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Numerical simulation of roughness effect on modal growth is conducted on a 
hypersonic flat-plate at Mach 5.92. The steady base flow is firstly simulated by solving 
compressible Navier-Stokes equations. Stability characteristics of boundary-layer waves are 
analyzed by linear stability theory (LST). In stability simulations, two-dimensional 
disturbances corresponding to mode S or mode F at a frequency of 100 kHz are introduced 
near the leading edge of the flat-plate. Roughness with adjustable height is placed into four 
locations with respect to the disturbance synchronization point. It is found that upstream of 
synchronization point, disturbance is amplified by roughness with a stronger strength for 
taller roughness. On the other hand, disturbance is damped when the roughness is placed at 
or downstream of synchronization point. Different from upstream cases, tall roughness 
damps disturbance instead of amplifying it. We believe the relative location of 
synchronization point and roughness is a candidate to explain roughness delay transition as 
previous experiments have shown. Our results also show that roughness effect on mode S 
and mode F are very alike. In addition, a disturbance with a wide bandwidth is planned and 
will be imposed in the future. 

I. Introduction 
The physical mechanisms of the roughness induced boundary-layer transition is critical to the development of 

hypersonic vehicles [1]. Transition can have a first-order impact on the lift and drag, stability and control, and heat 
transfer properties of the vehicles [2]. For example, roughness induced transition is an important consideration in the 
design of thermal protection systems (TPS) of hypersonic vehicles [3, 4]. For a reentry vehicle entering earth’s 
atmosphere, it initially experiences a heating environment associated with a laminar boundary layer. As the vehicle 
altitude decreases, the vehicle surface becomes rougher and the boundary layer becomes turbulent. The transition 
from a laminar boundary layer to a turbulent one leads to the increase of surface heating rates by a factor of five or 
more. Thus the ability to understand and predict the physics of roughness induced transition plays an essential role 
in the design of TPS for reentry vehicles. Currently, roughness induced laminar-turbulent transition in hypersonic 
boundary layers, especially that induced by arbitrary surface roughness, is still poorly understood due to the 
limitation in experimental facilities and numerical methods [5].  

Ideally the laminar-turbulent transition process can be divided into four stages. The first involves small 
disturbance fields which are initialized via a process termed “receptivity” by the viscous flow. The initial 
disturbance fields can involve both freestream and vehicle self-induced fluctuations such as acoustics, dynamic 
vortices, entropy spottiness, etc. The next stage is the linear growth stage, where small disturbances are amplified 
until they reach certain amplitude where nonlinear effects become important. The amplification can be in the form 
of exponential growth of eigenmodes (Tollmien-Schlichting waves or Mack waves) and nonmodal growth of 
optimal disturbances (Transient growth). Once a disturbance has reached a finite amplitude, it often saturates and 
transforms the flow into a new, possibly unsteady state, which is termed as the secondary instability stage. The last 
stage is the breakdown stage where nonlinearities and/or high-order instabilities excite an increasing number of 
scales and frequencies in the flow. 

The receptivity study is mainly concerned with the excitation of instability waves, the characteristics of which 
can be analyzed by the linear stability theory (LST) [6]. The LST analyzes the propagation of individual sinusoidal 
waves in the streamwise direction inside the boundary layer. These waves are referred as Tollmien-Schlichting (T-S) 
waves for low speed flow, whose amplitudes vary though the boundary layer and die off exponentially outside the 
boundary layer. Extensive numerical and theoretical researches have been conducted to solve the linearized Navier-
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Stokes equations and many characteristics regarding the instability waves in hypersonic boundary layers have been 
discovered [6-10]. Mack [6] identified the unstable modes by using the LST for compressible flow. He showed that 
inside a supersonic boundary layer, there are multiple higher instability modes in addition to the first mode, which is 
the compressible counterpart of T-S waves in the incompressible boundary layers. These instability modes in the 
supersonic boundary layer are termed as first mode, second mode, third mode, etc. For supersonic boundary layer 
with Mach number larger than four, Mack’s second mode is the most unstable mode, and it plays an important role 
in hypersonic boundary layer transition.  

Direct numerical simulation has become an effective research tool for studying hypersonic boundary layer 
receptivity, stability, and transition by numerically solving the time-dependent three-dimensional Navier–Stokes 
equations for the temporally or spatially evolving instability waves. Malik et al. [11] investigated the responses of a 
Mach 8 flow over a sharp wedge of a half-angle of 5.3o to three types of external forcing: a planar freestream 
acoustic wave, a narrow acoustic beam enforced on the bow shock near the leading edge, and a blowing-suction slot 
on the wedge surface. They concluded that these three types of forcing eventually resulted in the same type of 
instability waves in the boundary layer. Ma and Zhong [12] studied the receptivity mechanisms of the same 
hypersonic boundary layer to various freestream disturbances, i.e., fast and slow acoustic waves, vorticity waves, 
and entropy waves, by solving the two-dimensional compressible Navier-Stokes equations. They found that the 
stable modes in the boundary layer played a very important role in the receptivity process. Recently, Wang et al. 
[13] further studied the response of the Mach 8 flow over a 5.3o half-angle sharp wedge to wall blowing–suction. 
The results showed that mode S is strongly excited when the actuator is located upstream of the corresponding 
synchronization point. There is no significant amplification of pressure perturbation when the actuator is 
downstream of the synchronization point. Although the exact cause and mechanism of this result were not clear, 
such a result was obtained for wall blowing–suction at all frequencies considered in their study. Balakumar [14] 
numerically investigated the receptivity of a 2-D roughness to acoustic waves and found the isolated roughness does 
not contribute much in generating unstable disturbances. Marxen et al. [15] simulated the effects of a localized two-
dimensional roughness element on the disturbance amplification in a hypersonic boundary layer. Their numerical 
experiments showed that in the vicinity of the separation regions, which are located in the upstream and downstream 
of the roughness, an increased amplification of a second-mode disturbance occurs for a certain frequency. 

Previous studies showed that the roughness location plays an important role in the developments of mode S 
excited by the blowing-suction slot [16]. In this paper, we further investigate the finite roughness effect on modal 
growth of a Mach 5.92 flat-plate boundary layer, mainly focusing on roughness height and roughness location. The 
steady base flow is firstly simulated by solving compressible Navier-Stokes equations. Stability characteristics of 
boundary-layer waves are analyzed by linear stability theory (LST). In stability simulations, two-dimensional 
disturbances corresponding to mode S (slow acoustic wave) or mode F (fast acoustic wave) at a frequency of 100 
kHz are introduced near the leading edge. Two dimensional finite roughness with adjustable height is put 
downstream of the disturbances, as shown in Figure 1. Our results show that roughness height has a significant 
impact on the spatial development of mode S and F. Roughness amplifies disturbance in the upstream region with 
the amplification rate depending on roughness height. Downstream of the roughness, the amplified disturbance is 
damped. Overall, the disturbance is amplified if roughness is placed upstream of synchronization point. In contract, 
if roughness is placed downstream of synchronization point, disturbance is damped. The damping effect gets more 
pronounced with taller roughness element. 
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Figure 1. A schematic of the problem: 1. Roughness 2. Bow Shock 3. Synchronization point 4. Boundary layer  
5. Pure Mode S or Mode F based on LST results 

II. Governing Equations 
For direct numerical simulation of hypersonic boundary layer transition, the governing equations are the three-

dimensional Navier–Stokes equations. We assume that we are dealing with Newtonian fluids with the perfect gas 
assumption and isothermal or adiabatic wall conditions. The governing equations can be written in the following 
conservation-law form in the Cartesian coordinates, 
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where U , jF  and vjF  are the vectors of flow variables, convective flux, and viscous flux in the jth  spatial 

direction respectively, i.e., 
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In this paper, only perfect-gas hypersonic flow is considered, i.e.,  
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where R  is the gas constant. The specific heat vC
 
is assumed to be constant with a given ratio of specific heats  . 

The viscosity coefficient   can be calculated by Sutherland’s law in the form: 
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where, for air,
5 2

01.7894 10 / , 288.0 , 110.33r sNs m T K T K      and  is assumed to be 2 / 3 . The 

heat conductivity coefficient k can be computed through a constant Prantl number. 
 

III. Numerical Method – High-Order Cut-Cell Method  
A schematic of a computational domain and a cut-cell grid in roughness induced hypersonic boundary layer 

transition is shown in Figure 2. This figure shows a typical hypersonic flow over a blunt body, where a bow shock is 
created by the supersonic freestream. In this paper, a high-order shock-fitting method is used to track the movement 
of the bow shock which is treated as the upper boundary of the computational domain. The computational grid for a 
shock-fitting formulation is bounded between the bow shock above and the blunt body below. The cut-cell grid is a 
smooth curvilinear grid fitted to the baseline body shape without the roughness. As a result, the roughness surface 
cuts across the grid lines. The roughness surface,  , is represented by surface equation in the following form,  
 
 : ( , , ) 0f x y z   (10) 

 
For a problem concerning practical arbitrary roughness, it is likely that there is no analytical equation applicable 

to represent the shape of the roughness element. In this case, a set of n  discrete points 

 1 1 1 2 2 2( , , ), ( , , ),..., ( , , )n n nx y z x y z x y z  are used to represent the surface.  
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 (a)                                                                                          (b) 

Figure 2.Physical and computational domain and a cut-cell grid of hypersonic flow over a blunt body with 
surface roughness: a) physical grid, b) computational grid with a transformed roughness  

 
Both the governing Eq. (1) and the roughness equation (10) in the physical domain are transformed into a 

Cartesian computational domain bounded by bow shock and flat plate. Under the computational coordinate system, 
the body fitted grids are represented by a curvilinear three-dimensional coordinates ( , , )    along the grid lines. 

The unsteady movement of the bow shock is treated as the computational upper boundary located at max  , 

which is time dependent. The other grid lines const  and const   remains stationary during computations. 

The coordinate transformation is defined by: 
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where ( , , , )x y z t  are the physical coordinates defined under Cartesian coordinate system. 

 
A third-order accurate Cut-Cell method is used in current numerical simulation [17]. A set of uniformly 

distributed Cartesian grids can be generated in the computational domain where the grid distribution in the physical 
domain is not uniformly distributed. Because smooth body-fitted grids are generated in the regular computational 
domain without the roughness, some of the Cartesian grid cells may be cut by the roughness boundary, which leads 
to irregular Cartesian grid cells. More details of the grid structure are discussed in a previous paper [17]. 

IV. Results and Discussions 
A. Flow conditions and roughness model 
 

In this paper, the new cut-cell method is used to compute hypersonic viscous flow over a flat plate with an 
isolated surface roughness element (Figure 2). Both steady and unsteady flows are considered. The freestream flow 
conditions are the same as those used in Maslov’s experiment [7] as follows,  
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where M , T , P , rP , R  are Mach number, temperature, pressure, Prandtl number and unit Reynolds number, 

respectively. The flat plate is assumed to be isothermal. The total length of the flat plate is about1.69m .  
 
 In this section, unless stated otherwise, most flow variables are presented as dimensionless ones. The main 
exception is that the x  and y  coordinates are presented in dimensional form so that the simulation results can be 

easily related to the experimental setup. For other variables, we nondimensionalize the flow velocities by the 

freestream velocity u , density by  , pressure by 
2( )u  , and temperature by T . 

 
 An isolated roughness element of smooth shape is placed on the surface of the flat plate. Motivated by 
Whiteheard’s experiments [18], the shape of the surface roughness is chosen to be a two-dimensional bump, 
governed by the following elliptic equation, 
 

 
2 2

2
2 2

( )cx x y
h

a b
    (13) 

where the parameters a , b and h  control roughness width and height. In our test cases, roughness width is fixed at 
4 times local boundary layer thickness while the height ranges from 25% to 62.5% of local boundary layer 

thickness.  In addition, cx defines the location of the roughness center. The grid size is 241 points in streamwise 

direction and 121 points in wall-normal direction in each computational zone.  
 
 A third-order cut-cell method described in Section III is used to compute the two-dimensional viscous 
hypersonic flow over the flat plate with the roughness element. As described in Section III, a coordinate 
transformation is employed to transform the physical domain shown in Figure 3 into a rectangle computational 
domain with a set of Cartesian grid. The optimal transformation formula is determined by the specific physical 
problem considered. For viscous flow over a flat plate, it is necessary to cluster more grid points near wall surface in 
order to resolve the viscous boundary layer. 
 
 

 
Figure 3. (a) Computational grid for hypersonic flow over a flat plate with an isolated surface roughness 

(showing one out of four grid points in both directions), (b) Comparison of the current shock-fitting results 
with theoretical solutions for temperature and wall-normal velocity distributions across the boundary layer 

at 0.1676x m  [16]. 
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  In the first step of the transformation, the entire physical domain shown in Figure 3 is transformed into a 
square domain defined on [0,1] [0,1] as an intermediate coordinate space. The transformation relation is defined 

as: 
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where ( , )X Y  is defined under the intermediate coordinate system, L  is the streamwise length of the flat plate in 

physical domain, 
startx is the streamwise coordinate of starting point of computation domain, and the distance along 

  direction between the solid wall and bow shock is referred to H . 

In the second step of the transformation, the intermediate coordinate in the ( , )X Y  space is mapped into the final 

computational domain ( , )   in order to cluster more grid points into the viscous boundary layer near the flat plate 

surface. In the present study, an exponential stretch function is used to cluster grids in the   direction as follows, 
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where   is the stretching parameter. The value of 1.01   is used in the current simulation. With this   value, 

about 50% of the total grid points in the   direction are clustered inside the boundary layer. The combination of 

the transformations of these two steps leads to overall transformation by Eq. (11).  
In the computational domain ( ,  )  , the baseline grid is a set of Cartesian grid similar to the schematic shown 

in Figure 2(b). The intersection of the roughness surface with the grid lines creates cut cells, which are treated by the 
current cut-cell method. The surface Equation (13) of the roughness surface is transformed into the computational 
domain in order to apply the cut-cell method. By substituting Eqs. (14) and (15) into the roughness surface Eq. (13), 
the analytical equation for roughness surface in the computational domain can be written as  
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From Eq. (16), we can calculate the coordinates of the boundary points by computing the coordinates of the 
intersection between the roughness surface and the grid lines. For a given value of   along the roughness surface, 

the Newton iteration method is employed to solve Eq. (16) for the corresponding value of   for a boundary point, 

and vice versa. Having computed the boundary points, we can identify all irregular and dropped points near the 
roughness surface. The remaining grid points are regular points. After computing all coordinates of the irregular, 
regular, boundary and dropped points, the high-order cut-cell method is applied to solve governing equations. 
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B. Steady flow solution without surface roughness 
 

The steady mean flow solutions are calculated by using the fifth-order shock-fitting method. But in the leading 
edge region of the flat plate, there is a singularity at the tip of the plate and the high-order shock fitting method 
cannot be used there. Thus a second-order total variation diminishing (TVD) shock-capturing method, which 
follows that used by Lee et al. [19], is employed to calculate a small local flow field around the tip of the flat plate. 
The computational domain for the TVD calculations starts at 0.006x m   and ends at a very short distance 
downstream of the leading edge at 0.003x m . Having obtained the steady solutions near the leading edge, we 
then use the solution of the TVD scheme as the inlet condition to start the subsequent shock-fitting calculations. The 
computational domain for the high-order shock-fitting methods starts at 0.003x m and ends at 1.68784x m . 
In actual simulations, the computational domain is divided into 30 zones, with total of 5936 grid points in the 
streamwise direction and 121 points in the wall-normal direction. As mentioned above, the second zone uses the 
results of the first zone of the second-order TVD solution as the inlet condition. A later zone uses the interpolation 
of its former zone’s data as the inlet condition. 

The solutions for the steady viscous flow over the flat plate with no surface roughness are first obtained. Figure 3 
shows the streamwise velocity and temperature profiles along the wall-normal direction at 0.1676x m . The 
current numerical solutions obtained by the fifth-order shock-fitting scheme are compared with the self-similar 
boundary layer solution. In order to compare with the self-similar solution, the y  coordinate is nondimensionalized 

by /x u    . Figure 3(b) illustrates that the results of the current numerical simulation agree very well with 

the theoretical solutions near the wall. The second-order TVD scheme is accurate enough to be used as the inlet 
condition of the fifth-order shock-fitting method downstream of the leading edge. 
 
C. Stability characteristics of boundary-layer waves 
 

Stability characteristics of boundary-layer waves of the Mach 5.92 flow is studied by LST using a multi-domain 
spectral method of Malik [20]. The dimensionless frequency used for linear stability analysis is defined as 
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where F  is dimensionless frequency,   is kinematic viscous coefficient. In present simulation, 

5 26.05 10 /v m s  , 55.30 10F    for the case of 100f kHz and 827.29 /u m s  .  

 
In LST analyses of boundary layer flows, the Reynolds number based on the local length scale of boundary layer 
thickness  . They are expressed as 

 ,u xR
u

  
 
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Hence the relation between R  and the unit Reynolds number R  is,  

 

 R R x  (19) 

 
with the definitions of Reynolds number R  and the dimensionless frequency F , the dimensionless circular 
frequency   can also be expressed as 
 
 RF   (20) 
 

Figure 4 shows the eigenvalue spectra of boundary-layer waves at a frequency of 100 kHz at x = 0.189 m. The 
figure shows wave spectra corresponding to fast acoustic wave, entropy and vorticity waves, and slow acoustic wave. 
The two discrete waves marked by circles are modes F and S, respectively. Mode F originates from fast acoustic 



9 
American Institute of Aeronautics and Astronautics 

 

spectrum on the left side of the figure and passes entropy and vorticity spectra at the center as dimensionless 
frequency increases. Mode S originates from slow acoustic spectrum on the right side of the figure. It becomes 
unstable in certain range of dimensionless frequency. The figure also shows that mode S at this frequency is unstable 

at x = 0.189 m with 0i  . 

 
Figure 4. Eigenvalue spectra of boundary-layer waves at the frequency of f=100 kHz at x=0.189 m. 

 
Figure 5 shows phase velocities of boundary-layer waves at two locations of x=0.159 m and x=0.189 m as a 

function of circular frequency. The three horizontal dashed lines represent phase velocities of fast acoustic wave, 
entropy and vorticity waves, and slow acoustic wave, respectively. The excellent agreement of phase velocities at 
two different locations indicates that phase velocity is approximately a function of circular frequency only. The 
figure clearly shows that mode F originates from fast acoustic spectrum. As   increases, phase velocity of mode F 
decreases. When mode F passes entropy and vorticity spectra near  =0.1, there exists a jump of phase velocity, 
which is consistent with theoretical analysis of Fedorov and Khokhlov [21]. On the other hand, mode S originates 

from slow acoustic spectrum. The figure also shows that mode S synchronizes with mode F at the point of s
=0.11563 and sa =0.93076. 
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Figure 5. Distributions of phase velocities of boundary-layer waves at two different locations. 

Although Figure 5 shows that the synchronization point has a constant value of circular frequency s =0.11563, 

the location of the synchronization point in x coordinate, sx , are different for different dimensionless frequencies F. 

The synchronization location in x coordinate for a given dimensionless frequency can be calculated using the 
following formula:  

 
 2

Re
s

s

F
x





  (21) 

This equation indicates that the synchronization point moves upstream with dimensionless frequency increasing. 
Figure 6 shows growth rates of modes F and S at the same set of locations as a function of circular frequency. The 

horizontal dotted line stands for neutral waves i  =0. In Figure 6, the growth rates of either mode S or mode F are 

approximately functions of circular frequency only. Mode S is always unstable, especially in the region from I
=0.00827 to II =0.18465, whereas mode F is always stable. The parameters I  and II  are called branches I and 

II neutral points of mode S. The locations of branches I and II neutral points in x coordinate, which changes with 
different dimensionless frequencies, can be calculated by 

 
   2 2

,
Re Re
I II

I II

F F
x x

 

 

   (22) 

Eq. (22) indicates that when F increases, the corresponding coordinates of branch points decrease. In other words, 
branches I and II neutral points move upstream when F increases. For wall blowing-suction disturbance at the 
frequency of 100f kHz , the synchronization point and the branch II neutral points are located at 0.33184 m and 

0.84622 m. More results on the LST analysis can be found in Wang and Zhong’s paper [22].  
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Figure 6. Distributions of growth rates of modes F and S at two different locations. 

D. The role of roughness height and location on mode S and F 
 
Using the LST analysis mentioned in the previous section, mode S and mode F for a Mach 5.92 flat-plate 

without roughness are numerically calculated and are imposed far upstream at x=0.069m for all test cases. Imposing 
the modes in the far upstream location can minimize the nonlinear effect due to roughness, thus ensures our LST 
result is still valid even for a flat plat with the existence of roughness.  Figure 7 shows the wave mode profiles at 
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x=0.069m for both mode S and mode F obtained by linear stability analysis. The amplitude is normalized by the 
pressure disturbance on the wall, e.g. '( ) ( ) / (0)u y u y p   . Figure 8 shows the amplitude of pressure disturbance 

due to mode S instability along the wall of flatplate without roughness. Since mode S is inherently unstable, the 
disturbance grows exponentially as expected. To validate our results, Wang and Zhong’s result [23] is also included, 
it can been seen that they agree very well.   

 
 

 
Figure 8.The amplitude of pressure disturbance due to Mode S instability for a flat plate without roughness. 

In order to get a full picture of how roughness height and location affect modal growth. We have performed the 
following simulations, 

 
Case 1: Roughness at far upstream of the synchronization point, xr=0.1101m; Local boundary layer 

thickness;     
      δ= 1.448x10-3 m; Roughness height 0.25δ, 0.375δ, 0.5δ, 0.625δ 

 
Case 2:  Roughness at upstream of the synchronization point, xr=0.185m; Local boundary layer thickness 

δ=1.61x10-3 m; Roughness height 0.25δ, 0.375δ, 0.5δ, 0.625δ 
 
Case 3:  Roughness at the synchronization point, xr=0.331m; Local boundary layer thickness δ=2.82x10-3 m; 

Roughness height 0.25δ, 0.375δ, 0.5δ, 0.625δ 
 

Case 4: Roughness at downstream of the synchronization point, xr=0.410m; Local boundary layer thickness 
δ=3.42x10-3 m; Roughness height 0.25δ, 0.375δ, 0.5δ, 0.625δ 
 
As mentioned, the branch I neutral point or the first synchronization for 100kHz disturbance is located at 

xs=0.331m. In the previous studies [16], it was found that the relative location of roughness and synchronization 
point can have a role in modal growth. Therefore, our roughness is placed according the relative location of 
synchronization point. In case 1, the roughness is located at far upstream of the synchronization point. We moved 
the roughness downstream in case 2. In case 3, the roughness is located at the synchronization point. Eventually, in 
case 4, we move the roughness downstream of synchronization point.  

In addition to roughness location, the effect of roughness height is also of interest. We have varied the height of 
roughness from 25% to 62.5% local boundary layer thickness for each roughness location. Initially, roughness 
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height up to 75% of local boundary layer thickness is also tested. However, we found that we can never get a 
converged result for the meanflow. Therefore, for the scope of this paper, roughness is only up to 62.5%. Both mode  
S and mode F disturbance are imposed separately into the meanflow for all cases. 16 cases with roughness and one 
without roughness have been studied, and the results will be discussed next.  

Figure 9 to Figure 12 show the mode S disturbance pressure contour for case 1 to case 4. In each case, roughness 
height has been varied from 25% to 62.5% the local boundary layer thickness.  It can be seen that for all cases, the 
existence of roughness changes the disturbance significantly. For case 1 and case 2 (Figure 9 and Figure 10), the 
unsteady disturbance propagates downstream with its shape remain relatively unchanged. Once the disturbance hits 
the roughness, a secondary disturbance is created outside of boundary layer around the roughness. This secondary 
disturbance travels downstream with an angle similar to the bow shock. Nevertheless, this disturbance is not 
important in our study because it is outside the hypersonic boundary layer. In addition, it decays rapidly downstream 
that the magnitude is insignificantly compared with the disturbance trapped in the boundary layer. 

In Figure 11 and Figure 12, the roughness is located at the synchronization point and downstream of it 
respectively. The secondary disturbance originated from the roughness can still be seen. On the other hand, for the 
trapped disturbance in the boundary layer that we are interested in, we can see that its magnitude increases far 
upstream and starts to damp as it approaches the roughness. This trend is different from what we observed in Figure 
9 and Figure 10. In our most downstream and highest roughness case (Figure 12(d)), we can see that the disturbance 
has been damped very significantly.  

Figure 13 to Figure 16 show the pressure disturbance along wall normal direction at one fixed x location. For 
each case, two locations are considered (upstream of roughness and downstream of roughness). In our most 
upstream case, roughness doesn’t seem to have a strong effect on modal growth (Figure 13(a)). In case 2, roughness 
is able to amplify disturbance in the boundary layer in front of roughness (Figure 14(a)). Downstream of roughness, 
the secondary disturbance outside the boundary layer is very obvious (Figure 13(b) and Figure 14(b)). However, no 
obvious trend is observed for disturbance inside boundary layer. In case 3 where roughness is placed at 
synchronization point, it is shown in Figure 15(a) that tall roughness can damp disturbance in front of roughness. 
Moreover, the secondary disturbance is also present. Downstream of roughness (Figure 15(b)), disturbance is 
damped for all roughness height. The strength of secondary disturbance is weaker in this case. Figure 16 shows the 
plots for case 4. In this case, disturbance inside the boundary layer is greatly damped in front of roughness as well as 
downstream of it (Figure 16(a) and (b)).   

To get a clearer picture of how the trapped disturbance in the boundary layer evolves with different roughness 
location and height, we have performed a FFT analysis on the flow field and plot the pressure amplitude on the wall 
at each roughness locations for each case as shown in Figure 17 to Figure 20.  
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Figure 12. Mode S pressure disturbance contour for case 4, roughness at xr=0.41. (a) 0.25δ (b) 0.375δ (c)
0.5δ (d) 0.625δ 
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Figure 13. Mode S pressure disturbance along wall normal direction y for case 1 xr=0.1101m (a)
upstream of roughness x=0.09m (b) downstream of roughness at 0.11685m 
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Figure 14. Mode S pressure disturbance along wall normal direction y for case 2 xr=0.185m (a) upstream of
roughness x=0.17m (b) downstream of roughness at 0.192m 
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(a)                                                                                           (b) 

 
Figure 16. Mode S pressure disturbance along wall normal direction y for case 4 xr=0.410m (a) upstream of 
roughness x=0.380m (b) downstream of roughness at 0.4267m 
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Figure 15. Mode S pressure disturbance along wall normal direction y for case 3 xr=0.331m (a) upstream of
roughness x=0.310m (b) downstream of roughness at 0.345m 
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Figure 17(a) and (b) show the growth of mode S pressure disturbance on the wall for case 1 and case 2 

respectively. Since the algorithm of cut cell method doesn’t solve for the grid points inside solid region, all 
disturbance drops back to zero inside the roughness element. That is responsible for the discontinuity in all our plots. 
The roughness of case 1 and case 2 are located upstream of synchronization point at xr=0.1101m and xr=0.185m 
respectively. In Figure 17(a), we can see that the disturbance for 0.375δ is damped a little bit in front of roughness 
before it starts to grow. The physical explanation is not known. But for all other cases, roughness upstream of 
synchronization point always amplifies disturbance upstream of roughness. The amplification rate depends strongly 
on the height of roughness. For example, in 0.25δ case, the maximum amplitude is just about 3 times than the case 
without roughness. In highest roughness case (0.625δ), the jump of amplitude can reach almost 13 times than 
without roughness. This amplification in the separation region upstream of roughness agrees with the result by 
Marxen et al [24].  

Downstream of roughness, disturbance evolution has different trend depending on roughness location. In case 1, 
disturbance returns to the level as if there is no roughness, and no obvious trend is observed. However, in case 2 
(Figure 17(b)), roughness height controls how the disturbance grows downstream of the roughness. It is found that 
disturbance is amplified for tall roughness (0.5δ and 0.625δ). For small roughness, the disturbance remains the same 
as the no roughness case. In general, roughness element tends to have more pronounced amplification effect in the 
vicinity upstream of roughness than downstream.  Moreover, if roughness is placed too upstream of synchronization 
point, roughness tends to have small effect on modal growth. 

As the roughness moves closer to the synchronization point in case 3 and case 4, we observe different trend for 
the growth of pressure disturbance. In Figure 18(a), the roughness sits exactly at the synchronization point. The 
disturbance for the smallest roughness (0.25δ) is still amplified and grows downstream as if there is no roughness. 
However, for taller roughness, disturbance only grows in far upstream region of the roughness. As disturbance 
travels closer to the roughness, it is suddenly damped. The location where disturbance starts to damp depends on 
roughness height. In 0.375δ roughness, damping starts at around x=0.317m. When roughness height increases to 
0.5δ, the damping point moves to x=0.309m. Further increase in roughness height to 0.625δ moves the damping 
point even more upstream to x=0.303m. In the region between the point where disturbance starts to damp and the 
roughness, strong modulation of different modes is observed. Since modulation does not exist for the case without 
roughness, the modes which interact with the imposed mode must be generated by the roughness itself. Behind the 
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Figure 17. Mode S pressure disturbance on the wall with different roughness height. (a) case 1: roughness at
0.1101m. (b) case 2: roughness at 0.185m 
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roughness, disturbance for small roughness (0.25δ) follows almost exactly the trend as without roughness. On the 

other hand, disturbance is still highly damped behind taller roughness. The taller the roughness, the weaker the 
pressure disturbance compared with the case without roughness. Tall roughness in this location acts as a disturbance 
damper instead of an amplifier like in case 1 and case 2, and the strength of damping depends on roughness height. 

 
In the final test case, we moved the roughness even further downstream to x=0.41m, which is behind the 

synchronization point. Figure 18(b) shows how pressure disturbance reacts with different roughness height in this 
location. Similar to the case 3, disturbance is amplified in the far upstream region of roughness, but all damped 
when it gets close to the vicinity of roughness. One difference between this case and case 3 is all roughness height 
has damping effect even for our smallest roughness (0.25δ). In addition, the location where disturbance starts to be 
damped is more upstream of roughness than case 3. In the region behind roughness, disturbance for all cases stay at 
the same level and does not grow, which is significantly different from case 3. Judging from this result, we conclude 
that roughness in this location acts as a more effective disturbance damper than in case 3, which can potentially 
stabilize the flow. 

Other than mode S disturbances, mode F is also found by LST and imposed into the same location at x=0.069m 
for the same 16 meanflows with roughness and one without roughness. The magnitude of mode F disturbance we 
imposed is about 100 times larger than mode S. The reason for this is mode F is inherently stable. If the magnitude 
is too small, numerical error would become very significant in the downstream region as the disturbance decays. In 
contrast, we know mode S is unstable and it grows exponentially, this kind of problem will not exist as long as the 
initial amplitude for mode S is larger than tolerance in numerical simulation. Figure 19(a) and (b) shows how the 
mode F pressure disturbance varies due to the existence of roughness for case 1 and case 2 respectively. For the case 
without roughness, we can see that the amplitude does not grow exponentially. This is due to the fact that mode F is 
stable. However, when the mode F disturbance travels further to a downstream region where is close to the 
synchronization point, it synchronizes with mode S in the meanflow and starts to grow exponentially. Both Figure 
19(a) and (b) indicate this trend. The mode F disturbance grows exactly like Mode S in Figure 18 (a) and (b). After 
the synchronization point, our results show that mode S and F are indistinguishable.  
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Figure 18. Mode S pressure disturbance on the wall with different roughness height. (a) case 3: roughness at
0.331m. (b) case 4: roughness at 0.41m 
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The pressure amplitude of mode F for the most upstream case (xr=0.1101) is shown in Figure 19 (a). Although 

different mode is imposed, the trend due to roughness is still very similar to the mode S result as shown in Figure 
17(a). In other words, the disturbance is amplified upstream of roughness but returns to the level as no roughness 
downstream. The strength of amplification depends on the height of roughness. Moreover, in this case, we observed 
stronger modulation in the downstream vicinity of roughness than mode S. The tallest roughness results the 
strongest modulation downstream. Figure 19(b) shows the case which we place the roughness more downstream at 
xr=0.185m. Upfront of roughness, the disturbance is amplified with strength according to roughness height. 
Nevertheless, in the downstream region, different roughness height exhibits different trends. Tall roughness (0.5δ 
and 0.625δ) seems to amplify disturbance effectively, while the disturbance for small roughness (0.375δ and 0.25 δ) 
looks very similar to the case without roughness. If we compare this result to the mode S result in the same location 
(Figure 17(b)), the two trends are very alike as if roughness does not ‘feel’ any difference between these two modes. 

Figure 20 (a) and (b) show the cases which roughness locates at the synchronization point and downstream of it. 
As mentioned, when mode F disturbance gets close to the synchronization point, it becomes unstable similar to 
mode S. The exponential growth of disturbance we observed after synchronization point confirms this hypothesis. 
Subsequently, we expect the results for mode S and F in these two regions would not be very different. If we 
compare Figure 20 with Figure 18, it can be seen that the two trends are almost exactly the same. The only 
difference is the magnitude of disturbance.  
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Figure 19. Mode F pressure disturbance on the wall with different roughness height. (a) case 1: roughness at
0.1101m. (b) case 2: roughness at 0.185m 
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E. Discussion of results 

 
In our investigation, it has been shown that roughness can either amplify or damp disturbance depending on the 

relative location between roughness and the synchronization point. Putting the roughness upstream of 
synchronization point amplifies disturbance and may probably trip the flow. In contrast, putting roughness at or 
downstream of synchronization point damps disturbance and may delay transition. We believe that our result can be 
a candidate to explain why roughness is able to stabilize a flow in some situation as some experiments have shown. 
For example, Holloway and Sterrett [25] concluded from their experiment in 1964 that “for a Mach number of 6.0, 
surface roughness that is less than the calculated boundary-layer velocity thickness at the roughness position can 
under certain conditions delay transition.” However, they did not specify what condition led to the delay. Recently, 
Fujii [26] has investigated an efficient tripping method of a hypersonic boundary layer at Mach 7.1. To his surprise, 
he found that a wavy-wall roughness can suppress transition instead of expediting it. Although no physical 
explanation is given, the accurate repeatability results indicate that some unknown mechanisms must have presented. 
However, this delay mechanism is “still unknown, and remains so” [1]. Our results suggest that this mechanism can 
involve both the location of synchronization point for disturbance at particular frequency and roughness location. In 
particular, Holloway and Sterrett experiment shows that in high free stream unit Reynolds number, transition is 
delayed for small roughness. If one looks at our Eq.(23), it shows that higher free stream unit Reynolds number 
move synchronization upstream. We conjecture that in their high unit Reynolds number cases, the synchronization 
point had moved so upstream that it was in front of the roughness which, according to our results, could lead to 
suppression of disturbance. Although this is only a very brief observation and more studies are certainly needed to 
support this hypothesis, it provides us a light to explain roughness delay transition.  

 
F. Future work 
 

In our test cases, we have only considered disturbance with a fixed frequency at 100kHz. In order to get a better 
understanding of how roughness can affect disturbance with a range of frequency, we plan to impose a disturbance 
which consists of a board frequency range. One example of such disturbance is a Gaussian shape disturbance as 
shown in Figure 21(a). Figure 21 (b) shows a FFT analysis of such disturbance. It can be seen that it has a frequency 
range of 0Hz to 1 MHz. This range is sufficient to cover the unstable frequency domain. In our model, the 
disturbance will be imposed by a wall normal velocity on the wall of the same Mach 5.92 hypersonic flat plate. 
Although the disturbance is Gaussian shape in time, it is sinusoidal in space as shown in Figure 22. The sinusoidal 
shape can ensure we do not add any mass into the flow field. Figure 22 also shows that the center of our “hole” is 
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Figure 20. Mode F pressure disturbance on the wall with different roughness height. (a) case 3: roughness at 0.331m. (b) case
4: roughness at 0.41m 
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located far upstream at x=0.1m with a width about 3mm, which is an order of local boundary layer thickness. As a 
test case, we firstly use this model in a case without roughness. As shown in Figure 23, the disturbance is generated 
by a hole on the wall and the corresponding disturbance travels downstream. The period of the pulse is about 2.5 x 
10-6 s. The hole is closed after one period, and no slip condition is applied. Figure 24 shows the FFT result for the 
disturbance on the wall at different x locations. The peaks at around 170 KHz indicate that the impulse disturbance 
has excited the unstable mode S inside the boundary layer. Since mode S is unstable, the peak grows as the sampling 
location gets downstream. We will apply this model to our roughness cases in the future. The goal of this study is to 
gain a deeper understanding of how roughness interacts with disturbance with different frequencies. In addition, 
study of roughness height and location will also be included. This study is motivated by Marxen et al [24] who have 
shown that “roughness can act as a disturbance amplifier with a limited bandwidth, which is capable of filtering a 
range of frequencies and strongly amplify only a selected range .” It will be interesting to compare their results with 
ours.  

 

  

    (a)                                                                             (b) 

Figure 21.  (a) Wall normal velocity Gaussian shape disturbance in time. (b) FFT result for 
the Gaussian sharp disturbance. 
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Figure 22. Snapshot of disturbance in space. 
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V.Summary 
In this paper, we have further investigated the finite roughness effect on modal growth of a Mach 5.92 flat-plate 

boundary layer, mainly focusing on roughness height and roughness location. The steady base flow is firstly 
simulated by solving compressible Navier-Stokes equations. Stability characteristics of boundary-layer waves are 
analyzed by linear stability theory (LST). In stability simulations, two-dimensional disturbances corresponding to 
mode S or mode F at a frequency of 100 kHz are introduced near the leading edge. Four roughness locations relative 
to the synchronization point are considered. For each location, finite roughness with adjustable height is put 
downstream of the disturbances. Our results show that the location of roughness plays an important role on modal 
growth of two dimensional disturbances. If roughness locates very far upstream of synchronization point, 
disturbance is amplified in the upstream region of roughness, while the effect of roughness is not significant 
downstream. As roughness moves to a more downstream location, the overall amplification of two dimensional 
disturbance is very strong for tall roughness. This strong amplification may lead to early transition of hypersonic 
boundary layer. Our result also shows that roughness is capable of damping disturbance. When roughness is placed 
at synchronization point, we observed roughness acts as a disturbance damper. The tallest roughness results the 
strongest strength of damping. This damping effect gets more pronounced as roughness is placed more downstream 
of synchronization point. We believe that this result may explain some previous experiments in which roughness has 
delayed transition instead of expediting it. Additionally, we find that the difference between mode S and mode F on 
roughness is very minimal. Our future plan involves implementing a disturbance with a board range of frequency. 
The comparison with existing numerical results available will be interesting. 
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