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In the laminar-turbulent transition of boundary-layer flows, the spatial development of boundary-layer waves,

especially that of unstable waves, is important and indispensable. In this paper, the response of aMach 8 flow over a

5.3� half-angle sharpwedge towall blowing–suction is studied by numerical simulations. Steady baseflow is obtained

by solving the compressible Navier–Stokes equations with a combination of a fifth-order shock-fitting method and a

second-order total-variation-diminishing scheme. In stability simulations, wall blowing–suction is introduced

throughanactuator on thewedge surface. Theunsteadyflow simulation is carried out using the shock-fittingmethod.

The results show that mode F, mode S, acoustic waves, and entropy/vorticity waves are simultaneously excited by

wall blowing–suction and coexist in the boundary layer just downstream of the actuator. For blowing–suction at a

specific frequency, the results also show that mode S is strongly excited when the actuator is located upstream of the

corresponding synchronization point. There is no significant amplification of pressure perturbation when

the actuator is downstream of the synchronization point. This result represents a mixture of the receptivity and the

downstream growth of mode S. The exact cause andmechanism of this result are not clear. However, such a result is

obtained for wall blowing–suction at all frequencies considered in the current study. To excite a strong mode S at a

specific frequency, the result indicates that it is necessary to place the blowing–suction actuator upstream of the

corresponding synchronization point. Further theoretical analysis is needed to reveal the mechanism behind the

numerical results.

I. Introduction

T HE performances of hypersonic transportation vehicles and
reentry vehicles are significantly affected by the laminar-

turbulent transition of boundary-layer flows over vehicle surfaces,
due to the fact that a turbulent boundary layer generates much higher
drag and wall heat flux than a laminar one. Some success has been
obtained in predicting heating rates in fully laminar or fully turbulent
flows, but accurate predictions in a transitional regime remain
elusive. Uncertainty in heat transfer rate requires large factors of
safety to be used in current vehicle designs. Improved prediction of
heat transfer rate and transition location could lead to significant
improvements in hypersonic vehicle performance by allowing the
removal of unnecessary weight in the thermal protection system.

Extensive studies have been carried out focusing on transition
mechanisms [1,2]. The results show that the transition of a boundary-
layer flow generally consists of the following three stages:
receptivity, modal growth or transient growth, and breakdown to
turbulence. Receptivity is the process during which environmental
disturbances enter the boundary layer and excite the boundary-layer
waves. For small-amplitude disturbance, modal growth of the
unstable boundary-layer waves (which is linear and can be obtained
by solving the eigenvalue problem of the homogeneous linearized

stability equations) is important. With the disturbance amplitude
increasing, transient growth (which is also linear and arises through
the nonorthogonal nature of theOrr–Sommerfeld eigenfunctions and
the Squire eigenfunctions) becomes important. Breakdown to
turbulence is mainly caused by the nonlinear secondary instabilities
when the boundary-layer waves reach certain amplitudes by means
ofmodal growth or transient growth.Weak transient growth provides
a higher initial amplitude for modal growth, whereas strong transient
growth can lead to secondary instabilities and breakdown to turbu-
lence right after the receptivity process (bypass transition).

No matter whether modal growth or transient growth has a larger
contribution to the linear growth of the boundary-layer waves, study
of the excitation and linear development of boundary-layer waves,
especially for unstable waves, is important and indispensable
because it provides initial conditions of amplitude, frequency, and
phase angle for secondary instabilities and nonlinear breakdown.
Fedorov and Khokhlov [3,4] theoretically studied the excitation of
boundary-layermodes in supersonic and hypersonic boundary layers
by acoustic waves. They found that acoustic waves can effectively
excite both stable and unstable boundary-layer modes. Futhermore,
stable modes played an important role in the excitation of unstable
modes through intermodal exchange. Recently, Fedorov and
Khokhlov [5] studied the receptivity of a hypersonic boundary layer
over a flat plate to wall disturbances using a combination of asymp-
totic method and numerical calculation. In their research, different
wall disturbances were considered, including wall vibrations,
periodic blowing–suctions, and temperature disturbances. It was
found that strong excitations of the boundary-layer waves occurred
in local regions where forcing disturbances were resonant with the
boundary-layer waves. Their theoretical results also showed that
receptivity of the hypersonic boundary layer to blowing–suction is
much stronger than that to wall vibrations and temperature distur-
bances. Tumin [6] calculated three-dimensional spatially growing
perturbations in a two-dimensional compressible boundary layer. It
was shown that within the scope of linearized Navier–Stokes equa-
tions, the perturbations could be presented as an expansion into a
biorthogonal eigenfunction system. The results indicated that the
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biorthogonal eigenfunction system could be used in the decom-
position of flowfields obtained from direct numerical simulation
(DNS) or experimental measurement, which was important for the
quantitative studies on receptivity. For example, Tumin et al. [7]
theoretically and numerically studied the receptivity of a hypersonic
boundary layer over a sharp wedge to wall blowing–suction. The
perturbation field downstream of the blowing–suction actuator
was decomposed into the boundary-layer waves by using the
biorthogonal eigenfunction system. It was found that there was good
agreement between the normal mode amplitudes calculated with the
help of the theoretical receptivity model and those obtained from
projecting the numerical simulation results onto the normal modes.

Maslov and Semionov [8] experimentally studied the receptivity
of a supersonic boundary layer to acoustic waves by using two
parallel flat plates. The acoustic waves generated by an electric
discharge system on the lower plate penetrated into the boundary
layer of the upper plate as freestream disturbances. It was found that
acoustic waves were converted into the boundary-layer waves most
efficiently at the leading edge, in the neighborhood of the acoustic
branch of the neutral curve, and in the vicinity of the lower branch of
the neutral curve. A similar experiment was carried out for a Mach
5.92 flat-plate boundary layer by Maslov et al. [9] to study the
leading-edge receptivity. They found that Tollmien–Schlichting
waves were generated by acoustic waves impinging on the leading
edge. The results also showed that the receptivity coefficients
depended on wave inclination angles. Fedorov [10] investigated the
receptivity of a high-speed boundary layer to acoustic disturbances
using a combined numerical and asymptotic approach. The leading-
edge receptivity problem of Maslov et al. [9] was studied, focusing
on physical mechanisms associated with the diffraction and scat-
tering of the acoustic waves. Their theoretical predictions of recep-
tivity coefficient had good agreement with the experimental data.
Semionov andKosinov [11] studied the leading-edge receptivity of a
supersonic boundary layer over a blunted flat plate to controlled
disturbances. Their experimental setup was quite similar to that of
Maslov et al. [9]. The controlled disturbances were excited by an
electric discharge system. Their results showed that the boundary-
layer waves excited by externally controlled disturbances at the
blunted leading edge were stronger than those at the sharp leading
edge. Wheaton et al. [12] measured instability and transition in the
Boeing/AFOSR Mach-6 Quiet Tunnel. They designed a flared cone
with a constant-thickness boundary layer to obtain a larger N factor
of Mack’s second mode under quiet flow conditions. It was found
that the boundary layer remained laminar when large instability
waves with the N factor of 13 and above were measured. Transition
was observed only under noisy conditions, where the boundary-layer
waves were less visible.

With the development of high-performance computers and
numerical techniques, DNS has been a powerful tool to study
boundary-layer transition problems. By solving the compressible
linearizedNavier–Stokes equations,Malik et al. [13] investigated the
responses of a Mach 8 flow over a sharp wedge to three types of
external forcing: a planar freestream acoustic wave, a narrow
acoustic beam enforced on the bow shock near the leading edge, and
a blowing–suction slot on the wedge surface. They concluded that
these three types of forcing eventually resulted in the same type of
instability waves in the boundary layer. Zhong [14] studied the
receptivity of a hypersonic flow over a parabola to freestream
disturbances by solving full Navier–Stokes equations. It was
concluded that the generation of boundary-layer waves was mainly
because of the interaction of the boundary layer with the transmitted
acoustic waves. Compared with acoustic waves, entropy/vorticity
waves were weaker in boundary-layer wave excitation. Ma and
Zhong [15] studied the receptivity mechanism of a supersonic
boundary layer to various freestream disturbances. They found that,
in addition to the conventional Mack’s first and second modes, there
existed a family of stable waves (mode F) that played an important
role in the excitation of the unstable waves. Such results were
consistent with the theoretical analysis of Fedorov and Khokhlov
[3,4]. Egorov et al. [16] numerically solved unsteady two-
dimensional flows relevant to the receptivity of the supersonic and

hypersonic boundary layers using a second-order total-variation-
diminishing (TVD) scheme. To compare with numerical simulation
results, theoretical analyses were carried out by the conventional
linear stability theory (LST) and the LST including nonparallel flow
effects. It was noted that nonparallel flow effects stabilized Mack’s
secondmode. For small-amplitude forcing, the growth rate ofMack’s
second mode obtained from numerical simulation had good agree-
ment with those predicted by the LST including nonparallel flow
effects. Egorov et al. [17] also studied the unsteady two-dimensional
flow relevant to the stability of a Mach 6 flat-plate boundary layer. It
was found that for small-amplitude blowing–suction, the growth rate
of Mack’s second mode computed by DNS agreed well with those
predicted by the LST including nonparallel flow effects.

Recently, Zhong and Ma [18] numerically studied the receptivity
to weak-freestream fast acoustic waves for a Mach 7.99 axisym-
metric flow over a 7� half-angle blunt cone. They found that no
Mack’s first mode was excited by freestream fast acoustic waves in
the early region along the cone surface. In this case, the excitation of
Mack’s second mode was because of a two-step resonant process,
i.e., the resonant between fast acoustic waves and mode F near the
leading edge and the resonant betweenmode F andmode S. The two-
step receptivity scenario observed from numerical simulations was
consistent with that described by Fedorov and Khokhlov [19].
Maslov et al. [20] studied the evolution of disturbances in a Mach 21
flat-plate boundary layer by solving the unsteady Navier–Stokes
equations with a high-order shock-capturing scheme. The numerical
results were agree well with the data obtained from the locally
parallel linear stability theory and experimental measurements in a
hypersonic wind tunnel. Malik and Balakumar [21] investigated the
receptivity of a Mach 4.5 flow over a flat plate to slow and fast
acoustic waves. The results showed that the boundary layer was
much more receptive to slow acoustic waves than to fast acoustic
waves. The effect of the leading-edge thickness was also considered
by numerical simulations. It was found that bluntness tended to
stabilize the boundary layer. These results were consistent with the
theoretical analyses of Fedorov [10] and the numerical results of
Egorov et al. [16,17].Wang and Zhong [22] numerically investigated
the steady base flow and the receptivity of the hypersonic boundary
layer corresponding to Maslov et al.’s [9] leading-edge receptivity
experiments. The accuracy of the numerical simulationwas validated
by comparisonswith the experimental measurements ofMaslov et al.
and the theoretical self-similar boundary-layer solution. A model of
wall perturbation is proposed based on physical properties of the
electric pulse generator used in the experiments of Maslov et al. [9]
and Semionov and Kosinov [11]. Numerical results indicated that
receptivity mechanism of the hypersonic boundary layer to wall
perturbation was independent of the specific perturbation type. On
the other hand, the hypersonic boundary layer was found to be most
sensitive to blowing–suction and least sensitive to temperature
perturbation. Additional research on the receptivity and stability of
hypersonic boundary layers can be found in the review paper of Saric
et al. [2].

Up to now, receptivity studies have focused more on freestream
disturbances than on wall disturbances. However, the receptivity to
wall disturbances, including blowing–suction, is also important.
Wall disturbances, together with freestream disturbances, are the
main disturbances that hypersonic vehicles experience under the real
flight conditions. Blowing–suction is not only themost sensitivewall
disturbance for hypersonic boundary layers, but is also widely used
to control the boundary-layer transition. For example, Egorov et al.
[23] studied the effect of porous coating on the stability and
receptivity of a Mach 6 flat-plate boundary layer. In their numerical
simulations, porous coating was modeled by pressure-perturbation-
related wall blowing–suction.

In this paper, the response of a Mach 8 flow over a 5.3� half-angle
sharp wedge towall blowing–suction is studied. The flow conditions
are the same as those of Malik et al. [13]. The steady base flow is
obtained by solving the compressible Navier–Stokes equations
with a combination of a fifth-order shock-fitting method and a
second-order TVD scheme. In stability simulations, wall blowing–
suction is introduced through an actuator on thewedge. The unsteady
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flow simulation is carried out using the fifth-order shock-fitting
method to achieve high-order accuracy. Stability characteristics of
the boundary-layer waves are evaluated by the conventional LST.
Seven cases of unsteady simulations are considered with the actuator
shifting along the wedge surface to study the effect of the actuator
location. The objective of this paper is to present and analyze
numerical results, especially focusing on the effect of the actuator
location.

Figure 1 shows a schematic of the response of a hypersonic
boundary layer over a sharp wedge to wall blowing–suction. When
wall blowing–suction is introduced on the wedge surface down-
stream of the leading edge, boundary-layer waves are excited and
propagate downstream. The induced acoustic waves also radiate into
the flow outside the boundary layer and interact with the bow shock.
Thewaves’ excitation and propagation in the boundary layer, as well
as their interactionwith the bow shock, are accurately captured by the
fifth-order shock-fitting method.

II. Governing Equations and Numerical Methods

In the current study, a Mach 8 flow over a sharp wedge is
considered, as shown in Fig. 1. The flow is assumed to be thermally
and calorically perfect. The governing equations for numerical
simulation are the compressible Navier–Stokes equations in the
conservative form, i.e.,

@U�

@t�
� @�F

�
1i � F�1v�
@x�1

� @�F
�
2i � F�2v�
@x�2

� 0 (1)

where the superscript � represents dimensional variables. The vector
U� contains the conservative variables of mass, momentum, and
energy, i.e.,

U � � f��; ��u�1 ; ��u�2 ; e�g (2)

The flux vector in Eq. (1) is divided into its inviscid and viscous
components, because the two components are discretized with
different finite difference schemes. The components F�1i and F

�
2i are

inviscid flux vectors, whereas F�1v and F�2v are viscous flux vectors.
The flux vectors are expressed as
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with j 2 f1; 2g. For perfect gas, pressure and energy are given by

p� � ��R�T� (4)

e� � ��c�vT� �
��

2
�u�21 � u�22 � (5)

where c�v is the specific heat at constant volume. For a compressible
Newtonian flow, the viscous stress tensor is written as
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�
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�
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��
�
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�
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�
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with i; j 2 f1; 2g. In the simulation, the viscosity �� and the heat
conductivity k� in Eq. (3) are calculated using Sutherland’s law,
together with a constant Prandtl number Pr. They are both functions
of temperature only, i.e.,

�� � ��r
�
T�

T�r

�
3=2 T�r � T�s
T� � T�s

(7)

k� �
��c�p
Pr

(8)

where ��r � 1:7894 � 10�5 Ns=m2, T�r � 288:0 K, T�s�
110:33 K, and c�p is the specific heat at constant pressure. In this
paper, the dimensional variables are scaled by freestreamparameters.
Specifically, density ��, temperature T�, velocities u�1 and u�2 , and
pressurep� are scaled by ��1,T

�
1, u

�
1, and �

�
1u
�2
1 . Furthermore, x�1 is

scaled by the unit length in meter, whereas x�2 is scaled by����������������������������
��1x

�
1=�

�
1u
�
1

p
.

The high-order shock-fittingmethod of Zhong [24] is used to solve
the governing equations in a domain bounded by the bow shock and
the wedge surface. The bow shock is treated as a boundary of the
computational domain, which makes it possible for the governing
equations to be spatially discretized by high-order finite difference
methods. Specifically, a fifth-order upwind scheme is used to
discretize the inviscid flux derivatives, whereas a sixth-order central
scheme is used to discretize the viscous flux derivatives. The position
and velocity of the shock front are treated as two unknown flow
variables, computed by solving two additional equations:8<

:
@H�
@�
� f

�
�; �;Up; IN 	

�
@U
@�

�
p

;U1;
@U1
@�
; H;H�

�
@H
@�
�H�

(9)

where H and H� are the position and velocity of the shock front,
respectively. The subscripts p and1 represent flow variables on the
high-pressure and freestream sides of the shock. The quantity IN is
the left eigenvector corresponding to the maximum eigenvalue. The
above two equations are derived from the combination of the
Rankine–Hugoniot relation across the shock and a characteristic
compatibility relation from the downstream flowfield. Once H and
H� are solved, the flow variables behind the shock can be computed
using the jump conditions. Temporal integration of the governing
equations, including the two equations for the shock front, is
calculated using a Runge–Kutta method. More details of the high-
order shock-fitting method can be found in Zhong’s paper [24].

In the leading-edge region, there exists a singular point at the tip of
the wedge (no definition of the position of the shock front).
Therefore, the computational domain for the fifth-order shock-fitting
method starts at s� � 0:00409 m and ends at s� � 1:48784 m,
corresponding to R� 182:7 and 3485.4, respectively. In actual
simulations, the computational domain is divided into 30 zones with
a total of 5936 grid points in the streamwise direction and 121 grid
points in the wall-normal direction. Forty-one grid points are used in
the overlap region between two neighboring zones, which is
sufficient to make the solution accurate and smooth within thewhole
domain. An exponential stretching function is used in the wall-
normal direction to cluster more points inside the boundary layer.
The spatial convergence of numerical simulation results based on this
grid structure has been evaluated by grid refinement studies [7]. For
the first zone of the shock-fitting calculations, inlet conditions are
obtained from the solution of a second-order TVD scheme, which is
used to solve the steady base flow in a small region including the
leading edge. For other zones, inlet conditions are interpolated from
the solution of the previous zone. The inlet conditions consist of the
five conservative variables. For unsteady simulation, blowing–
suction disturbances are introduced in a downstream region where
the shock-fitting method is used. Compared with hybrid numerical
methods that generally combine a high-order method in smooth
regions and a shock-capturing method near the shock, the shock-
fitting method can achieve uniform fifth-order accuracy in the whole
domain, even at the shock front. By using the shock-fitting method,
the interaction between the bow shock and unsteady disturbances is
fully considered.

Because of the symmetric geometry, only the flowfield over the
upper surface of the sharp wedge is simulated. As shown in Fig. 1,
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two Cartesian coordinate systems are used simultaneously to plot
the results more conveniently. The coordinate s� is defined as the
distance along the wedge surface measured from the leading edge,
and the coordinate �� is the normal distance from the wall. The
transformation between the two coordinate systems is as follows:�

s� � x� cos�� y� sin�
�� � �x� sin�� y� cos�

(10)

where � is the wedge half-angle. The coordinate s� can be converted
to the local Reynolds number Res by

Res � Re�1s� (11)

where Re�1 is the unit Reynolds number defined as

Re�1 �
��1u

�
1

��1
(12)

In the studies of boundary-layer stability, the Reynolds number
based on the length scale of the local boundary-layer thickness,L�, is
generally used. They are expressed as

R� �
�
1u
�
1L
�

��1
(13)

L� �
�������������
��1s

�

��1u
�
1

s
(14)

Hence, the relation between R and Res is given by

R�
��������
Res

p
(15)

III. Flow Conditions and Blowing–Suction Model

The freestream flow conditions of the hypersonic boundary layer
over the sharp wedge of a 5.3� half-angle are as follows:

M1 � 8:0; T�1 � 54:78 K; p�1 � 389 Pa;

Pr� 0:72; Re�1 � 8:2 � 106=m;

Total length of the wedge surface
 1:5 m

For the simulation of steady baseflow, thewall is adiabatic, and the
boundary condition of velocities on the wedge surface is the no-slip
condition. When high-frequency blowing–suction disturbances are
introduced to the steady base flow, isothermal condition is applied on
the wall for unsteady simulation. This temperature condition is a
standard boundary condition for theoretical and numerical studies on
the boundary-layer stabilities. For example, the isothermal condition
has also been used by Egorov et al. [23]. Meanwhile, the no-slip
condition is applied on the wall, except in the blowing–suction
region. Inlet conditions are specified. A fourth-order extrapolation is
used for outlet conditions, because the flow is supersonic at the exit,

except a small region close to the wedge surface. A buffer region,
including 41 grid points in the streamwise direction, is used to take
into account the effect of the subsonic region.

In Fedorov and Khokhlov’s [5] theoretical and numerical analyses
on the receptivity of a hypersonic boundary layer to wall distur-
bances, wall blowing–suction has the following traveling-wave
form:

u0

v0

w0

	0

2
664

3
775� g�x�

0

1

0

0

2
664

3
775 exp�i
cx� i�cz� i!t� (16)

where u0, v0, andw0 are velocity disturbances in the streamwise, wall-
normal, and spanwise directions; 	0 is the temperature disturbance;
the parameters 
c and �c are wave number components in the
streamwise and spanwise directions; ! is the circular frequency; and
the function g�x� represents the disturbance profile. Equation (16)
implies that wall blowing–suction is only related to the wall-normal
velocity disturbance. For thismodel, small instantaneousmassflux is
generally introduced to the boundary layer.

Another model of blowing–suction is to impose mass flux
oscillations on the wall, which has been used by Eibler and Bestek
[25]. According to this model, wall blowing–suction has the
following form:

�wvw
�1u1

�Q sin

�
2�

x � x1
x2 � x1

�
sin!t (17)

where Q is the amplitude of mass flux oscillation, �wvw is the local
mass flux oscillation in the wall-normal direction, and �1u1 is the
freestream mass flux in the streamwise direction. The coordinates x1
and x2 represent the leading and trailing edges of the blowing–
suction region. Because of the antisymmetric profile of the sine
function within the forcing region, no instantaneous mass flux is
introduced to the boundary layer.

In the current study, a blowing–suctionmodel similar to Eq. (17) is
used. Mass flux oscillations on the wedge surface within the forcing
region are written as

���v��0 � q�0
��l�
X15
n�1

sin!�nt
� (18)

where q�0 is an amplitude constant depending on the location of the
actuator, and 
 is a small dimensionless parameter. The function ��l�
is the profile function defined as

M∞

x*

y*

s*

η*

λ = 5.3°

1

2

3

4

Fig. 1 Schematic of the response of a hypersonic boundary layer over a

sharpwedge towall blowing–suction; 1: boundary layer, 2: sharpwedge,

3: bow shock, and 4: blowing–suction actuator.

l

β(
l)

0 0.5 1 1.5 2

-2

-1

0

1

2

Fig. 2 Profile of the blowing–suction disturbances in the forcing region.
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��l�

�
�
20:25l5�35:4375l4�15:1875l2 if 0� l�1
�20:25�2�l�5�35:4375�2�l�4�15:1875�2� l�2 if 1� l�2

(19)

The variable l is a dimensionless coordinate defined within the
forcing region:

l� 2�s� � s�i �
s�e � s�i

(20)

where s�i and s
�
e are the coordinates of the leading and trailing edges

of the actuator. Figure 2 shows the profile of the blowing–suction
disturbances in the forcing region. Because of the antisymmetric
property of the fifth-order polynomial profile function within the
blowing–suction region, no instantaneous mass flux is introduced to
the boundary layer. Compared with the sine function in Eq. (17), the
current profile function makes smoother the mass flux oscillations at
the edges of the actuator. In Eq. (18), !�n stands for the circular
frequency (n� 1; 2; . . . ; 15), which is related to the frequency by

!�n � 2�f�n � 2�nf�1 �n� 1; 2; . . . ; 15� (21)

The circular frequency !�n and the frequency f�n are scaled as
follows:

!n �
!�nL

�

u�1
(22)

Fn �
2�f�n�

�
1

��1u
�2
1
� !

�
n�
�
1

��1u
�2
1

(23)

With the definitions of the Reynolds number R and the
dimensionless frequency Fn, the dimensionless circular frequency
can also be expressed as

!n � RFn (24)

The dimensionless parameter 
 in Eq. (18) is assigned the
following value:


� 1:0 � 10�5 (25)

which is small enough to preserve linear properties of the distur-
bances. The frequency f�n, dimensionless circular frequency !n, and
dimensionless frequency Fn for the 15-frequency blowing–suction
disturbances are listed in Table 1.

IV. Results and Discussions

A. Steady Base Flow

Figure 3 shows thewall-normal velocity and density contours near
the leading edge of the steady base flow obtained from the second-
order TVD scheme and the fifth-order shock-fitting method. The
flow including the leading edge is solved by the TVD scheme, and
the flowfield after s� � 0:00409 m (R� 182:7) is obtained from the
shock-fitting method. The region from s� � 0:00409 to 0.0064 m
(R� 182:7 to 228.6) is an overlap regionwhere theflow is computed
by both methods. This figure shows that the two sets of wall-normal
velocity and density contours have good agreement at the upstream
boundary of the overlap region, which indicates that the solution of
the TVD scheme is accurate enough to be used as an inlet condition
for the fifth-order shock-fitting method in the first zone.

Figure 4 shows the pressure contour of the steady base flow
obtained from the fifth-order shock-fitting method. The upper
boundary of the flowfield represents the bow shock induced by the
sharp wedge and the displacement thickness of the boundary layer.
The lower boundary is the surface of the sharp wedge. A part of the
pressure contour ranging from x� � 0:05 to 0.15 m (R� 638:9 to
1106.7) is zoomed in to clearly show the pressure contour within the
boundary layer. It is noted that pressure is approximately a constant
across the boundary layer and along the Mach lines. Along a line
across the flowfield in the wall-normal direction, pressure behind the
shock is higher than that on thewedge surface, due to the existence of
the bow shock. Figure 5 shows the pressure distribution along the
wedge surface obtained from the fifth-order shock-fitting method.
The theoretical inviscid limit is also plotted in the figure for
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Fig. 3 Wall-normal velocity anddensity contours near the leading edge

of the steady base flow obtained from the TVD scheme and the shock-
fitting method.

Table 1 Frequency, dimensionless circular frequency, dimensionless

frequency, locations of the synchronization point and branch II neutral

point for the 15-frequency blowing–suction disturbances

n f�n , kHz !�n , kHz Fn � 106 s�sn, m Rsn s�IIn, m

1 14.92 93.74 9.63 16.9885 11882.658 68.38297
2 29.84 187.48 19.26 4.2471 5941.329 17.09574
3 44.76 281.23 28.89 1.8876 3960.886 7.59811
4 59.68 374.97 38.52 1.0618 2970.664 4.27394
5 74.60 468.71 48.15 0.6795 2376.532 2.73532
6 89.52 562.45 57.78 0.4719 1980.443 1.89953
7 104.44 656.19 67.41 0.3467 1697.523 1.39557
8 119.36 749.94 77.04 0.2654 1485.332 1.06848
9 134.28 843.68 86.67 0.2097 1320.295 0.84423
10 149.20 937.42 96.30 0.1699 1188.266 0.68383
11 164.12 1031.16 105.93 0.1404 1080.242 0.56515
12 179.04 1124.91 115.56 0.1180 990.222 0.47488
13 193.96 1218.65 125.19 0.1005 914.051 0.40463
14 208.88 1312.39 134.82 0.0867 848.761 0.34889
15 223.80 1406.13 144.45 0.0755 792.177 0.30392
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Fig. 4 Pressure contour of the steady base flow obtained from the

shock-fitting method.
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comparison. Near the leading edge, pressure of the numerical
simulation is approximately 1.5 times that of the theoretical inviscid
limit. The large pressure gradient is caused by the interaction
between the inviscid outerflow and the viscous boundary layer. From
upstream to downstream, the viscous/inviscid interaction becomes
weaker, with the bow shock moving away from the boundary layer.
As a result, pressure drops quickly and approaches the constant value
of the inviscid limit. However, pressure of the numerical simulation
at the exit of the computational domain is still higher than that of the
theoretical inviscid limit, resulting from the displacement thickness
of the boundary layer.

Figure 6 shows the position and angle of the bow shock obtained
from the fifth-order shock-fitting method, together with those of the
theoretical inviscid limit. The solid line represents the shock front of
the numerical simulation, and the dash–dotted line is a straight line
representing the oblique shock induced by an inviscid flow with the
same freestream conditions. The figure shows that the shock front is
not a straight line, with the shock angle decreasing from 14.793� near
the leading edge to 11.307� at the exit of the computational domain.
In the inviscid limit, the shock angle is a constant of 11.102�. Figure 7
shows the distribution of Mach number behind the bow shock
obtained from the fifth-order shock-fitting method. The theoretical
inviscid limit of Mach number behind the oblique shock is also
plotted in the figure for comparison. It shows that Mach number

increases from 5.911 near the leading edge to 6.746 at the exit of the
computational domain. For an inviscid Mach 8 flow over the 5.3�

half-angle sharp wedge, theMach number behind the shock is 6.798.
Figures 6 and 7 show that the shock angle and Mach number behind
the shock of the numerical simulation are quite different from those
of the theoretical inviscid limit near the leading edge. Similar to
pressure, large gradients of shock angle andMach number behind the
shock near the leading edge are caused by the viscous/inviscid
interaction.

B. Stability Characteristics of Boundary-Layer Waves

Stability characteristics of boundary-layer waves of the Mach 8
flow over the sharp wedge is evaluated by the conventional LST
based on the multidomain spectral method of Malik [26]. The
velocity, pressure, and temperature disturbances are represented by
harmonic waves of the form

8>>><
>>>:

~u
~v
~w
~p
~T

9>>>=
>>>;
�

8>>><
>>>:

û�y�
v̂�y�
ŵ�y�
p̂�y�
T̂�y�

9>>>=
>>>;
ei�
cx��cz�!ct� (26)

Similar to Eq. (16), the parameters 
c and �c are wave number
components in the streamwise and spanwise directions, and!c is the
circular frequency. For two-dimensional disturbances, �c � 0.
Substituting Eq. (26) and the steady base flow into the linearized
compressible Navier–Stokes equations, an ordinary-differential-
equation (ODE) system is achieved, i.e.,

�
A

d2

dy2
� B d

dy
� C

�
�� 0 (27)

where � is the disturbance vector defined by fû; v̂; p̂; T̂; ŵg. The
coefficient matrices, A, B, and C, were given in Malik’s paper [26].
For spatial stability analyses, !c and �c are specified real numbers,
and 
c is a complex number and needs to be solved as the eigen-
value of the ODE system. The complex wave number 
c can be
expressed as


c � 
r � i
i (28)

where�
i is the growth rate. Awave is unstable when 
i < 0, and it
is stable when 
i > 0. The real part of the wave number, 
r, can be
used to define phase velocity:
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c� !c

r

(29)

Both wave number and phase velocity can be used to identify a
boundary-layer wave.

Figure 8 shows an eigenvalue spectra of the ODE system for a case
with the dimensionless frequency of F� 57:78 � 10�6 (f��
89:52 kHz) at s� � 0:48036 m (R� 1980:44). This frequency is the
same as F6 listed in Table 1. The figure shows the wave spectra
corresponding to a fast acoustic wave, vorticity/entropy waves, and a
slow acoustic wave. The two discrete modes marked by circles are
mode F and mode S, originating from the fast acoustic spectrum and
slow acoustic spectrum, respectively.With the frequency increasing,
the real part of thewave number of mode F increases, whereas that of
mode S decreases, as schematically shown in the figure by the dashed
curves. Thefigure also shows thatmode S in this case is unstablewith

i < 0. The unstable modes at 
r � 0:09 and 0.144 are not physical,
but are numerical, resulting from the discretization of the ODE
system.

Figure 9 compares the dimensionless phase velocities of mode F
and mode S at three different frequencies, f� � 74:60 kHz (F�
48:15 � 10�6), f� � 89:52 kHz (F� 57:78 � 10�6), and f� �
104:44 kHz (F� 67:41 � 10�6), plotted as a function of the

dimensionless circular frequency. According to the definition of the
dimensionless circular frequency, Eq. (24), each ! corresponds to a
streamwise location (s� or R). These three frequencies are the same
as F5, F6, and F7 in Table 1. The three dashed lines represent the
phase velocities of a fast acoustic wave (c� 1�M�11 ), vorticity/
entropy waves (c� 1), and a slow acoustic wave (c� 1 �M�11 ),
respectively. Theoretically, the phase velocities of fast and slow
acoustic waves should be calculated with the Mach number behind
the shock. However, Fig. 7 shows that the Mach number behind the
shock is not a constant in computational domain. For convenience,
the freestream Mach number is used in the current paper. The
excellent agreement of phase velocities at these three frequencies
indicates that the phase velocity is a function of the dimensionless
circular frequency only for considered frequencies. In addition, the
figure clearly shows that mode F originates from the fast acoustic
wave, whereas mode S originates from slow acoustic wave. With the
dimensionless circular frequency increasing, phase velocity of
mode F decreases. Mode F is resonant with vorticity/entropy waves
at !� 0:1. Mode S synchronizes with mode F at the point of
!s � 0:11443 and cs � 0:93349. At the synchronization point,
phase velocities of mode S and mode F are the same, and their
eigenfunctions have a similar profile, as shown in Fig. 10. In this
figure, streamwise velocity and pressure perturbations,p0r and u

0
r, are

normalized by the pressure perturbation on the wall. The figure
shows that perturbations are confined within the boundary layer.
Except the differences associated with the critical layer around
��=L� � 19, the eigenfunctions of mode F and mode S agree very
well at the synchronization point.

For disturbances at different frequencies, the synchronization
points are different in the s� coordinate, although they have the same
location with respect to dimensionless circular frequency (!s�
0:11443), as shown in Fig. 9. At a given dimensionless frequency, the
location of the synchronization point can be calculated as

s�sn �
�!s=Fn�2
Re�1

(30)

Once s�sn is known, the value of the Reynolds number at the
synchronization point, Rsn, can be calculated using Eqs. (15)
and (11).

Figure 11 compares the imaginary part of the wave number of
mode F and mode S at the same set of three frequencies as a function
of the dimensionless circular frequency. The vertical dashed line
represents the location of the synchronization point. The horizontal
dash–dotted line stands for the neutral waves (
i � 0). In Fig. 11, 
i
of either mode S or mode F are approximately functions of the
dimensionless circular frequency only. Mode S is unstable in the
region from !I � 0:04 to !II � 0:23, whereas mode F is always
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stable. It is also noted that the growth rate (�
i) of mode S in the
region of ! < 0:095 is much smaller than that in the region of
0:1< ! < 0:14, i.e., mode S is more unstable around the synchro-
nization point.

The two parameters !I and !II define the branch I and branch II
neutral points of mode S. Mode S is stable upstream of the branch I
neutral point and downstream of the branch II neutral point. At a
given dimensionless frequency, the location of the branch II neutral
point in s� coordinate can be calculated as

s�IIn �
�!II=Fn�2
Re�1

(31)

Equations (30) and (31) indicate that when the dimensionless
frequency increases, the corresponding s�sn and s

�
IIn decrease, i.e., the

synchronization point and the branch II neutral pointmove upstream.
Table 1 also lists locations of the synchronization point (s�sn,Rsn) and
the branch II neutral point (s�IIn) for the 15-frequency blowing–
suction disturbances. Calculations of the branch I neutral point are
neglected because it is related toMack’sfirstmode. The current study
is focused on the more unstable Mack’s second mode.

C. Response to a Single-Frequency Blowing–suction Actuator

The response of the hypersonic boundary layer to an actuator at a
single frequency is first studied. Wall blowing–suction at the
frequency of f�5 � 74:60 kHz (F5 � 48:15 � 10�6) is introduced
through an actuator on the wedge surface from s�i � 0:10184 m to
s�e � 0:11384 m, corresponding to R� 911:88 and 964,10,
respectively. In this case, the blowing–suction model of Eq. (18)
reduces to the following form:

���v��0 � q�0
��l� sin!�5 t� (32)

where q�0 is the amplitude constant defined at the leading edge of the
actuator as

q�0 � ��wv�bk (33)

where ��w is the density on the wall, and v�bk is the wall-normal
velocity behind the bow shock. Their values are obtained from the
steady base flow. Table 2 lists parameters of the blowing–suction
actuator for the seven cases of unsteady simulation considered in the
current paper. The values of q�0 and other parameters of the single-
frequency actuator considered in this section are the same as those of
case 2 in Table 2.

Because of the fact that only very weak disturbances are
considered, the stability simulation is in the linear region. Therefore,
there should be no big difference in the results nomatterwhichmodel
of Eq. (16) and (18) is used to define the blowing–suction dis-
turbance. To check that the results are essentially the same, a second
blowing–suction model similar to that of Fedorov and Khokhlov [5]
is tested, i.e.,

v�0 � v�bk
��l� sin!�5 t� (34)

Again, v�bk is the wall-normal velocity after the bow shock at the
leading edge of the actuator, obtained from the steady base flow.
Equations (32) and (34) ensure that the two models introduce the
same scale of wall-normal velocity disturbances in the forcing
region.

Figure 12 compares pressure perturbation amplitudes along the
wedge surface for the two blowing–suction models of Eqs. (32) and
(34). The good agreement between pressure perturbation amplitudes
indicates that the two models are equivalent under the given
conditions. This figure also shows that wall blowing–suction leads to
a substantial growth of the pressure perturbation. Comparison of
pressure perturbation amplitudes in the region just downstreamof the
actuator is shown in Fig. 13. The figure shows that there are strong
modulations of pressure perturbation amplitude just downstream of
the forcing region. After the location of s� 
 0:56 m (R� 2138:3),
the pressure perturbation increases monotonically. This location
corresponds to !� 0:1.

Figure 14 shows the instantaneous pressure perturbation along the
wedge surface excited by the single-frequency actuator. The ampli-
fication of the pressure perturbation from upstream to downstream
indicates the excitation of unstable waves in the boundary layer. It is
very likely that mode S is the unstable wave excited in the boundary
layer, because mode S is more unstable in the region of
0:56 m< s� < 1:04 m, corresponding to 0:1< ! < 0:14, as shown
in Fig. 11.

To check the properties of the unstable waves, a Fourier transform
is applied to the instantaneous pressure perturbation (periodic in
time) along the wedge surface, which leads to
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Table 2 Constant q�0 and other parameters of the blowing–suction
actuator for the seven cases of unsteady simulation

Case q�0 , kg=m
2s s�i , m s�e , m s�c , m Rsc

1 0.214139 0.05184 0.06384 0.05784 687.2
2 0.125188 0.10184 0.11384 0.10784 938.4
3 0.096130 0.15184 0.16384 0.15784 1135.2
4 0.080666 0.20184 0.21384 0.20784 1302.7
5 0.070759 0.25184 0.26384 0.25784 1450.9
6 0.063745 0.30184 0.31384 0.30784 1585.4
7 0.054453 0.40184 0.41384 0.40784 1824.8
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Fig. 12 Comparison of pressure perturbation amplitudes along the

wedge surface for two blowing–suction models.
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p0�s�; t�� ��jp0n�s��jei��
0
n�s���!�nt�
 (35)

where p0�s�; t�� is the instantaneous pressure perturbation along the
wedge surface. In the above equation, jp0n�s��j and �0n�s�� are
pressure perturbation amplitude and phase angle, respectively.
Once jp0n�s��j and �0n�s�� are known, the local wave number can be
defined as


rn � L�
d�0n
ds�

(36)


in ��
L�

jp0nj
djp0nj
ds�

(37)

where L� is the length scale of the local boundary-layer thickness as
defined by Eq. (14). The parameters 
rn and 
in will represent the
true wave number only if the pressure perturbation is dominated by a
single wave. Otherwise, the pressure perturbation needs to be further
decomposed in order to check the properties of a specific wave. For
example, Tumin et al. [7] decomposed the pressure perturbation at a

location just downstream of the actuator with a biorthogonal
eigenfunction system, where mode F, mode S, acoustic waves, and
entropy/vorticity waves coexisted and none of them was dominant.

According to the theoretical analyses of Tumin et al. [7], the strong
modulations of the pressure perturbation just downstream of the
actuator, as shown in Fig. 13, result from the coexistence of mode F,
mode S, acousticwaves, and entropy/vorticitywaves in the boundary
layer. After s� 
 0:56 m, part of the acoustic waves radiate into the
flow outside the boundary layer. Mode F decays because of its
inherent stability, whereas mode S grows because of its instability.
Mode S eventually becomes the dominant wave in the boundary
layer. Therefore, the pressure perturbations increase monotonically
downstream of s� 
 0:56 m, as shown in Fig. 12.

Since our focus is on the numerical simulation results, we mainly
consider the later stage, where mode S is the dominant wave in the
boundary layer. In this case, Eqs. (36) and (37) can be used to
evaluate the properties of the unstable mode S. Figures 15 and 16
compare the local wave number obtained from numerical simulation
with those of mode F and mode S obtained from LST. These two
figures show that wave number obtained from the numerical results
agrees well with those of mode S after the location around !� 0:1
(s� � 0:56 m). As shown in Fig. 11, this is the location where the
growth rate (�
i) ofmode S increases significantly andmode S starts
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growing to the dominant wave in the boundary layer. The results
indicate that the unstable wave excited by wall blowing–suction is
mode S. Figure 16 shows that the two sets of the imaginary part of the
wave number agree very well in the region from !� 0:1 to 0.131.
When the dimensionless circular frequency is larger than 0.131, the
growth rate (�
i) obtained fromnumerical simulation is smaller than
that obtained from LST, which means that mode S obtained from
numerical simulation becomes more stable than that predicted by
LST. The discrepancy is caused by the nonparallel flow effects,
which had been theoretically interpreted by Wang et al. [27] and
Tumin et al. [28].

Figure 17 compares the eigenfunctions ofmode Fandmode Swith
the pressure perturbation obtained from numerical simulation at four
different locations. Figure 17a shows that the pressure perturbation is
not confined within the boundary layer, and it is quite different from
the eigenfunctions of mode F and mode S. These characteristics of
the pressure perturbation are caused by the coexistence of mode F,
mode S, acoustic waves, and entropy/vorticitywaves in the boundary
layer just downstream of the blowing–suction region. Acoustic
waves and entropy/vorticity waves are nonzero outside the boundary
layer. Figure 17b shows that the pressure perturbation is much closer
to the eigenfunction of mode S, and it is mostly confined within the
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Fig. 17 Comparisons of the eigenfunctions of mode F and mode S with the pressure perturbation obtained from numerical simulation:
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boundary layer. These characteristics of the pressure perturbation
indicate that mode S becomes the dominant wave in the local
boundary layer with part of the acoustic waves radiating into the flow
outside the boundary layer and mode F decaying because of its
inherent stability. Figures 17c and 17d show good agreement
between the eigenfunction of mode S and the pressure perturbation
obtained fromnumerical simulation, becausemode S is the dominant
wave in the local boundary layer downstream of the location
s� 
 0:56 m.
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frequency of f �5 � 74:60 kHz induced by the actuator in case 7.
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Fig. 23 Pressure perturbations at the same frequency for the seven cases of unsteady simulation: a) f �4 � 59:68 kHz, b) f �5 � 74:60 kHz,
c) f �6 � 89:52 kHz, and d) f �7 � 104:44 kHz.

Table 3 Location of the blowing–suction actuator

with respect to the synchronization point for the

seven cases of unsteady simulation

Case s�c < s
�
sn s�c > s

�
sn

1 n from 1 to 15 None
2 n from 1 to 12 n from 13 to 15
3 n from 1 to 10 n from 11 to 15
4 n from 1 to 9 n from 10 to 15
5 n from 1 to 8 n from 9 to 15
6 n from 1 to 7 n from 8 to 15
7 n from 1 to 6 n from 7 to 15
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D. Response to a Fifteen-Frequency Blowing–suction Actuator

In this section, the response of the hypersonic boundary layer to a
15-frequency actuator is studied.Wall blowing–suction is introduced
in a region on the wedge surface from s�i � 0:05184 m to s�e�
0:06384 m, corresponding to R� 650:59 and 721.98. The 15
frequencies f�n (n� 1; 2; . . . ; 15) are listed in Table 1. The model of
the 15-frequency actuator is given by Eq. (18). The other parameters
of the actuator are the same as those of case 1 in Table 2.

Figure 18 shows the instantaneous pressure perturbation along the
wedge surface excited by the 15-frequency actuator. Compared with
the pressure perturbation excited by a single-frequency actuator, as
shown in Fig. 14, the pressure perturbation in Fig. 18 has a larger
amplitude due to the coexistence of 15 pressure perturbations. The
standing wave structures are the resulted of the modulations of
pressure perturbations at different frequencies. Amplification of the
pressure perturbation from upstream to downstream indicates
the excitation of the unstable mode S. To investigate the effect of the
frequency, a Fourier transform is applied to decompose the instan-
taneous pressure perturbation.

To check the linearity of the numerical results, a test case is
computed, where the initial amplitude of the pressure perturbation at
the frequency f�4 is increased to 1.1 times the original value.
Figure 19 shows the result of the test case, together with the original

result. In the figure, the dash–dotted line represents the original
result, the delta symbol represents 1.1 times the original result, and
the solid line represents the test result. The good agreement between
the test result and 1.1 times the original result indicates that the
linearity of pressure perturbation still holds when its peak amplitude
reaches 10�3.

Figure 20 shows the pressure perturbation amplitudes along the
wedge surface excited by the 15-frequency actuator. The spatial
developments of pressure perturbations at different frequencies are
quite different. As shown in Fig. 20a, pressure perturbations at
frequencies f�1 , f

�
2 , and f

�
3 grow slowly from upstream to down-

stream, because mode S is slightly unstable in the region of !<
0:095. At these three frequencies, the s� coordinates corresponding
to !� 0:095 are 11.92, 2.98, and 1.32 m, respectively. In Figs. 20b
and 20c , pressure perturbations at frequencies f�n (n from 4 to 11)
grow significantly downstream of the blowing–suction region,
because mode S is more unstable in the region of 0:1< ! < 0:14.
Just downstream of the actuator, the coexistence of mode F, mode S,
acoustic waves, and entropy/vorticity waves in the boundary layer
makes the growths of unstable mode S smeared. Pressure pertur-
bations at even higher frequencies shown in Fig. 20d grow only in a
small region downstream of the actuator, because the corresponding
branch II neutral points of mode S are very close to the trailing edge
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Fig. 24 Receptivity coefficients of mode S at the same frequency for the seven cases of unsteady simulation [7]: a) f �4 � 59:68 kHz, b) f �5 � 74:60 kHz,
c) f �6 � 89:52 kHz, and d) f �7 � 104:44 kHz.
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of the actuator. The peak amplitude of the pressure perturbation at
these four frequencies after s� � 0:8 m is approximately located at
!� 0:37. Figure 11 shows thatMack’s thirdmode appears at around
!� 0:32. Therefore, the amplitude peak after s� � 0:8 m, as shown
in Fig. 20d, is not relevant to mode S.

For the pressure perturbations shown in Figs. 20b–20d , the
synchronization point is within the computational domain. Figure 20
shows that the pressure perturbation starts to grow substantially at a
location around the corresponding synchronization point, because
mode S is more unstable in the region of 0:1< ! < 0:14. However,
the pressure perturbations at frequencies f�n (n > 4) start to decrease
far before reaching the corresponding branch II neutral points
predicted by LST, which is caused by the nonparallel flow effects.
Wang et al. [27] and Tumin et al. [28] found that nonparallel flow
effect stabilizesMack’s secondmode, whereas it destabilizesMack’s
first mode.

E. Effect of the Actuator Location

To investigate the effect of the actuator location, seven cases of
unsteady simulation are considered with the actuator shifting along
the wedge surface. Figure 21 shows a schematic of the actuator
locations for the seven cases of unsteady simulation. In each case,

blowing–suction disturbances at 15 frequencies are introduced. The
model of the actuator is given by Eq. (18). The amplitude constant q�0
in Eq. (18) is different for the seven cases, because it is locally defined
at the leading edge of the actuator. The location of the actuator is
defined as

s�c �
s�i � s�e

2
(38)

Once s�c is known, the value of the Reynolds number at the center
of the actuator, Rsc, can be calculated using Eqs. (15) and (11). The
amplitude constant q�0 and other parameters of the blowing–suction
actuators for the seven cases of unsteady simulation are listed in
Table 2. As has been mentioned, q�0 is defined as the product of the
density on the wall and wall-normal velocity after the bow shock,
with the dimension of kg=m2s.

Figure 22 shows contours of the instantaneous pressure
perturbation at the frequency of f�5 � 74:60 kHz induced by the
actuator in case 7. Downstream of the actuator, the excited pressure
perturbations are divided into two branches. One branch radiates into
the flow outside the boundary layer and propagates along the Mach
lines (acoustic waves). The other branch stays within the boundary
layer (mode F and mode S). Far downstream of the forcing region,
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Fig. 25 Pressure perturbations at the same frequency for the seven cases of unsteady simulation: a) f �8 � 119:36 kHz, b) f �9 � 134:28 kHz,
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mode F decays because of its inherent stability, whereas mode S
grows substantially because of its instability. As a result, mode S
becomes the dominant wave in the boundary layer. The wave
structure in the boundary layer is typical ofmode S for the hypersonic
boundary layer.

According to Fig. 9, the synchronization point between mode F
andmode S has a dimensionless circular frequency of!s � 0:11443.
Although the synchronization point in! coordinate does not depend
on the frequency, its locations in s� and R coordinates depend on the
frequency. The s� and R coordinates of the synchronization point at
the 15 frequencies are calculated by Eqs. (30) and (15) and tabulated
in Table 1 as s�sn and Rsn.

Table 1 shows that the synchronization pointmoves upstreamwith
the frequency increasing. Therefore, the actuators for the seven cases
are located either upstream or downstream of the synchronization
points at different frequencies. Table 3 lists the location of the
blowing–suction actuator with respect to the synchronization point
for the seven cases of unsteady simulation. In this table, s�c < s

�
sn and

s�c > s
�
sn represent that the actuator is located upstream and down-

stream of the synchronization point at the frequency f�n, respectively.
For example, at the frequency of f�5 � 74:60 kHz, locations of the
actuators in all cases are upstream of the synchronization point.
While at the frequency of f�10 � 149:20 kHz, locations of the

actuator in cases 1 to 3 are upstream of the synchronization point,
whereas locations of the actuator in other cases are downstreamof the
synchronization point.

To show the effect of the actuator location more efficiently,
pressure perturbations at the same frequency are plotted together for
the seven cases of unsteady simulation. Figure 23 shows the pressure
perturbations at the frequencies from f�4 to f

�
7 . Pressure perturbations

at the frequencies f�1 , f
�
2 , and f

�
3 are neglected, because mode S is

slightly unstable in the region of ! < 0:095 and the corresponding
synchronization points are located downstream of the computational
domain. In these figures, the numbers 1 to 7 stand for the case
number. The spatial development of pressure perturbation from
upstream to downstream represents a mixture of the receptivity and
the downstream amplification. To separate out one mechanism from
another, receptivity coefficients C of mode S obtained from Tumin
et al.’s [7] paper are replotted in Fig. 24, for example, where C is
defined as the initial amplitude of mode S excited by wall blowing–
suction. These receptivity coefficients are helpful to qualitatively
interpret numerical results.

At the frequency of f�4 � 59:68 kHz, the actuators in all seven
cases are located upstream of the synchronization point at s�s4�
1:0618 m. Figure 23a shows that mode S is strongly excited for all
seven cases. Furthermore, the amplitudes of pressure perturbations
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Fig. 26 Receptivity coefficients of mode S at the same frequency for the seven cases of unsteady simulation [7]: a) f �8 � 119:36 kHz,
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decrease when the actuator shifts from upstream to downstream,
which is consistent with the decrease of receptivity coefficients
(Fig. 24a) and the shrinkage of the amplification region. Figures 23b
and 23c show similar results for the pressure perturbations at the
frequencies of f�5 � 74:60 kHz and f�6 � 89:52 kHz, respectively.
At these two frequencies, Table 3 show that the actuators in all seven
cases are upstream of the corresponding synchronization points.
Although receptivity coefficients at these two frequencies do not
consistently decrease, as shown in Figs. 24b and 24c, the shrinkage
of the amplification region makes pressure perturbation amplitude
decrease, with the actuator shifting from upstream to downstream.

At the frequency of f�7 � 104:44 kHz, the actuator is upstream of
the synchronization point at s�s7 � 0:3467 m in cases 1 to 6, whereas
it is downstream of the synchronization point in case 7. Figure 23d
shows that mode S is strongly excited in cases 1 to 6. In case 7, no
exponential growth of pressure perturbation is observed. There is no
significant amplification of pressure perturbation downstream of the
actuator, despite the fact that the actuator is still located within the
unstable region of mode S, with the corresponding branch II neutral
point being at s� � 1:39557 m. Figure 24d shows that the receptivity
coefficient of case 7 is comparablewith those of other cases. The only
difference of case 7 is that the actuator is downstream of the synchro-
nization point. It is also noted that a second peak of receptivity

coefficient exists in case 5. Because of the jump of receptivity
coefficient, pressure perturbation amplitude in case 5 is larger than
that in case 4, despite the shrinkage of the amplification region.

At the frequency of f�8 � 119:36 kHz, Fig. 25a shows thatmode S
is strongly excited in cases 1 to 5, while no exponential growth of
pressure perturbation is observed downstream of the actuator in
case 6 and case 7. Again, this is related to the fact that the actuators in
cases 1 to 5 are upstream of the synchronization point at s�s8�
0:2654 m, whereas the actuators are located downstream of the
synchronization point in case 6 and case 7. It needs to be emphasized
that the actuators are still located within the unstable region of
mode S, even in cases 6 and 7. Figure 26a shows that receptivity
coefficients of cases 6 and 7 are comparable with those of the other
five cases. A second peak of receptivity coefficient exists in case 4.
The jump of receptivity coefficient leads to a larger amplitude of
pressure perturbation in case 4 than that in case 3.

As the frequency changes to f�9 � 134:28 kHz in Fig. 25b, the
actuators are located upstream of the synchronization point at s�s9 �
0:2097 m in cases 1 to 4, whereas the actuator in cases 5 to 7 are
downstream of the synchronization point. The results at this fre-
quency are consistent with those of the previous frequencies
regarding the excitation of mode S. Mode S is strongly excited in
cases 1 to 4.However, there is no significant amplification of pressure
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perturbation downstream of the actuator in cases 5 to 7. Figure 26b
shows that receptivity coefficients of cases 5 to 7 are comparablewith
those of the other four cases. It also shows a second peak of recep-
tivity coefficient exists in case 3, which leads to a larger amplitude of
pressure perturbation in case 3 than that in case 2.

At the frequencies of f�n with n from 10 to 11, a similar conclusion
can be drawn. In cases in which the actuator is downstream of the
synchronization point, no exponential growth of pressure pertur-
bation is observed, despite the facts that the actuators are still located
within the unstable region of mode S and receptivity coefficients are
comparable with those of the cases in which the actuator is upstream
of the synchronization point (Figs. 26c and 26d). For even higher
frequencies, Fig. 27 shows that the pressure perturbation grows in a
very small region downstream of the actuator, because the unstable
region of mode S is small. As has been mentioned, the peak
amplitude of the pressure perturbation at these four frequencies after
s� � 0:8 m is not relevant to mode S.

Figures 23, 25, and 27 consistently show that mode S at a specific
frequency is strongly excited when the actuator is located upstream
of the corresponding synchronization point. When the actuator is
downstream of the synchronization point, no significant ampli-
fication of pressure perturbation is observed downstream of the
actuator. This result represents a mixture of the receptivity and the
downstream growth of mode S. The exact cause and mechanism of
this result is not clear. However, such a result is observed for wall
blowing–suction at all frequencies considered in the current study. To
excite strongmodeS at a specific frequency, the result indicates that it
is necessary to place the blowing–suction actuator upstream of the
corresponding synchronization point.

V. Conclusions

The response of a Mach 8 flow over a sharp wedge of a half-angle
of 5.3� to wall blowing–suction has been studied by numerical
simulation and linear stability theory. Steady base flow is obtained by
solving the compressible Navier–Stokes equations with a combi-
nation of a fifth-order shock-fitting method and a second-order TVD
scheme. The TVD scheme is only used to solve the steady base flow
in a small region including the leading edge. Stability characteristics
of the boundary-layer waves are evaluated by the linear stability
theory. In stability simulations, wall blowing–suction is introduced
through an actuator on thewedge. The simulation of unsteady flow is
carried out using the shock-fitting method.

The response of the hypersonic boundary layer to a single-
frequency blowing–suction actuator is first studied. The numerical
results and LSTanalyses show that mode F, mode S, acoustic waves,
and entropy/vorticity waves are simultaneously excited by the
blowing–suction actuator. All these waves coexist in the boundary
layer just downstream of the forcing region, which leads to strong
modulations of the pressure perturbation. Far downstream of the
forcing region, part of the acoustic waves radiate into theflowoutside
the boundary layer. Mode F decays because of its inherent stability,
whereas mode S grows substantially because of its instability. As a
result, mode S becomes the dominant wave in the boundary layer.

The response of the hypersonic boundary layer to a 15-frequency
actuator is also studied. The results show that spatial developments of
pressure perturbations at different frequencies are quite different,
although they have the same initial amplitudes introduced by the
actuator. Pressure perturbation at a specific frequency starts to
decrease far before reaching the corresponding branch II neutral
point predicted by LST, which is caused by the nonparallel flow
effects. Mack’s second mode is stabilized by the nonparallel flow
effects.

Seven cases of stability simulations are considered with the
actuator shifting along the wedge surface to study the effect of the
actuator location. The numerical results consistently show that
mode S at a specific frequency is strongly excitedwhen the actuator is
located upstream of the corresponding synchronization point. On the
other hand, when the actuator is downstream of the corresponding
synchronization point, there is no significant amplification of pres-
sure perturbation downstream of the actuator. This result represents a

mixture of the receptivity and the downstreamgrowth ofmode S. The
exact cause andmechanism of this result are not clear. However, such
a result is obtained for wall blowing–suction at all frequencies
considered in the current study. To excite strong mode S at a specific
frequency, the result indicates that it is necessary to place the
blowing–suction actuator upstream of the corresponding synchro-
nization point. Further theoretical analysis is needed to reveal the
mechanism behind the numerical results. It is hoped that this paper
can motivate further theoretical analysis.
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