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For hypersonic flow over spherical cones of small nose radii, it has been experimentally observed and theoretically

explained that the nose bluntness effect leads to a delay of boundary-layer transition. In contrast, this trend reverses

when the nose radii are larger than some critical values in the large nose bluntness range. This transition reversal

phenomenon was mainly reported in Stetson and Rushton’s transition experiments of a Mach 5.5 flow [1] and

Softley’s Mach 10–12 experiments [2] in 1967. Several linear stability analyses have been performed since the 1990s

to study the nose bluntness effects on transition; none were able to show the reversal of instability onset due to nose

blunting. All of the previous stability analyses, however, suffered from the fact that they were conducted only on test

cases in which the actual transition reversal was not experimentally observed. The objective of the current study is to

conduct a linear stability analysis on Stetson and Rushton’sMach 5.5 experiments in which the reversal is observed.

Three cones with nose radii of 0.156, 0.5, and 1.5 in., covering both the small and large bluntness regions, are used to

study the effect of nose bluntness on stability and transition. It is found that, if only the second-mode instabilities are

considered, the onset of instability is always delayed as the nose bluntness increases. The linear stability theory

calculations show no reversal on the growth of the second-mode instability.

Nomenclature

a = nondimensional wave speed
e = total energy per unit volume, J=m3

F = frequency, Hz
Fi = inviscid flux vector
Fv = viscous flux vector
L = boundary-layer characteristic length scale, m
M = Mach number
N = N factor
P = pressure, N=m2

Pr = Prandtl number
R = local Reynolds number
Ren = Reynolds number based on the nose radius
Re1 = freestream unit Reynolds number, 1=m
Rn = nose radius, mm
s = distance along the cone surface from

the nose tip, m
T = temperature, K
Tw = temperature at the cone surface, K
u, v, w = velocity components, m=s
x1, x2, x3 = Cartesian coordinate in physical space
yn = normalized local normal distance from cone surface
��i = growth rate, 1=m
��r = streamwise wave number, 1=m
� = ratio of specific heats
� = cone half angle, �

� = viscosity, kg=m-s
�, �, & = coordinates in transformed space
� = density, kg=m3

� = shear stress, N=m2

	 = phase angular, rad
! = angular frequency, rad=s

Superscript

� = dimensional quantity

Subscript

r, i = real/imaginary part of a complex number
1 = freestream quantity

I. Introduction

F ORhypersonicflowover blunt cones, it has been experimentally
observed [3] and theoretically explained [4] that the location of

laminar-turbulent transition moves downstream when the nose radii
increase within the small bluntness region. This trend is reversed
when the nose radii are larger than some certain critical values based
on experimental observations [1,2]. This phenomenon is known as
transition reversal due to nose bluntness. In other words, increasing
the nose radius beyond the critical value leads to an upstream
movement of the location of transition. The downstream movement
of the transition location at small radii can be explained by the
reduction of local Reynolds numbers owing to the entropy layer
created by nose bluntness. However, there is still no satisfactory
explanation for the cause of the transition reversal at large nose
bluntness.

Most of the previous studies of bluntness effects on transitionwere
based on linear stability analysis, performed on Stetson et al.’s
stability experiments of an axisymmetric blunt cone in a Mach 7.99
flow [5]. In these experiments, detailed fluctuation spectra were
documented for disturbance waves developing along the body sur-
face. The freestream unit Reynolds number per foot was 2:68 � 106.
The experimental results showed that disturbances in the boundary
layer were dominated by second-mode instability. Significant super
harmonic components of the second mode were also observed after
the second mode became dominant. The cone models used in the
experiments were not long enough for transition to occur in the
boundary layer. As a result, the transition reversal phenomenon was
not observed in these experiments. Compared with hypersonic flow
over a sharp cone, second-mode instability of the blunt cones
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appeared at locations much further downstream, indicating a
stabilization of the boundary layer by small nose bluntness.

Linear stability characteristics of the boundary-layer flow over the
same blunt cone used in Stetson et al.’s experiments have been
studied by a number of researchers [4,6–9].Malik et al. [4] computed
the neutral stability curve and compared the growth rates obtained
from linear stability theory (LST) with the experimental results. The
steady base flow solution was computed using the parabolized
Navier-Stokes equations. The results showed that the nose-blunting
effect stabilizes the boundary layer. The linear stability analyses
predicted a slightly lower frequency for the dominant second mode
but much higher amplification rates than the experimental results.
Rosenboom et al. [9] did a further linear stability study on the effect
of nose bluntness on hypersonic boundary-layer stability. In their
calculations, the cone geometry andflow conditionswere the same as
those used in the Stetson et al.’s Mach 7.99 experiments. Three cases
of blunt coneswith different nose radii, covering both small and large
bluntness, were considered. The purpose was to investigate the
transition reversal phenomenon at large bluntness. By a linear
stability analysis, Rosenboom et al. confirmed a monotonic down-
stream movement of the second-mode critical Reynolds number as
the nose radius increases. Their LST results did not show the
transition reversal phenomenon observed in experiments at large
bluntness.

Zhong [10,11] and Zhong and Ma [12] conducted numerical
simulations on the stability and receptivity of the same Stetson et al’s
Mach 7.99 flow over blunt cones. In Zhong and Ma [12], numerical
results for the steady base flowwere compared with the experimental
results of Stetson and Rushton [1] and the numerical results of
Esfahanian [13]. In addition, a normal-mode linear stability analysis
was used to identify the main components of boundary-layer
disturbances generated by forcing freestream fast acoustic waves. It
was found that neither the first-mode nor the second-mode instability
waves are excited directly by freestream fast acoustic waves in the
early region along the cone surface, although the Mack modes can
be unstable. Instead, the second mode is excited downstream of the
second-mode branch I neutral stability point. The delay of the
second-mode excitation is a result of the fact that the hypersonic
boundary-layer receptivity is governed by a two-step resonant
interaction process: 1) resonant interactions between the forcing
waves and a stable boundary-layerwavemode I near the leading edge
region and 2) resonant interactions between the induced stable mode
I and the unstable second Mack mode downstream.

Zhong [11] conducted a numerical study on the effects of nose
bluntness on the receptivity to freestream acoustic waves for
hypersonic flow by comparing the results of three nose radii. The
flow conditions duplicated the experiments of Stetson et al. [5]. They

investigated the effects of nose bluntness on receptivity. Three nose
radii were chosen to be the same as those used in Rosenboom et al.’s
stability analysis [9]: 0.15, 0.5, and 1.5 in. The first nose radius
belonged to the category of small nose bluntness, whereas the second
and third cases fell into the region of large bluntness. It was found
that, in those three test cases, the basic receptivity mechanism of
hypersonic flow over the blunt cone with different nose radii is
essentially the same. Specifically, the receptivity is a result of the
resonant interaction between forcing waves and boundary-layer
wave modes near the nose region and the resonant interaction
between different boundary-layer wave modes downstream.

Transition delay due to small nose bluntness can be explained by
the reduction of local Reynolds numbers due to the entropy layer
created by the bow shock. On the other hand, the mechanisms of
transition reversal for cones with larger bluntness have not been fully
understood. So far, LST and numerical-simulation studies on blunt-
cone effects have been donemainly on the test cases of Stetson et al.’s
Mach 7.99 experiment [5]. However, Stetson et al’s Mach 7.99 test
model was not long enough to observe transition experimentally. In
other words, the transition reversal phenomenon was not actually
observed in Stetson et al.’s Mach 7.99 cases. Even though all of the
previous LST and simulation studies on Stetson et al.’s Mach 7.99
case provided a solid understanding of the nose-blunting effect in the
delay of transition, Stetson et al.’s Mach 7.99 case is not a good
candidate for analyzing the reversal mechanism. A more direct way
to gain insight into the reversal in transition is to study a case inwhich
the actual reversal was observed experimentally.

Though the delay of transition by slight nose blunting has been
found in many experiments, the transition reversals at large nose
bluntness have only been reported in a few experiments. The authors
canfindonly two publications on experiments forwhich the transition
reversals were found. Stetson and Rushton [1] were the first ones to
report concrete results on transition reversal. The only other source
where reversal results were reported was from Softley [2] on a set of
Mach 10–12 flows over blunt cones with a half angle of 5�.

Extensive experimental data on transition and transition reversal
were reported by Stetson and Rushton for Mach 5.5 flow over sharp
and blunt cones [1]. Blunt cones, with nose radii ranging from 1=32
to 1 and 1=2 in., were tested, and the transition locations were
measured. Transition data obtained in these testmodels is replotted in
Fig. 1 (left), which shows the transitional Reynolds numbers vs
freestream Reynolds numbers based on nose radii, Ren. The figure
shows a clear transition reversal asRen increases, with 2 � 105 as the
dividing line between large and small nose radii for Ren. These
results have a very similar trend to the transition reversal results of
Softley [2], collected fromMach 10–12 flows over a set of small and
large blunt cones, as shown in Fig. 1 (right).

Fig. 1 Transition Reynolds number vs Reynolds number based on nose radius reported by Stetson and Rushton (left) [1] and Softley [2] (right).
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Even thoughmany studies have been done on the blunt-nose effect
on hypersonic boundary-layer transition, there have not been any
reported LST studies on either Stetson and Rushton’s Mach 5.5
experiment [1] or Softley’s Mach 10–12 experiments [2], which are
among the few experimental test cases that actually show transition
reversal. It will bevaluable if these experiments can be systematically
reanalyzed by modern simulation and linear stability techniques to
study the effects of nose bluntness on transition. The experimental
measurements on the parametric effects on transition can be
correlated with the LST results to identify the instability mech-
anisms. Therefore, the objective of this paper is to conduct LST
studies of Stetson and Rushton’s Mach 5.5 case to explore the nose
bluntness effects to the transition. To verify the LST results, two test
cases of numerical simulation of the same boundary-layer flow
induced by wall blowing and suction are performed. The simulation
results are compared with the corresponding LST results for the
mode structures, wave speeds, and growth rates. In this paper, LST
results are presented on three test cases of 0.156, 0.5, and 1.5 in. nose
radii. The simulation of hypersonic flows over blunt cones corre-
sponds to the flow conditions of Stetson and Rushton’s Mach 5.5
experiment. Following that, the range of unstable second-mode
frequencies are identified for each case by LST studies, which are
then used as the forcing frequencies in the unsteady simulations to
validate the LST study. Also, the second-mode N factors are
computed using the disturbance waves from which the growth rates
are obtained. The N factors are then used to compare the predicted
transition location to the transition location reported in the
experiment.

II. Governing Equations and Numerical Method

The governing equations are the unsteady compressible three-
dimensional (3-D) Navier-Stokes equations. The advantage of
solving the full Navier-Stokes equations is that they contain the least
amount of approximation such that, if implement correctly, they can
resolve the flowfield with very high accuracy. The Navier-Stokes
equations can be written in the following conservative form:

@U�

@t�
�
@F�j
@x�j
�
@F�vj
@x�j
� 0 (1)

where U� � ���; ��u�1 ; ��u�2 ; ��u�3 ; e��, and the F� terms are flux
terms that can be expanded as

F�j �

8>>><
>>>:

�uj
�uj1uj � p
1j
�uj2uj � p
1j
�uj3uj � p
1j
�e� p�uj

9>>>=
>>>;

and F�vj �

8>>><
>>>:

0

�1j
�2j
�3j
�jkuk � qj

9>>>=
>>>;

(2)

The Cartesian coordinates, �x�; y�; z��, are denoted in index
notation. In the current simulation of axisymmetric flow over blunt
cones, x� is the coordinate along the centerline of the cone pointing
toward the downstream direction. The origin of the coordinates is
collocated with the center of the spherical nose. Grid transformation
is used to transform the body-fitted stretched grids in the Cartesian
coordinates, �x�; y�; z��, into uniform grids in the computational
domain, ��; �; &�. Figure 2 shows the two-dimensional (2-D)mesh of
the current computational case 2 near the leading edge of the cone
with two sets of coordinate systems labeled.

A. Steady Base Flow

The laminar mean flow solution needs to be obtained to serve as
the base flow for the LSTanalysis. A fifth-order shock-fittingmethod
developed by Zhong [14] is used to compute the flowfield bounded
by the bow shock and cone surface. The shock-fitting method treats
the shock as the computational boundary to avoid jumps and
discontinuities in the flowfield. The flow variables right behind the
shock are determined by Rakine-Hugoniot relations across the shock
and the characteristic compatibility equations. The flowfield in the
computational domain is approximated using a high-order upwind

finite difference scheme with an adjustable artificial viscosity
coefficient. Because the performance of the linear stability analysis is
very sensitive to the base flow solution, the base flowmust have high
accuracy in order to obtain reliable stability results. The shock-fitting
scheme developed by our research group at UCLA has been tested
and proven to be accurate and reliable by a number of previous
studies [12,15,16].

B. Linear Stability Theory

LST is used to study the instability modes in the boundary layer of
hypersonic flow over blunt cones in this paper. To apply LST, the
disturbance amplitudes are assumed to be small enough so that they
do not interact nonlinearly with each other. The normal mode of a
disturbance is assumed to have the following form:

q0 � q̂�yn�ei��!t��s� (3)

where q0 can be any dimensionless flow variable, such as velocity,
temperature, density, and pressure, all ofwhich are normalized by the
freestream quantities. q̂ is the mode structure representing the
complex amplitude of the disturbance. In the spatial stability theory,
!, the dimensionless angular frequency of a normal disturbance
mode, is set to be a real number. �� �r � i�i is the streamwise
complex wave number nondimensionalized by L�. The imaginary
part of the wave number represents the spatial growth rate of a
specific disturbance mode. When �i is negative, the disturbance
becomes unstable. The real part of thewave number,�r, indicates the
spatial wave number. An important quantity that can be extracted
from �r is the nondimensional phase velocity, which is defined as

a� !

�r
� FR
�r

(4)

In the preceding equation, the dimensionless phase velocity, a, is
normalized by the freestream velocity. F is the dimensionless
frequency that is related to the dimensional angular frequency by

F� !
���1
u�21

(5)

R is local Reynolds number based on the length scale of boundary-
layer thickness, and s� is the curvilinear coordinate along the cone
surface as measured from the nose.

R� �
�
1u
�
1L
�

��1
(6)

Fig. 2 Schematic of 2-D grid for case 1 near the leading edge.
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One of the most common applications of LST analysis in
predicting the laminar-turbulent transition is to calculate theN factor
based on a semi-empirical method called the eN method. According
to the theory, when the amplification of the disturbances reaches
certain levels, transition will occur. The ratio of the amplitude of
disturbance waves with a fixed frequency can be calculated as they
travel downstream. Because the growth rate varies from location to
location, the amplitude ratio between two locations can be expressed
as the following integral:

eN � A

A0

� exp

Z
s�

s�
0

1

A

dA

ds
ds� (8)

or, just for the N factor,

N �
Z
s�

s�
0

���i ds� (9)

In Eq. (8), s�0 corresponds to the location where the disturbance
becomes neutrally stable (or the branch I instability point). By
computing this integral, we know how much the amplitude for a
specific disturbance changes as it moves downstream. On the other
hand, the N factor leading to transition is correlated to the experi-
mental measurement. The N factor is not unique for all cases; it
depends on the flow conditions, object geometry, amplitude of
freestream disturbance, and other unknown parameters. Even in one
single case, the N factor differs when different unstable modes are
considered. Here, the different unstable modes refer to the first mode
and the second mode introduced by Mack [17]. In general, the N
factor for thefirstmode is smaller than the one for the secondmode. It
should be noted the main focus of this paper is the stability and
N-factor calculations of the 2-D (axisymmetric) secondmode for the
current test case. Even though the 3-D first-mode instability is
responsible for the transition at a lowerMach number flow, extensive
theoretical analysis, numerical simulations, and experiments
have shown that, for higherMach numberflows (M > 4), the axisym-
metric second-mode instability is the most dominant unstable
mechanism in the hypersonic boundary layer [18,19]. In the current
cases, because a cool-wall boundary condition is enforced, the first
mode is stabilized as being proven theoretically [17,20]. As
discussed later in this paper, the first mode instability is not found in
all three cases considered in this study due to the wall-cooling effect.
Therefore, the current paper only focuses on the second-mode
instability, which is most amplified when the disturbance is
axisymmetric [4,17].

C. LST Code Validations

The current LST code is developed based onMalik’s multidomain
spectral collocation method formulations published in 1990 [21].
The LST code formulates the linear stability model into an eigen
problem in which the eigenvalue represents the spatial growth rate of
the normalmode, and the eigenvector is themode shape of the normal
mode. Because of the fact that the flowfield is not self-similar,
especially in the region close the nose, the LST code marches down
the base flow profiles station by station to obtain the local growth rate
and the mode structure of the normal mode at the desired frequency.

To verify the reliability of the LST code developed, two validation
cases are presented. The first case is Stetson et al.’s Mach 7.99 flow
over a blunt cone with a nose radius of 0.1 in. and a half angle of 7�

[5]. This case has been studied by many other researchers, making it
an ideal validation case. Figure 3 shows the current LST second-
mode growth rate compared with the growth rates from Malik et al.
[4] and Esfahanian [13]. �i is the nondimensional growth rate and !
is the nondimensional angular frequency. The growth rate is
calculated at a fixed cone location 150 times the nose radius
(s� 150) downstream of the nose tip. In the figure, the current result

compares reasonably well to the other researchers’ in the second-
mode region where ! is greater than 0.15. The slight discrepancy is
mainly due to the variations in steady flow calculations by different
numerical schemes and flow models [4,13]. However, in the first-
mode region, the current result looks to be substantially lower than
Malik’s result because, in the current LST calculation, only the
axisymmetric waves are considered, whereas in Malik’s result, the
maximum growth rate obtained from oblique wave angles was
presented.

The second validation case is the Mach 6 flow over a blunt-nose
compression cone designed by Wheaton et al. at Purdue University
[18]. In their paper, the N factor was reported, and the unstable
second mode was identified based on an LST study on a cone with a
blunt nose of 1 mm in radius. The LST results were found to agree
well with their experimental measurements. In the current LST study,
a consistentN factor result is reproducedwith the baseflowdata from
Huang and Zhong [22]. Figure 4 shows the comparison of N factor
calculations from Wheaton et al. with the one from the current LST
analysis at a single frequency of 297.50 kHz. The results agree well
on both the instability wave onset location and amplification factors
at different locations. The current result shows a slightly higher N
factor than the one from Wheaton et al. This primarily can be
explained by the fact that, in our result, the base flow is calculated
using a fifth-order shock-fitting scheme, whereas the base flow from
Wheaton et al. is generated using a high-order shock-capturing
method that has less resolution at the shock. In addition, there are also
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plausible differences in the LST model between our code and
Wheaton et al.’s. For example, the curvature effect in the streamwise
direction is not considered in our LST model. Because the detail for
their LST model was not provided in Wheaton et al.’s paper, it is
impossible to further investigate the source of this discrepancy.

III. Test Cases and Flow Conditions

A. Test Cases

The flow conditions for the current test case studied in this paper
are the same as those in Stetson and Rushton’s experiments on a
Mach 5.5 air flow over blunt cones [1] where actual transition
reversals had been observed. For the case of zero angle of attack,
Stetson and Rushton tested 10 blunt cones of different nose radii,
ranging from 1=32 in to 1 and 1=2 in. Flowswith different freestream
unit Reynolds numbers ranging from 1:6 � 106=ft to 18 � 106=ft
were used. In this paper, cones of three different nose radii with the
same freestream flow conditions are chosen. The nose radii of the
three cases are:

case 1:rn � 1:5 in� 38:1 mm; Ren � 721; 995

case2 : rn � 0:5 in� 12:7 mm; Ren � 240; 665

case3: rn � 0:156 in� 3:969 mm; Ren � 75; 213

The third case, with a nose radius of 0.156 in., falls into the category
of small bluntness based on its nose Reynolds number (Ren). The
first and second cases, according to Stetson and Rushton’s criteria,
fall into the category of large nose bluntness, where the reversals
were observed as shown in Fig. 1 (left).

B. Flow Freestream Conditions

The actual flow conditions used in the numerical simulation,
which are the same for all three cases, are shown in Table 1.
Sutherland’s law of viscosity is adopted to calculate the local
viscosity based on the local temperature. In the current study, for the
steady base flow, the freestream angle of attack is set to zero.

C. Boundary Conditions

For the steady base flow simulation, the inflow and the upper
computation boundary are bounded by the bow shock with the
freestream conditions applied right outside the shock wave. On
the cone surface, nonslipped boundary conditions are enforced on the
velocity vector. Thewall temperature is set to be at a constant, which
is equal to the room temperature of 296 K. The pressure at the wall is
obtained using high-order extrapolation, and the density can be
calculated by perfect gas equation. At the outflow, a high-order
polynomial extrapolation is used to obtain the flow quantities at the
exit of computational domain.

IV. Simulation Results of The Steady Base Flows

As mentioned in the preceding section, the steady base flows are
computed using a fifth-order shock-fitting scheme with a multiple
zones approach. In the computational domain, the wall normal
direction is resolved using 240 grid points with stretching toward the
cone surface to ensure that there is approximately 100 grid points
within the boundary layer. Because the computational fluid
dynamics code is designed with 3-D geometry in mind, four points
are used in the transverse direction to enforce the axisymmetric flow
configuration. However, in the actual computation, only one point is
actually being calculated. The simulations are carried out up to 0.8m,
1.8 m, and 3.2 m along the cone surfaces for the cases with nose radii

Fig. 5 Comparison of U velocity and temperature profiles for two sets of grids.

Table 1 Flow conditions and parameters of current cases

M1 � 5:468 P�1 � 7756:56 Pa T�1 � 174:46 K Re1 � 18:95 � 106m�1

Twall � 296K � � 1:4 Pr� 0:72 cone half angle� 8�

Table 2 Computational grid points of steady base flows

Nose radius Grids in wall normal
direction, �

Grids in streamwise
direction, �

Streamwise
length, s

Grids in transverse
direction, &

0.156 in. 240 4440 0.8 m 4
0.5 in. 240 4800 1.8 m 4
1.5 in. 240 4800 3.2 m 4
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of 0.156, 0.5, and 1.5 in., respectively. The number of grid points per
unit length in the streamwise direction is intentionally reduced as the
nose bluntness increases for the reason that the flow gradient in the
streamwise direction is not as large as in the wall normal direction,
with the results becoming more and more self-similar downstream.
Table 2 summarizes the number of grids in each direction for the
current three cases.

To ensure that the current simulation results are well converged, a
comparison is made on the flow profiles between current results and
the coarser grids results. The coarse grids results only use 120 points
in the wall normal direction. The reason that refinement is only
applied in the wall normal direction is because, for wall bounded
flow, the boundary layer needs to be well resolved to attain a reliable
result. Figure 5 shows theU velocity and temperature profiles of case
3 at s� 0:4 m from two sets of grid points in the wall normal
direction. These profiles look completely identical, which implies
grid convergences of the current numerical simulations. To quantify
the error between these two sets of grids, the infinity norm of the
relative error, which is defined as the max error in the profile, is
calculated. The infinity norm of relative error based on theU velocity
is 2:91 � 10�5.

In Fig. 6, theMach number contours for blunt cones with different
nose radii are shown. As the nose radius increases, the shock layer
becomes thicker, and a stronger entropy layer effect can be clearly
observed in the region near the leading nose for the blunter cases. The
entropy layer gradually merges into the boundary layer further

downstream and is eventually swallowed by the boundary layer. The
appearance of an entropy layer is one of the characteristics of
hypersonic flow over a blunt cone. Some studies hypothesized that
the entropy layer effect would introduce a new instabilitymechanism
into boundary-layer transition [23]. However, this new instability
cannot be identified based on current LST study in this region.

The contours of the local unit Reynolds number for the three cases
are shown in Fig. 7. As the nose becomes blunter, the local Reynolds
number within the boundary layer is substantially reduced. As found
in many previous studies, this unique pattern caused a delay in the
onset of second-mode instabilities and, hence, moved the transition
location further downstream. This theory has been verified experi-
mentally on small bluntness cones [3]. However, it cannot explain the
transition reversal for cones with large nose bluntness.

V. Comparison of LST and Unsteady
Blowing-Suction Simulation

To validate the current LST results, unsteady simulations are
carried out by imposing a wall blowing and suction perturbation at
the surface of the cone with the LST-predicted unstable frequencies.
This method has been used by many researchers to generate a
vorticity disturbance without introducing extra mass flux into the
flow [24,25]. The surface blowing and suction is applied by
specifying the perturbations to the wall normal velocities in the
following form:

Fig. 6 Mach number contours of the three test cases of different nose radii.
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vn;wall�x; t� � " sin	�w�x � x0�


�
XN
n�1

An cos�!nt� 	n� �x0 < x < x1� (10)

Tomake comparisons with the linear stability results, the disturbance
amplitude is set small enough to ensure that the growth of instabilities
is within the linear regime. For the current simulation, " is set to
1 � 10�5. The blowing and suction simulation is performed on the
case of 0.156 in. nose radius cone. Instead of using a single unstable
frequency, 15 equally distributed frequencies ranging from
52.55 kHz to 797.05 kHz are imposed, encompassing the unstable
second-mode frequencies predicted by LST calculation. Because the
perturbation amplitude is linear, multiple frequencies can be easily
separated by Fourier decomposition. The blowing and suction slot is
placed at s� 0:33 m. The disturbance waves are introduced into the
steady mean flow downstream of the blowing and suction slot.
Figure 8 presents the contours of the tangential velocity disturbance
wave at 744.5 kHz after the Fourier decomposition. A clear periodic
wave pattern can be observed in these contours as the wave prop-
agates downstream.

From the flowfield decomposed by temporal Fourier analysis,
each fixed-frequency disturbance can be represented by Eq. (11),
where q0 is the placeholder of any flow disturbance quantity, ! is the
angular frequency of the disturbance, and 	 is the phase angle of the
disturbance. Also, the disturbance growth rate and wave number can
be derived from Eq. (12) and (13), respectively. In the results

presented later on, the disturbance growth rate and wave number are
calculated based on the pressure disturbance along the cone surface.
The nondimensional phase speed is obtained using Eq. (4), whereas
the wave number was also obtained from the pressure disturbance
along the cone surface.

q0�x; y; t� � <fjq0�x; y�j exp�i	�!t� 	�x; y�
�g (11)

�i ��
1

jq0j
djq0j
ds

(12)

�r �
d	

ds
(13)

If the flow perturbations of the simulation results in a local region
of the boundary layer are dominated by a single wave mode, the
growth rate (�i), thewave number (�r), andwave speed (a) computed
by Eqs. (12), (13), and (4) are smooth functions of s. On the other
hand, if the simulation results contain simultaneously multiple wave
modes in a local region of the boundary layer, the results do not
represent the wave number, growth rate, and wave speed of a single
wave mode. Instead, these parameters represent a modulation of two
or more wave modes. As a result, the wave number, growth rate, and
wave speed along the surface direction will be oscillatory. In this
case, further decomposition of different wave components is

Fig. 7 Contours of the local unit Reynolds numbers for the base flows with different nose radii.
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required in order to obtain the growth rates and wave numbers of the
individual wave modes.

In Fig. 9, the nondimensional wave speed along the cone surface
obtained from both the unsteady numerical simulation and the fast
mode (F) from LSTanalysis at the same frequency of 774.5 kHz are
shown. The early portion of the wave speed curve matches up with
the LST predictionverywell. However, the oscillation started around
s� 0:45 m, indicating that this mode has not become dominant, and
subsequently jumps to another mode further downstream. At
s� 0:55 m, a new mode becomes dominant with a substantially
higher wave speed. This mode is also identified by Zhong and Ma
[12] in their LSTanalysis of a different test case. They named this the
mode II, which is another stable mode excited inside the boundary
layer in the later region. In addition, this figure implies that the
partially excited mode in the early region is the mode F. Even though
the LSTpredicts that, at this particular frequency, the unstable second
mode should appear at this location, the excited wave mode appears
to be stable due to the strong influence of the forcing blowing-suction
mechanism and the existence of multiple stable modes that have not
been damped out [26]. Details on mode analysis will be discussed in
the next section. Here, the comparison is solely to demonstrate how
the LST result can be correlated to unsteady numerical simulation.

The mode structures from simulation and LST are also compared
to verify that the LST-predicted mode is captured by numerical
simulation. Figure 10 shows the excitedmode in the blowing-suction
simulation in comparison with the normal modes, both fast and slow,
from the LSTanalysis at the location s� 0:44 m. The excited mode
in simulation agrees well with the mode F from LST. It also further
justifies the statement made earlier that the dominant mode excited
inside the boundary layer is mode F.

To further verify how well the LST calculations predict the
unstable second mode inside the boundary layer, another blowing
and suction simulation is conducted further downstream to avoid the
strong influence from the blowing and suction slot. In the blowing
and suction simulation further downstream with a slightly different
set of frequencies, substantial growths of disturbancewaves at certain
frequencies are clearly observed. Figure 11 shows the growths of
amplitude of the pressure disturbances along the cone surface, which
are set to 1 � 10�5 in the magnitude initially, for the highest five
frequencies imposed in the simulation. It can be seen that the
disturbance wave at 656.8 kHz is growing exponentially at this
location. A similar behavior is found for the disturbance wave at
606.4 kHz. For other frequencies, the wave amplitudes either grow
slowly or decay rapidly. For the other 10 waves at lower frequency,
the disturbance amplitudes are all decaying.

Figure 12 shows the wave structure of a single wave frequency
from the simulation in comparison to the mode S and mode F
structures from the LST calculation at the location s� 0:57 m. The
mode shapes of mode F and mode S look very similar in the location
close to the surface but gradually deviate from each other as they
move toward the edge of the boundary layer. In the figure, the edge of
the boundary layer is located around Yn � 0:006. Similar to the
preceding discussion, the excited mode in the simulation is
consistent with the mode F wave structure from the LST. The only
difference here is that, at the specific frequency presented, mode F is
actually the unstable second mode. The magnitude of mode S is
scaled up for comparison purposes. In the simulation, the magnitude
of mode S is several orders smaller than the one of mode F and
continues to decrease as it propagates downstream.

Figure 13 shows that, for the disturbance wave at the frequency of
656.8 kHz, thewave speed from simulation and LSTagree verywell.
However, the LST-predicted growth rate is about 10% lower than is
observed from simulation. Inmost cases, it is hard tomatch the result
of simulation and the LST exactly because the simulation result
contains multiple excitedmodes. The only condition for which those
two results can be well compared is when the instability completely
dominates other stable modes. This condition typically occurs at the
locationwhere the instability is sufficiently far away from the forcing
waves. In such cases, the stable modes will more likely decay to
negligible levels compared with the unstable mode. In addition, the

Fig. 8 Contours of tangential velocity disturbance in the unsteady simulation with frequency of 744.5 kHz for the case Rn � 0:156 in.

s (m)

a,
 w

av
es

p
ee

d

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

simulation

LST

Fig. 9 Comparison of nondimensional wave numbers from direct

numerical simulation (DNS) and LST with the disturbance frequency of

744.5 kHz for the case Rn � 0:156 in.

LEI AND ZHONG 31



discrepancy in growth rates can probably be attributed to the
nonparallel effect of the flow within the boundary layer, which is not
accounted for in the current LSTmodel [27]. Overall, LSTanalysis is
proven to be a reliable tool in the calculation of small amplitude
instabilities in the hypersonic boundary layers. Also, LST analysis
and blowing-suction simulation show consistent results in predicting
the unstable second-mode behavior.

VI. Linear Stability Results

From the base flow data obtained by the numerical simulation, the
instabilities for all three cases with different nose radii are
successfully calculated using LST. For the base flows calculations,
the cone surface temperature is set at constant room temperature,
creating a cooling effect to the flow at the cone surface. According to
the theoretical study by Mack [17], the wall cooling effect stabilizes
the first-mode instability and destabilizes the second mode. In the
current study, no first-mode instability is found for axisymmetric
waves in all three test cases. Therefore, only the second-mode
instability is calculated. The LST results presented are calculated by
restretching the base flow profile with 121 points in the wall normal
direction. The current LST code applies a multidomain approach so
that we can cluster more grid points to the location where the flow
variables’ gradients are high. This approach substantially reduces the
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number of grid points needed in the LST calculation. To check the
numerical accuracy of the LST results, a comparison is made on the
growth rates at afixed frequency of 656.8 kHz in case 3 for two sets of
grid points in Fig. 14. The comparison shows that the growth rates
from the current grid and the refined grid are completely identical,
which implies the current grid is adequate to obtain credible LST
results.

Figure 15 shows the second-mode neutral stability curves for each
case. The neutral curve of the 1.5 in. case looks less smooth when
compared with the other two cases. This is due to the fact that fewer
data points (frequencies) are taken for this particular case. However,
the general shape will not change with more points added. In this
figure, it is observed that the unstable second-mode spectrum falls
into very different frequency ranges for cones of different nose
bluntness. Also, as nose bluntness increases, the onset of second-
mode instabilities moves downstream accordingly. In the actual
experiments, the locations of the onset of instability were not
reported; therefore, it is hard to confirm if the transition is triggered
by the same instability mechanism as predicted by LST. But, as
shown in the figure, no reversal is found on the onset of instability
locations. In the authors’ opinion, to have a reversal in transition, a
similar pattern in the onset of instability should be observed.

The second-mode dimensional growth rates versus the distance
along the surface of the blunt cone are presented in Fig. 16 for the
three cases with different nose radii. Some common characteristics

are observed in all of these cases. First, the disturbances at higher
frequencies become unstable at locations closer to the nose. Second,
as the frequency decreases, the maximum second-mode growth rate
becomes higher. Some trends are also found among these three cases.
As the nose bluntness increases, the onset of the second-mode insta-
bility moves downstream. The range of unstable mode frequency
keeps shifting to the lower end and becomes narrower as the nose
becomes blunter. The frequency ranges shifting to lower values can
be explained by the increase of boundary-layer thickness due to
blunting the nose, which causes the wavelengths of unstable modes
to become longer. The growth rates for the blunter cone are
substantially lower than those of the sharper cone. Also, for the
blunter case, the instability of a fixed frequency tends to grow for a
longer distance to compensate for the lower growth rate it has.

The normal modes interaction is also discussed in this paper.
Figure 17 shows the nondimensional wave speeds and growth rates
of both mode F andmode S in the casewith a nose radius of 0.156 in.
for the disturbance frequency of 656.8 kHz only. In the non-
dimensional growth rates plot, the negative value indicates that the
mode is unstable. By correlating with the wave speeds figure, it is
found that the unstable secondmode is excited frommode F.Mode F
is defined as a discrete normal mode coming out of a fast acoustic
wave that has a nondimensional wave speed of 1� 1=M. Tradi-
tionally, M is the Mach number at the edge of boundary layer.
Because theMach number along the edge of boundary layer changes
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constantly for hypersonic flow over a blunt cone, the freestream
Mach number is used to keep that wave speed constant, as shown in
Fig. 17 (left). Similarly, the slow acousticwave has a nondimensional
wave speed of 1 � 1=M. In Fig. 17, both mode F and mode S are
plotted to demonstrate a phenomenon called synchronization. Syn-
chronization is a resonance between two normal modes of identical
frequency when they have the same wave speed and frequency. For
the disturbance at this specific frequency, the synchronization occurs
around 0:42 m. Even though other studies [28,29] typically show
mode S as the unstable second mode, our current cases showmode F
becoming the unstable second mode. This switch can be explained

theoretically due to the relatively cool wall surface temperature in the
simulation [30].

The wave speeds and growth rates figures for a fixed frequency
share many similarities with those at a fixed location with varying
frequency. In Fig. 18, the wave speeds and growth rates versus the
nondimensional angular frequency at a fixed location, s� 0:42 m,
are plotted. These figures are very similar to Fig. 17, especially
around the synchronization point. The synchronization process
provides a channel for energy exchange between two normal modes,
which allows transfer of energy from the stable mode to the unstable
mode. Reflecting in the growth rates figure, a sudden change in
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growth rates is observed between the two modes with an increase in
the growth rate of the unstablemode and a decrease in the growth rate
of the stable mode. A clear energy exchange is observed at a
synchronization point between mode S and mode F in both fixed-
frequency and fixed-location figures.

With the second-mode growth rates calculated, the N factors can
be obtained by integrating the dimensional growth rates along the
cone surface. In Fig. 19, the second-mode N factors for the three
cases of different nose bluntness are presented. The N-factor calcu-
lations show that the sharper cone actually hasmuch higherN factors
than the blunter cones. In the current study, the N factors of the

0.156 in. blunt cone reach 16 at s� 0:8 m, whereas, on the other end,
the 1.5 in. blunt cone only has an N factor about 3 at s� 3:2 m.

By comparing the current LST results to the experimental
transition data reported by Stetson [3], disagreements are found
between LST-predicted transition locations and experimentally
observed transition locations. For the two cases of 0.5 in. and 1.5 in.
nose radius, the experiment showed transitions occurred at 0.421 m
and 0.243 m, whereas no second-mode instabilities were found at
these locations according to the LST analysis. Traditionally, the N
factor for transition is between 5 and 10. Taking anN factor equal to
10 as the transition prediction criteria, LST predicts that the
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transitions occur at 0.7 m and 1.9 m for case 3 and case 2,
respectively. For case 1, the N-factor calculation does not show a
substantially large growth up to 3.2 m from the nose, which is not
likely to become transition unless the initial disturbance level is very
high. In Table 3, the experimental measurements and LST results are
summarized.

VII. Conclusions

Stetson andRushton’sMach 5.5 experiment [1] conducted in 1967
in which the actual reversals in transition were reported is
investigated using LST technique, and the results are verified by
unsteady blowing and suction simulations. The ranges of second-
mode instability frequency for blunt cones with nose radii of 0.156,
0.5, and 1.5 in. are identified by LST. Because of the cool wall
temperature condition being used to simulate the steady mean flows,
mode F becomes the unstable second mode in the current study,
which is different from some previous studies. The growth rates and
N factors are computed for each case on selected unstable
frequencies. According to the LST calculations, no reversal in the
onset of the second-mode instability is observed. Because the onset
locations of instability waves were not measured in the experiment,
no comparisons can bemade to verify that the reversal in experiments
were caused by the second-mode instability waves. For the two
blunter cases in which the transition reversal was observed
experimentally theN factors based upon the second-mode instability
are not large enough to initiate the laminar-turbulent transition at the
locations where the actual transitions were observed experimentally.
In particular, the second-mode N factor for the case of 1.5 in. nose
radius is too weak to be the dominant mechanism for the transition.
Because the experiments were conducted in a noisy tunnel envi-
ronment, there is likelihood that the reversal is caused by some
uncontrollable noises with the amplitude large enough that the
growths of disturbances bypass the linear region and force the tran-
sition to occur earlier. However, this hypothesis cannot be justified
based on the LSTanalysis. Hence, it is necessary to further study the
nonlinear effect (finite disturbance amplitude effect) on transition to
gain a more complete understanding of transition reversal.
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