transition loca-
tion on the body surface is very important. To predict the transition
location accurately, the fundamental mechanisms underlying the
transition process must be understood. Despite many decades of
research, the mechanisms of hypersonic laminar–turbulent transition
are still not well understood.
In general, the process of laminar–turbulent transition with weak

freestream forcing can be divided into three stages: 1) boundary-
layer receptivity, 2) linear eigenmode growth and interactions, and
3) nonlinear breakdown to turbulence. Boundary-layer receptivity is
the first stage. It is the process where disturbances enter the boundary
layer and generate instability waves that contain eigenmodes. After
receptivity, the eigenmodes in the waves grow linearly. When the
waves reach certain amplitudes and become nonlinear, they cause
breakdown to turbulence. Mack showed that the second mode is the
dominant instability which leads to transition when boundary-
layer edge Mach numbers are approximately higher than 4 [1,2].
Therefore, the boundary-layer receptivity of linear disturbancewaves
and the development of second-mode instability in a boundary layer
are particularly important to the study of hypersonic boundary-layer
transition.
Kovasznay [3] stated that weak disturbances in compressible flow

can be categorized into acoustic, entropy and vorticity disturbances.
It was found that, regardless of the type of freestream disturbances
hitting the shock, acoustic, entropy, and vorticity disturbances would
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always be generated behind the shock by the interaction between the
freestream disturbances and the shock [4]. However, themechanisms
of the interaction of various types of freestream disturbances with the
shock are different, which leads to the difference in wave angles and
amplitudes of the generated disturbances. Thus, detailed boundary-
layer receptivity studies for all three types of freestream disturbances
are necessary for obtaining a complete picture of hypersonic
boundary-layer receptivity.
Studies of hypersonic boundary-layer receptivity to freestream

acoustic disturbances have been conducted by many researchers. For
instance, the numerical studies of boundary-layer receptivity over
blunt cones by Zhong andMa [5] and Balakumar and Kegerise [6,7],
the numerical studies over flat plates by Ma and Zhong [8,9], the
theoretical studies on flat plates by Fedorov [10], and the experi-
mental studies on flat plates by Maslov et al. [11].
In addition to the receptivity studies with freestream acoustic

disturbances, those with freestream entropy disturbances are still at
the initial stage. Schmisseur et al. [12,13] studied the receptivity of a
freestream laser spot over an elliptical cone in a Mach 4 flow. Salyer
et al. [14,15] characterized the laser-generated hotspot and used it in a
boundary-layer receptivity experiment for a hemisphere–cylinder
model in Mach 4 freestream. The schematic explanation of the laser-
spot and cone setup in the experimental studies is demonstrated in
Fig. 1 [12,13]. The hotspot is initially generated at a location up-
stream from the cone on the centerline. Then, the spot moves along
with the hypersonic freestream toward the cone nose, interacts with
and passes through the bow shock, and eventually travels further
downstream around the cone. Schmisseur et al. [12,13] and Salyer
et al. [14,15] completed benchmark tests for generating laser spots in
their wind tunnel, and they measured the responses of the perturbed
boundary layers. However, there was no detailed analysis of the
receptivity mechanisms in their work.
Wheaton et al. [16] performed both numerical analysis and

experimental instability measurements on compression cones. In
their numerical analysis, they used the STABL software [17] to
compute the steady base flow around compression cones in aMach 6
freestream and to analyze the linear stability of the boundary layer.
Their linear-stability theory (LST) results indicated a maximum N-
factor of 16 at the aft end (x� ≈ 0.45 m) of the compression cone. In
their Mach 6 wind-tunnel experiments, they measured the second-
mode instability under quiet and noisy flows. The experimental
second-mode peak frequency under quiet flow conditions with a
stagnation pressure of 140 psia was 290 kHz at x� � 0.4 m. Chou
et al. [18] calibrated their laser-spot-generation apparatus and
conducted laser-spot benchmark tests in a Mach 6 wind tunnel
(BAM6QT).
Ma and Zhong [8,9] performed numerical-simulation studies on a

flat plate with freestream planar sinusoidal fast acoustic, slow
acoustic, entropy, and vorticity waves, and an acoustic wave beam at
Mach 4.5. From their receptivity study of freestream entropy waves,
the induced boundary-layer disturbances upstream contain relatively
strong stable mode I first. The unstable second-mode waves are then
converted from mode I by their synchronization. The induced
disturbances have very strong modulations at the locations between

the leading edge and the synchronization point. However, the
disturbances have weak modulations at the locations near the syn-
chronization point. From their receptivity study of freestream fast
acoustic waves, the induced boundary-layer disturbances upstream
contains relatively strong mode I, and the modulations are not
strong there. However, the induced disturbances have very strong
modulations near the synchronization point. The disturbances are
dominated by mode II behind the synchronization point. Therefore,
the receptivity path is different between the case of freestream
entropy waves and the one of freestream fast acoustic waves. Ma
and Zhong [8,9] also found that, when the acoustic waves (which
are generated from freestream entropy perturbations and shock
interaction) reached the boundary layer, the perturbed boundary
layer would reflect the acoustic waves, and these waves would
interact with the shock. These secondary acoustic waves and shock
interaction would generate additional acoustic, entropy, and vorticity
disturbances. When these additional disturbances combined with
the initial disturbances, they would produce strong effects on the
boundary-layer receptivity.
Zhong and Ma [5] performed a numerical study over a blunt cone

with fast acoustic waves in aMach 7.99 freestream. In their study, the
induced boundary-layer disturbances contain relatively strong mode
I at the locations shortly behind the nose region. The relatively strong
components in the waves switch to fast acoustic waves in the middle
region of the cone. The modulations are strong at locations between
the nose region and the synchronization point. The disturbances
become dominated by the second mode after synchronization be-
tween mode I and the second mode. They pointed out that entropy
layer and nose bluntness effects are two major factors that affect the
receptivity over blunt cones. The receptivity path they found is
different from the one of freestream fast acoustic waves over a flat
plate in Ma and Zhong [8]. Such comparison shows that the recep-
tivity mechanism over different geometries can be significantly
different.
Fedorov et al. [19,20] performed a numerical simulation of

temporally sinusoidal temperature spots over a flat plate in a Mach 6
flow. They computed a case with the temperature spots initially
imposed at a short distance above the boundary layer in the flowfield
behind the oblique shock and another casewith the temperature spots
initially imposed in front of the shock at a short distance above the
level of the plate. In the first case, the temperature spots generated
mode F near the edge of the boundary layer. Then, the second mode
was excited by the synchronization between mode S and mode F via
the intermodal exchangemechanism that is discussed by Fedorovand
Khokhlov [21]. The new terminology of discrete mode S andmode F
is discussed in Fedorov and Tumin [22]. The latter case involved the
shock/spot interaction. It generated acoustic waves that penetrated
into the boundary layer and excited mode S. The instability
amplitudes of the latter case are an order of magnitude higher than
those in the first case.
Heitmann and Radespiel [23] performed numerical simulations of

flow perturbed by a laser spot that was initially imposed above the
boundary layer and behind the bow shock of a sharp straight cone in a
Mach 5.85 freestream. They also performed an experimental study

Fig. 1 Schematic of the experimental laser spot and cone scenario in Schmisseur et al. [12].
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for the same laser spot setup and cone in a Mach 6 freestream [24].
Their laser spot was acoustic-wave-dominant rather than entropy-
wave-dominant. The results of their experiment compared rea-
sonably well with their simulation, which showed that imposing the
laser spot could lead to the second-mode instability. Their focus is on
the subsequent disturbance growth and wave interactions down-
stream rather than the receptivity mechanism.
From the previous studies, we found that it is necessary to conduct

a new simulation study and an initial LST-based analysis of the
receptivity mechanisms to freestream entropy perturbations with a
wide continuous frequency spectrum for a hypersonic flow over a
blunt conewith the effects of the entropy layer and bow shock. This is
a much more complex flowfield compared to the past studies for
receptivity to freestream acoustic waves at a few discrete frequencies
[1,5–7] or for a simple flat platewithout the bow-shock effects [9,20].
The previous studies conductedwith freestream entropywaves over a
cone were mainly preliminary experimental studies and a simulation
study with an emphasis on wave interactions at the later part of the
flowfield, not the initial receptivity process [12,23,24]. Therefore, the
receptivity mechanisms over a blunt cone for freestream entropy spot
with a wide frequency range have not been studied before, and the
conclusions of previous studies cannot be extrapolated to the new
study without detailed analyses.
In order to carry out the receptivity study of freestream entropy

perturbations with a wide continuous frequency spectrum for a
hypersonic flow over a blunt cone, the main objectives of this
paper are 1) to systematically study the behavior of the boundary-
layer disturbances throughout the receptivity process over a wide
frequency spectrum, 2) to investigate the linear boundary-layer
receptivity mechanism to freestream entropy spot (hotspot) per-
turbations, and 3) to build a receptivity database for reconstructing
the boundary-layer disturbances in a linear receptivity regime under
general freestream entropy forcing. Such database provides the initial
condition for the study of nonlinear boundary-layer disturbance
development [25].
The numerical study of this paper is motivated by the ongoing

Mach 6 compression-cone receptivity experiments at Purdue
University [18,26]. Thus, the compression cone designed by
Wheaton et al. [16] (see Fig. 2) is selected. It is a circular blunt cone
with a circular-flared geometry along its body. The flow conditions
that were used in our study are also identical to the Mach 6 tunnel
conditions in Wheaton et al. [16]. The compression-cone geometry
causes earlier transition when compared to a corresponding straight
cone owing to the adverse pressure gradient that occurs along the
flared geometry of the cone [1,16]. This geometry also makes the
boundary-layer thickness approximately constant in the downstream
direction. As a result, the second-mode frequencies do not alter much
along the cone [16].
The numerical study in this paper consists of three parts: 1) the

steady base flow simulation and the LST analysis, 2) the unsteady
flow simulation with the freestream hotspot perturbations imposed,
and 3) the investigation on the receptivitymechanism and the second-
mode development by comparing the simulated results with the LST
analysis.

II. Governing Equations and Numerical Methods

The current simulation of the axisymmetric hypersonic perfect-gas
flow around a compression cone is two-dimensional (i.e., it does not
depend on the circumferential coordinate). However, the code that is
written to perform the simulation is capable of computing a three-

dimensional flow. Thus, the governing equations in the code are the
three-dimensional Navier–Stokes equations in conservative-law
form and in Cartesian coordinates:

∂U�

∂t�
�

∂F�j
∂x�j
�

∂F�vj
∂x�j
� 0; �j � 1; 2; 3� (1)

The tensor notation �x�1 ; x�2 ; x�3� represents the Cartesian coordinates
�x�; y�; z��. The vectorU� contains five conservative flow variables:

U� � � ρ� ρ�u�1 ρ�u�2 ρ�u�3 e ��T (2)

where F�j and F
�
vj are defined as

F�j �

2
666664

ρ�u�j
ρ�u�1u

�
j � p�δ1j

ρ�u�2u
�
j � p�δ2j

ρ�u�3u
�
j � p�δ3j

�e� � p��u�j

3
777775 (3)

F�vj �

2
666664

0

−τ�1j
−τ�2j
−τ�3j

−τ�jku�k − q�j

3
777775; �k � 1; 2; 3� (4)

The equation of state and transport equations are

p� � ρ�R�T� (5)

e� � ρ�
�
c�vT

� � 1

2
u�ku

�
k

�
(6)

τ�ij � μ�
�
∂u�i
∂x�j
�

∂u�j
∂x�i

�
− λ�

∂u�k
∂x�k

δij; λ� � 2

3
μ� (7)

q�j � −κ�
∂T�

∂x�j
(8)

where c�v is constant with a given γ, and κ
� can be determined with a

constant Prandtl number. The viscosity coefficient is defined by
Sutherland’s law:

μ� � μ�r

�
T�

T�r

�3
2

�
T�r � T�s
T� � T�s

�
(9)

A high-order shock-fitting method can accurately resolve the
location and velocity of the bow shock, which is necessary to obtain
high-ordered accuracy of the flow solutions for receptivity and
stability analyses [27]. Thus, in this paper, the high-order shock-
fitting method is used to compute both steady and unsteady
hypersonic viscous flow over a blunt cone. To apply the shock-fitting
method, the Navier–Stokes equations in Cartesian coordinates

Fig. 2 Schematic diagram of compression cone in Wheaton et al. [16].
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�x�; y�; z�; t�� are transformed into body-fitted curvilinear computa-
tional domain coordinates �ξ; η; ζ; τ�. The body-fitted curvilinear
computational domain is bounded between the bow shock and the
wall of the blunt cone. Figure 3 demonstrates a partial view of the
computational domain.
The spatial discretization of the inviscid flux derivatives in the

streamwise and the wall-normal directions are done using a fifth-
order finite-difference upwind scheme with a local Lax–Friedrichs
flux-splitting formulation. A sixth-order central finite-difference
scheme is used for the spatial derivatives of the viscous flux in the
streamwise and the wall-normal directions. For spatial derivatives of
both the inviscid and viscous fluxes in the periodic azimuthal
direction, Fourier collocation is used. Runge–Kutta is used for time
marching.
In Fig. 3, the computational domain has four boundaries. The

boundary at the shock is computed usingRankine–Hugoniot normal-
shock relations. The surface of the wall is assumed to be no-slip and
isothermal. The pressure at thewall is computed from the flowfield by
using a high-order polynomial extrapolation. The boundary at the
stagnation line is a singularity in the current computational domain;
thus, it is extrapolated by a high-order polynomial. The exit boundary
is also computed by a high-order polynomial extrapolation owing
to supersonic flow at the exit. The details of the shock-fitting for-
mulations and the high-order finite-difference schemes are explained
in Zhong [27].
Zhong [27] presented a high-order shock-fitting method for the

simulation of the hypersonic flowfield bounded by the shock and the
wall of a blunt body. The numerical experiments for the shock-fitting
method were to compute the steady flow over a two-dimensional
cylinder and the unsteady periodic flow over a parabolic leading edge
at zero angle of attack with two-dimensional and oblique three-
dimensional freestream acoustic waves. The results of the flow over
the cylinder were validated with those of the shock-fitting spectral
method and the experiment. The results of the flow over the parabolic
leading edge are validated with the LST and the linear-shock theory.

III. Model for Freestream Entropy Spot Perturbations

Aiming to incorporate a hotspot into the simulation, the spot needs
to be represented by a modeling equation. The previous freestream
benchmark tests of the laser spot shows that it has an approximately
Gaussian temperature or density profile with a weak shock sur-
rounding it [12–15]. Because the weak shock dissipates very rapidly
while the entropy core remains mostly constant in the freestream, the
influence of the weak shock can be minimized by calibrating the
initial distance between the laser spot and the bow shock. Therefore, a
hotspot model of Gaussian entropy perturbations is used in the
current numerical study. This model contains the main features of a
hotspot.

In this paper, the freestream hotspot is modeled by Gaussian
entropy perturbations. Specifically, the temperature profile in the
freestream is

T��x�; y�; z�; t�� � ΔT�max exp

�
−
R�2c
2σ2

�
� T�∞ (10)

where σ is a Gaussian shaping factor, ΔT�max is the maximum
freestream temperature perturbation amplitude, and R�c is the radial
distance from the center of entropy spot to any point �x�; y�; z�� in
space, i.e.,

R�c �
����������������������������������������������������������������������������������������
�x� − x�spot�2 � �y� − y�spot�2 � �z� − z�spot�2

q
(11)

In Eq. (11), �x�spot; y�spot; z�spot� is the instantaneous coordinate of the
center of the entropy spot:

8<
:
x�spot � x�0 � u�∞t�
y�spot � y�0 � 0

z�spot � z�0 � 0
(12)

where u�∞ is the freestream velocity. In Eq. (12), �x�0 ; y�0 ; z�0� is the
initial coordinate of the center of entropy spot at t� � 0. Here, y�spot
and z�spot are zero because the hotspot in the freestream is located at the
x axis, or the centerline of the cone.
From the ideal gas law, the perturbed freestream density is

ρ��x�; y�; z�; t�� � p�∞
R�T�

(13)

whereP�∞ is a constant because there are no acoustic perturbations in
the freestream.

IV. Spectral Analysis of Boundary-Layer Instability

In the simulation, the perturbations induced by the hotspot
traveling along the cone surface contain a wide range of frequencies.
To study the instability of the wave components of each individual
frequency, a temporal Fourier spectrum analysis is performed on the
perturbation flow variables.
An arbitrary flow-variable time function h�t� is represented in

terms of the discrete spectral components as

h�tk� ≡ hk ≈
XN−1
n�0

H�Fn�e−2πiFntk (14)

whereH�Fn� is the spectral value at the nth discretized frequencyFn,
andN is the total number of Fourier collocation points that are used to
discretize the time function h�t�. The discretized time function is hk,
which is defined as the value of h�t� at t � tk.
In this paper, h�t� is the time history of local boundary-layer

perturbations, and H�Fn� is the spectral value of the boundary-layer
perturbations in the frequency domain. H�Fn� is a complex value,
and jH�Fn�j is the local perturbation amplitude.
After obtaining the frequency spectra of the boundary-layer

perturbations from the unsteady simulation, the local spatial growth
rates, local wave numbers, and thewall-normal boundary-layermode
shapes are then compared with LST for the receptivity study. Local
growth rates are determined by [2]

−αi �
1

jH�Fn�j
djH�Fn�j

ds
(15)

Local wave numbers are determined by [2]

αr �
dφn
ds

(16)

x(m)

y(
m

)

-0.001 0 0.001 0.002
0

0.0005

0.001

0.0015

0.002

0.0025

ξ

η

Fig. 3 Partial view of grid configuration in zones 1, 2, and 3 near the
nose region.
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whereφn is the phase angle ofH�Fn� at thenth discretized frequency.
The wall-normal mode shape is the spatial distribution of the local
perturbation amplitude jH�Fn�j, along the normal to the cone
surface.

V. Freestream Flow Conditions and Compression-Cone
Geometries

The freestream conditions are based on those of the Mach 6 quiet
tunnel (BAM6QT) at Purdue University [16]. The cone that is placed
in freestream has zero angle of attack. The flow around the cone is
assumed to be axisymmetric. The wall of the cone is smooth, rigid,
and isothermal. The details of the freestream conditions are
summarized in Table 1.
The geometry of the blunt compression cone is the same as that

used in the experimental studies byWheaton et al. [16]. It consists of
two parts: a spherical nose section followed by a flared section. The
spherical nose of the cone is blunt with a small radius of 1 mm. The
starting point of the flared surface is tangent to the spherical nose
surface with an initial angle of 2 deg. The flared geometry has a
circular arc of 3.0 m in radius. The total length of the cone, which
measures from the tip of the spherical nose to the base of the cone
along the centerline, is 0.45 m. The schematic of the blunt
compression cone is illustrated in Fig. 2.

VI. Simulation Results

Because of the limited computer power for computing a huge
amount of grid points at once, the simulation is divided into 21 zones.
Zone 1 is the computation domain in the stagnation region over the
hemispherical cone nose. Zone 2 to zone 21 is the computation
domain in the compression region over the cone. For zone 1 to 12, the
total grid resolution is 2280 × 120. For zone 13 to 21, the total grid
resolution is 2160 × 240. The periodic azimuthal direction has four
points to resolve the axisymmetric flow in the spectral method.
Figure 3 shows the partial view of the computational grid around the
cone. The reflection, which is created during the exiting of the
disturbances at the downstream boundary of each zone, is minimal
due to overlap regions. During the computation, the profiles of the
disturbances at different frequencies nearby the exit of each zone
are monitored to make sure there is enough overlap points in the
streamwise direction for the inlet of the next zone to skip the
reflection affected area. The computation of each zone lasts until the
disturbances fully exit the zone. At the end of the computation, the
overall relative amplitude of the perturbations in each zone is
O�10−9�. The maximum time-step size of recording the unsteady
inlet boundary conditions is 1.12 × 10−7 s, which is sufficient to
resolve the second-mode instability at the high end of the studied
frequency range. It is worth to notice that the current zonal method
used in our simulations is fundamentally the same as the flow with
periodic flows published [5,9,27].
The grid-convergence study of steady base flow is carried out with

two grids in Sec. IV of Lei and Zhong [28]. The freestream Mach
number used in their grid-convergence study is 5.5, and their
freestream unit Reynolds number is 1.9 × 107 m−1, which is higher

than the current case. The cone used in their study is a straight blunt
cone with a nose radius of 4 mm, and the half-angle of the cone is
8 deg. Based on the fact that a case with a higher freestream unit
Reynolds number requires a higher computational resolution, the
resolution independence study not only shows that both sets of 120
and 240 grid points in wall-normal direction are sufficient for their
simulation but also for the one in this paper. The grid-convergence
study of the current unsteady flow is presented in Sec. VI.D.

A. Steady Base Flow Solutions

The first part of the study in this paper is to simulate the steady base
flow over the compression cone. The Mach-number contours in
Fig. 4 and the Mach-number profiles at various locations in Fig. 5
show that the Mach number near the wall increases drastically over a
short distance behind the nose region, and it gradually decreases
downstream along the cone where the adverse pressure gradient
occurs on the concave surface of flaring of the cone. Eventually, a
region of relatively lowMach number appears above thewall near the
bottom of the cone. The thickness of the Mach boundary layer is
consistently about 0.001 m in Figs. 5b–5d. The constant boundary-
layer thickness prevents the shift of the unstable frequency, which is
discussed in Sec. VI.D. There is a dent near the top of the profile in
Fig. 5d. It is theMachwaves developed under the compression effects
of the concave cone surface. At further downstream locations beyond
the current computation domain, it could eventually form a shock
outside the boundary layer. Such Mach waves are seen in the steady
base flow over a flared cone in Mach 6 freestream by Zhong [1]
as well.
Wheaton et al. [16] computed their steady base flow by using

STABL. Their flow conditions and cone geometry are the same as
those used in the current study. The same physical phenomena
observed in Fig. 4 are seen in their steady base flow. To compare the
current steady base flow with Wheaton et al. [16], the current shock
shape is overlaid to the one of Wheaton et al. [16] in Fig. 6. In this
figure, both shock shapes compare reasonably well with each other.
This observation shows that the computation that is done by the
current shock-fitting code is consistent with other methods.

B. Linear-Stability Theory

LST is based on a linear disturbance growth governed by the
linearized Navier–Stokes equations [2]. The LST code that is used in
the current study is based on Malik’s multidomain spectral col-
location method [29] and was implemented in Lei and Zhong [28].
The disturbances in the current simulation are two-dimensional

and are not dependent on the azimuthal coordinate. Thus, in LST, the
normal mode of disturbances has the form

q 0 � q̂�yn�ei�−ωt�αs� (17)

where q 0 is the nondimensional disturbances of an arbitrary flow
variable normalized by its corresponding freestream quantity. q̂ is the
complex amplitude of the disturbances.
In spatial stability theory,ω is a real number. The streamwisewave

number α has a real part αr and an imaginary part αi. αr is the spatial

Table 1 Freestream conditions

Parameter Value

M∞ 6.0
ρ�∞ 0.0403 kg∕m3

T�∞ 52.8 K
T�o 433.0 K
T�wall 300.0 K
γ 1.4
Pr 0.72
R� 287.04 N · m∕kg · K�air�
μ�r 1.7894 × 10−5 kg∕m · s�sea level�
T�r 288 K (sea level)
T�s 110.3 K
Re�∞ 1.026 × 107 m−1

Fig. 4 Mach-number contours of the steady base flow.
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wave number, and −αi is the spatial growth rate of a disturbance
mode. In LST studies, a local Reynolds number based on the length
scale of the boundary-layer thickness can be used, where

R � ρ�∞u
�
∞L
�

μ�∞
(18)

The length scale of the boundary-layer thickness is

L� �
�������������
μ�∞s

�

ρ�∞u
�
∞

s
(19)

Thus, a relation between the freestream unit Reynolds number, andR
is

R �
������������������
s��Re�∞�

p
(20)

The disturbance frequency is characterized by a dimensionless
frequency:

F � ω�μ�∞
ρ�∞u

�2
∞

(21)

The dimensionless circular frequency and the dimensionless
complex wave number are defined as

ω � ω�L�

u�∞
(22)

α � α�L� (23)

The relation between dimensionless circular frequency and
dimensionless frequency becomes

ω � RF (24)

The dimensionless phase speed of the disturbances in the streamwise
direction is related to the wave number by

a � ω

αr
(25)

Fig. 5 Mach-number profiles of steady base flow at four locations along the cone surface: a) x� � 0.001 m, b) x� � 0.138 m, c) x� � 0.258 m, and
d) x� � 0.418 m.

x (m)

y 
(m

)

current simulation

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Wheaton et al. [16]

Fig. 6 Comparison of shock fronts of steady base flow between the
current simulation and the one of Wheaton et al. [16].
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The dimensionless phase speed is normalized by the freestream
velocity.
For unstable waves, the growth of amplitudes can be measured by

an N-factor. An N-factor is the exponential power index of the
amplification rate A∕A0, which is the ratio of an amplified dis-
turbance amplitude to its initial unamplified disturbance amplitude,
namely

eN � A

A0

� exp

Zs�
s�
0

1

A

dA

ds
ds� (26)

Hence, an N-factor is the integration of the spatial growth rate from
the neutrally stable location s�0 to an arbitrary location s�:

N �
Zs�
s�
0

−α�i ds� (27)

From Eq. (27), an N-factor represents the accumulative relative
change from the neutrally stable location to an arbitrary location
downstream. In the eN method for transition prediction, the location
of laminar–turbulent transition is empirically related to a critical
value of the N-factor. In a low-noise wind tunnel, the typical critical
N-factor for sharp cones is 8 to 11 [16]. Thus, at any downstream
location where the N-factors are larger than or equal to that of the
critical range, transition is expected to occur.
For the flow over the compression cone, LST analysis is

performed, and the current results are compared with those by
Wheaton et al. [16] for validation of both the steady base flow and the
LST code. They performed LST and PSE analyses on their steady
base flow over the same cone [16]. Five frequencies were used in
their LST analysis: 257.498, 271.797, 278.996, 292.494, and
297.494 kHz. Nearly the same set of five frequencies is used in the
current LST calculations. Comparisons of our LST results on the N-
factors and growth rates of the second mode with LST N-factors and
PSE growth rates of Wheaton et al. [16] are shown in Figs. 7 and 8,
respectively. The current LST calculation shows that the N-factor
reaches 13 and the growth rate reaches 58 m−1 at x� � 0.42 m. It is

shown in both figures that the results compare well for the highest
four frequencies, whereas the differences are larger for the lowest
frequency. In addition, both instability onset locations agree well.
The magnitudes of the current N-factors and growth rates appear
lower than those of Wheaton et al. [16]. This could possibly be
caused by the difference in the numerical method that is used to
compute the steady base flow. In addition, the LSTand PSE code that
is used by Wheaton et al. [16] is different from the one used in the
current study. The streamwise curvature effect is not considered in
the current LSTmodel. Because the detailed LSTandPSEmodels are
not provided in their paper, the authors are unable to investigate
further.
It is noticed that, even though the neutral stability curve is not

directly linked to receptivity because forcing waves are not included
in the LST analysis, the neutral stability curve is still relevant to
receptivity because the forcing leads to instability governed by the
curve. For this reason, the neutral stability curve is shown in Fig. 9 to
demonstrate the general stability properties of this flow. The critical
location is s� � 0.109 m at a frequency of 298 kHz. At a location
where s� < 0.109 m, the boundary-layer waves are stable. The wave
components of lower frequencies (F� < 298 kHz) become unstable
much earlier than those of higher frequencies (F� > 298 kHz). Such
observation implies that the instability tends to occur at lower
frequencies. In the otherwords, the higher-frequency components are
more stable.

C. Unsteady Flow Solutions with Hotspot Perturbations
in the Freestream

In the current study, we consider the axisymmetric flowfield with
the axisymmetric freestream hotspot that is initially aligned with the
centerline of the cone. The freestream hotspot has a radius of ap-
proximately 0.003 m. The radial Gaussian temperature profile of the
hotspot in the freestream is shown in Fig. 10. At the center of the
hotspot, the temperature ismaximal, and the radial coordinate is zero.
The hotspot is initially placed at a location not far upstream from the
bow shock along the centerline of cone. The hotspot core radius is
controlled by a dimensionless Gaussian factor σ. In the current study,
the dimensionless Gaussian factor is 0.001. The shape parameters of
the freestream hotspot perturbations are based on the laser spot
experiments of Salyer et al. [14,15].
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292.494 kHz
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Wheaton 257.5 kHz

Wheaton 271.8 kHz
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Wheaton 292.5 kHz
Wheaton 297.5 kHz

Fig. 7 Comparison of the second-mode N-factors from the current LST analysis with those of Wheaton et al. [16].
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The receptivity process in the current study is in the linear regime;
thus, the hotspot with very weak amplitude is imposed in the
freestream. Previously, Ma and Zhong [9] and Zhong and Ma [5]
chose their freestream relative perturbation amplitudes to beO�10−4�
to keep the development of boundary-layer disturbances within the
linear regime. Therefore, the freestreammaximum relative amplitude
of temperature perturbations at the center of hotspot, ε, is chosen to be

ε � ΔTmax

T∞
� 10−4 (28)

Having obtained a steady base flow solution, the unsteady numerical
simulation is performed by imposing hotspot perturbations into the
freestream in front of the bow shock. The Gaussian formulations
given by Eqs. (10–13) are used to analytically model a three-
dimensional hotspot that is convecting the freestream. Moreover, the

freestream hotspot is imposed onto the computational domain as an
unsteady shock boundary condition.
The flow-variable perturbations shown in Figs. 11–16 are

normalized by the corresponding freestream flow variables (i.e.,
P 0�∕P�∞ and S 0�∕S�∞). The structures of hotspot perturbations in the
nose region over the cone are demonstrated in Figs. 11 and 12. This is
the region where the hotspot first enters the shock layer. The
magnitude of pressure perturbations in Fig. 11 reaches a local
maximum at the stagnation point. The entropy perturbations in
Fig. 12 have a maximum absolute magnitude at the stagnation line
next to the bow shock. In addition, the small length scale of the
entropy waves next to the wall near the stagnation point is a con-
sequence of the fact that entropy waves move at the local flow
velocity without reflection at the wall. In contrast with the entropy
waves, acoustic waves propagate and are reflected at the wall toward
the bow shock. As a result, Fig. 11 shows the pressure perturbations
that do not have the small length scale wave next to the wall near the
stagnation point. The hotspot enters the shock layer from the
freestream, and it travels downstream with the flow. Eventually it
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Fig. 8 Comparison of the second-mode growth rates from the current LST analysis with those of Wheaton et al. [16].
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Fig. 9 Neutral stability curve of the second mode.
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Fig. 10 Gaussian distribution of perturbed temperature in radial
direction.
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passes through the rightmost exit boundary of the nose region and
moves into the next computation zone.
As the hotspot travels further into themiddle region of the cone, the

size of the hotspot is much wider and longer when compared to the
hotspot in the upstream region. The structures of hotspot pertur-
bations in the middle region over the cone are demonstrated in
Figs. 13 and 14. Because the size of a single computation zone is not
large enough to demonstrate the entire hotspot in a single snapshot,
several snapshots are used to demonstrate the parts of the hotspot
passing by a zone. The main body of the pressure perturbations has
two parts: the front part and the rear part. The front part contains fast
acoustic waves that travel ahead in the hotspot main body. The rear
part that contains slow acoustic waves travels behind the front part in
themain body. The entropy perturbations are also shown in two parts:
the main body and the first tail (there will be another tail, namely the
second tail, which appears behind the first tail in the downstream
region). The first tail travels behind the main body, and it is
oscillatory.
As the hotspot reaches the downstream region of the cone, the

unstable waves appear in the tail, which travels slower than the main
body of the hotspot. The flow structures of hotspot perturbations in
the downstream region over the cone are demonstrated in Figs. 15 and
16. The pressure perturbations are shown in three sections in Fig. 15.
In this region, an oscillatory tail appears behind the main body of
pressure perturbations. Themain body,which consists of a front and a
rear part, becomes subdominant in wave amplitudes while the
perturbations in the tail exceed those of the main body in this region.
The entropy perturbations are shown in Fig. 16. The first tail in

entropy perturbations is oscillatory. The entropy perturbations in the
main body of the hotspot are weaker than those in the middle region.
The second tail appears behind the first tail.Meanwhile, the first tail is
weaker than the second tail. The waves in the second tail have the
highest amplitude in the entire wave packet. The second tail of
entropy perturbations is “rope” structured waves located at the edge
of the boundary layer. The wavelength of these rope waves is
approximately twice of the boundary-layer thickness. These are the
typical features of the second-mode-dominated waves [30].

D. Boundary-Layer Receptivity Analysis

The numerical solution for the time history of the wall-pressure
perturbations is recorded at various spatial locations along the cone
surface. Figures 17 and 18 show the time-history traces of wall-
pressure perturbations, where the pressure perturbations are nor-
malized with respect to the freestream pressure.
Figure 17 shows the wall-pressure perturbations traveling through

the upstream part of the cone. In the upstream part of the cone, the
perturbation time-history profiles start with a relatively monotonic

Fig. 11 Contours of hotspot pressure perturbations behind the shock in
nose region over the compression cone.

Fig. 12 Contours of hotspot entropy perturbations behind the shock in
nose region over the compression cone.

Fig. 13 Contours of hotspot pressure perturbations in middle region over the compression cone: a) front part, and b) rear part.
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shape. They gradually decay while traveling downstream and split
into a multipeak shape. In the range from x� � 0.0337 to 0.0925 m,
the profile has the frequency around 160 kHz, which falls in the
frequency range of the possible stable first mode (120 to 240 kHz)
that is discussed in latter part of this section. The perturbations are
indeed likely to be stable first-mode-predominant. However, there are
initial transients and other wave modes existing in the perturbations
as well. Thus, further investigation is needed to confirm this point.
Because the stable first mode is not as important as the unstable
second mode in this flow, we did not investigate it in detail. Instead,
we mainly focus on the unstable second mode.
Figure 18 shows thewall-pressure perturbations in the downstream

part of the cone. In this region, multipeak-shaped perturbations begin

to split into two parts in time: onewith amore oscillatory followed by
another with a smoother profile. These waves are associated with the
main body (the front part and the rear part) of the pressure
perturbations in Figs. 13 and 15. The more oscillatory part has the
frequency about 160 kHz. The waves are indeed likely to be stable
first-mode-predominant. As the hotspot induced perturbations travel
further downstream, the perturbation amplitudes decay. Starting at
x� � 0.25 m, or 56% of the total cone length, a new perturbation
waveform appears. The amplitudes of this new waveform grow
rapidly. The amplitudes of this new waveform soon surpass those of
the original decaying ones and become the dominant instability
in the boundary layer. This newwaveform is most likely to be related
to the second mode. At the same locations of the wave growth, a

Fig. 14 Contours of hotspot entropy perturbations in middle region over the compression cone: a) main body, and b) first tail.

Fig. 15 Contours of hotspot pressure perturbations in downstream region over the compression cone: a) front part, b) rear part, and c) tail.
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less-dominant growing waveform also appears ahead of the most
dominant waveform. These two new wave structures can be seen
clearly in the profile at x� � 0.333 m in Fig. 18. Specifically, the
most dominant one is centered around t� � 0.54 ms, whereas the
less-dominant one is located around t� � 0.49 ms. The frequency of
themost dominant growingwaves is found to be around 291 kHz, and
the one of the less-dominant growing waves is 285 kHz. Both waves
fall in the frequency range of the second mode. The furthest com-
puted location in current numerical simulation is x� � 0.394 m.
The maximum relative magnitude of the second-mode-dominated
pressure waves to the local steady base flow pressure reaches
O�10−5� at this surface location [31].
To investigate the mechanism of boundary-layer instability

induced by the hotspot, Fourier transformation based on the time
history of wall-pressure perturbations is carried out at various surface
locations. The details are shown in Sec. IV. The simulated pertur-
bations are single impulse, which is temporally “transient” (i.e., they
do not continue to repeat in time at a given location). The transient
perturbed flow at a location eventually returns back to its steady base
flow after the passage of the perturbations. When conducting
the Fourier transformation, the time history of single impulse is
windowed with no more perturbations existing on both sides. More
specifically, the Fourier transformed amplitudes in the current study
are independent of thewidth of the timewindowas long as the relative
amplitudes of the pressure perturbations at both end areO�10−9�. In
this way, a periodicity of the signal is assumed in the time domain.
The maximum recording time-step size of the time histories is
1.12 × 10−7 s, which is sufficient to resolve the second-mode
instability at the high end of the studied frequency range.Our Fourier-
transformed results are confirmed to be independent of the time step
usedwhenwewere postprocessing the data from the simulation using
the current windowed-Fourier transformation. The validation of
the current windowed-Fourier transformation is completed in a
comparison between two cases of an unsteady hypersonic flow
over a flat plate with a pulse and a single frequency wave, re-
spectively. The case of a single frequencywave is treated by using the
traditional Fourier transformation for periodic waves. The results
show that the transformed amplitude of both case compares well;
therefore, the current windowed-Fourier transformation of a finite-
width pulse can adequately represent a wide spectrum of frequency.

Having a sufficient spatial resolution can minimize numerical
error, which will eventually be amplified downstream and affect
the accuracy of the simulated results significantly. To ensure the
sufficiency of the spatial resolution, a grid-convergence study is
conducted by comparing the current results with results from a finer
grid. For a wall-bounded flow, the boundary layer contains large
gradients of flow variables and should be well resolved to attain
accurate results. Therefore, a grid-refinement study is only performed
in the wall-normal direction. The essential part of the current paper
is the results of the unsteady flow simulation with the transient
perturbations. Hence, in the grid-convergence study, the frequency
spectra of the pressure perturbations at thewall and the growth rates at
a downstream location of s� � 0.4 m with two sets of grids; the
current grids of 240 points and the finer grids of 480 points in the
wall-normal direction are compared. The comparison of frequency
spectra of the pressure perturbations at the wall is shown in Fig. 19a.
Within the frequency range of the second mode between 260 and
310 kHz, both spectra compare very well. The relative error of the
normalized amplitudewithin the frequency range of the secondmode
isO�10−3�. The comparison of the growth rates within the frequency
range of the secondmode is shown in Fig. 9b. The comparison is very
good around themaxima at 282 kHz.Apart from 282 kHz, the growth
rates havemore error. The relative error of the growth rates within the
frequency range of the secondmode isO�10−2�. The growth rates are
more sensitive to small error. Hence, the relative error of the growth
rates appears to be more significant than the one of the normalized
amplitudes of the pressure perturbations at wall. Both the compar-
isons imply that the results within the frequency range of the second
mode for the current grid are reliable.
The freestream hotspot perturbations used in the current study

have aGaussian temperature profile in time. The frequency spectrum,
which also has a Gaussian distribution, of the forcing disturbances is
shown in Fig. 20. The freestream temperature perturbations have
higher amplitudes when the frequency is lower and the amplitudes
decrease with increasing frequency.
It is worth to notice that the small vertical magnitude in Fig. 20 is

the Fourier transform (in the unit of per Hertz) of the initial
disturbances in the freestream, which is not directly the relativewave
amplitude. To obtain awave amplitude in a given frequency range,we
need to integrate the line in that figure along the frequency that is in

Fig. 16 Contours of hotspot entropy perturbations in downstream region over the compression cone: a) main body, b) first tail, and c) second tail.
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the order of 100 kHz. As a result, the practical relative wave
amplitudes in the simulation for the interesting range of up to 420 kHz
are about 10−5 to 10−6. We use double precision in the current com-
putations with machine epsilon of approximately 10−16. Both the
disturbances in the freestream and behind the shock have small
Fourier-transformed amplitudeswith the frequencies below420 kHz,
but they are not yet close to the machine epsilon for a double-
precision system.

It is shown in Fig. 20 that the amplitudes of the freestream forcing
disturbances are not uniform at different frequencies. Hence, to
reflect such frequency effects on the receptivity, it is necessary to
normalize the amplitudes of the wall-pressure perturbations by
those of the freestream forcing disturbances. Because the wall
perturbations are pressure perturbations, whereas the freestream
forcing disturbances are temperature disturbances, the normalization
is defined by the following.

Fig. 17 Time-history traces of wall-pressure perturbations at various streamwise locations in upstream part of the cone.
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Normalized amplitude:

jdP�F�∕P∞j
jdT∞�F�∕T∞j

(29)

where the dimensionless amplitude of the boundary-layer pressure
perturbations is normalized by the one of the freestream temperature
perturbations of the same frequency. This normalized amplitude is a
more accurate description of the receptivity and instability growth.
The normalized amplitude frequency spectra of behind-shock

acoustic waves and entropy waves in the nose region are shown in
Figs. 21a and 21b. Both waves are generated by the combined
interactions of the shock with the freestream hotspot perturbations
and the reflected acoustic waves behind the shock. Each line

represents the spectrum at a shock location that has a specific angle
between the stagnation line in front of the cone nose and the line that
connects the shock location and the origin. Because the maximum
amplitude of the freestream hotspot perturbations is at the centerline,
the maximum generated acoustic and entropy waves behind the
shock appear on the stagnation line where the angle is 0. These
generated waves decay at downstream shock locations in the nose
region. The normalized amplitudes of the acoustic wave spectra
decrease for frequencies beyond 240 kHz. Those of entropy waves
increase at lower frequencies and reach a peak around 560 kHz. From
Figs. 21a and 21b, it can be seen that themaximum relative strength to
freestream perturbations for the pressure disturbances just behind
the shock is about 45, which is much higher than the one (about 0.13)
of the entropy disturbances. Therefore, after the hotspot/shock

Fig. 18 Time-history traces of wall-pressure perturbations at various streamwise locations in downstream part of the cone.

2664 HUANG AND ZHONG

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 D

ec
em

be
r 

4,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

26
57

 



interaction in the nose region, acoustic waves are the largest distur-
bances generated.
Figure 22 shows the normalized frequency spectra in the flared

region of the cone. In the figure, there is a large peak of spatial growth
of amplitudes with the frequency ranging from about 240 to 320 kHz.
This growing peak is the instability dominated by the second mode.
The frequency corresponding to the maximum amplitude is about
290 kHz, and the frequency shift is insignificant. There is no
significant shift expected because the boundary-layer thickness does
not change significantly along the compression region of the cone.
Such observation is discussed in Sec. VI.A. The frequency of the
peak from the experiment, which is reported by Wheaton et al. [16]
under similar flow conditions, is also 290 kHz. The weaker peak that
is at the frequency range from 120 to 240 kHz decays spatially
from x� � 0.13 to 0.21 m. It is indeed likely to be the stable first
mode. The oscillations in the spectra are caused by multimode wave
modulations, which are complex physical process with a coexistence
of many wave modes. Noticeably, no such oscillation appears over
the peaks dominated by the Mack modes.
Because the boundary-layer receptivity is linear in the current

study, the normalized amplitudes can be treated as independent of the
shape function of the freestream forcing waves. The dimensionless
amplitudes of the local disturbances at the wall can be obtained
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linearly by multiplying the dimensionless freestream forcing
amplitude of a different shape function to the normalized amplitude at
each frequency according to Eq. (29). Once the spectra of normalized
amplitudes at all stations of a cone are obtained from a simulation, a
database of receptivity to general forcing under the given geometry
and flow conditions is then built. However, a different set of nor-
malized amplitude spectra is needed for a different set of flow
conditions and cone geometry.
The normalized amplitude is used to quantify the strength of

boundary-layer disturbance growth relative to the freestream
perturbations during the linear receptivity process. Thewaves that are
transformed into the frequency domain become complex values; in
other words, each wave component has a phase angle. Because the
phase angle of each freestream perturbation component is different,
the relative phase angles of the boundary-layer disturbances to the
freestream one are used to describe the phase shift. The frequency
spectrumof the relative phase angles at the end of the cone is shown in
Fig. 23. The phase shift consistently increases as the frequency
increases. The bumps are probably caused by the multimode wave
modulations. Finally, by obtaining the relative phase angles in
addition to the normalized amplitudes, one can reconstruct the actual
waveform of the wall-pressure disturbances within the linear

receptivity regime from the freestream entropy perturbations with
different shape functions [25].

E. Boundary-Layer Receptivity Mechanism

After the frequency spectra are found, an investigation of the
spatial modal evolution of the perturbations before the second-mode
dominance is conducted. It is a crucial step to understand the
receptivity mechanism. Figure 24 shows the spatial development of
wall-pressure-perturbation amplitudes from the upstream region to
the downstream region. In the plot, the five simulated second-mode
sampling frequencies are the closest available to the five frequencies
used in the LST study. These five frequencies start with high initial
amplitudes where the hotspot just passes through the shock and the
boundary-layer disturbances are excited in the upstream region. Then
the perturbations decay while moving downstream.When they reach
s� � 0.16 m, they begin to grow exponentially downstream. The
oscillatory features of the curves are the results of the modulation of
multiple wave modes when there is no single dominant instability
mode. This multimode modulation phenomenon is expected in the
synchronization zone. They are commonly seen in many numerical
studies [1,5,7–9,20]. They are not the spurious results of Fourier
decomposition.
The following comparisons between the current simulated results

and those from LST are aimed to quantitatively validate the current
simulation. The validation is performed in the downstream region
because it ismore difficult to resolve the flow details there. Therefore,
it is important to demonstrate that the solutions are well resolved
there. The simulated growth rate is calculated by Eq. (15). The
comparison between the numerically simulated spatial growth rates
and those found from LSTover the second-mode frequency range at
four surface locations is shown in Fig. 25.At a fixed location, the LST
and the current numerical simulation predict nearly the same peak
frequency for the second-mode-dominated growth. However, the
numerically simulated maximum growth rate is slightly higher than
the one predicted by LST. Table 2 shows the comparison of the peak
frequencies and growth rates between the simulation results and LST.
The relative differences of the growth rates consistently decrease
when the second mode becomes more dominant in the simulated
disturbances downstream. The relative differences of the peak
frequencies at all four locations are below 1%, which indicates a very
good comparison between the frequencies of the maximum
simulated growth rates and LST. The reason for the differences in
growth rates to occur is because there are modulations due to the
physical interaction between multiple modes, which cannot be
decomposed by Fourier decomposition. Moreover, the nonparallel
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and surface curvature effects are not accounted for the current
LST model.
The simulated dimensional wave number is calculated from

Eq. (16). Figure 26 compares the frequency spectra of the wave
numbers at the same four surface locations. The maximum relative
differences between the two sets of wave numbers are 7.5%
at x� � 0.33 m, 5.2% at x� � 0.35 m, 2.3% at x� � 0.37 m, and
below 1% at x� � 0.39 m. The numerical wave numbers agree with
those of the LST very well at the downstream location of x� �
0.39 m.
Figure 27 shows an excellent agreement between the mode

shapes of the current simulation and the LST with the most

amplified second-mode sampling frequency of 293 kHz behind the
synchronization point. Based on the reasonable agreements of the
three comparisons, it is concluded that the numerical simulation
successfully captures the linear second-mode development of the
boundary-layer perturbations.
From the previous simulated data of perturbation amplitudes along

the cone, we cannot determine the modal evolution in the boundary
layer at different locations. Therefore, we have to compare the
simulated results to the theoretical results to identify the dominant
wave modes in the boundary layer with a fixed frequency. The
frequency to be analyzed is the most amplified one (293 kHz) in the
second-mode range. The simulated dimensionless phase speed is
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Fig. 25 Comparison of the growth rates between numerical simulation and LST as a function of frequency in the unstable second-mode region:
a) x� � 0.333739 m b) x� � 0.353742 m, c) x� � 0.373743 m, and d) x� � 0.393743 m.

Table 2 Comparison of growth rate spectra between the current simulation results and LST

x location, m Relative difference of maximum growth rates LST peak frequency, kHz Simulated peak frequency, kHz

0.33 16% 284 282
0.35 13% 284.5 283.5
0.37 11% 286 284
0.39 8% 287.5 286
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computed by Eqs. (16), (23), and (25). The comparison between the
simulated phase speed and the phase speed obtained from LST is
shown in Fig. 28. The three horizontal lines are the dimensionless
phase speeds of fast acoustic, slow acoustic, and entropy/vorticity
waves determined using freestream flow conditions in front of the
bow shock. As a result, they only serve as qualitative references to
show the existence of the three wave modes. The actual phase speeds
depend on local nonconstant flow conditions. Figure 28 shows a
trend of the phase speed of the simulated disturbances decreasing
from the phase speed of the fast acoustic wave in the nose region. The
simulated phase speed closely matches the LST predicted mode F
with very slight oscillations until s� � 0.04 m. The comparison
shows that the disturbances are likely to be initially excited in
the boundary layer by the fast acoustic waves near the nose. The
comparison also shows that mode F is relatively strong in the
boundary-layer disturbances before s� � 0.04 m. The oscillations
begin after the phase speed of the waves reaches the one of entropy/
vorticity waves, and it rises up to the phase speed of fast acoustic
waves between 0.04 < s� < 0.2 m. The modulation between all the
wave modes causes the strong oscillations in that region. More
specifically, there are several disturbance modes existing in the
simulated boundary-layer disturbances, whereas the LST assumes
clean boundary-layer waves with pure mode F and mode S. As a
result, themodulations of the simulated results reflect the coexistence

of other modes. Moreover, all the modes are relatively strong in the
modulation region. The same phenomenon was also discussed by
Zhong and Ma [5] and Ma and Zhong [8,9].
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Fig. 26 Comparison of the wave numbers between numerical simulation and LST as a function of frequency in the unstable second-mode region:
a) x� � 0.333739 m b) x� � 0.353742 m, c) x� � 0.373743 m, and d) x� � 0.393743 m.
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In Fig. 28, the phase speed in the modulation region is close to the
fast acoustic waves. It indicates that the boundary-layer disturbances
contain a significant proportion of fast acoustic waves in that region
relative to other modes. As the waves propagate further downstream,
the phase speed decreases and becomes almost the same as the mode
S behind the synchronization point of mode S and mode F at
s� � 0.16 m. This observation indicates that the dominance of mode
S in the boundary-layer disturbances begins after the synchronization
between mode S and mode F.
In Fedorov et al. [21,32], a branch point is where both the real and

imaginary parts of the phase speed are equal for mode F and mode S.
The second-mode instability is excited downstream from the branch
point. The branch point, however, does not exist in most practical
flows with a real x axis (or Reynolds numbers) only, except for a very
specific disturbance frequency with a very cold wall. Instead, the
branch point appears along complex Reynolds number with a
nonzero imaginary part. In the case of practical flow, mode F and
mode S have resonance interaction when the real part of the wave
number and frequency are the same near the branch point, even
though the growth rates are different. Therefore, we define the
synchronization point, which is also the resonant point, between
mode F and mode S as the point where the real parts of the phase
speed are equal for mode F and mode S. Zhong and Ma [5] and Ma
and Zhong [8,9] have shown that this synchronization point plays an
important role in receptivity process.
In Figs. 28–30, there is a break in the phase speeds, wave numbers,

and growth rates of mode F around s� � 0.09 m. It is due to the fact
that the eigenvalue of the discrete mode F merges into the entropy/
vorticity spectrum and reappears while moving downstream before
reaching the synchronization point. As a result, the eigenvalue of
mode F is interrupted by the entropy/vorticity spectrum. Because the
actual phase speed of entropy/vorticity waves depends on local flow
conditions, the break appears below the freestream phase speed
of entropy/vorticity waves in Fig. 28. This break is typical for
hypersonic flow over a cone. It is similar to the one shown in Fig. 11
inZhong andMa [5] for aMach 8 flowover a cone.Again, it is a result
of mode F crossing the continuous spectrum as demonstrated in
Fig. 10 of Zhong and Ma.
The simulated dimensionless wave number is calculated by

Eqs. (16) and (23). Thewave-number comparison between numerical
simulation and LST is shown in Fig. 29. The plot confirms the
observations that are made by the preceding phase-speed com-
parison; the induced waves contain relatively strong mode F before
the disturbances reach s� � 0.04 m, and modulation between all the
waves occurs between 0.04 < s� < 0.2 m. The wave numbers of
mode F andmode S cross each other around s� � 0.16 m; hence, the
synchronization point is located there. Though the wave numbers of
mode F and mode S seem to be very close, as shown in Fig. 29, they
are in fact different in the region behind the synchronization point.
The differences can be more clearly seen in the nondimensional
phase-speed comparison in Fig. 28. Therefore, there is only the
synchronization point, not a synchronization line or a long region.
The stability of the boundary-layer disturbances at different

locations is determined by their growth rates. The simulated growth
rate is calculated by Eq. (15). The comparison between the simulated
growth rate and the one obtained fromLST is shown in Fig. 30. There
are oscillations in the simulated growth rate as a result of multimode
wave modulations. The simulated growth rate eventually converges
to the unstable growth rate of mode S behind s� ≈ 0.2 m. Both
growth rates of the simulation and mode S compare very well
downstream. The plot also shows that mode F is stable everywhere,
whereas mode S is stable before s� � 0.11 m, and it becomes
unstable behind this location. These observations indicate that the
unstable second mode is related to mode S, and the induced
disturbances become second-mode-dominated behind the synchro-
nization point (s� � 0.16 m), which is the similar conclusion made
in the preceding discussion of the phase-speed plot in Fig. 28. In
addition, even though the unstable region of mode S begins earlier
than the synchronization point, the disturbances of 293 kHz in Fig. 24
grow only behind s� � 0.16 m. From this observation, we further
conclude that the synchronization of mode F and mode S leads to the
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dominance of boundary-layer disturbances by the growing second
mode. Zhong and Ma [5] and Ma and Zhong [8,9] have also shown
that even though the modulation region exists, the resonance
interactions of mode F and mode S at the synchronization point still
cause the dominance of the second mode in the boundary-layer
disturbances.
To confirm the previous identification of modal evolution in the

induced boundary-layer disturbances, we compare the boundary-
layermode shapes between simulation andLSTat different locations.
These are shown in Figs. 27 and 31a–31e. At s� � 0.03 m, where the

modulations begin to appear upstream, the simulated mode shape is
very close tomode F. This comparison shows that the boundary-layer
disturbances have relatively strong mode F in the upstream region of
multimode wave modulation. While moving further downstream to
s� � 0.0687 m and s� � 0.1083 m, which are near the locations of
both ends of the break in the phase speed of mode F, the simulated
mode shape begin to deviate frommode F. It does not approachmode
S at this point. These observations show that neithermode Fnormode
S can stand out among all the wave components in the induced
disturbances when the eigenvalue of mode F is in the vicinity of the
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Fig. 31 Comparisons of wall-normal mode shapes of pressure perturbations between the simulation and LST with the frequency of 293 kHz at various
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entropy/vorticity spectrum. The differences outside the boundary
layer between the simulated mode shape and the LST reflect the
existence of freestream transient forcing outside the boundary layer
in the simulated results, while the LST is free of freestream forcing.
When the boundary-layer disturbances reach the vicinity of
synchronization point at s� � 0.1612 m, the simulated mode shape
begins to approach mode S. When the disturbances move further
downstream from the synchronization point to s� � 0.246 m
and s� � 0.314 m, the comparisons shows that the simulated
mode shape converges to mode S. Especially at s� � 0.314 m, the
simulated mode shape compares very well to mode S. The com-
parisons at the last two locations behind the synchronization point
show that the mode S has strong and rapid domination to the
boundary-layer disturbances after they pass through the synchroni-
zation point. These observations of the mode shapes confirm the
receptivity path obtained in the phase speed, wave number, and
growth rate comparisons.
The receptivity mechanism with the second-mode frequency

analyzed in this section agrees with the receptivity to freestream
acoustic waves over a blunt cone, which is reported in Zhong andMa
[5], and the receptivity to freestream entropywaves over a flat plate in
Ma and Zhong [9]. However, this is essentially different from the
receptivity over a flat plate reported by Fedorov et al. [20], where, in
their case of freestream temperature spot, mode S is excited after the
slow acoustic waves (which are generated by the spot-shock
interaction) penetrate the boundary layer.

VII. Conclusions

In the current study, numerical simulations for both the steady base
flow and the freestream hotspot perturbed flow over a compression
cone have been conducted. The behavior of the boundary-layer
disturbances throughout the receptivity process has also been
investigated. In addition to this, the receptivity mechanism was also
studied, and a receptivity database for the compression cone under
the Mach 6 flow conditions was built. Specifically, one set of
response amplitudes and phase angles in the Fourier frequency space
was stored. Even though this is a challenging task, it is feasible with
today’s supercomputers as described in Lei and Zhong [25]. Such a
database can be used to reconstruct the boundary-layer disturbances
in the linear regime under general freestream entropy forcing, which
provides the initial conditions for the study of nonlinear boundary-
layer disturbance.
The study of the boundary-layer receptivity mechanism that leads

to second-mode dominant growth is carried out by comparing the
simulated results to LST. The disturbances are likely to be initially
excited in the boundary layer by fast acoustic waves nearby the nose.
Then, mode F appears to be relatively strong in the boundary-layer
disturbances in the upstream region. The unstable mode S, which is
the second mode, is excited by the synchronization of mode F and
mode S. Moreover, such synchronization leads to the dominance of
boundary-layer disturbances by the growing second mode.
In conclusion from all the results, introducing the interaction

between freestream hotspot and bow shock is an effective way to
trigger second-mode instability in a hypersonic boundary layer,
which could eventually lead to laminar–turbulent transition down-
streamof a cone. In addition, the receptivitymechanism to freestream
entropy spot for hypersonic flow over a blunt cone is similar to that
for hypersonic flow over the flat plat with entropy waves of a single
discrete frequency in the freestream. However, even though both
studies show a similar mechanism, it is not an automatic extension of
previous studies because the effects of bow shock and entropy layer
were not included in the case of a flat plate.
Similarly, it was found that the mechanism of receptivity to

freestream entropy perturbations over a cone is essentially different
from the case of a hypersonic flow over a flat plate with freestream
temperature spots. These findings show that the receptivity
mechanism over different geometries can be significantly different.
On the other hand, the receptivitymechanism is found to be similar to
the one for acoustic waves over a blunt cone. Such findings are not
reported in a previous study.
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