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sections of porous coating
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The stabilization effect of porous coating on the hypersonic boundary layers over flat
plates and cones has been studied by theoretical analyses, experiments, and numerical
simulations. It was found that porous coating slightly destabilizes Mack’s first mode
whereas it significantly stabilizes Mack’s second mode. In previous studies, porous
coating covers either the entire flat plate or the surface around half the cone circum-
ference. The effect of porous coating location on boundary-layer stabilization has not
been considered. Furthermore, the destabilization of Mack’s first mode has not been
studied in detail. In this paper, the stabilization of a Mach 5.92 flat-plate boundary
layer using local sections of porous coating is studied with the emphasis on the effect
of porous coating location and the first-mode destabilization. Artificial disturbances
corresponding to a single boundary-layer wave are introduced near the leading edge.
A series of stability simulations are carried out by locally putting felt-metal porous
coatings along the flat plate. It is found that disturbances are destabilized or stabilized
when porous coating is located upstream or downstream of the synchronization point.
For felt-metal porous coating, the destabilization of Mack’s first mode is significant.
The results suggest that an efficient way to stabilize hypersonic boundary-layer flows
is to put porous coating downstream of the synchronization point. Finally, porous
coating is used to stabilize the boundary layer disturbed by one blowing-suction ac-
tuator. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694808]

I. INTRODUCTION

The performance of hypersonic transportation vehicles and re-entry vehicles and the design of
their thermal protection systems are significantly affected by the transition of boundary-layer flows
over vehicle surfaces as turbulent boundary layers generate much higher surface friction and heating.
Transition can have a first-order impact on lift, drag, stability, control, and heat transfer properties
of the vehicles.1 Transition control to maintain laminar boundary-layer flows or delay transition can
result in lower drag, lower heat flux to surface, and higher fuel efficiency.

In order to predict and control boundary-layer transition, extensive studies have been carried
out focusing on transition mechanisms.2–4 It has been demonstrated that transition of external shear
flows, including boundary layers, strongly depends on the amplitude of environmental disturbances.
Figure 1 schematically shows transition paths of external shear flows. For small amplitude distur-
bances, the transition of a boundary layer over a smooth surface generally consists of the following
three stages: (1) Receptivity process during which environmental disturbances enter the boundary
layer and excite boundary-layer waves. (2) Modal growth of unstable boundary-layer waves which
can be obtained by solving the eigen-problem of the homogeneous linearized stability equations. (3)
Breakdown to turbulence caused by nonlinear secondary instabilities and three-dimensional effects
when the unstable waves reach a certain amplitude. This three-stage-transition mechanism is path
1 as shown in Fig. 1. With the disturbance amplitude increasing, transient growth, arising through
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FIG. 1. Transition paths of external shear flows with respect to the amplitude of environmental disturbance (Reshotko2).

the non-orthogonal nature of the Orr-Sommerfeld eigenfunctions and the Squire eigenfunctions, be-
comes important. Weak transient growth provides a higher initial amplitude for modal growth (path
2) whereas strong transient growth can lead to secondary instabilities and breakdown to turbulence
right after the receptivity process (path 3). Porous coatings are used to stabilize the boundary layer
by attenuating modal growth.

For the stability of hypersonic boundary layers, different terminologies for boundary-layer waves
have been used in the literature by Mack,5 Ma and Zhong,6 and Tumin.7 In Tumin’s theoretical
analyses, the first mode, second mode, etc. of Mack are called mode S. The Mode I, Mode II,
etc. of Ma and Zhong are called mode F. Mathematically, the terminologies used by Tumin are
more clear and recommended for both mathematical analyses and interpretation of direct numerical
simulations.8 Mode S and mode F are given the names because they are tuned to slow and fast
acoustic waves, respectively, in the limit of small Reynolds numbers. Mode F is generally stable
whereas mode S is unstable in the region bounded by a neutral curve. Therefore, mode S is more
relevant in the three-stage transition. Mack’s first mode may be inviscidly unstable at sufficiently
high Mach numbers because compressible boundary-layer profiles contain an inflection point, but its
instability is most important at finite Reynolds numbers. For boundary layers over adiabatic surfaces,
Mack’s second mode exists when flow Mach numbers are above 2.2 and becomes important when
Mach numbers are larger than 4. According to the three-stage-transition mechanism, stabilization of
Mack’s first and second modes are critical to transition control.

Passive control of boundary-layer transition by using porous coating to stabilize hypersonic
boundary layers over flat plates and cones has been studied using theoretical analyses, experiments,
and numerical simulations.9–15 Fedorov et al.9 theoretically analyzed the second-mode stability
of a hypersonic boundary layer over a flat plate covered by an ultrasonically absorptive coating
(UAC). They found that the second mode growth was massively reduced because the porous layer
absorbed some energy from the disturbance. Rasheed et al.10 experimentally studied the stability of
a Mach 5 boundary layer on a sharp 5.06◦ half-angle cone at zero angle of attack. The cone had a
smooth surface around half the cone circumference and an UAC porous surface on the other half.
Their experiments indicated that the porous surface was highly effective in stabilizing the second
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mode and delaying transition when the pore size was significantly smaller than the disturbance
wavelength. The experiments carried out by Fedorov and co-workers11–13 also showed that porous
coating strongly stabilized the second mode and marginally destabilized the first mode. Chokani
et al.14 studied the nonlinear aspects of the second-mode stabilization for a regular microstruc-
ture using bispectral analysis. The spectral measurements showed that the harmonic resonance of
the second mode is completely absent on the porous surface, and the first mode is moderately
destabilized. Maslov15 experimentally studied the stabilization of a hypersonic boundary layer by
microstructural porous coating. In his experiments, both regular structure UAC and random felt-
metal UAC are used. The results confirmed that porous coating strongly stabilizes the second mode
and marginally destabilizes the first mode. Compared with regular structure UAC, felt-metal UAC
is much stronger in first mode destabilization, with the peak amplitude of the first mode increasing
around 70%.

Recently, more researchers have carried out studies in this field.16–19 Fedorov and Malmuth20

conducted parametric studies of the regular porous coating performance for Mach 7 and 10 freestream
conditions. They found that the porous coating performance strongly increases with porosity. Egorov
et al.21 studied the effect of porous coating on stability and receptivity of a Mach 6 flat-plate bound-
ary layer by two-dimensional numerical simulation using a second-order total variation diminishing
(TVD) scheme. They found that a porous coating of regular porosity effectively diminishes the
second mode growth rate, while weakly affecting acoustic waves. Sandham and Lüdeke22 numer-
ically studied Mack mode instability of a Mach 6 boundary layer over a porous surface. It was
shown that the detailed surface structure is not as important as the overall porosity. Stephen and
Michael23 theoretically considered the effect of a porous wall on Mack’s first mode for a hypersonic
boundary layer on a sharp slender cone. They found that the porous wall significantly destabilized
the non-axisymmetric modes. Lukashevich et al.24 studied the effect of porous coating thickness
on the stabilization of high-speed boundary layers. They demonstrated that the stalibization effect
essentially depends on the UAC thickness and then figured out the optimal thickness. In summary,
previous results consistently showed that porous coating significantly stabilizes Mack’s second mode
and moderately destabilizes Mack’s first mode. Therefore, local stabilization of Mack’s second mode
is stronger than local destabilization of Mack’s first mode. At a fixed location, porous coating reduces
the overall disturbances.

In previous studies, porous coating covers either the entire flat plate or the surface around half
the cone circumference. The effect of porous coating location on boundary-layer stabilization has
not been studied. In fact, placement of porous coating can affect the efficiency of boundary-layer
stabilization. If Mack’s first mode propagates from upstream to downstream, it will spatially develop
into Mack’s second mode. In this case, the upstream first-mode destabilization is very important:
it leads to a stronger Mack’s second mode where porous coating now has to stabilize the much
stronger second mode. Overall, the upstream first-mode destabilization decreases the efficiency of
boundary-layer stabilization. A straightforward way to avoid first-mode destabilization is to put
porous coating only where Mack’s second mode is dominant. In a previous numerical study, Wang
et al.25 showed that the synchronization point of mode F and mode S plays an important role in the
excitation of mode S. The results indicate that the synchronization point might be the right location
to start putting porous coating.

In this paper, the stabilization of a Mach 5.92 boundary layer over a flat plate using local
sections of porous coating is studied by a combination of direct numerical simulation (DNS) and
linear stability theory (LST), with the emphasis on the effect of porous coating location and the first-
mode destabilization. At first, the role of the synchronization point on boundary-layer stabilization
is investigated by a series of stability simulations. The stability simulations consist of two steps: (1)
Periodic disturbances corresponding to mode S or mode F are superimposed on steady base flow
at a cross section of the boundary layer to show spatial development of the wave. While it is hard
to generate pure mode S or mode F in experiment, numerical simulations have the advantage of
using pure mode to simplify the problem. (2) Local sections of porous coating are used downstream
of the superimposed wave to investigate its effect on boundary-layer instability. For superimposed
mode S, six sections of porous coating are considered, with three of them being located upstream
of the synchronization point. For superimposed mode F, only the three sections of porous coating
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located upstream of the synchronization point are considered. Numerical results are interpreted by
comparing with LST analyses. Porous coating is then used to stabilize the boundary layer disturbed
by one blowing-suction actuator.

II. GOVERNING EQUATIONS AND FLOW CONDITIONS

The Mach 5.92 boundary layer over a flat plate, as schematically shown in Fig. 2, is considered.
In the figure, the streamwise propagating disturbances in the boundary layer are excited by either
superimposed mode S/mode F or the blowing-suction actuator. The flow is assumed to be thermally
and calorically perfect. The governing equations are the compressible Navier-Stokes equations, i.e.,

∂ �U ∗

∂t∗ + ∂

∂x∗
1

( �F∗
1i + �F∗

1v) + ∂

∂x∗
2

( �F∗
2i + �F∗

2v) = 0 , (1)

where �U ∗ is a column vector containing the conservative variables of mass, momentum, and energy,
i.e.,

�U ∗ = {ρ∗, ρ∗u∗
1, ρ

∗u∗
2, e∗}T . (2)

The flux vectors in Eq. (1) are divided into their inviscid and viscous components because the two
components are discretized with different schemes. The components, �F∗

1i and �F∗
2i , are inviscid flux

whereas �F∗
1v and �F∗

2v are viscous flux components.
In Eq. (1), there are four equations and five unknown variables equation of state is needed to

solve the governing equations. Under the perfect gas assumption, pressure and energy are given by

p∗ = ρ∗ R∗T ∗ , (3)

e∗ = ρ∗c∗
vT ∗ + ρ∗

2
(u∗2

1 + u∗2
2 ) , (4)

where c∗
v is the specific heat at constant volume. Refer to our recent paper26 for details of governing

equations and numerical methods.
In this paper, the superscript “*” represents dimensional variables. Numerical simulations are

carried out for dimensional variables. In the analyses of numerical results, the dimensional flow
variables are non-dimensionalized by freestream parameters. Specifically, density, temperature,

bow shock

boundary layer

flat plate

x*

y*

M∞=5.92

porous coating

FIG. 2. A schematic of the stabilization of a Mach 5.92 flat-plate boundary layer using porous coating.
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velocity, and pressure are non-dimensionalized by ρ∗
∞, T ∗

∞, u∗
∞, and ρ∗

∞u∗2
∞. Furthermore, x∗

1 is non-
dimensionalized by unit length in meter, whereas x∗

2 is non-dimensionalized by the local boundary
layer thickness,

√
μ∗∞x∗

1/ρ∗∞u∗∞. Referring to the coordinate system shown in Fig. 2, x∗
1 and x∗

2 are x*
and y*, respectively. The two variables, u∗

1 and u∗
2, are velocities in the streamwise and wall-normal

directions.
Freestream flow conditions are the same as those of Maslov et al.’s experiment,27 i.e.,

M∞ = 5.92, T ∗
∞ = 48.69 K,

p∗
∞ = 742.76 Pa, Pr = 0.72,

f ∗ = 100 kHz, F = 53.03 × 10−6,

Re∗
∞ = 14.12 × 106/m,

where Re∗
∞ is the unit Reynolds number defined as

Re∗
∞ = ρ∗

∞u∗
∞

μ∗∞
. (5)

One may notice that, in Maslov et al.’s experiment,27 Re∗
∞ = 13 × 106/m. The difference of unit

Reynolds number comes from the calculation of freestream viscosity. In our numerical simulations,
viscosity is calculated by Sutherland’s law. In the freestream, Sutherland’s law is not valid for such
a low temperature as T ∗

∞ = 48.69 K, which leads to a smaller viscosity and a higher unit Reynolds
number. Since numerical simulations are carried out for flow after the shock, where temperature is
much higher than freestream temperature, it is still valid to use Sutherland’s law. In other words, the
difference of unit Reynolds number has no effect on the dimensional numerical simulation. It only
plays a role in the analyses of numerical results.

In both steady and unsteady simulations, inlet conditions are specified. High-order extrapolation
is used for outlet conditions because the flow is hypersonic at the exit except a small region near
the flat plate. Flow variables behind the shock are solved by combining Rankine-Hugoniot relations
across the shock and a characteristic compatibility relation coming from downstream flow. For the
steady base flow simulation the wall is adiabatic, and the physical boundary condition for velocity
on the flat plate is the no-slip condition. In stability simulations, special treatment of wall boundary
conditions is needed. When disturbances are introduced, temperature perturbation is set to zero,
which is a standard boundary condition for theoretical and numerical studies of high frequency
disturbances. Meanwhile, the no-slip condition is applied on the flat plate except in the blowing-
suction region and porous coating region.

The same flow has been used in numerical simulations of boundary-layer stabilities.26, 28 The
dimensional streamwise coordinate x*, as shown in Fig. 2, can be converted to local Reynolds
number by

Rex = Re∗
∞x∗ . (6)

In LST analyses of boundary layer flows, the Reynolds number based on the local length scale of
boundary layer thickness, L*, is generally used and is expressed as

R = ρ∗
∞u∗

∞L∗

μ∗∞
, L∗ =

√
μ∗∞x∗

ρ∗∞u∗∞
. (7)

Hence, the relation between R and local Reynolds number Rex is given by

R =
√

Rex . (8)

III. POROUS COATING AND BLOWING-SUCTION ACTUATOR MODELS

At step 1 of the stability simulations, disturbances corresponding to a specific boundary layer
wave at a frequency of 100 kHz are introduced at a cross section of the boundary layer. The
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disturbances are a combination of velocity, pressure, and temperature oscillations, which can be
expressed as ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ũ∗

ṽ∗

w̃∗

p̃∗

T̃ ∗

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= ε1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

û∗(y∗)
v̂∗(y∗)
ŵ∗(y∗)
p̂∗(y∗)
T̂ ∗(y∗)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

sin(ω∗t∗) , (9)

where ε1 is a small dimensionless parameter representing the amplitude of disturbances. The vector,
{û∗(y∗), v̂∗(y∗), ŵ∗(y∗), p̂∗(y∗), T̂ ∗(y∗)} T, represents the eigenfunctions of mode S or mode F,
which is obtained from LST analyses. The profiles of disturbances are normalized by the pressure
perturbation on the wall. In the above equation, ω* is the circular frequency of the disturbances,
which is related to the frequency by

ω∗ = 2π f ∗ . (10)

The circular frequency, ω*, and the frequency, f*, are non-dimensionalized according to

ω = ω∗L∗

u∗∞
, (11)

F = 2π f ∗μ∗
∞

ρ∗∞u∗2∞
= ω∗μ∗

∞
ρ∗∞u∗2∞

. (12)

With the definitions of Reynolds number R and the dimensionless frequency F, the dimensionless
circular frequency can also be expressed as

ω = RF . (13)

If F is a constant in Eq. (13), ω ∝ (x*)1/2. Therefore, plots versus ω are also plots versus distance if
the frequency is fixed.

At step 2 of stability simulations, felt-metal porous coating similar to that of Fedorov et al.11

is used. Porous coating is modeled by wall blowing-suction relating to pressure perturbations. The
wall-normal velocity disturbance induced by porous coating is

v′ = Ay p′ . (14)

The porous coating admittance, Ay, is defined as

Ay = − φ

Z0
tanh(�h) . (15)

In the above equation, φ is porosity and h is the porous-layer thickness non-dimensionalized by the
local length scale of the boundary layer thickness,

h = h∗

L∗ = h∗
√

ρ∗∞u∗∞
μ∗∞x∗ . (16)

According to Allard and Champoux’s theoretical analyses,29 the empirical equations for porous
coating characteristic impedance (Z0) and propagation constant (�) are

Z0 = ρw

Me

√
Twρ̃

C̃
, (17)

� = iωMe√
Tw

√
ρ̃C̃ , (18)
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where ρw and Tw are the local dimensionless density and temperature on the porous coating surface.
The edge Mach number (Me) is defined right after the shock. The dynamic density (ρ̃) and bulk
modulus (C̃) are calculated from the following equations:

ρ̃ = a∞

[
1 + g(λ1)

λ1

]
, (19)

C̃ = γ − γ − 1

1 + g(λ2)
λ2

. (20)

In these two equations, λ1, λ2, and the function g(λ) are defined as

g(λ) =
√

1 + 4a∞μ∗
wλ

σ ∗φr∗2
p

, (21)

λ1 = ia∞ρ∗
wω∗

φσ ∗ , (22)

λ2 = 4Prλ1 , (23)

where a∞ is the tortuosity, σ* is the flow resistivity, and r∗
p is the characteristic pore size. These pa-

rameters are determined by the porous coating. In the porous coating model, the local dimensionless
variables (v, p, Tw, ρw, ω) are non-dimensionalized by the corresponding variables right after the
shock, (u∗

e , ρ∗
e u∗2

e , T ∗
e , ρ∗

e ,
√

μ∗
e x∗/ρ∗

e u∗
e/u∗

e ).
With the definitions of characteristic impedance and propagation constant, porous coating

admittance is generally a complex number. Velocity perturbation calculated by Eq. (14) is also a
complex number. However, only the real part of the velocity perturbation can be imposed in numerical
simulations. The velocity perturbation used in DNS is written relating to the instantaneous pressure
perturbation (p(t*)) as

v(t∗) = Real(Ay)p(t∗) + Imag(Ay)
dp(t∗)

ω∗dt∗ , (24)

where “Real(Ay)” and “Imag(Ay)” represent the real and imaginary parts of porous coating admit-
tance, respectively.

Finally, porous coating is used to stabilize the boundary layer disturbed by one blowing-suction
actuator. The mass flux oscillation on the flat plate within the blowing-suction region can be written
as

(ρ∗v∗)′ = q∗
0 ε2β(l)sin ω∗t∗ , (25)

where q∗
0 is a constant locally defined at the leading edge of the blowing-suction actuator and ε2 is a

small dimensionless parameter representing the amplitude of the mass flux oscillation. The function
β(l) is the profile function defined within the forcing region as

β(l) =
{

20.25l5 − 35.4375l4 + 15.1875l2 if l ≤ 1

−20.25(2 − l)5 + 35.4375(2 − l)4 − 15.1875(2 − l)2 if l ≥ 1
. (26)

The variable l is a dimensionless coordinate defined within the blowing-suction region,

l = 2(x∗ − x∗
i )

x∗
e − x∗

i

, (27)

where x∗
i and x∗

e are the coordinates of the leading and trailing edges of the blowing-suction actuator.
Due to the anti-symmetric property of the 5th-order-polynomial profile function within the blowing-
suction region, the net mass flux introduced to the boundary layer is zero at any instant.
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IV. SPATIAL DEVELOPMENT OF MODE S AND MODE F

At step 1 of the stability simulations, periodic disturbances corresponding to mode F or mode
S are superimposed on the steady base flow at a cross section of the boundary layer to show spatial
development of the wave. The steady base flow over the flat plate is simulated by solving the
two-dimensional compressible Navier-Stokes equations with a combination of a fifth-order shock-
fitting finite difference method and a second-order TVD scheme. The stability characteristics of
the hypersonic boundary layer are analyzed using LST. In this paper, only the most important LST
results are discussed. More details of LST analyses and the steady base flow simulation can be found
in Wang and Zhong’s paper.26

In a spatial stability problem, the complex wave number α can be expressed as

α = αr + iαi , (28)

where −αi is the local growth rate. A boundary-layer wave is unstable when αi < 0 and stable when
αi > 0. The points where αi = 0 are called neutral points of a boundary-layer wave. A wave is
generally unstable only in certain domains bounded by neutral points. The real part of α is the local
wave number which can be used to define the local phase velocity:

a = ω

αr
. (29)

Both wave number and phase velocity can be used to identify a boundary-layer wave.
Figure 3 shows the dimensionless phase velocities of boundary-layer waves at two locations,

x* = 0.159 m and x* = 0.189 m (R = 1437.71 and 1567.48), as a function of the dimension-
less circular frequency. In this figure, the frequency of boundary-layer waves is changing. The
three horizontal dashed lines represent the dimensionless phase velocities of fast acoustic waves
(a = 1 + M−1

∞ ), entropy and vorticity waves (a = 1), and slow acoustic waves (a = 1 − M−1
∞ ),

respectively. Theoretically, the phase velocities of fast and slow acoustic waves should be calculated
with the Mach number behind the shock. However, the Mach number behind the shock is not a
constant in the computational domain.26 For convenience, the freestream Mach number is used in
the current paper. The excellent agreement of the phase velocities at different locations indicates that
the phase velocity is approximately a function of dimensionless circular frequency only. The figure

ω
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FIG. 3. Dimensionless phase velocities of mode S and mode F at two different locations versus dimensionless circular
frequency.
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FIG. 4. Growth rates of mode S and mode F at two different locations versus dimensionless circular frequency.

clearly shows that, in the limit of small dimensionless circular frequency, mode F and mode S are
tuned to fast and slow acoustic waves, respectively. As ω increases, the phase velocity of mode F
decreases. When mode F passes the continuous entropy and vorticity waves near ω = 0.1, there exists
a jump in phase velocity, caused by the resonance between mode F and entropy/vorticity waves.
The figure also shows that mode S synchronizes with mode F at the point where ωs = 0.11563 and
as = 0.93076. At the synchronization point, dimensionless phase velocities of mode S and mode F
are identical. Location of the synchronization point in the x* coordinate for a given dimensionless
frequency can be calculated using the following formula:

x∗
s = (ωs/F)2

Re∗∞
. (30)

Figure 4 shows the growth rates of mode S and mode F at the same set of locations as a
function of the dimensionless circular frequency. The horizontal dashed line stands for the neutral
waves (αi = 0). In Fig. 4, the growth rates of mode S at the two locations agree well and they are
approximately functions of dimensionless circular frequency only. Mode S is unstable in the region
from ωI = 0.01827 to ωII = 0.18465. The parameters, ωI and ωII, are called the Branch I and Branch
II neutral points of mode S. Mode S is stable upstream of the Branch I neutral point and downstream
of the Branch II neutral point. The locations of the Branch I and Branch II neutral points in the x*
coordinate can be calculated from

x∗
I = (ωI /F)2

Re∗∞
, (31)

x∗
I I = (ωI I /F)2

Re∗∞
. (32)

Periodic disturbances corresponding to mode S or mode F at a frequency of 100 kHz are
superimposed on the steady base flow at a cross section of the boundary layer at x* = 69.00
mm (R = 987.24). The frequency of superimposed disturbances is chosen based on the following
two reasons. First, porous coating characteristic impedance and propagation constant, defined by
Eqs. (17) and (18), are frequency dependent. It is hard to simulate the response of porous coating
to multi-frequency disturbances. Therefore, in Egorov et al.’s numerical simulations,21 only the
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FIG. 5. Comparisons of superimposed mode S with the eigenfunctions of mode S obtained from LST: (a) streamwise velocity,
(b) wall-normal velocity, (c) pressure, and (d) temperature.

disturbance at a single frequency (F = 1.3 × 10−4) is considered. Second, the numerical simulations
of Wang and Zhong26 showed that the Mach 5.92 flat-plate boundary layer has a strong response to
disturbances at the frequency of 100 kHz. For the boundary-layer waves considered in the current
paper (f* = 100 kHz, F = 53.03 × 10−6), the synchronization point and the two neutral points in
the x* coordinate are, respectively, located at 0.33184 m, 8.40310 × 10−3 m, and 0.84622 m.

The computational domain for the stability simulation starts at x* = 69.00 mm (R = 987.24)
and ends at x* = 0.8590 m (R = 3483.32). The parameters of disturbance amplitude, ε1 in Eq. (9),
are assigned to mode S and mode F as 1.0 × 10−8 and 1.0 × 10−6, respectively. These two values are
small enough to preserve the linear properties of the disturbances. Figure 5 compares superimposed
mode S with the eigenfunctions of mode S obtained from LST. Similar comparisons of mode F
are shown in Fig. 6. In these two figures, the eigenfunctions of mode S and mode F are obtained
from LST at x* = 69.00 mm with the parallel flow assumption. Both superimposed disturbances
and the eigenfunctions are normalized by the corresponding pressure disturbance on the wall. The
good agreements of velocity and pressure profiles indicate that the disturbances superimposed on
the steady base flow are exactly mode S or mode F. The discrepancy between temperature profiles
near the wall (y/L < 10), as shown in Figs. 5(d) and 6(d), is caused by the nonparallel flow effect.
In the stability simulations, temperature profiles of superimposed disturbances are calculated using
pressure and density eigenfunctions of corresponding waves obtained from LST, together with mean
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FIG. 6. Comparisons of superimposed mode F with the eigenfunctions of mode F obtained from LST: (a) streamwise velocity,
(b) wall-normal velocity, (c) pressure, and (d) temperature.

flow temperature, pressure, and density obtained from DNS, i.e.,

T̃ ∗ = T ∗
0 (

p̃∗

p∗
0

− ρ̃∗

ρ∗
0

) , (33)

where T ∗
0 , p∗

0 , and ρ∗
0 are mean flow temperature, pressure, and density. p̃∗ and ρ̃∗ are pressure and

density eigenfunctions. Nonparallel flow effects are included in the mean flow simulation.
Figure 7 shows the spatial development of superimposed mode S and mode F. In this figure,

the spatial development of superimposed mode F with an amplitude parameter of 1.0 × 10−8 is
also plotted. The symbols represent one hundredth of the exact pressure perturbation related to
superimposing mode F with the amplitude parameter set as 1.0 × 10−6. It is clearly shown that
the spatial development of mode F with different amplitudes has the same profile. A one hundred
times difference in superimposed disturbance amplitude leads to a 100 times amplitude difference
in downstream pressure perturbation, which demonstrates the linear properties of the superimposed
mode F. When mode S is superimposed at x* = 69.00 mm (R = 987.24) it grows dramatically where
the peak of pressure perturbation amplitude is around x* = 0.8 m (R = 3361.57). The scenario
of mode F is quite different from that of mode S. After a transient process, pressure perturbation
amplitude of mode F decreases because mode F is a stable wave. The lowest pressure perturbation
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FIG. 7. Spatial development of superimposed mode S and mode F.

amplitude of mode F is observed at around x* = 0.24 m (R = 1841.21). After that, the wave grows
similar to mode S with the amplitude peak around x* = 0.8 m (R = 3361.57).

In order to quantitatively study the spatial development of superimposed waves, a local wave
number (αr) and a local growth rate (αi) related to pressure perturbation along the flat plate are
calculated,

αr = L∗ dφ′

dx∗ , (34)

αi = − L∗

|p′|
d|p′|
dx∗ , (35)

where L* is the length scale of the local boundary layer thickness as defined by Eq. (7). |p′| and
φ′ are pressure perturbation amplitude and phase angle, respectively. The parameters αr and αi

represent the true wave number and growth rate only if the perturbation is dominated by a single
wave. Otherwise, the disturbance needs to be decomposed to check properties of a specific wave.
For example, Tumin, Wang, and Zhong30 decomposed the disturbance at a location just downstream
of the blowing-suction actuator with a biorthogonal eigenfunction system where mode F, mode S,
and continuous waves coexisted and none of them was dominant.

Since only one boundary layer wave is superimposed in the stability simulations, the superim-
posed wave is dominant in the boundary layer. In this case, Eqs. (34) and (35) can be used to check
the properties of the superimposed wave. Figure 8 compares the growth rate calculated from the
stability simulations with that obtained from LST for superimposed mode S and mode F. For mode
S, the growth rate from the stability simulation has a good agreement with that of LST in the region
ω = 0.11 to ω = 0.13. When ω is larger than 0.13, the growth rate from the stability simulation
is larger than that of LST, i.e., mode S obtained by the stability simulation becomes more stable
than that predicted by LST. However, when ω is smaller than 0.11, mode S obtained by the stability
simulation becomes more unstable than that predicted by LST. This is due to the growth rate from
the stability simulation being smaller than that predicted by LST.

For mode F, the figure shows that the growth rate of the stability simulation initially follows that
of LST. However, it approaches that of mode S near the synchronization point, which indicates that
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mode S and mode F.

mode F mainly converts to mode S near the synchronization point. The existence of another mode F
is possible after the branching of mode S and mode F, but it seems to have a much smaller amplitude
than that of mode S in this case. After the synchronization point, the growth rate of the stability
simulation has a good agreement with that of mode S. The discrepancy between the growth rates
of mode S calculated from the stability simulation and LST, when ω is larger than 0.13 or smaller
than 0.11, is mainly caused by nonparallel flow effects which have been theoretically interpreted by
Tumin, Wang, and Zhong.31 Nonparallel flow effects stabilize Mack’s second mode and destabilize
Mack’s first mode.

Figure 9 compares the phase velocity calculated from the stability simulations with that obtained
from LST for the superimposed mode S and mode F. For mode S, the phase velocity from the stability
simulation has a good agreement with that of LST. It is clearly shown that the phase velocity of
mode F has strong oscillations around x* = 0.24 m (R = 1841.21), where mode F is resonant with
vorticity and entropy waves. This resonance leads to initial growth of mode F around x* = 0.24
m (R = 1841.21). After x* = 0.32 m (R = 2126.04), the phase velocity of mode F approaches
that of mode S, which indicates that mode F converts to mode S. Figure 10 compares pressure
perturbation profiles across the boundary layer at two locations, x* = 249 mm and x* = 359
mm (R = 1875.41 and 2251.88), for a superimposed mode S and mode F. The two locations are
upstream and downstream of the synchronization point (x* = 0.33184 m), respectively. The figure
shows significant difference between pressure perturbation profiles at x* = 249 mm (R = 1875.41).
However, pressure perturbation profiles have a good agreement at x* = 359 mm (R = 2251.88).
This figure confirms that mode F converts to mode S after the synchronization point.

In Figs. 8 and 9, there are very big oscillations of the values of growth rate and phase velocity
before the synchronization point. These strong oscillations are a result of the coexistence of mode F,
mode S, acoustic waves, and entropy/vorticity waves in the boundary layer. As shown in Figs. 5 and
6, the imposed disturbances are not exactly single boundary-layer waves because of the nonparallel
effect; they are only dominated by mode S or mode F. Furthermore, the resonances between different
waves enhance such oscillations. After the synchronization point, mode S grows rapidly and becomes
the dominant wave in the boundary layer. Therefore, oscillations of growth rate and phase velocity
disappear after the synchronization point.
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V. EFFECT OF POROUS COATING ON MODE S

At step 2 of the stability simulations, felt-metal porous coatings, modeled by wall blowing-
suction related to pressure oscillation, are used downstream of the superimposed wave. To investigate
the role of the synchronization point on boundary layer stabilization, porous coatings are located
both upstream and downstream of the synchronization point.
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FIG. 10. Comparison of pressure perturbation profiles across the boundary layer at two locations for superimposed mode S
and mode F.
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TABLE I. Locations of the six sections of porous coating for superimposed mode S and mode F.

Index x∗
Start(mm) x∗

End(mm) x∗
Center(mm)

1 73.5 124.8 99.2
2 193.5 244.8 219.2
3 283.5 304.8 294.2
4 366.5 402.8 384.6
5 466.5 502.8 484.6
6 574.0 645.0 609.5

Parameters of felt-metal porous coating are the same as those used in Fedorov et al.’s paper,11

i.e.,

φ = 0.75, h∗ = 0.75 mm,

a∞ = 1, d∗ = 30 μm,

σ ∗ = 1.66 × 105 kg m3s−1, γ = 1.4,

where d* is the fiber diameter, which is related to the characteristic pore size as follows:

r∗
p = πd∗

2 − 3φ + φ2
. (36)

For superimposed mode S, six sections of porous coating are considered, with three of them
being located upstream of the synchronization point. The locations of porous coatings are listed
in Table I. Figure 11 schematically shows porous coating locations for the stability simulations of
superimposed mode S. The first three porous coatings are located upstream of the synchronization
point whereas the other three are located downstream of the synchronization point. The contours
show pressure perturbation excited by superimposed mode S without porous coating. The structures
of pressure perturbation contour show that the synchronization point is the location where the first
mode converts to the second mode.

To study the effect of porous coating and its location on mode S, a series of stability simulations
have been carried out. Specifically, six cases of simulations are considered by adding porous coatings
one by one from upstream to downstream. For example, only the first porous coating is used in the
first case. The first two porous coatings are used in the second case. Eventually, in the sixth case,
all six porous coatings are used. Figure 12 shows pressure perturbations along the flat plate for the
six cases of stability simulations, together with the spatial development of mode S without porous
coating. It is noticed that pressure perturbations of all six cases with porous coating have a similar
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FIG. 11. A schematic of porous coating locations for the stability simulations of superimposed mode S.
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FIG. 12. Comparisons of pressure perturbation along the flat plate for the six cases of stability simulations of superimposed
mode S.

profile as that of purely mode S without porous coating with an amplitude peak around x* = 0.8 m
(R = 3361.57). However, porous coating does affect the amplitude of pressure perturbation.

Porous coatings with the index number from 1 to 3 are upstream of the synchronization point.
Figure 12(a) shows that pressure perturbation amplitude increases with the number of porous coatings
increasing. When porous coatings with the index number from 4 to 6 are added downstream of the
synchronization point, Fig. 12(b) shows that pressure perturbation amplitude decreases with the
number of porous coatings increasing. Figure 12 indicates that porous coating destabilizes Mack’s
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first mode and stabilizes Mack’s second mode because the synchronization point is the location
where the first mode converts to the second mode. These results are consistent with those of Fedorov
et al.’s experimental and theoretical study11 and Maslov’s experiments.15 In order to delay boundary
layer transition, it is very important to put porous coating downstream of the synchronization point,
where mode S corresponds to the second mode.

In our simulations, porous coatings are not continuous on the flat plate. There are junctures
between solid and porous surface at the leading and trailing edges of porous coating. Figures 11 and
12(b) show that the relaxation length of pressure perturbation near the edges of porous coatings is
approximately two times the wavelength of the second mode. Therefore, the end effects are local
and are neglected in considering the stabilization using porous coating. Similar treatment has been
applied in Egorov et al.’s numerical simulations.21

In Egorov et al.’s numerical simulations on the receptivity of a Mach 6 boundary layer over a
flat plate with porous coating,21 porous coating was found to slightly destabilize the first mode and
stabilize the second mode. Eventually, porous coating led to a smaller peak amplitude of mode S.
In our simulations, all the six cases of stability simulations show a larger peak amplitude of mode
S, which means destabilization of the first mode is not slight but quite significant. The difference
between two sets of simulation results probably arises from the following three factors. First, different
porous coatings are used. In Egorov et al.’s simulation regular porous coating was used. Whereas in
our simulation, felt-metal porous coating is used. It had been shown in Maslov’s experiment15 that
felt-metal UAC is much stronger in first mode destabilization than regular structure UAC. Second,
initial strength of mode S in the boundary layer is quite different. In Egorov et al.’s simulation, mode
S was excited by freestream slow acoustic waves. Due to the receptivity process, only a small portion
of boundary layer disturbances are mode S. As a result, destabilization of the first mode might be
attenuated by stabilization of the coexistent mode F and continuous waves. In our simulation, mode
S is directly superimposed on the boundary layer, and the effects of mode F and continuous waves
are left out. Third, the frequency of disturbances is different, which may affect the instability of the
first mode.

Figure 13 shows amplification ratios of pressure perturbation peak amplitude for the six cases
of stability simulations of superimposed mode S. In this figure, amplification (Ap) and relative
amplification (Rap) of pressure perturbation are calculated according to the following formulas:

Ap = (pi − p0)/p0 ∗ 100% (i = 1, 2, 3, 4, 5, 6) , (37)

Rap = (pi − pi−1)/pi−1 ∗ 100% (i = 1, 2, 3, 4, 5, 6) , (38)

where the subscript “0” stands for the spatial development of mode S without porous coating. In
Fig. 13(a), number “i” stands for the ith case of stability simulation using “i” porous coatings. In
Fig. 13(b), index “i” stands for the ith porous coating. According to the above definitions, it is clear
that, for a specific number i in Fig. 13(a), amplification ratio stands for the effect of all the i porous
coatings used in the stability simulation. For a specific index i in Fig. 13(b), relative amplification
ratio stands for the effect of ith porous coating only. Figure 13 shows that porous coating amplifies
the pressure perturbation in all the six cases of stability simulations. For porous coatings with the
index from 1 to 3, located upstream of the synchronization point, relative amplification ratios are
positive. The other three porous coatings are downstream of the synchronization point, and their
relative amplification ratios are negative.

These results indicate that the synchronization point plays an important role on boundary layer
stabilization. Disturbances are destabilized or stabilized when porous coating is located upstream
or downstream of the synchronization point. It is also shown in Fig. 13(b) that the second porous
coating is most efficient in first-mode destabilization whereas the fourth porous coating is most
efficient in second-mode stabilization.

Figure 14 compares the growth rate calculated from stability simulations with that obtained
from LST for superimposed mode S. The growth rates of stability simulations with porous coating
are quite similar to that of purely mode S without porous coating. They all have a good agreement
with that of LST in the region from ω = 0.11 to ω = 0.13. When ω is larger than 0.13, mode S
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FIG. 13. Amplification ratio of pressure perturbation peak amplitude for the six cases of stability simulations of superimposed
mode S.

obtained by stability simulation becomes more stable than that predicted by LST. However, when
ω is smaller than 0.11, mode S obtained by stability simulation becomes more unstable than that
predicted by LST. Figure 15 compares the phase velocity calculated from stability simulations with
that obtained from LST for superimposed mode S. The phase velocity of stability simulations has
a good agreement with that of LST. In regions where porous coating are used, the growth rate
and phase velocity calculated from stability simulations are quite different from their counterparts
obtained from LST. These two figures show that porous coating only has a local effect on the spatial
development of superimposed mode S.
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FIG. 14. Comparison of the growth rate calculated from stability simulations with that obtained from LST for superimposed
mode S.

VI. EFFECT OF POROUS COATING ON MODE F

In this section, stability simulations are carried out to investigate the effect of porous coating and
its location on superimposed mode F. Since mode F converts to mode S after the synchronization
point, only the first three sections of porous coating listed in Table I are considered, i.e., only
porous coatings upstream of the synchronization point are used. Figure 16 schematically shows
porous coating locations for the stability simulations of superimposed mode F. The contours show
pressure perturbation excited by superimposed mode F without porous coating. The structures of
pressure perturbation contour confirm that all three porous coatings are located upstream of the
synchronization point where the second mode does not exist. This figure also shows that mode F
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FIG. 15. Comparison of the phase velocity calculated from stability simulations with that obtained from LST for superimposed
mode S.

excites significant acoustic waves outside of the boundary layer, which is quite different from the
pressure perturbation contours excited by mode S as shown in Fig. 11.

Specifically, three cases of stability simulations are carried out by adding porous coatings
one by one from upstream to downstream. Figure 17 shows pressure perturbations along the flat
plate for the three cases of stability simulations of superimposed mode F. It is noticed that porous
coating increases pressure perturbation amplitude far downstream of the porous region. The pressure
perturbation amplitude increases with an increasing number of porous coatings.
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FIG. 16. A schematic of porous coating locations for the stability simulations of superimposed mode F.

To show clearly the spatial development of mode F in porous regions, Fig. 18 compares
pressure perturbation amplitude for superimposed mode F obtained from stability simulations with
and without porous coating. This figure shows that the effect of porous coating on mode F in porous
regions depends on the location of porous coating. For porous coating located in the region (73.5,
124.8) mm, pressure perturbation amplitude decreases in the whole region as shown in Fig. 18(a).
Similar phenomenon is observed for porous coating located in the region (283.5, 304.8) mm (Fig.
18(c)). However, for porous coating located in the region (193.5, 244.8) mm, pressure perturbation
amplitude decreases initially then increases near the trailing edge of the porous region as shown in
Fig. 18(b). As has been mentioned, the increase of mode F at x* = 0.24 m (R = 1841.21) is caused
by the resonance of mode F with vorticity and entropy waves. This figure also shows that the effects
of junctures between solid and porous surfaces at the leading and trailing edges of porous coatings
are local. These results indicate that porous coating generally decreases pressure perturbation in
porous regions, i.e., porous coating stabilizes mode F in porous regions.
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FIG. 17. Comparisons of pressure perturbation along the flat plate for the three cases of stability simulations of superimposed
mode F.



034105-22 X. Wang and X. Zhong Phys. Fluids 24, 034105 (2012)

x* (m)

p

0.28 0.29 0.3 0.31

6E-05

7E-05

8E-05

9E-05

0.0001

with porous coating

no porous coating

x* (m)

p

0.19 0.2 0.21 0.22 0.23 0.24

1E-05

1.5E-05

2E-05

2.5E-05

3E-05

3.5E-05

with porous coating

no porous coating

x* (m)

p

0.07 0.08 0.09

(a) (b)

(c)

0.1 0.11 0.12

4.5E-05

5E-05

5.5E-05

6E-05

with porous coating

no porous coating

FIG. 18. Comparison of pressure perturbation for superimposed mode F obtained from stability simulations with or without
porous coating.

Figure 19 compares the growth rate calculated from stability simulations with that obtained from
LST for superimposed mode F. The growth rates of stability simulations with porous coating are quite
similar to that of purely mode F without porous coating. All results show that mode F converts to
mode S near the synchronization point. After the conversion, the growth rate of stability simulations
has a good agreement with that of LST for mode S. Figure 20 compares the phase velocity calculated
from stability simulations with that obtained from LST for superimposed mode F. It is clearly shown
that the phase velocity of mode F calculated from stability simulations initially follows that obtained
from LST. Then mode F converts to mode S around x* = 0.32 m (R = 2126.04). The agreement of
the two sets of phase velocities downstream of x* = 0.30 m (R = 2058.53) confirms that mode S is
the dominant wave in the boundary layer. Again, these two figures show that porous coating only
has a local effect on mode F.

VII. STABILIZATION OF THE BOUNDARY LAYER DISTURBED BY ONE
BLOWING-SUCTION ACTUATOR

Based on the stability simulations for superimposed mode S and mode F, the synchronization
point plays an important role in boundary layer stabilization using porous coatings. An efficient
way for boundary layer stabilization is to put porous coating downstream of the synchronization
point. In this section, stabilization of the boundary layer disturbed by more realistic disturbances is
considered. A blowing-suction actuator at the frequency of 100 kHz or 150 kHz is used to excite
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FIG. 19. Comparison of the growth rate calculated from stability simulations with that obtained from LST for superimposed
mode F.

boundary layer waves. The model of wall blowing-suction is given in Eq. (25). This study focuses on
linear responses of the boundary layer to wall blowing-suction. Therefore, the amplitude of mass flux
oscillation is small enough to preserve the linear properties of the disturbances. The dimensionless
amplitude coefficient, ε2 in Eq. (25), is given as

ε2 = 1.0 × 10−5 . (39)
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FIG. 20. Comparison of the phase velocity calculated from stability simulations with that obtained from LST for superimposed
mode F.
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TABLE II. Locations of the three sections of porous coating for stabilization of the boundary layer disturbed by blowing-
suction at 100 kHz.

Index x∗
Start(mm) x∗

End(mm) x∗
Center(mm)

1 283.5 304.8 294.2
2 366.5 402.0 383.2
3 316.5 347.0 331.8

The leading and trailing edges of the blowing-suction actuator are located at x∗
i = 33 mm and

x∗
e = 37 mm (R = 654.98 and 693.54), respectively.

After the excitation of boundary layer waves, porous coating is used near the synchronization
point to stabilize the boundary layer. Specifically, four cases of stability simulations are considered:
case 1, without porous coating; case 2, porous coating located upstream of the synchronization
point; case 3, porous coating located downstream of the synchronization point; and case 4, porous
coating located both upstream and downstream of the synchronization point. The locations of the
three sections of porous coating used in cases 2–4 are listed in Table II for blowing-suction at 100
kHz and Table III for blowing-suction at 150 kHz .

Figure 21 shows a schematic of the stabilization of the boundary layer disturbed by wall
blowing-suction using porous coating. At the frequency of 100 kHz, the synchronization point is
located at 0.33184 m. While at the frequency of 150 kHz, the synchronization point is located at
0.14748 m. Therefore, the first and second porous coatings are located upstream and downstream
of the synchronization point, respectively. The third porous coating is located both upstream and
downstream of the synchronization point.

Figure 22 compares pressure perturbation amplitudes along the flat plate for the four cases of
stability simulations where the boundary layer is disturbed by blowing-suction at 100 kHz. This figure
shows that pressure perturbation decreases in porous coating regions. The magnitude of pressure
perturbation decrease becomes larger with the location of porous coating moving downstream.
However, pressure perturbation of case 2 increases faster than other cases and has the strongest
amplitude at x* = 0.5 m (R = 2657.55). Pressure perturbation of case 4 has a larger amplitude than
that of case 3 and a smaller amplitude than that of case 1. The fact that pressure perturbation of case
2 has the largest amplitude indicates that mode S has the strongest amplitude for this case.

In case 2, porous coating is located upstream of the synchronization point, where mode S
corresponds to the first mode. In cases 3 and 4, porous coating is totally or partially located
downstream of the synchronization point, where mode S corresponds to the second mode. The
difference of pressure perturbation amplitudes among the four cases can generally be explained
by the conclusion drawn from the stability simulations of superimposed mode S and mode F:
disturbances are destabilized when porous coating is located upstream of the synchronization point
and stabilized when porous coating is downstream of the synchronization point.

Here is more explanation for case 2. Although porous coating destabilizes the first mode, the
coexistent mode F and continuous waves induced by wall blowing-suction are stabilized. As a result,
pressure perturbation decreases in porous coating region. The destabilization of the first mode is
proved by the fast increase of pressure perturbation downstream. Figure 22 shows that at the location

TABLE III. Locations of the three sections of porous coating for stabilization of the boundary layer disturbed by blowing-
suction at 150 kHz.

Index x∗
Start(mm) x∗

End(mm) x∗
Center(mm)

1 73.5 124.8 99.2
2 193.5 244.8 219.2
3 132.3 165.6 149.0
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FIG. 21. A schematic of stabilizations of the boundary layer disturbed by wall blowing-suction using porous coating: (a)
case 1, (b) case 2, (c) case 3, and (d) case 4.
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FIG. 22. Pressure perturbation amplitudes along the flat plate for the stabilization of the boundary layer disturbed by
blowing-suction at 100 kHz using porous coating.

of x* = 0.66 m (R = 3053.30), a 25% decrease of pressure perturbation amplitude is achieved when
porous coating is located downstream of the synchronization point (case 3).

Figure 23 compares pressure perturbation amplitudes along the flat plate for the four cases
of stability simulations where the boundary layer is disturbed by blowing-suction at 150 kHz.
This figure also shows that pressure perturbation decreases in porous coating regions. However,
the magnitude of pressure perturbation decrease is quite large in case 2 where porous coating is
upstream of the synchronization point. This result is fairly different from that shown in Fig. 22. At
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FIG. 23. Pressure perturbation amplitudes along the flat plate for the stabilization of the boundary layer disturbed by
blowing-suction at 150 kHz using porous coating.
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the frequency of 150 kHz, the synchronization point is closer to the blowing-suction actuator than
that at the frequency of 100 kHz. As a result, the effects of coexistent mode F and continuous waves
induced by wall blowing-suction are more significant. It is the coexisting mode F and continuous
waves that cause the decrease of pressure perturbation around x* = 0.1 m in case 1 where no porous
coating is used. The strong coexistent mode F and continuous waves make complex the stabilization
of the boundary layer. Fortunately, the results of cases 3 and 4 still show that porous coating is more
efficient in the boundary-layer stabilization if it is downstream of the synchronization point.

The numerical results show that the synchronization point plays an important role in the stabi-
lization of the hypersonic boundary layer using porous coating. The most efficient way to stabilize
the boundary layer is to put porous coating downstream of the synchronization point.

VIII. CONCLUSION

The stabilization of a Mach 5.92 boundary layer over a flat plate using local sections of porous
coating is studied by a combination of direct numerical simulation and linear stability theory. The
emphasis of this paper is on the effect of porous coating location and the destabilization of Mack’s
first mode. Numerical simulation results are interpreted by comparing with LST analyses.

At first, the role of the synchronization point on boundary layer stabilization is investigated.
A series of stability simulations are carried out by putting porous coatings both upstream and
downstream of the synchronization point. The results show that porous coating only has a local
effect on the spatial development of superimposed mode S or mode F. In the case of mode S, porous
coating destabilizes Mack’s first mode and stabilizes Mack’s second mode. In the case of mode F,
porous coating generally has a stabilizing effect. When propagating downstream, mode F converts
to mode S near the synchronization point.

It is found that the synchronization point plays an important role in the stabilization of the
hypersonic boundary layer using porous coating. Disturbances are destabilized when porous coating
is located upstream of the synchronization point and stabilized when porous coating is downstream
of the synchronization point. For felt-metal porous coating, the destabilization of Mack’s first mode
is significant. The results suggest that an efficient way to stabilize hypersonic boundary layers is to
put porous coating downstream of the synchronization point.

Finally, porous coating is used to stabilize the boundary layer disturbed by a single-frequency
blowing-suction actuator. A 25% decrease in pressure perturbation amplitude is achieved when
porous coating is located downstream of the synchronization point, which confirms that putting
porous coating downstream of the synchronization point is an efficient way to stabilize boundary-
layer flows.
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