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Abstract 
 
The stabilization of hypersonic boundary layers using porous coatings has been studied by 
theoretical analyses, experiments, and numerical simulations in the past decade. It was found that 
porous coating stabilizes Mack’s second mode and destabilizes Mack’s first mode. However, no work 
has been reported about the thermochemical non-equilibrium effects of hypersonic flows on porous 
coating stabilization efficiency. Our previous results show that thermochemical non-equilibrium of 
hypersonic flows may affect the stabilization efficiency of regular coating. Therefore, numerical 
simulations for perfect gas flow may not be enough. In this paper, we conduct numerical simulations 
on the stabilization of a Mach 10 boundary layer using regular porous coating. The effects of 
thermochemical non-equilibrium flow including internal energy excitations, translation-vibration 
energy relaxation, and chemical reactions among different species are considered. Three types of 
steady base flow for perfect gas, thermal equilibrium and chemical non-equilibrium gas, and 
thermochemical non-equilibrium gas are first investigated. The stability characteristics of the Mach 
10 boundary layer are studied by the linear stability theory based on perfect gas solution. Response 
of the boundary layer to single-frequency wall blowing-suction is studied by six cases of unsteady 
simulations for perfect gas. The preliminary results show regular porous coating has a significant 
effect on boundary-layer instability.  
 
 

1. Introduction 
 
The performance of hypersonic transportation vehicles and re-entry vehicles and the design of 
their thermal protection systems are significantly affected by the laminar-turbulent transition of 
boundary-layer flows over vehicle surfaces, because a turbulent boundary layer generates much 
higher drag and surface heating than a laminar one. Transition can have a first-order impact on 
the lift, drag, stability, control, and heat transfer properties of the vehicles [1]. Transition control 
to maintain laminar boundary-layer flows or delay transition can result in lower drag, lower 
surface heating, and higher fuel efficiency.  
 
In order to predict and control boundary-layer transition, extensive studies have been carried out 
focusing on transition mechanisms [2]. It has been demonstrated that the transition of external 
shear flows, including boundary layers, strongly depends on the amplitude of environmental 
disturbance [3]. Figure 1 schematically shows paths of external shear flow transition. For small 
amplitude disturbance, the transition of a boundary layer over a smooth surface generally consists 
of the following three stages: 1. receptivity process during which environmental disturbances 
enter the boundary layer and excite boundary-layer waves. 2. Modal growth of unstable 
boundary-layer waves which can be obtained by solving the eigenvalue problem of the 
homogeneous linearized stability equations. 3. Breakdown to turbulence caused by non-linear 
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 2

secondary instabilities and three-dimensional effects when the unstable waves reach certain 
amplitude. This three-stage-transition mechanism is path 1 as shown in Fig. 1. With the 
disturbance amplitude increasing, transient growth, arising through the non-orthogonal nature of 
the Orr-Sommerfeld eigenfunctions and the Squire eigenfunctions, becomes important. Weak 
transient growth provides higher initial amplitude for modal growth (path 2) whereas strong 
transient growth can lead to secondary instabilities and breakdown to turbulence right after the 
receptivity process (path 3). In the current study, only small amplitude disturbances are 
considered. Regular porous coating is used to stabilize the boundary layer by attenuating modal 
growth. The mechanism of porous coating’s absorbing energy from Mack’s second mode is 
similar to that of car exhaust muffler’s reducing noise emitted by the exhaust of an internal 
combustion engine. 

 
Fig. 1. Paths of external shear flow transition with respect to the amplitude of environmenta disturbance[3]. 
 
In the past decade, passive control of boundary-layer transition by using porous coating has been 
studied by theoretical analyses [4-7], experiments [8-13], and numerical simulations [14-16]. It 
was found that porous coating stabilizes Mack’s second mode and destabilizes Mack’s first mode. 
Recently, Wang and Zhong [17] studied the stabilization of a Mach 5.92 flat-plate boundary layer 
by using local sections of felt-metal porous coating. Artificial disturbances corresponding to a 
single boundary-layer wave were introduced near the leading edge. It was found that disturbances 
of mode S are destabilized or stabilized when porous coating is located upstream or downstream 
of the synchronization point. For felt-metal porous coating, the destabilization of Mack’s first 
mode is significant. More details of previous research in this area are summarized in the paper 
presented on the Seventh International Conference on Computational Fluid Dynamics [18]. 
  
However, no work has been reported about the thermochemical non-equilibrium effects of 
hypersonic flows on the stabilization efficiency of porous coating. In a previous study, we 
analyzed the effect of the phase angle of regular coating admittance [19]. Numerical simulations 
are carried out on one regular porous coating at the given parameters (phase angle > π) and 
one ”artificial” porous coatings with zero imaginary part of admittance (phase angle = π). Figure 
2 shows the change of phase angle with the peak of velocity perturbation moving upstream. 
Figure 3 compares the pressure perturbation amplitudes of the two regular porous coatings, 
together with the spatial development of mode S along solid wall. The figure shows that pressure 
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 3

perturbation amplitude decreases for a smaller phase angle of admittance. Since the 
synchronization point is located around x = 0.33 m, the results indicate that Mack’s first-mode 
destabilization is weakened by the decrease of admittance phase angle. However, the second 
mode stabilization is approximately unchanged because pressure perturbations of the two porous 
coatings increase proportionally after the synchronization point. 
 

 
     (a) at the given parameters                           (b) zero imaginary part of admittance 

Fig. 2. Instantaneous pressure and velocity perturbations along the flat plate with regular porous coating. 
 

 
Fig. 3. Comparison of pressure perturbation amplitudes of the two regular porous coatings. 

 
We further analyzed the admittance of porous coating and its dependent variables. According to 
the model of regular coating, the admittance phase angle depends on three parameters: thickness, 
pore size, and ratio of specific heat. Figure 4 plots the phase angle of admittance versus the three 
parameters, respectively, with the other parameters of porous coating unchanging. Figure 4(c) 
shows that admittance phase angle decreases as the ratio of specific heat increases, which 
indicates the effects of thermochemical non-equilibrium flow will lead to weaker destabilization 
of Mack’s first mode. 
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(c) 

 
Fig. 4.  Phase angle of regular porous coating admittance versus its dependent varialbes: (a) thickness, (b) 

pore size, and (c) the ratio of specific heat. 
 
We have also studied a Mach 12.56 flow over a blunted wedge of a half angle of 20 degree [18]. 
The effects of different viscosity are taken into account by conducting three cases of numerical 
simulation: 1) perfect gas flow with Sutherland’s law, 2) perfect gas flow with the transport 
properties being calculated from collision cross-section area, and 3) thermochemical non-
equilibrium flow with the transport properties being calculated from collision cross-section area. 
Figure 5 shows the streamwise velocity profile across the boundary layer at the intersection of the 
blunted leading edge and the wedge. The boundary layer of case 2 is a little bit thicker than that 
of case 1, because the viscosity coefficent of perfect gas flow calculated from collision cross-
section area is lower than that calculated from Sutherland’s law. In addition, the boundary layer 
of case 3 is thinner than that of case 2. The results show that the effects of thermochemical non-
equilibrium flow and viscosity models can be successfully separated by conducting the three 
cases of numerical simulations. 
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Fig. 5. Comparison of streamwise velocity profile across the boundary layer. 

 
These results indicate that thermochemical non-equilibrium effects may affect the stabilization of 
hypersonic boundary layers using regular porous coating in two aspects: (1) change of the ratio of 
specific heat, and (2) change of viscosity coefficient and stability characteristics. In this paper, we 
conduct numerical simulations on the stabilization of a Mach 10 boundary layer over a flat plate 
using regular porous coating. The effects of thermochemical non-equilibrium flow including 
internal energy excitations, translation-vibration energy relaxation, and chemical reactions among 
different species are considered. Compared to the Mach 12.56 flow over a blunted wedge in [18], 
the current flow has stronger dissociations and more significant Mack’s second mode. Three 
types of steady base flow for perfect gas, thermal equilibrium and chemical non-equilibrium gas, 
and thermochemical non-equilibrium gas are first investigated. The stability characteristics of the 
Mach 10 boundary layer are studied by the linear stability theory based on perfect gas solution. 
Response of the boundary layer to single-frequency wall blowing-suction is studied by six cases 
of unsteady simulations for perfect gas. The preliminary results show regular porous coating has a 
significant effect on boundary-layer instability. More unsteady simulations on the passive control 
of hypersonic non-equilibrium boundary-layer transition using regular porous coating are 
currently ongoing. 
 
 

2. Governing Equations and Numerical Methods 
 
2.1 Governing equations of perfect gas flow 
 
The governing equations of perfect gas flow are written in the following conservation-law form in 
the Cartesian coordinates, 
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 6

 0j vj

j j

F FU

t x x

 
  

  
 (1) 

where U , jF  and vjF  are the vectors of conservative variables, convective and viscous flux in 

the direction of jth  coordinate, respectively, i.e., 

  1 2 3, , , ,U u u u e     (2)  

 

1 1

2 1
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 (3) 

For the simulation of perfect gas flow, the following equations are needed.  
 P RT  (4) 

 
1

( )
2v k ke c T u u   (5) 

 ( )ji k
ij

j i k

uu u
ijx x x   

 
      (6) 

 j
j

T
q k

x


 


 (7) 

where R  is the gas constant. The specific heat Cv  is a constant determined by a given ratio of 

specific heats  . The viscosity coefficient   is calculated by Sutherland’s law, 

 
3/2

0

0

s
r

s

T TT
T T T

 
 
  
 





 (8) 

For air, 51.7894 10r
   Ns/m2, 0 288.0T   K, 110.33sT   K, and 2 3   . The heat 

conductivity coefficient k is computed by a given Prandtl number.  
 
2.2 Governing equations of thermochemical non-equilibrium flow 
 
The governing equations of thermochemical non-equilibrium flow based on 5-species air 
chemistry are Navier-Stokes equations with source terms (no radiation). Specifically, they consist 
of the flowing equations, 
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where,  
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R  is the universal gas constant. The formulas of species diffusion coefficient sD , viscosity  , 

heat conductivities K  and VK , species internal energy se  and ,V se , specific vibration energy 

VE , and source terms depends on the models of thermochemical non-equilibrium flow.  

 
The corresponding matrix form of governing equations is as follows,  

 j j

j j
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t x x
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 (13) 

where the vector of conservative variables has ten components, 
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The inviscid and viscous flux in the direction of jth  coordinate, jF  and jG , and the source term 

S are given below.  
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 (15) 

 
In above equations, sj sj jv u u   is diffusion velocity of species s.  

 s s
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s j
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v

x
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
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 (16) 
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 8

The model of vibration and electron energy used in Hash et al.’s paper [20] are implemented in 
the code. Specific total enthalpy of species and specific heat in constant pressure of species are 
defined as,  

 0
,

s
s vs V s s

s

p
h c T e h


     (17) 

 s s s
p v V

s

R
c c c

M
    (18) 

where 0
sh is the generation enthalpy of species. The variables on the right hand side of equations 

(17) and (18) are calculated from the following formula, 
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

 (23) 

For the 5-species air, the related parameters used in the models of vibration and electron energy 
are listed in Table 1 and Table 2.  Compared to other models [21, 22], the current models have the 
advantage of directly applicable to unlimited high temperatures. 
 

Table 1. Parameters used vibration energy model 
Species  0

sh (J/kg) sM (g) vs (K) 

N2 0 28 3395 
O2 0 32 2239 
NO 2.996123e6 30 2817 
N 3.362161e7 14 - 
O 1.543119e7 16 - 
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 9

Table 2. Electronic energy states for 5-species air 

Species Θ (K) g Species Θ (K) g Species ΘO (K) g 

N2 0 1 O2 1.13916e4 2 NO 8.88608e4 4 

N2 7.22316e4 3 O2 1.89847e4 1 NO 8.98176e4 4 

N2 8.57786e4 6 O2 4.75597e4 1 NO 8.98845e4 2 

N2 8.60503e4 6 O2 4.99124e4 6 NO 9.04270e4 2 

N2 9.53512e4 3 O2 5.09227e4 3 NO 9.06428e4 2 

N2 9.80564e4 1 O2 7.18986e4 3 NO 9.11176e4 4 

N2 9.96827e4 2 NO 0 4 N 0 4 

N2 1.04898e5 2 NO 5.46735e4 8 N 2.76647e4 10 

N2 1.11649e5 5 NO 6.31714e4 2 N 4.14931e4 6 

N2 1.22584e5 1 NO 6.59945e4 4 O 0 5 

N2 1.24886e5 6 NO 6.90612e4 4 O 2.27708e2 3 

N2 1.28248e5 6 NO 7.0500e4 4 O 3.26569e2 1 

N2 1.33806e5 10 NO 7.49106e4 4 O 2.28303e4 5 

N2 1.40430e5 6 NO 7.62888e4 2 O 4.86199e4 1 

N2 1.50496e5 6 NO 8.67619e4 4    

O2 0 3 NO 8.71443e4 2    

 
For the 5-species air, a more complex model of thermal properties is applied [23]. Thermal 
properties are calculated as follows, 

 
(2) ( )

s s

s r sr
r

m
T




  
 (g/cm-sec)  (24) 

 
(2)

15
4 ( )

s
T

s sr r sr
r

K k
a T




  
 (J/cm-sec-K) (25) 

In above equation, 
   

 

1 0.45 2.54
1

2
1

s r s r
sr

s r

m m m m
a

m m

      

  

 
 


. 

 
(1)

1,2,3 ( )
s

R
s r sr

r

K k
T




  
 (J/cm-sec-K) (26) 

 
5

,

(1)
1 ( )

V V s
V E

s r sr
r

C
K k

R T






  (J/cm-sec-K) (27)  

To calculate viscosity and heat conductivity, the collision terms are as follows, 
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1
2

(1) 20 (1,1)8
10

2( ) ( )
3 ( )

s r
sr sr

s r

m mT T
RT m m




 
 
 

  


 (cm-sec) 

 
1

2
(2) 20 (2,2)10

216( ) ( )
3 ( )

s r
sr sr

s r

m mT T
RT m m




 
 
 

  


 (cm-sec) 

 
Collision integrals involving neutrals (Non-Coulombic collision integrals) are 

 
2(ln ) ln( , ) ( ) A T B T Cl j

sr T DT       (
0

2A ) (28) 

Species diffusion coefficients are defined as, 

 
 
(1 )s

s
r sr

r s

y
D

y D






 (29) 

For binary diffusion between heavy particles, 
(1) ( )sr
sr

kT
D

p T



. The heat conductivities K  and 

VK  in governing equations are calculated as, 

 T RK K K   (30) 

 V V EK K   (31) 
  
For chemical non-equilibrium, five reactions are considered for the five species air, i.e., 

 

2

2

2

2

2

2

N M N M

O M O M

NO M N O M

N O NO N

NO O O N

   
       
   

   

 (32) 

Correspondingly, the reaction rates are calculated as follows,  

 

2

1 1

2

2

2 2

2

3 3

2

4 4

2

2

5 5

2

1

2

3

4

5

N m N N m
f m b m

m N m N N m

O m O O m
f m b m

m O m O O m

NO m N O m
f m b m

m NO m N O m

N O NO N
f b

N O NO N

ONO O N
f b

NO O O N

R k k
M M M M M

R k k
M M M M M

R k k
M M M M M

R k k
M M M M

R k k
M M M M

    

    

    

   

  

  
    

   


 
   

  
     
 

  

  





















 (33) 

Finally, the source terms are as follows,  
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 11

 

2 2

2 2

1 4

2 5

3 4 5

1 3 4 5

2 3 4 5

( )

( )

( )

( 2 )

( 2 )

N N

O O

NO NO

N N

O O

M R R

M R R

M R R R

M R R R R

M R R R R









 


 
   
     
     

 (34) 

 
The forward and backward reaction rate coefficients have the form of  

    expf

f f fk T C T T    (35) 

    
 

f

eq

k T

b k T
k T   (36) 

 

For dissociation reactions, VT TT . For the other reactions, the control temperature is T T . 

The equilibrium constant is obtained using the curve fits of Park [24], i.e., 
 

 1 2
1 2 3 4 5exp( ln )eqk a z a a z a z a z      (37) 

 
In two temperature model, energy relaxation only happens between translation energy and 
vibration & electron energy, which can be expressed as 

 
*

,

( )vs vs
T v s s

vs

e T e
Q 




  (38) 

where, * ( )vse T  is the vibration energy per unit mass of species s evaluated at the local 

translational temperature.    

,
,

1 8
( )rr

vs s L T cs s
r sr L T s v s sr

y RT
a

y a N M
  

  


    


 

 1 1
3 4

,

1
exp 0.015 18.42sr L T sr srA T

p
 


     

 (p in atm) 

413 321.16 10 ( )
s r

r sr vs sr
s r

M MA M M       

 2
21 50,0003.5exp 10s

s v
shk

S T T
      

 
 

Here, s  is a defined characteristic temperature listed in Table 1.  

 
2.3 Coordinate transform 
 
The flow solver uses structured grids. The following grid transform is applied in the 
computational domain, 

 

( , , , ) ( , , , )

( , , , ) ( , , , )

( , , , ) ( , , , )

x x x y z t

y y x y z t

z z x y z t

t t

     
     
     

 

  
      
   

 (39) 
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 12

The Jacobian of the above coordinate transform is,  

 

0

0

0

1

x y z

x y z
J

x y z

x y z

  

  

  

  

  (40) 

 
With the transform, the governing equations in ( , , ,    ) coordinate system are written as 
 

 3 31 2 1 2( ) F GF F G GJU
JS

      
    

      
      

  
 (41) 

where 

1 1 2 3x y z tF J F J F J F JU        

2 1 2 3x y z tF J F J F J F JU        

3 1 2 3x y z tF J F J F J F JU        

1 1 2 3x y zG J G J G J G      

2 1 2 3x y zG J G J G J G      

3 1 2 3x y zG J G J G J G      

 
2.4 Numerical method 
 
The governing equations are solved by the fifth-order shock-fitting method of Zhong [25]. For the 

thermochemical non-equilibrium system (13) in the direction,  1 2 3k , ,k k k , the corresponding 

inviscid flux term is 
 

 

1

2

3

4

5

1

2

3

k u

k u

k u

k u

k u
F

k u

k u

k u

k u

k uV

u pk

v pk

w pk

H

E













 
 
 
 
 
 
 
 

 
  

 
 
 
 
 

 (42) 

 
Hence the Jacobian of flux is defined as,  

 
F

A
U

L R


  


 (43) 
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( ) 0 0

k

sr s s x s y s z

r x x x x y x z x x

r y y x y y y z y y

r z z x z y z z z z

r x y z

U c c n c n c n

n Uu un un U vn un wn un n n

n Uv un vn vn vn U wn vn n n
A

n Uw un wn vn wn wn wn U n n

U UH uU Hn vU Hn wU Hn


     
     
     
    


       
       


       
      


 
 
 

     
0V V x V y V z

U U U

Ue e n e n e n U



 
 
 
 
 
 
 
 

  

 
 

 

 

2

2

0 0

0 0

sr s r s s s s s

x y z

x y z

r x y z

r x y z

V r V V V V V

a c uc vc wc c c

V l l l

W m m m
R

Ua an u an v an w

Ua an u an v an w

e ue ve we e a e

      

     
     

     

   
  
 

  
    

       
 

    








 

 

 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2 2

2 2 2

/ 0 0 / 2 / 2 0

/ ( ) / 2 ( ) / 2 0

/ ( ) / 2 ( ) / 2 0

/ ( ) / 2 ( ) / 2 0

( ) / ( ) / 2 ( ) / 2 /

0 0 0 / 2 / 2 1/

sr s s

x x x x

y y y y

z z z z

r

V V

a c a c a

u a l m u an a u an a

v a l m v an a v an a
L

w a l m w an a w an a

u v w a V W H aU a H aU a a

e a e a a



    


  
  
  
       


   











 

 
The eigenvalues of Jacobian matrix (43) are  

 1,2,5 k U    (44) 

 

 3 k ( )U a    (45) 

 

 4 k ( )U a    (46) 

where subscript “s” refers to row s and species s, whereas subscript “r” refers to column r and 
species r. Both s and r vary from 1 to 5 in the present model. The unit vector n  is defined from 
vector k as  

 1 2 3( , , )
n ( , , )

kx y z

k k k
n n n   (47) 

 l , ,x y zl l l  and  m , ,x y zm m m  are two unit vectors such that n , l , and  m  are mutually 

orthogonal. Furthermore, we have,  

 x y zU un vn wn    (48) 

 x y zV ul vl wl    (49) 

 x y zW um vm wm    (50) 
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The derivative of pressure respecting to conservative variables comes from  
 ( ) V s sdp d E ud u vd v wd w d e d                (51) 

where  

 
5

1,

r
s

rs v tr r
s

R

c c M


 

 
 (52) 

 
,

e

v V e

R

C M

 


   (53) 

 
2 2 2

,2
q

s s V s
s

RT u v w
e e

M
    

     (54) 

  
5

2 2 2 2

1

( ) 1s s V
s

p
a c H u v w e   



            (55) 

In equation (54), q VT T  when s is an electron, otherwise, qT T . 

 
In shock-fitting method, the velocity and location of the shock are solved as part of the solutions. 
The flow variables behind the shock are determined by Rankine-Hugoniot relations across the 
main shock and a characteristic compatibility relation from behind the shock. For thermochemcial 
non-equilibrium flow, with the assumptions of “frozen” flow (no chemical reactions and energy 
relaxations when flow passes through the shock), the species mass fractions and vibration 
temperature keep constant on the two sides of the shock where translation temperature jumps 
across the shock. In this way, shock jumps conditions for total density, momentum and total 
energy are the same as those for perfect gas. In addition, the compatibility relation relating to the 
maximum eigenvalue in wall normal direction is used. For thermal equilibrium and chemical non-
equilibrium flow, only the species mass fractions are assumed to be constant across the shock. 
The translation and vibration temperatures are jumped simultaneously across the shock. A 
Newton iteration is used for the jump conditions.  
 
In the interior, compressible Navier-Stokes equations are solved in fully conservative form. An 
explicit finite difference scheme is used for spatial discretization of the governing equation, the 
inviscid flux terms are discretized by a fifth-order upwind scheme, and the viscous flux terms are 
discretized by a sixth-order central scheme. For the inviscid flux vectors, the flux Jacobians 
contain both positive and negative eigenvalues. A simple local Lax-Friedrichs scheme is used to 
split vectors into negative and positive wave fields. For example, the flux term F in Eq. (42) can 
be split into two terms of pure positive and negative eigenvalues as follows 
 F F F    (56) 

where  1

2
F F U   and  1

2
F F U    and λ is chosen to be larger than the local 

maximum eigenvalue of F′.  

  2 2| |
c u c

J

      
 

 (57) 

where  

 
| |

x y z tu v w
u

   


  
 


 (58) 
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The parameter ε is a small positive constant added to adjust the smoothness of the splitting. The 
fluxes F+ and F- contain only positive and negative eigenvalues respectively.  Therefore, in the 
spatial discretization, the derivative of the flux F is split into two terms 

 
F FF

  
  

 
  

 (59) 

where the first term on the right hand side is discretized by the upwind scheme and the second 
term by the downwind scheme. 
 
The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable parameter α as 
follows 

 
63

5
6

3

1
...

6!i i k i k
ki i i

u
u a u h

hb b x


 



      
  (60) 

where 3 2 1

1 1 5 5
1 ,  9 ,  45 ,  

12 2 4 3i i i i                   and 60ib . The 

scheme is upwind when α <  0 and downwind when α > 0. It becomes a 6-order central scheme 
when α = 0 which is used for discretizing viscous terms. All our methods are coded using 
FORTRAN77 & 90 while Message Passing Interface (MPI) is used for communication in the 
parallel computations.  
 
  

3. Models of Wall Blowing-Suction and Regular Porous Coating 
 
In current study, a model of wall blowing-suction disturbance similar to those of Eibler and 
Bestek [26] is used. The mass flux oscillations on the flat plate within the blowing-suction region 
can be written as 

    0 sin *v q l t     (61) 

where 0q  is a local constant depending on the location of the blowing-suction actuator, and   is 

a small dimensionless parameter representing the amplitude of the mass flux oscillation. The 

function  l  is the profile function defined within the forcing region as  

  
5 4 2

5 4 2

20.25 35.4375 15.1875 0 1

20.25(2 ) 35.4375(2 ) 15.1875(2 ) 1 2

l l l if l
l

l l l if l


    
 

       
 (62) 

The variable l  is a dimensionless coordinate defined within the blowing-suction region,  

 
 2 i

e i

x x
l

x x





 (63) 

where ix , ex  are the coordinates of the leading and trailing edges of the blowing-suction actuator.  

Compared with the sinusoidal profile function in [26], the specific 5th-order-polynomial profile 
function makes smoother the mass flux oscillations at the edges of the forcing actuator. Due to 
the anti-symmetric property of the 5th-order-polynomial profile function within the blowing-
suction region, the net mass flux introduced to the boundary layer is zero at any instant.  
 
In Eq. (61), *  is the circular frequency of single-frequency blowing-suction disturbance, which 
is related to the frequency by  
 * 2 f   (64) 
Dimensional circular frequency and frequency are non-dimensionalized as follows, 
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* L

U




  (65) 

 
2 2

2 *f
F

U U

   
 

 

   

   (66) 

 
The current studies are focused on linear responses of the boundary layer to forcing waves. In the 
simulations, the amplitude of mass flux oscillation is small enough to preserve the linear 
properties of the disturbances. The dimensionless amplitude coefficient,   in Eq. (61), is given as  

 51.0 10    (67) 
 
In the passive control of hypersonic boundary-layer transition by using porous coating, feltmetal 
coating is initially used [4, 9], because its structure is quite similar to that of the material currently 
used in thermal protection system. Later, regular coating has been used in most of the researches 
in this area due to its convenience for parametric studies and new coating design [15, 16]. In the 
current simulation, regular coatings are modeled by pressure perturbation related wall blowing-
suction. The wall blowing-suction induced by porous coating is as follows, 
 ' 'yv A p  (68) 

The porous coating admittance, yA , is defined as, 

  
0

tanhyA h
Z


    (69) 

In above equation,   is porosity, h  is the porous-layer thickness non-dimensionalized by 
the local length scale of boundary-layer thickness, 

 
*

* Uh
h h

L x



 



   (70) 

According to Allard and Champoux’s theoretical analyses [27], the empirical equations 
for porous coating characteristic impedance ( 0Z ) and propagation constant ( ) depend 

on wall temperature, wall density, and edge Mach number of the boundary layer, 

 0
w

w
e

Z T C
M

    (71) 

 e

w

i M
C

T

     (72) 

where w  and wT  are the local dimensionless density and temperature on porous surface. 

The edge Mach number ( eM ) is defined right after the shock. 

 
For regular porous coating considered in the current paper, the dynamic density (  ) and 

the bulk module (C ) are calculated from the following equations, 

 0

2

( )

( )
v

v

J k

J k
    (73) 

 2

0

( )
( 1)

( )
t

t

J k
C

J k
     (74) 
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In above two equations, vk  and tk  are defined as 

 
* 2

w
v

w

i r
k

 


   (75) 

 Prt vk k  (76) 

 
With the definitions of characteristic impedance and propagation constant, regular 
coating admittance is generally a complex number. Velocity perturbation calculated by 
Eq. (68) is also a complex number. However, only the real part of velocity perturbation 
can be imposed in numerical simulations. The unsteady velocity perturbation in 
numerical simulation is written relating to the instantaneous pressure perturbation ( *( )p t ). 

 
( )

( ) cos( ) ( ) sin( )y y

dp t
v t A p t A

dt
 


   (77) 

 
 

4. Flow conditions 
 
Freestream flow conditions of the hypersonic boundary-layer flow over a flat plate are the same 
as those of Hudson’s test case [28], i.e., 
 
  10M    278.0KT    4560 Pap   

  Pr 0.72   3352.3m sU   30.056803kg m   

  
2

0.78NC    
2

0.22OC    0NOC   

  0NC    0OC    28.79177377g molM   

 

For perfect gas flow, 1Re 10940090.56 mL 
  . Otherwise, 1Re 10235487.38 mL 

  .  

Here Re L  is unit Reynolds number defined as 

 Re L U      (78) 

The unit Reynolds number of perfect gas flow is larger than that of the other two types of 
flows, where the transport properties are calculated from collision cross-section area. 
 
The streamwise coordinate along the flat plate can be converted to local Reynolds number by 
 Re Rex x L  (79) 
In linear stability theory analysis, Reynolds number based on the local length scale of boundary-
layer thickness, L, is generally used. They are expressed as 

 ,
U L x

R L
U

 
 
  

  

   (80) 

Hence, the relation between R  and local Reynolds number Rex  is given by 

 RexR   (81) 

 
With the definitions of Reynolds number R  and dimensionless frequency F  in Eq. (66), 
dimensionless circular frequency can also be expressed as 
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 RF   (82) 
 
In both steady and unsteady simulations, inlet conditions are specified. High-order extrapolation 
is used for outlet conditions because the flow is hypersonic at the exit except a small region near 
the flat plate. Flow variables behind the shock are solved by combining Rankine-Hugoniot 
relations across the shock and a characteristic compatibility relation coming from downstream 
flow. For steady base flow simulation, the wall is adiabatic, and the physical boundary condition 
of velocity on flat plate is non-slip condition. In unsteady simulations, special treatment of wall 
boundary conditions is needed. When wall blowing-suction is introduced, temperature 
perturbation is set to zero, which is a standard boundary condition for theoretical and numerical 
studies of high frequency disturbances. Meanwhile, non-slip condition is applied on flat plate 
except the forcing region. Boundary conditions on regular porous coating are quite similar to that 
in blowing-suction region. 
 
To study the response of the boundary layer to single-frequency wall blowing-suction, six cases 
of unsteady simulations are carried out for different frequency. In all cases, blowing-suction 
disturbances are introduced in the region from 0.075x   m ( 905.82R  ) to 0.085x  m 
( 964.32R  ). Figure 6 schematically shows the profile of blowing-suction disturbances defined 
in Eq. (61). Frequencies of wall blowing-suction for the six cases of simulations are listed in 
Table 3. 

X

v

0.07 0.0725 0.075 0.0775 0.08 0.0825 0.085 0.0875 0.09

-1E-10

-5E-11

0

5E-11

1E-10

 
Fig. 6. A schematic of the profile of blowing-suction disturbance. 

 
Table 3. Frequencies of wall blowing-suction for the six cases of simulations 

Case #  Frequency, f (kHz) Frequency, F Circular frequency, ω 
at 0.425x   m 

1 300 5.13969398 × 10-5 0.11082613434 
2 400 6.85292531 × 10-5 0.14776817919 
3 500 8.56615664 × 10-5 0.18471022404 
4 600 0.00010279388 0.22165226954 
5 700 0.000119926193 0.25859431374 
6 800 0.000137058506 0.29553635795 
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5. Result and Discussion 
 
5.1 Steady base flow 
 
In current study, three types of steady base flow are obtained for perfect gas, thermal equilibrium 
and chemical non-equilibrium gas (thermal equilibrium gas), and thermochemical non-
equilibrium gas. The flows are simulated by solving two-dimensional compressible Navier-
Stokes equations with a combination of a fifth-order shock-fitting finite difference method and a 
second-order TVD scheme. In the leading edge region, there exists a singular point at the tip of 
flat plate, which will introduce numerical instability if the fifth-order shock-fitting method is used. 
Therefore, a second-order TVD scheme is applied to simulate steady base flow in a small region 
including the leading edge. For perfect gas flow, the computational domain for the fifth-order 
shock-fitting method starts at 0.02x   m and ends at 0.435x   m, corresponding to 

467.76R   and 2181.50R  , respectively. For thermal equilibrium flow and non-equilibrium 
flow, the computational domains for the fifth-order shock-fitting method start at 0.02x   m and 
end at 0.20x   m. 
 
In actual simulations of perfect gas flow, the computational domain is divided into six zones with 
a total of 2081 grid points in streamwise direction. The number of grid points in wall-normal 
direction is 201. Forty-one points are used in the overlapped region between two neighboring 
zones, which is proved to be sufficient to make the solution accurate and smooth within the whole 
domain. An exponential stretching function is used in wall-normal direction to cluster more 
points inside the boundary layer. On the other hand, the grid points are uniformly distributed in 
streamwise direction. The grid structures for the other two types of base flow are quite similar.  
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0

0.005
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0.015
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P
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37554.5
33888.3
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26555.9
22889.7
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8224.97
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6563.85
6249.36

Mesh

401 X 201

201 X 151

301 X 201

P

Y

5000 6000 7000 8000 9000
0

0.002

0.004

0.006

0.008

0.01
Mesh

401 X 201

201 X 151

301 X 201

 
(a) pressure contour                               (b) pressure distribution in  

wall-normal direction  at x = 0.02 m. 
Fig. 7. Plots of grid convergence study. 

 
For shock-fitting simulation in the first zone, inlet conditions are obtained from the results of 
shock-capturing simulation in a small region including the leading edge, where a second-order 
TVD scheme is used to simulate steady base flow. For shock-fitting simulations in other zones, 
inlet conditions are interpolated from the results of previous zone. Computational domain for 
shock-capturing simulation starts at 0.01x   m and ends at 0.04x   m ( 661.52R  ). Three 
sets of grid structures are used to check grid independence of numerical simulation results for 
perfect gas flow. Figure 7(a) compares pressure contours near the leading edge for three sets of 
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grid structures. It shows that pressure contours on 301 201  mesh agree well with those on 
401 201  mesh, whereas they have significant discrepancies with pressure contours on 
201 151  mesh. This figure indicates that the grid structure of 401 201 is fine enough to ensure 
grid independence of numerical simulation results. However, the grid structure of 201 151  is 
too coarse to achieve spatially converged results. Similar conclusion can be drawn in Fig. 7(b), 
where pressure distributions in wall-normal direction are compared. In this figure, pressure 
distributions are evaluated at 0.02x   m ( 467.76R  ).  
 
Figure 8 shows density contours of steady base flow computed by the fifth-order shock-fitting 
method for perfect gas flow. After 0.02x  m, the upper boundary of flow field represents bow 
shock induced by displacement thickness of the boundary layer. The lower boundary is the flat 
plate. At a fixed location in streamwise direction, pressure behind the shock is higher than that on 
flat plate due to the existence of bow shock. Figure 9 shows pressure contours of perfect gas 
solution. It is noticed that pressure is approximately a constant across the boundary layer and 
along the Mach lines, which is consistent with boundary layer theory and inviscid supersonic 
aerodynamics. Figures 8 and 9 also show that density and pressure contours have good 
agreements within the overlap region, which indicates that the TVD solutions are accurate to be 
used as inlet conditions for the fifth-order shock-fitting simulation in the first zone. 
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Fig. 8. Density contour of perfect gas solution. 
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Fig. 9. Pressure contour of perfect gas solution. 
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Fig. 10. Distributions of wall pressure and pressure behind shock of perfect gas solution. 

 
Figure 10 shows distributions of wall pressure and pressure behind bow shock computed by the 
fifth-order shock-fitting method for perfect gas flow. Large pressure gradient near the leading 
edge is caused by the interaction between viscous boundary layer and inviscid outer flow. From 
upstream to downstream, viscous-inviscid interaction becomes weaker with bow shock moving 
away from the boundary layer. As a result, pressure approaches a constant further downstream, 
and the flow field approaches the self-similar solution. Again, Fig. 10 shows that at a fixed 
location in the streamwise direction, pressure behind the shock is higher than that on flat plate.  
 
Figures 11 and 12 show the pressure contours of thermal equilibrium gas and thermochemical 
non-equilibrium gas.  Again, pressure contours have good agreements within the overlap region, 
which indicates that the TVD solutions are accurate to be used as inlet conditions for the fifth-
order shock-fitting simulation in the first zone. These figures also show pressure is approximately 
a constant across the boundary layer and along the Mach lines. 
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Fig. 11. Pressure contour of thermal equilibrium gas solution. 
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Fig. 12. Pressure contour of thermal equilibrium gas solution. 
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   (a) pressure           (b) temperature 

 
Fig. 13. Distributions of flow variables behind the shock for perfect gas flow, thermal equilibrium flow, and 

thermochemical non-equilibrium flow. 
 
Figure 13 compares distributions of pressure and translation temperature behind the shock for 
perfect gas flow, thermal equilibrium flow, and thermochemical non-equilibrium flow. It is clear 
shown that pressure and translation temperature for thermal equilibrium flow is higher than that 
of perfect gas flow and is lower than that of non-equilibrium flow. The results indicate that 
thermal and chemical non-equilibrium effects both increase the pressure and translation 
temperature behind the shock. Figure 14 shows the shock locations of the three types of steady 
base flow in the region centered at 0.025x  m ( 522.97R  ). The higher the shock location, 
the stronger the shock is. The figure shows thermochemical non-equilibrium flow over the flat 
plate induced the strongest shock. Therefore, the pressure and translation temperature behind the 
shock is highest for the non-equilibrium flow as shown in Fig. 13. 
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Fig. 14. Comparison of shock locations for perfect gas flow, thermal equilibrium flow, and thermochemical 

non-equilibrium flow. 

Temperature (K)

Y

1000 2000 3000 4000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

non-equilibrium flow: TV

thermal equilibrium flow

non-equilibrium flow: T

Temperature (K)

Y

1000 2000 3000 4000
0

0.005

0.01

0.015

non-equilibrium flow: TV

thermal equilibrium flow

non-equilibrium flow: T

 
(a) x = 0.065 m       (b) x = 0.11 m 
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(c) x = 0.155 m        (d) x = 0.2 m 

Fig. 15. Comparisons of temperature distributions in wall-normal direction for thermal equilibrium flow 
and thermochemical non-equilibrium flow. 
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Figure 15 compares temperature distributions in wall-normal direction for thermal equilibrium 
flow and non-equilibrium flow at four locations. These figures consistently show that temperature 
of thermal equilibrium flow is between translation temperature and vibration temperature of non-
equilibrium flow. For non-equilibrium flow, the difference between the two temperatures 
decreases from upstream to downstream.  
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Fig. 16. Comparisons of N2 mass fraction for thermal equilibrium flow and  non-equilibrium flow. 
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Fig. 17. Comparisons of O2 mass fraction for thermal equilibrium flow and non-equilibrium flow. 
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Fig. 18. Comparisons of NO mass fraction for thermal equilibrium flow and non-equilibrium flow. 
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Fig. 19. Comparisons of N2 mass fraction for thermal equilibrium flow and non-equilibrium flow. 

 
Figures 16 to 19 compare species mass fraction for thermal equilibrium flow and thermochemical 
non-equilibrium flow. The comparison of mass fraction of Nitrogen atom is neglected because it 
is two scales smaller than other species. The quantitative levels of mass fraction contour show 
that non-equilibrium flow has much stronger Oxygen dissociation but thermal equilibrium flow 
has stronger Nitrogen dissociation.  
 
5.2 Boundary-layer stability characteristics based on perfect gas flow solution 
 
Stability characteristics of the Mach 10 flat-plate boundary layer is studied by the linear stability 
theory (LST) using a multi-domain spectral method of Malik [29]. Here the LST analyses are 
carried out based on perfect gas solution. Velocity, pressure, and temperature disturbances are 
represented by harmonic waves of the form  
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




 (83) 

The two parameters,   and  , are wave number components in streamwise and spanwise 

directions, and   is circular frequency.  
 
For two-dimensional wall perturbations, 0  . Substituting disturbances in Eq. (83) and steady 
base flow into linearized Navier-Stokes equations, an ordinary-differential-equation (ODE) 
system is obtained, i.e.,  

 
2

2
0

d d
A B C

dy dy


 
   

 
 (84) 

where   is disturbance vector defined by  ˆˆ ˆ ˆ ˆ, , , ,
T

u v w p T . The coefficient matrices of A, B, and 

C are given in Malik's paper [29]. In spatial stability analysis, the two parameters,   and  , are 
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specified as real numbers. The streamwise wave number,  , is a complex number and solved as 
the eigenvalue of the ODE system. The complex wave number   can be expressed as  
 r ii     (85) 

where i  is the local growth rate. A boundary-layer wave is unstable when 0i   whereas it is 

stable when 0i  . The points 0i  are called neutral points of a boundary-layer wave. The 

real part, r , is the local wave number which can be used to define local phase velocity: 

 
r

a



  (86) 

Both wave number and phase velocity can be used to identify a boundary-layer wave.  
 
Steady base flow needed for LST analysis can be obtained either by numerically solving Navier-
Stokes equations or by computing a self-similar boundary-layer solution. Numerical simulation 
result is more accurate than self-similar solution, although it is inconvenient to use for LST 
analysis at series of locations. Figures 20 to 22 show profiles of streamwise velocity, temperature, 
and pressure in wall-normal direction at the location of 0.425x   m ( 2156.28R  ).  
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Fig. 20. Profiles of streamwise velocity, temperature, and pressure at x = 0.425 m. 
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Fig. 21. Streamwise derivatives of streamwise velocity, temperature, and pressure at x = 0.425 m. 
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Fig. 22. Wall-normal derivatives of streamwise velocity, temperature, and pressure at x = 0.425 m. 
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Figure 23 shows dimensionless phase velocities of boundary-layer waves at the 
location 0.425x   m ( 2156.28R  ) as a function of dimensionless circular frequency. The two 
horizontal dashed lines represent dimensionless phase velocities of fast acoustic wave 

( 11a M 
  ) and slow acoustic wave ( 11a M 

  ). The figure clearly shows that mode F 

originates from fast acoustic spectrum. As   increases, phase velocity of mode F decreases. 
When mode F passes entropy and vorticity spectra near 0.06  and 0.19  , there exists a 
jump of phase velocity. On the other hand, mode S originates from slow acoustic spectrum. The 
figure also shows that mode S synchronizes with mode F at the points of 
( 0.07062, 0.95881s sa   ) and ( 0.19708, 0.96881s sa   ). The first point is generally 

called the synchronization point, where mode S and mode F have the same phase velocity and 
similar eigen-functions (Fig. 24). In this figure, mode S and mode F are identified by their eigen-
functions, which are shown in Figs. 24 to 27. 
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Fig. 23.Distributions of dimensionless phase velocities of boundary-layer waves at x = 0.425 m. 
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Fig. 24.Eigen-functions of mode S and mode F (lower portion) at ω = 0.07. 
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Fig. 25.Eigen-functions of mode F (upper portion) at ω = 0.0646. 
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Fig. 26.Eigen-functions of mode F (upper portion) at ω = 0.17. 
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Fig. 27.Eigen-functions of mode S at ω = 0.2. 
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Figure 28 shows the growth rates of mode F and mode S at 0.425x  m as a function of 
dimensionless circular frequency. All portions of mode F are stable. Mode S is unstable in a small 
region around 0.07  .  
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Fig. 28. Distributions of growth rates of mode F and mode S at x = 0.425 m. 

 
According to previous studies [2, 30], the distribution of growth rates are approximately functions 
of dimensionless frequency only. Therefore, for wall blowing-suction at different frequencies, the 
growth rates are different with respect to the streamwise coordate x . Figure 29 shows the growth 
rate of mode S at the six frequencies considered in current paper as listed in Table 3. As the 
frequency increases from 300 kHz to 800 kHz, the peak of mode S growth rate moves upstream, 
and mode S becomes unstable earlier. However, the unstable region of mode S shrinks quickly as 
the frequency increases. 
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Fig. 29. Distributions of mode S growth rates at different frequencies  with respect to x. 
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5. 3 Response of the boundary layer to single-frequency blowing-suction 
 
The response of the boundary layer to single-frequency to wall blowing-suction is studied by six 
cases of numerical simulation for perfect gas flow. Since the blowing-suction disturbances are 
introduced in the region from 0.075x   m to 0.085x  m, it can be expected that the higher 
frequency blowing-suction will only induce weak boundary-layer waves because mode S 
becomes stable right after the blowing-suction region.  
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Fig. 30. Instantaneous pressure perturbation excited by blowing-suction at 300 kHz. 

  
Figure 30 shows the instantaneous pressure perturbation field excited by single-frequency wall 
blowing-suction at the frequency of 300 kHz. Although the strongest pressure perturbations are 
located outside of the boundary layer and propagating downstream along the Mach lines, there 
are significant excitation of boundary-layer waves inside the boundary layer. The feature of wave 
structure inside the boundary layer indicates that mode S (Mack’s first mode) is the dominant 
component. The structure of mode S (Mack’s second mode) is observed in Fig. 31, where 
instantaneous pressure perturbation field excited by wall blowing-suction at 400 kHz is plotted. 
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Fig. 31. Instantaneous pressure perturbation excited by blowing-suction at 400 kHz. 
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Fig. 32. Distributions of pressure perturbation amplitude along the plate excited by blowing-suction. 
 
Figure 32 compares pressure perturbation amplitudes along the flat plate excited by single-
frequency blowing-suction for the six cases of simulations. Since the current simulations are still 
in the adjacent region of blowing-suction disturbance, there is no enough information to draw 
quantitative conclusions. But the figure qualitatively shows that the strength of boundary-layer 
waves generally decreases as the frequency of disturbances increases. The result is consistent 
with what expected by the LST results. The amplitude of pressure perturbation excited by wall 
blowing-suction at 400 kHz is the largest because mode S (Mack’s second mode) is excited.  
 
5.4 Effect of regular porous coating on boundary-layer waves 
 
As shown in Figs. 30 and 31, mode S is excited in the boundary layer by wall blowing-suction in 
Cases 3 and 4. New unsteady simulations have been carried out for these two cases by putting 
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regular porous coating downstream of the blowing-suction region starting at 0.115x  m 
( 1121.66R  ). The parameters of regular porous coating are as follows, 

* 0.45mmh    * 25 mr    4   

Figures 33 and 34 show the instantaneous pressure and wall-normal velocity perturbations along 
the flat plate for cases 3 and 4. The wall-normal velocity disturbances introduced by regular 
porous coating are quite small, and their amplitudes closely depend on the instantaneous pressure 
perturbation.  
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Fig. 33. Instantaneous pressure and wall-normal velocity perturbations along the flat plate for case 3. 
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Fig. 34. Instantaneous pressure and wall-normal velocity perturbations along the flat plate for case 4. 

 
Figures 35 and 36 compare pressure perturbation amplitudes along the flat plate for cases 3 and 4 
w/ or w/o the effect of regular porous coating. The results show regular porous coating has a 
significant effect on boundary-layer instability. Boundary-layer waves excited by wall blowing-
suction are significantly attenuated by regular porous coating. Such results are consistent with 
previous studies. 
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Fig. 35. Comparison of pressure perturbation amplitudes along the flat plate for case 3 w/ or w/o the effect 

of regular porous coating. 
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Fig. 36. Comparison of pressure perturbation amplitudes along the flat plate for case 4 w/ or w/o the effect 

of regular porous coating. 
 
 

6. Summary 
 
In the current paper, we conduct numerical simulations on the stabilization of a Mach 10 
boundary layer using regular porous coating. A high-order shock-fitting non-equilibrium flow 
solver based on 5-species air chemistry and recent thermal property models is used. The effects of 
thermochemical non-equilibrium flow including internal energy excitations, translation-vibration 
energy relaxation, and chemical reactions among different species are considered. 
 
Three types of steady base flow for perfect gas, thermal equilibrium and chemical non-
equilibrium gas, and thermochemical non-equilibrium gas are first investigated. For perfect gas 
flow, the viscosity coefficient is calculated by Sutherland’s law and Prandtl number is a given 
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constant. For the other two types of flow, the transport properties are calculated by collision 
cross-section area. The results show that thermal and chemical non-equilibrium effects both 
increase the pressure and translation temperature behind the shock. Furthermore, non-equilibrium 
flow has much stronger Oxygen dissociation but thermal equilibrium flow has stronger Nitrogen 
dissociation. 
 
The stability characteristics of the Mach 10 boundary layer are studied by the linear stability 
theory based on perfect gas solution. Response of the boundary layer to single-frequency wall 
blowing-suction is studied by six cases of unsteady simulations for perfect gas. The results of 
unsteady simulations have good agreement with the linear stability theory. The preliminary 
results show regular porous coating has a significant effect on boundary-layer instability. More 
steady and unsteady simulations on the passive control of hypersonic non-equilibrium boundary-
layer transition using regular porous coating are still ongoing.  
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