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Abstract 

1  Introduction 
 
The accurate prediction of laminar-turbulent transition in hypersonic boundary layers is a critical part of the 

aerodynamic heating analyses on hypersonic vehicles. Since 1950s, extensive wind-tunnel and flight-test 
experiments on boundary layer transition and a number of stability experiments have been conducted for hypersonic 
flows over circular cones [1, 2]. Schneider [1, 2] did an extensive review of the existing literature on these 
experiments for both flight test and wind tunnel experiments. Though many of these experiments did not measure 
transition mechanisms and were carried out in noisy wind tunnels, the experimental studies have led to better 
understanding of the effects on transition of many parameters, including nose bluntness, Mach number, freestream 
noise, surface and stagnation temperatures, freestream unit Reynolds numbers, cone half angles, angles of attack, 
and surface roughness, etc. Nevertheless, so far, the effects of many of these parameters on transition are still not 
well understood.  

 
One of the unexplained phenomena is the transition reversal phenomenon as the nose bluntness of the cones 

increase [3, 4]. The transition reversal phenomenon refers to the experimental observation that the transition location 
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For hypersonic boundary layers over blunt cones, laminar-turbulent transition location moves 
down stream with increasing nose radii when they are relatively small. The transition reversal 
phenomenon refers to the experimental observation that the downward-moving trend reverses 
itself when the radii are larger than a certain critical value. Currently, there is no satisfactory 
explanation for the reversal. All previous linear stability theory (LST) and numerical simulation 
studies have not shown a reversal of instability or transition. The previous studies, however, have 
not been done on the actual experimental flow conditions which had shown transition reversal. 
The two most extensive experimental results on transition reversal are those reported by Stetson 
for Mach 5.5 flow over an 8 degree half-angle blunt cone and by Softley for Mach 10 flow over a 5 
degree half-angle blunt cone. The objective of this paper is to conduct numerical simulation studies 
of the nose bluntness effects on freestream receptivity for Stetson’s Mach 5.5 flow. Three test cases 
of both small and large nose radii are used to study the nose bluntness effects on the receptivity of 
boundary layers to freestream acoustic waves. The unsteady results are also compared with those 
of LST. The receptivity results of the current study do not show any reversal of instability due to 
increasing nose bluntness. In addition, the numerical-simulation and LST results show that the 
wave structures of different frequencies and different nose bluntness can be approximately scaled 
by the dimensionless frequency  . Because relevant frequencies shift lower as nose radii increase, 
the same critical value of   for second mode instability for different nose bluntness results in a 
downstream movement of instability location. 
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moves downstream when the nose radius is increased. This trend is, however, reversed itself when the nose radius is 
larger than a certain critical value. Increasing nose radius after that will lead to a forward movement of the transition 
location. The downstream movement of the transition location at small radii can be explained by the reduction of 
local Reynolds numbers owing to the entropy layer created by the nose bluntness. However, there is still no 
satisfactory explanation for the cause of transition reversal at large nose bluntness. There is also a possibility that the 
surface roughness and freestream noise in wind tunnel play a role in the reversal. 
 
 Most of the previous theoretical and computational studies of the transition reversal have been on the Stetson et 
al.’s [5, 6] stability experiments on an axisymmetric blunt cone in a Mach 7.99 freestream. The half angle of the 

cone was 7 , the nose radii were 1.5 inches and larger, and the freestream Reynolds number based on the nose 
radius was 33,449. The Reynolds number based on the total length of the cone was about 9 millions. Detailed 
fluctuation spectra of the disturbance waves developing along the body surface were measured in the experiments. It 
was found that the disturbances in the boundary layer were dominated by the second mode instability. Significant 
super harmonic components of the second modes were observed after the second mode became dominant. 
Compared with similar hypersonic flow over a sharp cone, the second mode instability of the blunt cone appeared in 
much further downstream locations. This indicates a stabilization of the boundary layer by slight nose bluntness.  
  
 The normal-mode linear stability characteristics of the boundary-layer flow over the same blunt cone as Stetson 
et al.'s experiments have been studied by a number of researchers [7-10]. Malik et al. [7] computed the neutral 
stability curve and compared the growth rates obtained by LST with the experimental results. The steady base flow 
solution was computed by using the parabolized Navier-Stokes equations. They found that the nose bluntness 
stabilizes the boundary layer. The growth rates predicted by the LST were compared with Stetson et al.'s 
experimental results at the surface location of 175s  nose radii (0.667 m). The linear stability analyses predicted 
slightly lower frequency for the dominant second mode, but much higher amplification rates than the experimental 
results. Rosenboom et al. [11] did further study on the effect of nose bluntness on the linear stability of hypersonic 
flow over Stetson's blunt cone. In their studies, the cone geometry and freestream conditions were adapted to the 
Stetson's experiments. Three cases of blunt cones of different nose radii, which cover both ``small'' and ``large’’ 
bluntness, were considered. The purpose was to investigate, by linear stability analysis, the transition reversal 
phenomenon observed in experiments at ``large'' bluntness [4, 12]. By a linear stability analysis, Rosenboom et al. 
confirmed a monotonic downstream movement of the second mode critical Reynolds number as nose radius 
increases. However, their linear stability analysis still cannot explain the transition reversal phenomena observed in 
experiments at ``large'' bluntness. In addition to LST studies, Kara et al. [13] did a similar DNS study on the effects 
of nose bluntness on stability of a Mach 6 boundary layer over a 5-degree straight cone. They found that the 
bluntness has a strong stabilizing effect. Husmeier and Fasel [14] investigated the bluntness effects on nonlinear 
breakdown. Again, they found only stabilization effects on nose bluntness. 

 
Zhong et al. [15-17] have conducted numerical simulation of the stability and receptivity of Stetson’s Mach 8 

flow over blunt cones.  In [16], the numerical results for the steady base flow were compared with the 
experimental results of Stetson et al. [5], and with the numerical results of Esfahanian [18]. In addition, a normal-
mode linear stability analysis was used to identify the main components of boundary-layer disturbances generated 
by forcing freestream fast acoustic waves. It was found that neither the first mode nor the second mode instability 
waves are excited directly by freestream fast acoustic waves in the early region along the cone surface, although the 
Mack modes can be unstable there. Instead, the second mode is excited downstream of the second-mode Branch I 
neutral stability point. The delay of the second-mode excitation is a result of the fact that the hypersonic boundary-
layer receptivity is governed by a two-step resonant interaction process: 1) resonant interactions between the forcing 
waves and a stable boundary-layer wave mode I near the leading edge region, and 2) resonant interactions between 
the induced stable mode I and the unstable second Mack mode downstream.  

 
The current work is motivated by our previous numerical simulation study [17] of the effect of nose bluntness on 

hypersonic boundary layer receptivity over a blunt cone. In [17], we conducted a numerical study on the effects of 
nose bluntness on the receptivity to free-stream acoustic waves for hypersonic flow by comparing the results of three 
nose radii. The flow conditions duplicated the experiments of Stetson et al. [5] and investigated the effects of nose 
bluntness on receptivity. Three nose radii were chosen to be the same as those used in Rosenboom et al.'s stability 
analysis.  They are 3.81 mm, 17.78mm, and 42.67mm. The first nose radius belonged to category of ``small'' nose 
bluntness, while the second and third cases fell into the region of ``large'' bluntness. By using the numerical 
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simulation, the initial receptivity process was computed accurately. The effects of bow shock interaction with 
forcing waves, the effects of the entropy layer and non-parallel boundary layer are also taken into account in the 
numerical simulation. A total of 15 frequencies are computed in the receptivity simulation for each case. It is found 
that, in those three test cases, the basic receptivity mechanism of hypersonic flow over the blunt cone with different 
nose radii is essentially the same. Specifically, the receptivity is a result of the resonant interactions between forcing 
waves and boundary-layer wave modes near the nose region, and the resonant interactions between different 
boundary-layer wave modes downstream. As the nose radius increases from ``small'' to ``large'', the results in [5] 
showed no reversal in the location of instability wave induced by the receptivity process. In other words, the 
location of initial excitation of the second instability mode always moved downstream as the nose bluntness was 
increased.  
  
 Therefore, currently, the small bluntness effects of transition delay can be explained by the reduction of local 
Reynolds numbers. However, the mechanisms of transition reversal are not clear for the larger bluntness effects. The 
possible explanation for the experimental observation of transition reversal can be the instability of entropy layers, 
the surface roughness effects, wind tunnel noise in conventional noise tunnel, etc. So far, LST and computational 
studies have been done only on the test cases of Stetson’s Mach 8 experiments [5]. All previous calculations have 
found no instability reversal at very large nose radii. On the other hand, Stetson’s Mach 8 test model was not long 
enough to observe transition in his experiments. In other words, transition reversal phenomenon was not actually 
observed experimentally in Stetson’s Mach 8 test cases. It is worthwhile to study, by both numerical simulation and 
LST, the mechanisms of transition reversal on the actual experimental conditions which have showed transition 
reversal.   
 
 Though the delay of transition by slight nose blunting has been found by many experiments since 1950s, the 
transition reversal at large nose bluntness has only been reported by a few researchers. Stetson et al. [3, 19] were the 
first ones to report concrete results on transition reversal. The only other reversal results were shown in Figure 3 of a 
paper by Ericsson [4], who cited an unpublished reported by Softley [20]. Therefore, the most extensive 
experimental results on transition reversal are those reported by Stetson especially the case of Mach 5.5 flow over 
sharp and blunt cones [3]. Figure 1 shows a schematic of Stetson’s test models with ten nose radii: 

1 1 3 1 5 6 7 1 1 1
, , , , , , , , ,  and 1

32 16 32 8 32 32 32 4 2 2
in . The model was polished such that the general surface finish is 

approximately 10 in  and it can be considered to be smooth surface. Transition reversal was observed in these test 

models as shown in Figure 2, which shows the transitional Reynolds numbers vs. nose radius Reynolds numbers, 
which are based on freestream flow conditions. This figure is created by using Stetson's experimental results 

tabulated in Table 2 of [3].  The figure shows a clear transition reversal as Ren increases, with the Ren of 52 10
serving as the dividing line between “large” and “small” nose radii. This results are very similar to the results in [4] 
for freestream Mach number of 10 or higher. 
 
 So far, there has not been any LST or numerical simulation study on the Stetson’s Mach 5.5 cases, which are one 
of the very few experimental test cases actually showing transition reversal. It will be valuable if these experiments 
can be systematically re-analyzed by modern numerical simulation and linear stability techniques to study the effects 
on transition by nose bluntness. Therefore, we have been conducting the LST [21] and numerical studies [22] of  the 
cases of Stetson’s Mach 5.5 experiments on the nose bluntness effects. Lei and Zhong [21] conducted a linear 
stability analysis on Stetson’s Mach 5.5 experiments in which the reversal was observed. Three cones with nose 
radii of 0.156, 0.5, and 1.5 inches, covering both the “small” and “large” bluntness regions, were used to study the 
effect of nose bluntness on stability and transition. It was found that, if only the second-mode instabilities are 
considered, the onset of instability is always delayed as the nose bluntness increases. The LST calculations show no 
reversal on the growth of the second-mode instability. Zhong [22] did a numerical simulation study has on the mean 
flow and unsteady Mach 5.5 hypersonic flow over a blunt cone due to surface blow and suction. The flow conditions 
were the same as those of Stetson’s 1967 wind-tunnel experiments for Mach 5.5 flows with same three cases of nose 
radii. The simulation results showed that the increase of nose bluntness leads to the substantial decrease in local 
Reynolds numbers along the edge of the boundary layers. The decrease of local Reynolds numbers is the main 
reason of transition delay by nose blunting in the small nose bluntness region. Only some preliminary results were 
reported for unsteady flow of boundary layer instability induced by surface blow and suction. Therefore, the 
objective of this paper is to conduct numerical simulation studies of the nose bluntness effects on freestream 
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receptivity for Stetson’s Mach 5.5 flow. The same three test cases of both small and large nose radii are used to 
study the nose bluntness effects on the receptivity of boundary layers to freestream acoustic waves. The unsteady 
results are compared with those of LST obtained by Lei and Zhong [21]. 
  
 We have developed a fifth-order shock-fitting code to compute the Navier-Stokes equations for such flows [23, 
24]. The code has been used to study the study and unsteady hypersonic flow over a 7 degree blunt cone of Stetson’s 
1984 experiments [16, 17]. The use of high-order shock fitting schemes makes it possible to obtain highly steady 
and unsteady accurate solution of hypersonic flow over the cones with entropy layer effects. The steady mean flows 
can be used as a starting point for both the linear stability calculations of the same flow and the numerical simulation 
of freestream receptivity and stability of the boundary layers. By using the numerical simulation of the shock-fitting 
approach, the initial receptivity process can be computed accurately in the current study. The effects of bow shock 
interaction with forcing waves, the effects of the entropy layer and non-parallel boundary layer are also taken into 
account in the numerical simulation. Since the mean flow results have been reported by Zhong [22], they are not 
repeated in this paper. 

2 Governing Equations and Numerical Methods 
 
 The governing equations for both steady and unsteady flow computations are briefly presented in this section. 
Details of the governing equations and numerical methods for two and three-dimensional flows have been described 
in previous papers[23, 25, 26]. The governing equations are the unsteady three-dimensional Navier-Stokes equations 
written in the following conservation-law form: 
 

 
* **

* * *
0j vj

j j

F FU

t x x

 
  

  
 (1) 

 

where * * * * * * * * *

1 2 3( , , , , )U u u u e    , and superscript “*” represents dimensional variables. The Cartesian 

coordinates, * * *( , , )x y z , are represented by * * *
1 2 3( , , )x x x  in the tensor notation. In the current simulation of three-

dimensional flow over a blunt cone, *x  axis is along the center line of the axisymmetric cone pointing downstream. 
The origin of the Cartesian coordinate system is located at the center of the spherical nose cone. 

 
For all results presented in this paper, unless specified otherwise, we nondimensionalize the flow velocities by the 

freestream velocity u
 , length scales by the nose radius *

nr , density by * , pressure by *p , temperature by *T , 

time by * */nr u , etc. The dimensionless flow variables are denoted by the same dimensional notation but without 

the superscript “*”. 
 
 A 3-D fifth-order shock-fitting method of Zhong [23] is used to compute the flow field bounded by the bow 
shock and wall surface. In the discretization of the Navier-Stokes equations, spatial derivatives in the streamwise ( s ) 

and wall-normal ( ny ) directions are modeled by a fifth-order finite difference schemes. The flow variables behind 

the shock are determined by the Rankine-Hugoniot relations across the shock and a characteristic compatibility 
equation from behind the shock. The details of the shock fitting formulas and numerical methods can be found in 
[23]. 

3 Flow Conditions 
 
 The flow conditions for the test case studied in this paper are the same as those in Stetson’s experiments on air 
flow over a blunt cone in a Mach 5.5 freestream [3]. For the case of zero angle of attack, Stetson tested ten blunt 
cones of different nose radii ranging from 1/32 in to 1.5 in (see Figure 1). A range of different freestream unit 

Reynolds numbers were used to test these cones, from 61.6 10 / tf to 618 10 / tf . In this paper, only three cases 
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of different nose radii and a constant unit Reynolds number are used in the numerical simulation. The nose radii of 
the three cases are: 
 

 

Case 1: 0.15625 3.969 

Case 2: 0.5 12.7 

Case 3: 1.5 38.1 

n

n

n

r in mm

r in mm

r in mm

 

 

 

 (2) 

 
 All other flow conditions are the same for these three cases. The specific flow conditions are: 

 5.468M   

 * 7756.56P Pa  , * 174.46T K   

 Wall temperature:    296wT K  

 1.4  , Pr 0.72 , * 286.94 /R Nm kgK  

 Freestream unit Reynolds number: * 6 1Re 18.9714 10 m
    

 Blunt cone half angle: 8   , the freestream flow has a zero angle of attack 

 Parameters in Sutherland's viscosity law: * 288rT K ,  * 110.33sT K , 

                                                                          * 40.17894 10 /r kg ms    

where *p  and *T  are freestream pressure and temperature respectively. The body surface boundary condition is a 

non-slip condition for velocity and isothermal wall condition for temperature. In this particular study, both the 
steady base flow and unsteady flows are axisymmetric. The simulation is carried out by using 241 grid points 
between the cone surface and the shock (in the wall-normal direction). The simulation is carried out using many 
zones in the streamwise direction with about 20 grid point resolving one period of boundary layer wave modes.  
 

As stated earlier in this paper, the origin of the Cartesian coordinate system, ( ,  ,  )x y z , is located at the center 

of the nose of the spherical cone, where the x  coordinate points from left to the right along the center line of the 
axisymmetric cone. In addition to x , a natural coordinate s  is also used in this paper and in [3] to measure the 
dimensionless curve length of a surface location starting from the stagnation point. The nondimensional s  and x , 

which are normalized by the nose radius nr , are related to each other by the following relation: 

 

 
cos( )                                                        ( 0.5 )

( / 2) cos sin                              ( 0.5 )

s s

s s
x

 

     

  

    


 


 (3) 

 

where    is the half angle of the cone. In the current test case, 8   . 

4 Nose Bluntness Effects on Steady Base Flow 
 
 The steady base flow solution of the three test cases of different nose bluntness stated in (2) has been obtained by 
using a fifth-order shock fitting scheme. The steady results have been presented in [22]. The mean flow solutions are 
also used for a concurrent linear stability analysis in [21].  
 
 Figure 3 shows the Mach number contours for the three cases of steady base flow solution. The bow shock is 
obtained in the shock fitting simulation as the outer computational boundary of the contours. In all figures, unless 
marked with the dimensional units in the variables, the variables are dimensionless. The current figures show strong 
effects of the entropy layer near the nose region in case 3 of the largest nose radius. The boundary layer of case 3 is 
much thicker than that of case 1 for a sharper cone. Since the wave length of a boundary layer instability wave mode 
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is roughly twice the boundary layer thickness, the wave length of instability waves becomes longer as the nose 
bluntness increases. Meanwhile, the frequency of the unstable wave modes decreases. 
 
 It has been argued by many authors [3] that the cause of transition delay by slight nose bluntness is a result of the 
reduction of local Reynolds number at the edge of the boundary layer as the bluntness increases. For hypersonic 
flow over a blunt nose, the entropy layer behind the bow shock results in lower Mach numbers and local Reynolds 
numbers. If the local Reynolds number at transition remains a constant, the reduction of local Reynolds numbers 
leads to the downstream shift of the transition location. Since flow properties undergo substantial changes passing 
through the bow shock, the local unit Reynolds numbers were evaluated in [22] for the flow fields behind the bow 
shocks. It was shown that the cases of larger nose radii have thicker boundary layers and much lower local Reynolds 
numbers along the edge of the boundary layers. 

5 Nose Bluntness Effects Analyzed by Linear Stability Theory 
 

The linear stability theory (LST) was used by the authors in [21] to study the nose bluntness effects on the 
unstable wave modes for the three test cases considered in this paper.  To apply the LST, the disturbance amplitudes 
are assumed to be small so that they do not interact non-linearly with each other. The normal mode of a disturbance 
variable is assumed to have the following form: 

 

 ( )ˆ' ( ) i t s
nq q y e     (4) 

 
where 'q  can be any dimensionless flow variable such as velocity, temperature, density and pressure, all of which 

are normalized by the freestream quantities.  In the equation above, q̂  is the mode structure representing the 

complex amplitude of the disturbances. In the spatial stability theory, , the dimensionless angular frequency of a 

normal disturbance mode, is set to be a real number, while r ii     is the stream-wise complex wave number 

non-dimensionalized by L* . The imaginary part of wave number represents the spatial growth rate of a specific 
disturbance mode. When i  is negative, the disturbance becomes unstable. The real part of the wave number r
indicates the spatial wave number. An important quantity that can be extracted from r  is the wave speed, which is 

defined as 

 
r r

FR
a


 

   (5) 

In the above equation, the dimensionless wave speed, a , is normalized by the free-stream velocity. The 
dimensionless frequency, , is defined as, 

 
* *

*

L
RF

u




   (6) 

                                                        
F is the dimensionless frequency that is related to the dimensional angular frequency by, 

 
* *

* 2
F

u

 



  (7) 

R is local Reynolds number based on the length scale of boundary layer thickness and *s is the curvilinear 
coordinate along the cone surface as measured from the nose: 

 
* * *

*

u L
R



 



  (8) 

 
* *

*
* *

s
L

U






 

  (9) 
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Figure 4 shows the second-mode neutral stability curves for the three cases of different nose radii. As shown by 
Lei and Zhong [21], the second mode shown in this figure is in fact mode F when in becomes unstable. The neutral 
curve of Case 3 of 1.5 inch nose radius looks less smooth compared to those of the other two cases. This is a result 
of the fact that less data points in frequency domain are considered for this particular case. However, the general 
shape will not change much with more points added. In this figure, it is observed that the unstable second-mode 
spectrum falls into very different frequency ranges for cones of different nose bluntness. The frequencies of unstable 
second modes decrease for cones with larger nose radii. For the same cone at different surface locations, the 
unstable frequencies also gradually reduce when the waves propagate toward downstream locations. Overall, as the 
nose bluntness increases, the onset location of second-mode instabilities always moves downstream. As shown in 
the figure, no reversal is found on the LST result onset of instability locations.  

  
For a supersonic boundary layer over a flat plate, Ma and Zhong [27] pointed out that the wave speeds (or phase 

velocities) and growth rates can be scaled by dimensionless frequency  define by Eq. (6). In other words, the 
Brach I neutral stability location, as well as the synchronization location between mode F and mode S, 
approximately appear at the same  , independent of frequency and location of the waves. On the other hand, the 
flow fields are more complex for the current hypersonic flow over blunt cones, where there is an interaction between 
the entropy layer and boundary layer. Such interaction does not exist in the flow field studied by Ma and Zhong [27]. 
Therefore, it is not clear if the same conclusion can be drawn for the current test cases. 

 
The second-mode dimensional growth rates are plotted as a function of   in Figure 5 for the current three cases 

of hypersonic flow over blunt cones with different nose radii. Some common characteristics are observed in all these 
cases.  First, the disturbances at higher frequencies become unstable at locations closer to the nose. Second, as the 
frequency decreases, the maximum second-mode growth rate becomes higher. Some trends are also found among 
these three cases. As the nose bluntness increases, the onset of the second-mode instability moves downstream in 

terms of dimensional coordinate *s . The range of unstable mode frequency shifts to the lower end and becomes 
narrower as the nose becomes blunter. The frequency ranges shifting to lower value can be explained by the increase 
of boundary layer thickness due to blunting the nose, which causes the wave lengths of unstable modes to become 
longer. The growth rates for the blunter cone are substantially lower than those of the sharper cone. Also, for the 
blunter case, the instability of a fixed frequency tends to grow for a longer distance to compensate the lower growth 
rate it has. On the other hand, this figure shows that the region of mode F instability covers roughly the same 
interval of  . For example, the peak growth rates for all three cases occur roughly at 0.5  , even though the 
frequency ranges are very different for different nose radii. 

   
The wave speeds and growth rates figures for a fixed frequency share many similarities with those at a fixed 

location with varying frequency. Figure 6 shows the profiles of wave speeds for both mode F and mode S as 
functions of dimensionless frequency   at a fixed surface location for the three cases of different nose radii. It was 
found in [21] that the unstable second mode is excited from the mode F. The mode F is defined as a discrete normal 
mode coming out of fast acoustic wave that has an initial non-dimensional wave speed of 1+1/M. Traditionally, M is 
the Mach number at the edge of boundary layer. Since the Mach number along the edge of boundary layer changes 
constantly for hypersonic flow over a blunt cone, the freestream Mach number is used to keep that wave speed 
constant as shown in this figure. Similarly, the slow acoustic wave has a non-dimensional wave speed of 1-1/M. In 
this case, both mode F and mode S are plotted to demonstrate a phenomenon called synchronization. 
Synchronization is a resonance between two normal modes of identical frequency when they have the same wave 
speed and frequency. The synchronization process provides a channel for energy exchange between two normal 
modes, which allows transfer of energy from stable mode to unstable mode. While other studies [16, 27] typically 
show mode S as the unstable second mode, our current cases show mode F becoming the unstable second mode. 
This switch can be explained theoretically due to the relatively cool wall surface temperature in the simulation [28].  

 
Figure 6 shows the synchronization point between the two modes appears approximately at the same  around 

0.22 for all three cases. Since the frequency is lower for the blunter cones, a constant  leads to a downstream 
movement of the synchronization point, as well as the instability region of the instability waves due to nose blunting. 
In other words, because the synchronization location of Case 3 occurs at the same   but lower frequencies, larger 

surface length *s  is needed to reach the same value of  .  
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6 Nose Bluntness Effects on Receptivity to Freestream Acoustic Waves 
 
 As discussed in Section 1, the main objective of this paper is to study the nose bluntness effects reported in the 
Stetson’s experiments [3] (Figure 2). In this section, we present the results of the simulation study of receptivity to 
frestream acoustic disturbances for the three blunt cones with different nose bluntness. Various aspects of the linear 
stability of the flow can be studied by numerical simulation of receptivity of the boundary layer to various 
disturbances. Examples of the external disturbances include freestream perturbations, surface roughness, surface 
blow and suction, surface vibrations, etc. The forcing disturbances can be both 2-D and 3-D disturbances. In this 
paper, we will present the results of receptivity to freestream 2-D acoustic waves for the three cases of different nose 
radii. 

 
In the current numerical simulation, the instability waves in the boundary layer are induced by imposing weak 

acoustic waves in freestream of the steady mean flow solution. Even though the nonlinear Navier-Stokes equations 
are used in the simulation, the amplitudes of the forcing waves are chosen to be weak enough so that the 
disturbances excited in the boundary layer are in the linear regime. In doing so, the results obtained from the 
simulation can be directly compared with those computed by the LST. In the unsteady flow simulation, we introduce, 
in the freestream, acoustic disturbances of a mixture of 15 frequencies. The subsequent shock interaction, receptivity 
and development of the instability waves in the boundary layer are computed by the numerical simulation. The 
specific frequencies of the forcing acoustic waves introduced in the freestream are 

 

 * *

1                               ( 1,2, , )nf nf n N    (10) 

 
where the range of frequencies for each nose radius is determined by the corresponding LST analysis so that the 
most unstable waves are included in the simulation. The specific frequencies used for the three cases are 
 

 * *

1 15Case 1: 0.156 ,  52.5509 ,  ,  788.26 nr in f kHz f kHz    

 * *

1 15Case 2: 0.5 ,  32.1144 ,  ,   481.72 nr in f kHz f kHz    

 * *

1 15Case 3: 1.5 ,  20.0 ,  ,   300.0 nr in f kHz f kHz    

  

All 15 frequencies for each case are multiples of *
1f  given by Eq. (10).  

 
 Since the purpose of the current study is to study the linear stability of the boundary layer, the overall free-

stream wave amplitude used in the simulation is 45 10   , which is sufficiently small so that the receptivity 
process falls in the linear regime. Consequently, the wave components of the 15 frequencies are independent, and 
they can be decomposed one from another by a temporal Fourier analysis. Since the wave components of different 
frequencies are linearly independent, the relative wave amplitudes among different frequencies in the free stream are 

set to be the same, while the phase angles n  of the forcing waves at frequency n  are chosen randomly. 

 
 The unsteady calculations are carried out until the solutions reach a periodic state in time. Temporal Fourier 
analysis is then carried out on the local perturbations of unsteady flow variables. For example, a Fourier transform 
for the perturbation field of an arbitrary flow variable leads to 
 

 
[ 2 ( , )]

0

'( , , ) Re | ( , ) |  n n

N
i f t x y

n
n

q x y t q x y e   




 

 
  (11) 

where nf  is the frequency and '( , , )q x y t represents an arbitrary perturbation variable. The Fourier transformed 

variables, | ( , ) |nq x y  and ( , )n x y , are spatially varying real variables representing the local perturbation 

amplitudes and phase angles at the wave frequency of nf . For perturbations on the body surface, the growth rates 

and wave speeds of the perturbations corresponding to nf  can be computed according to the following formulas: 
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| | 1

| |

2

/

i
n

n

n n

r n

d q

ds q

f
a

d ds



 
 



 
 (12) 

 

where | |nq is the amplitude of surface pressure perturbations obtained by a temporal Fourier analysis of the 

instantaneous pressure.  
 

If flow perturbations obtained by the receptivity simulation are dominated by a single wave mode, such as the 
unstable mode F in the current cases, the parameters computed by Eq. (12) are the growth rates and wave speeds of 

this mode. In this case, profiles of i  and a  as functions of natural coordinate s are smooth lines with no 

oscillations. On the other hand, if the simulation results contain a modulation of multiple wave modes in a local 

region of the boundary layer, i  and a  computed by Eq. (12) do not represent the growth rates and wave speed of 

a single wave mode. Instead, these two parameters represent a modulation of two or more wave modes. As a result, 

the profiles of i  and a  along the surface direction will be oscillatory functions of s . In this case, further 

decomposition of different wave components is required in order to obtain the growth rates and wave speeds of the 
individual wave modes. 
 
Case 1: Nose Radius=0.156 in. 
 

The results of receptivity simulation for case 1 of sharpest cone are considered. The freestream Reynolds number 

based on the nose radius is 47.5212 10 , which falls into the small nose radius regime in Figure 2. 
 

Figure 7 shows the amplitude profiles of surface pressure perturbations, i.e., | |( )np s  computed by Eq. (12), 

along the dimensional length of the cone surface. Each line represents the response of the boundary layer to 
freestream forcing waves at one of the 15 frequencies ranging from 52.5 kHz for n=1 to 788.3 kHz for n=15. 

Dimensional surface length *s is used in the figure so that the results of the three cases can be compared. This figure 
shows that the receptivity process leads to complex wave structures in the boundary layer. For perturbations of a 
fixed frequency, the disturbance wave structures change dramatically as they propagate downstream. The wave 
structures for the receptivity of a Mach 8 flow over a cone were analyzed by Zhong and Ma [29]. The basic wave 
structures of the current case are to those studied in [29], with the exception that mode F is unstable in the current 
case as compared to unstable mode S in the Mach 8 flow studied by Zhong and Ma.  

 
Figure 7 shows similar amplitude development for all 15 frequencies. Specifically, there is strong wave 

modulation in the early region immediate behind the nose cone. The length of this initial wave region is very short 
for the highest frequency of n=15. As the frequency decreases, this initial transient region spans longer and longer 
length downstream. The initial modulation region is followed by a region of a single mode F induced by external 
forcing. Further downstream, the wave amplitude grows exponentially due to mode F, or the second mode, 

instability. For example, for the frequency of n=13 ( *
13 683.2 f kHz ), Figure 7 shows that for the initial transient 

region of * 0.24 s m , where the wave amplitudes show strong wave modulation due to initial interaction of 
forcing waves with the boundary layer. As the wave propagates past this initial region, the amplitude for this 
frequency shows a clean line with little modulation. This is an indication that the unsteady solution consists of 

mostly a single mode F in the boundary layer. This second region for the frequency of *
13f  is 

*0.24 0.5 m s m  . In the second region, the wave amplitude grows along the surface as a result of resonant 

interaction between the external acoustic forcing waves and mode F. As the waves of *
13f  propagate further 

downstream of * 0.5 s m , the wave amplitude experience exponential growth as shown by this figure. This third 
region is the region of second mode instability, which is consistent with the LST result of Lei and Zhong [21]. This 
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figure also shows that the growth of unstable mode F in the third region is mixed with external acoustic waves as 
demonstrated by a strong wave modulation in this region. The wave amplitude profiles of all other frequencies 
demonstrate similar characteristics of three regions of (1) initial transient modulation, (2) subsequent relative clean 
mode F development, and (3) eventual mode F instability. For a lower frequency, these three regions are stretched 

longer in the dimensional surface natural coordinate *s .  For the current case of 0.156 inch nose radius, the unstable 

waves excited by freestream forcing waves start approximately at the surface location of * 0.5 s m for higher 

frequencies of *
12 630.6 f kHz  and *

13 683.2 f kHz . For disturbances of lower frequencies, the computation 

domain is not long enough for the simulation results to reach mode F instability region. 
 
Similar to the discussions on Figure 5 and Figure 6, a more appropriate dimensionless parameter representing 

surface length for wave development inside the boundary layer is the dimensionless frequency  . Figure 8 shows 
the same amplitude profiles of surface pressure perturbations as a function of dimensionless frequency  for the six 
of the 15 frequencies shown in Figure 7. It is interesting to note that the amplitudes induced by freestream acoustic 
waves of different frequencies approximately scaled to a single profile for 0.5  . This shows that the 
mechanisms in the earlier region before the mode F instability are the same for different frequencies. The receptivity 
results agree with the LST results that  is the appropriate scaling parameter for the wave fields. 

 
Figure 9 shows wave-speed distributions of the pressure perturbations for two frequencies, n=12 and n=13. The 

profiles are plotted as a function of (a) dimensionless frequency   and (b) dimensional surface length. The 
receptivity results on the left figure are also compared with the corresponding LST ones. The same plots of four 
lower frequencies are shown in Figure 10. As shown in the figures, there is a strong presence of forcing fast acoustic 
waves in the results. For the frequency of n=12, the left plot of Figure 9 shows the mode F instability becomes 
dominant for 0.5  , where the wave speeds for mode F predicted by LST go through the center of the 
distribution of the receptivity simulation results. This is a reasonable agreement considering the strong modulation 
by the external forcing waves. Again, the wave profiles of different frequencies are scaled very well by  . 
 
 The modulation of acoustic forcing waves in the boundary layer can also be demonstrated by the contours of the 
disturbance fields. The wave patterns in the flow field can be represented by contours of the real part of the 
temperature perturbations, which can be computed by a temporal FFT analysis of the simulation results as shown in 
[29]. Figure 11 and Figure 12 show the contours of the real part of the temperature and pressure perturbations in a 

section of the computational flow field for the frequency of *

13 683.121 f kHz . The upper boundary of the 

computational domain is the bow shock, while the lower one is the cone surface. The flow direction is from the left 
to the right. The wave fields contain strong external acoustic waves induced by the forcing waves introduced in the 
freestream over the shock wave. The enlarged plots for the region on the wall show the development of unstable 
mode F on the wall. The external fast acoustic waves, which have shorter wave length than that of the mode F, can 
be seen clearly on top of the wave filed inside the boundary layer. The wave fields in the small region near the wall 
for three other frequencies are shown in Figure 13, which shows different stage of mode F development at different 
frequencies. The effects of forcing waves in the receptivity process are very clearly shown in the figures. 
 

Figure 14 compares the wave structures of the induced boundary-layer disturbances at * 0.586 s m with the 

eigenfunctions of mode F computed by the LST. The frequency is *

13 683.121 f kHz . This location is in the mode 

F unstable region as shown by Figure 7. The receptivity flow field also contains strong acoustic forcing waves 
outside the boundary layer. Nevertheless, Figure 14 shows a good agreement between the current receptivity 

simulation and mode F inside the boundary layer on the wall ( * 0.003 ny m ). As expected, the agreement away 

from the wall is not good as good because of the external forcing waves. Similarly, a good agreement between the 

receptivity results and LST mode F is also found for the lower frequency of *
12 630.610 f kHz as demonstrated 

in Figure 15. There is a good agreement in the pressure and temperature perturbations except for visible differences 
outside the boundary layer. The differences outside the boundary layer are caused by the fact that, in addition to the 
mode F waves, there are also forcing acoustic wave components in the induced flow field. The modulation of 
external forcing waves and the induced mode F in the boundary layer can be seen in Figure 16 for 
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*
11 578.060 f kHz where the waves outside the boundary layer are very strong. Figure 17 shows the profiles of 

two more frequencies on the wall. 
 
To summarize the results of case 1, the induced mode F by the receptivity process begins to develop instability 

around * 0.5 s m for the current case of 0.156 inch in nose radius. In addition, the wave fields of different 
frequencies can be scaled very well by a single dimensionless frequency . 
 
Case 2: Nose Radius=0.5 in. 
 

The results of receptivity simulation for case 2 of intermediate nose bluntness are considered. The freestream 

Reynolds number based on the nose radius is 52.4068 10 , which falls into the border between small and large 
nose radius regime in Figure 2. 
 

Figure 18 to Figure 20 show the amplitude distributions of surface pressure perturbations, i.e., | |( )np s  

computed by Eq. (12), as functions of (a) the dimensionless frequency   and (b) the dimensional length of the cone 

surface s . Again, each line represents the response of the boundary layer to freestream forcing waves at one of the 
15 frequencies ranging from 32.1 kHz for n=1 to 481.7 kHz for n=15. The figures show similar receptivity results 
for the current case and case 1 of the sharper cone. Specifically the mode F instability starts approximately at 

0.5  . Because the dimensional frequency in this case is lower, Eq. (6) shows that the corresponding *s will be 

larger for the current case. Figure 18 shows that mode F will not be unstable until * 1.5 s m , which is much 
larger than the location of 0.5 m for case 1. Therefore, nose blunting leads to downstream movement of the 
instability region for mode F. These three figures also show that when the amplitudes are plotted against  , the 
amplitudes of different frequencies are much closer to a single line. 

  
Figure 21 and Figure 22 show the phase velocity distributions of pressure perturbations for different frequencies 

as a function of (a) dimensionless frequency   and (b) dimensional surface length s . As shown in these figures, 
there is a strong presence of the forcing fast acoustic waves in the results. For the frequency of n=13, mode F 
instability becomes dominant for 0.5  , which is approximately the same   as that for case 1 of the sharper 
cone. Again, the wave profiles of different frequencies are scaled better by   for different frequencies and different 
nose radii. 

 
To summarize the results of case 2, the induced mode F by the receptivity process begins to developed instability 

around * 1.5 s m for the current case of 0.5 inch in nose radius. 
 
 
Case 3: Nose Radius=1.5 in. 
 

The results of receptivity simulation for case 3 of largest nose bluntness are considered. The freestream Reynolds 

number based on the nose radius is 57.2204 10 , which falls into the large nose radius regime in Figure 2. The 
experimental results show reversal of the transition location when the nose radius increase from 0.5 in. of case 2 to 
1.5 in. for the current case. 
 

Figure 23 to Figure 25 show the amplitude distributions of surface pressure perturbations along the dimensional 
length of the cone surface. Each line represents the response of the boundary layer to freestream forcing waves at 

one of the 15 frequencies ranging from 20 kHz for n=1 to 300 kHz for n=15. Both dimensional surface length *s and 
dimensionless frequency   are used in the figures. In this case, the computational domain of 3.6 meters is not long 

to reach mode F instability region. Again, the mode F instability is expected to start approximately at 0.5  , but 

the current computational domain ends at 2.6   for the highest frequency of n=15. The growth of wave 
amplitudes shown in these figures is not a result of exponential instability of mode F. Instead, it is due to a resonant 
interaction between stable mode F and the forcing fast acoustic waves. These three figures also show that when the 
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amplitudes are plotted against  , the amplitudes of different frequencies are much closer to a single line. Figure 26 
shows the phase velocity distributions of pressure perturbations of different frequencies, as a function of 
dimensionless frequency   for different frequencies. Again, the wave profiles of different frequencies are scaled 
very well by   for different frequencies and different nose radii. 

 
To summarize the results of case 3, the induced mode F by the receptivity results do not develop instability at the 

end of the computational domain of * 3.6 s m for the current case of 1.5 inch in nose radius. All three cases of 
increasing nose radii show the consistent downstream movement of the location of mode F instability. The 
receptivity results do not show any reversal in instability as the nose bluntness increases. 

7 Conclusions 
 
A numerical simulation study has been conducted on the mean flow and the receptivity of Mach 5.5 hypersonic 

flow over a blunt cone due to freestream fast acoustic waves. The flow conditions are the same as those of Stetson’s 

1967 wind-tunnel experiments for Mach 5.5 flow over a 8  half-angle blunt cone. These experiments are among the 
very few cases showing transition reversal due to nose bluntness. In this paper, three nose radii of 0.0156, 0.5, and 
1.5 inches are used to study the mechanisms of the transition reversal. The simulation results show that the increase 
of nose bluntness leads to the substantial decrease in local Reynolds numbers along the edge of the boundary layers. 
The decrease of local Reynolds numbers is the main reason of transition delay by nose blunting in the small nose 
bluntness region. On the other hand, the cause of transition reversal in large nose bluntness regime is still not clear. 
We have finished three cases of receptivity for unsteady flow of boundary layer instability induced by freestream 
fast acoustic waves. All three cases of increasing nose radii show a consistent downstream movement of the location 
of mode F instability. The receptivity results do not show any reversal due to the increase of nose bluntness. The 
numerical and LST results show that the wave profiles can be scaled by   for different frequencies and different 
nose radii. In other words, the second mode instability starts roughly 0.5  for the three cases of small and large 
nose radii. Because the frequency shifts lower as the nose radius increases, it can explain the downstream movement 

of the dimensional instability location *s  in order to maintain a constant   for the second mode instability region.  
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Figure 1. Sharp and blunt cone models with an 8 degree half angle used in Stetson’s transition experiments in a 

Mach 5.5 shock tunnel [3]. 
 
 
 
 
 

 
Figure 2. Transitional Reynolds numbers vs. nose radius Reynolds numbers, based on freestream flow conditions, 

for Stetson's Mach 5.5 experiments (from Table 2 of [3]). The legends specify the nose radii of the test cases. 
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      (a)                                  

(Case 1: : 0.156 .nr in )                                                       (Case 2: : 0.5 .nr in ) 
 

 
(Case 3: 1.5 .nr in ) 

 

Figure 3. Steady Mach number contours of the three test cases of different nose radii. 
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Figure 4. Second-mode (or mode F) neutral stability curve for the current blunt cones with three different nose 

radii. 
 

 
(Case 1, nose radius =0.156 in.) 

 

 
(Case 2, nose radius=0.5 in.)                                         (Case 3, nose radius=1.5 in.) 

 
 

Figure 5.  Dimensional growth rates of mode F (the second mode) as a function of dimensionless frequency   
for the three cases of different nose radii. 
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(Case 1, 0.156 in, S*=0.41m) 

 
(Case 2, 0.5 in, S*=1.01m) 

 

 
(Case 3, 1.5 in, S*=1.95m) 

 
Figure 6.  Distributions of wave speeds of mode F and mode S as functions of dimensionless frequencies at a 

fixed surface location for the three cases of different nose radii. 
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Figure 7. Amplitude profiles of surface pressure perturbations along the dimensional length of the cone surface. 

The lines represent 15 different frequencies of * *
1nf nf , where *
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Case 1 of nose radius of 0.156 in. 
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Figure 8.  Amplitude distributions of surface pressure perturbations as a function of dimensionless frequency  . 

The lines represent different frequencies of * *
1nf nf , where *

1 52.55 kHzf   for Case 1 of nose radius of 

0.156 in. 
 

 
 

 
(a)                                                                                           (b) 

 
Figure 9. Phase velocity distributions of pressure perturbations as a function of (a) dimensionless frequency   

and (b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where 

*
1 52.55 kHzf   for Case 1 of nose radius of 0.156 in. The results on the left plot are compared with the 

corresponding LST ones.   
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(a)                                                                                           (b) 

 
Figure 10. Phase velocity distributions of pressure perturbations as a function of (a) dimensionless frequency   

and (b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where 

*
1 52.55 kHzf   for Case 1 of nose radius of 0.156 in. 

 
 

 
 

 
Figure 11. Contours of the real part of temperature perturbations for unsteady flow with *

13 683.121 f kHz for 

Case 1 of nose radius of 0.156 in. Left plot shows an enlarged view of a local region on the wall. 
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Figure 12. Contours of the real part of pressure perturbations for unsteady flow with *

13 683.121 f kHz for Case 

1 of nose radius of 0.156 in. Left plot shows an enlarged view of a local region on the wall. 
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Figure 13. Contours of the real part of temperature perturbations for unsteady flow with three frequencies for 

Case 1 of nose radius of 0.156 in. All plots show an enlarged view of a local region on the wall. 
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Figure 14. Comparison of amplitude distributions of pressure and temperature perturbations along the wall-

normal direction at * 0.586 s m  with *

13 683.121 f kHz for Case 1 of nose radius of 0.156 in. 

 
 
 
 
 

 
Figure 15. Comparison of amplitude distributions of pressure and temperature perturbations along the wall-

normal direction at * 0.586 s m with *
12 630.610 f kHz for Case 1 of nose radius of 0.156 in. 

DNS

LST

p

y n*
(m

)

0 0.001 0.002 0.003 0.004 0.005
0

0.001

0.002

0.003

0.004

T

y n*
(m

)

0 0.0005 0.001 0.0015 0.002
0

0.001

0.002

0.003

0.004

DNS

LST

p

y n*
(m

)

0 0.0005 0.001 0.0015 0.002
0

0.001

0.002

0.003

0.004

DNS

LST

T

y n*
(m

)

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

0

0.001

0.002

0.003

0.004

DNS

LST



 
 American Institute of Aeronautics and Astronautics 

24

 
 
 
 
 
 
 
 
 

 
Figure 16. Amplitude distributions of temperature perturbations along the wall-normal direction at 

* 0.586 s m  with *
11 578.060 f kHz for Case 1 of nose radius of 0.156 in. The right plot shows an enlarged 

local profile at the wall.   
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Figure 17. Amplitude distributions of temperature perturbations along the wall-normal direction at 

* 0.586 s m  with two frequencies for Case 1 of nose radius of 0.156 in. 
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(a)                                                                                           (b) 

 
Figure 18. Amplitude distributions of pressure perturbations as a function of (a) dimensionless frequency   and 

(b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where 

*
1 32.114 kHzf   for Case 2 of nose radius of 0.5 in. 

 
 
 
 

 
(a)                                                                                           (b) 

 
Figure 19. Amplitude distributions of pressure perturbations as a function of (a) dimensionless frequency   and 

(b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where 

*
1 32.114 kHzf   for Case 2 of nose radius of 0.5 in. 
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(a)                                                                                           (b) 

 
Figure 20. Amplitude distributions of pressure perturbations as a function of (a) dimensionless frequency   and 

(b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where 

*
1 32.114 kHzf   for Case 2 of nose radius of 0.5 in. 

 
 
 

 
(a)                                                                                           (b) 

 
Figure 21. Phase velocity distributions of pressure perturbations as a function of (a) dimensionless frequency   

and (b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where 

*
1 32.114 kHzf   for Case 2 of nose radius of 0.5 in. 
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(a)                                                                                           (b) 

 
Figure 22. Phase velocity distributions of pressure perturbations as a function of dimensionless frequency  . 

The lines represent different frequencies of * *
1nf nf , where *

1 32.114 kHzf   for Case 2 of nose radius of 

0.5 in. 
 
 
 
 

 
(a)                                                                                           (b) 

 
Figure 23. Amplitude distributions of pressure perturbations as a function of (a) dimensionless frequency   and 

(b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where *

1 20 kHzf   for 

Case 3 of nose radius of 1.5 in. 
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(a)                                                                                           (b) 

 
Figure 24. Amplitude distributions of pressure perturbations as a function of (a) dimensionless frequency   and 

(b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where *

1 20 kHzf   for 

Case 3 of nose radius of 1.5 in. 
 
 
 

 
(a)                                                                                           (b) 

 
Figure 25. Amplitude distributions of pressure perturbations as a function of (a) dimensionless frequency   and 

(b) dimensional surface length. The lines represent different frequencies of * *
1nf nf , where *

1 20 kHzf   for 

Case 3 of nose radius of 1.5 in. 
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Figure 26. Phase velocity distributions of pressure perturbations as a function of dimensionless frequency  . 

The lines represent different frequencies of * *
1nf nf , where *

1 20 kHzf   for Case 3 of nose radius of 1.5 in. 
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