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The coherent structures populating the inner-region of a compressible boundary layer with free-

stream Mach number equal to 2.5 are analyzed by means of direct numerical simulations of the

Navier–Stokes equations. This study shows similarity with the incompressible case in the sense

that turbulence in the near-wall region can be sustained without fluctuations in the outer region,

proving the existence of a local cycle within the near-wall region. The dynamics are further

simplified by making use of the coherence of the inner region. The wall-normal velocity

component in this region is split into two: one coherent part representing vortices spanning all the

inner-region, and one incoherent part representing the background turbulence. By damping the

latter part, the statistical features of the flow are only slightly influenced, showing that the coherent

part is essential in determining the flow characteristics. Flow dynamics and turbulence structures

within this coherent part are examined. It is shown that the near-wall region is populated by

crescent-shaped vortical structures, which are associated with regions with strong positive

Reynolds shear stress production. The structure of the flow associated with these regions shares

several features with the so-called internal shear layers. VC 2011 American Institute of Physics.

[doi:10.1063/1.3600659]

I. INTRODUCTION

Turbulent boundary-layer flow displays a symbiosis of

organized motions known as coherent structures. The knowl-

edge of their kinematic properties, such as sizes and shapes,

as well as their dynamical properties, such as origin and sta-

bility, is the key point to understanding the self-sustainment

of the near-wall turbulence. Due to a great deal of experi-

mental and numerical work conducted over the past few dec-

ades, it is now well known that the near-wall region is

populated by streaks and streamwise vortices, which are the

coherent structures responsible for turbulence production

near the wall (Refs. 1, 2 and references therein).

However, our knowledge of these structures is still

limited.

From a dynamical point of view, the generation mecha-

nism of these streamwise vortices is still an open question.

For a complete collection of the proposed mechanisms, the

interested reader is referred to the review by Panton.1 On the

other hand, some of the kinematic properties of these struc-

tures are still a source of debate. In particular, there is still no

consensus on whether they occur in counter-rotating pairs, as

they are imagined by extending the hairpin vortex paradigm

of Theodorsen down to the near-wall region (e.g., Ref. 2), or

staggered in the streamwise direction (e.g., Ref. 3). The origin

of the difference between these conceptual models is an inter-

esting study in itself. However, once educed, the significance

of these vortices has to be measured based on their contribu-

tion to the production of turbulent kinetic energy.

In this paper, we address the two-fold question concern-

ing the shape and the dynamical significance of the vortices

in the near-wall region. This question is tackled by first educ-

ing the vortices and then by evaluating their importance in

terms of their contribution to the Reynolds shear stress and

energy production. The second point is achieved by isolating

the contribution of the coherent turbulent part from that of

the incoherent part. A similar approach was used in the study

of incompressible turbulent channel flow by Jimenez and

Pinelli4,5 In that study, the coherent part, i.e., the streaks was

damped to show that turbulence cannot sustain without

streaks. In contrast, this study actively damps the incoherent

part of the velocity. The turbulence is sustained and the sta-

tistical features of the flow are left essentially intact and

allow us to easily study the coherent part and evaluate its

contribution.

We study the near-wall region of compressible turbulent

boundary layers, defined from yþ¼ 0 up to yþ¼ 60. Here

yþ¼ yus/�w and the superscript “þ” denotes normalization by

viscous units. The kinematic viscosity is �w, us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=qw

p
is

the friction velocity, sw is the wall shear stress, and qw is the

density at the wall. Note that based on our previous result

(Ref. 6, referred to as Part I hereinafter), there is likely no dif-

ference in the structure of compressible and incompressible

turbulent flow. In fact, for a free-stream Mach number ranging

from 2.5 to 20 and using perfect gas assumption, we have

shown that scaled statistics of the compressible flow collapsed

with the statistics of the incompressible flow. In addition, near-

wall streaks and streamwise vortices have been commonly

observed in other direct numerical simulations (DNS) of com-

pressible turbulent boundary layer for different freestream

Mach numbers (M1¼ 3, in Ref. 7 and M1¼ 2.25 in Ref. 8).

Both studies revealed similar coherent structures as observed

in subsonic and supersonic experiments, i.e., elongated streaky

structures of alternating high- and low-speed fluid in the near-

wall region, and hairpin vortex packets frequently located

above low-speed streaks. Furthermore, Pirozzoli et al.8 showed

that the viscous sublayer and the buffer layer are mostly
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populated by quasi-streamwise vortices and that the population

of clockwise and counterclockwise cores is nearly the same.

A. Goal and organization of the paper

Our main goal is to draw a simplified picture of the dy-

namics of the coherent structures populating the near-wall

region of compressible boundary layers. The direct numeri-

cal simulations of these boundary layers were carried out in

Part I. Therefore, all the notations are identical to those

defined there. The adiabatic boundary condition is used at

the wall.

The paper is organized as follows. In Sec. II, we demon-

strate, by filtering out the turbulence above yþ � 60, the ex-

istence of a self-sustained cycle within the near-wall region.

This filtered flow field will be referred to as the flow field of

step 2, in contrast with the unfiltered flow field of Part I

referred to as the flow field of step 1. The different nomen-

clatures are given in Table I. We then show that the dynam-

ics of the turbulent flow field in the near-wall region can be

approximated by the coherent part of the wall-normal veloc-

ity, while the incoherent part is damped out. The obtained

flow field is referred to as the flow field of step 3. We demon-

strate that this approach can successfully capture the com-

plex flow features (e.g., rms values) with much simpler

dynamics, since the coherent structures are much easier to

identify and track without the need of a complex post-proc-

essing method. Our approach clarifies the turbulence struc-

ture and gives valuable insight into the mechanisms.

The discussion of the results and their comparisons with

previous studies are presented in Sec. IV. The conclusion is

given in Sec. V. In this paper, we use x, y, z to denote the

streamwise, wall-normal, and spanwise directions, respec-

tively, and u, v, w to denote the velocity components in x, y,

and z directions.

II. STUDY OF THE NEAR-WALL REGION

We will first demonstrate the existence of a self-sus-

tained cycle for turbulence in the near-wall region of the su-

personic boundary layer (M1¼ 2.5). Then we will isolate

the vortices populating this region.

A. Existence of a cycle in the near-wall region
(y1 £ 60)

Jimenez and Pinelli4 have shown the existence of an au-

tonomous cycle in the near-wall region by damping all the

perturbations above the inner-region (yþ � 60). A similar

approach is used here for the compressible flow. However,

we have found that damping the wall-normal velocity v is

sufficient to damp all the perturbations above the near-wall

region. The quantity �FðyÞðv� �vÞ is added to the right-hand

side of the v-equation, where �v is the spanwise mean profile

of v. The function F that we use, shown in Fig. 1, is

FðyÞ ¼
0; y � yyþ¼60

r
ðy� yyþ¼60ÞnðLy � yÞ
ðLy � yyþ¼60Þnþ2

; y � yyþ¼60

8<
:

where r and n are two adjustable parameters,9,10 and yyþ ¼ 60

denotes the physical location which corresponds to yþ¼ 60.

A generic time step for v

vðx; y; z; tþ DtÞ ¼ vðx; y; z; tÞ þ Dt rhsv

becomes

vðx; y; z; tþ DtÞ ¼ vðx; y; z; tÞ þ Dt rhsv

� FðyÞðvðx; y; z; tÞ � �vÞ;

where Dt is the integration time step and rhsv is the right-

hand side in the v-equation.

Note that the governing equations are integrated in a

conservative form, qv, but the filter is applied to v only. Dif-

ferent values of the filter parameter n (and therefore different

forms of the filter F) give similar results, therefore only the

results for one filter (n¼ 3, r¼ 25) are presented in this

paper.

After a short transient during which all the fluctuations

above yþ¼ 60 are mostly damped, the turbulent flow in the

inner region survives and settles to Rs � 324, close to

the unfiltered Rs � 350. The domain extent in wall units

remain similar to that of the unfiltered simulation:

Lþx � Lþy � Lþz � 4100� 500� 760 (Part I). It is worth

mentioning that Jimenez and Pinelli have seen a similar but

more important drop in the wall shear, and the Reynolds

number dropped from Rs � 200 to 100.

Note that yþ¼ 60 corresponds in the physical domain to

y/d99 � 0.16. Due to a small drop in the friction at the wall,

TABLE I. Nomenclatures used in the text.

Case Definition

Step 1 Reference (unfiltered) flow field from Part I

Step 2 Damping all perturbations for yþ � 60 of the flow field in step 1

Step 3 Galerkin projection of the v0 velocity of the flow field in step 2 FIG. 1. (Color online) Examples of the filter F(y), with n¼ 2 (solid line),

n¼ 3 (dashed line), and n¼ 4 (dash-dotted line).
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the physical location corresponding to yþ¼ 60 will change

slightly. In fact, the non-dimensional friction velocity drops

from us/U1 � 0.053 to 0.045, and therefore the viscous unit

increases (at roughly constant �w/�1 � 3.86) and the physi-

cal location becomes y/d99 � 0.19. Fixing the location of the

filter in terms of wall unit (yþ � 60) or physical unit

ðy 2 ½0:16; 0:19�Þ gives similar root-mean-square (rms) dis-

tributions. Most importantly, the following results about the

coherent structures are not affected.

The rms fluctuations of the velocity components are

given in Figs. 2 and 3. The near-wall profiles are similar to

those of step 1.

The rms fluctuations of the vorticity components are

given in Figs. 4 and 5, together with the turbulent Mach

number (see Part I for the definition). While the rms fluctua-

tions in Jimenez and Pinelli are strongly affected (except for

u0 and x0y), here most of them are not affected by the filtering

process. Jimenez and Pinelli attribute this sensitivity to the

fact that the streamwise vortices, due to their less energetic

velocities, are more sensitive to filtering.

Note that even if the rms of v0 is reduced, the production

term in the turbulent-kinetic-energy budget is almost the

same, as shown in Fig. 6. Hence, the velocity fluctuations of

the filtered flow as well as the kinetic energy budget are very

close to the unfiltered results of Part 1, thus demonstrating

that an outer flow is not needed for the maintenance of near-

wall turbulence, or even for defining its quantitative proper-

ties. This illustrates the existence of a local self-sustaining

process for the turbulence in the inner region in compressible

turbulent boundary layers.

B. A Galerkin projection of near-wall structures

Our aim is to shed some light on the coherent structures

populating the inner-region and examine their dynamics in a

simplified situation in which their interactions with the outer

flow are damped. In this section, we show that this can be

achieved by using the coherence of the inner region, which

constitutes, once isolated from the outer region, a confined

system in the y-direction.

By considering short domains with respect to the typical

longitudinal extent of the streaks and therefore systems con-

fined in the x-direction, Jimenez and Pinelli gave an approxi-

mate representation of the streaks by that part of the

streamwise velocity perturbation u0, which depends on the

transverse coordinates, y and z, but independent of x. They

defined the streak component as the streamwise average of u0

and decomposed u0 into a streak component (coherent part)

and background turbulence (incoherent part). Considering

the streaks as the average of the velocity is a first order

approximation (first harmonic), the higher harmonics are

included in the incoherent part. A similar approach is applied

FIG. 2. Reynolds normal stress components for steps 1, 2, and 3. Lines correspond to the current simulations and squares to Jimenez and Pinelli filtered results

(Ref. 4). Thick solid line: step 1. Thin solid line: step 2. Dashed line: step 3.

FIG. 3. Reynolds shear stress components for steps 1, 2, and 3. Legend similar to Fig. 2.
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here but to the streamwise vortices. The main idea is based

on the fact that these structures are coherent and span the

entire inner region yþ 2 ½0; 60� with the core’s location

around yþ � 20. We decompose the wall-normal velocity

perturbation into a coherent “vortical” component and an

“incoherent” component

v0ðx; y; z; tÞ ¼ v0vorðx; y; z; tÞ þ v0incðx; y; z; tÞ:

The velocity component associated with these vortices is

defined as

v0vorðx; y; z; tÞ ¼ P1ðyÞv01ðx; z; tÞ;

v01ðx; z; tÞ ¼
ðyþy ¼60

0

P1ðyÞv0ðx; y; z; tÞ dy;

where P1 is a polynomial function vanishing at y¼ 0 and

y ¼ yyþ¼60 and with a maximum around yþ � 20. At

yþ¼ 60, we have chosen d2P1

dy2 ¼ 0 to guarantee a smooth

transition to the outer region where v0 is zero. Therefore the

considered function is P1ðyÞ ¼ y2 ðy� yyþ¼60Þ3. Once v0vor is

computed, the incoherent part is obtained as v0inc ¼ v0 � v0vor.

It is worth noting that the amount of energy contained in

this mode, defined as

E1 ¼
ðy¼yyþ¼60

y¼0

v
02
vorðx; y; z; tÞdy;

is about 60% of the wall-normal turbulent kinetic energy

E0 ¼
Ð y¼yyþ¼60

y¼0 v
02dy, showing that this first mode captures

more than half of the energy. Even if this single mode cap-

tures only 60% of the energy, we will show that when iso-

lated from the incoherent part v0inc (i.e., other small-scale

structures) it is sufficient to capture most of the turbulence

production. Using different forms of functions or including

additional modes may increase this percentage, but the goal

of this paper is not to reproduce the statistics but rather to

understand the dynamics.

In the spirit of the remark made about the harmonics in

the definition of the streaks by Jimenez and Pinelli, the

approximation made above for the wall-normal velocity asso-

ciated with the vortices spanning the near-wall region can be

seen as a first-order approximation in a Galerkin projection.

This method is usually applied to structures in confined sys-

tems, where a few (wall-normal) modes are sufficient to cap-

ture them. Therefore P1 constitutes the first mode of such an

expansion. This restriction can be overcome by adding more

harmonics, but we are mostly looking for qualitative clues

about the dynamics rather than quantitative agreement.

C. Explicit projection

To show that the presence of the streaks is essential to

the production of turbulence, Jimenez and Pinelli decom-

posed u0 into one coherent part (streaks) and one incoherent

FIG. 4. rms vorticity components for steps 1, 2, and 3. Lines correspond to the current simulations and symbols to Jimenez and Pinelli filtered results (Ref. 4).

Legend similar to Fig. 2.

FIG. 5. Left: rms of the spanwise vorticity component for steps 1, 2, and 3. Right: turbulent Mach number. Legend similar to Fig. 4.
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part and damped the streaks component by multiplying it by

a filter function at every time step of the numerical integra-

tion. As expected, without the streaks, the turbulence

decayed. We use a similar approach here but applied to the

wall-normal perturbation v0. Rather than merely showing

that the turbulence decays by damping the coherent part and

hence that vortices are essential to the turbulence cycle, we

isolate the vortices from the incoherent part by explicitly

damping the latter. This is expected to give a simple picture

of the vortices dynamics.

The equations of motion are integrated as usual, but at

each time step v0 is separated into the two parts, v0 ¼ v0vor

þ v0inc, and v0inc is removed. The turbulent flow obtained

through this projection is referred to as the flow of step 3 and is

analyzed below.

First and foremost, the turbulence remains self-sustained

when this procedure is carried out. This illustrates that only

vortices spanning the entire gap are essential to turbulence

production. The features of the obtained turbulent flow field

are in reasonable agreement with those of step 1 and step 2,

as shown in Figs. 2–6. The Reynolds number Rs and the fric-

tion velocity are roughly the same as in step 2. Therefore,

the spatial extent of the domain in wall units is almost

unchanged.

It is interesting to note that the obtained profiles of veloc-

ity fluctuations have similar shape to those of Jimenez and

Pinelli. The streamwise velocity has two bumps; the one

closer to the wall is higher than the other. The wall-normal ve-

locity has a similar shape, a direct signature of a vortex, but

with amplitude closer to the real flow than in Jimenez and

Pinelli. The rms of the spanwise velocity w0 is slightly higher

but also shows the same two-bump pattern. This pattern can

be easily explained by the presence of the streamwise vortices.

The maximum near the wall is higher for w0, since w0

increases near the wall before going to zero. Also, the ampli-

tude of this maximum is slightly larger than the rms of the

non-projected flow, since in this highly constrained flow the

location of the core of the vortex stays at a constant distance

from the wall, while in a real turbulent flow the wandering of

this vortex gives lower rms values. The rms of the vorticity

component fluctuations show the same robustness and are

very close to the real flow. The same observation holds for the

kinetic energy budget, as shown in Fig. 6.

Finally, the distributions of the van Driest-transformed

mean streamwise velocity for steps 1, 2, and 3 are shown in

a semi-logarithmic plot in Fig. 7. The linear scaling in the

viscous sublayer ðuþvd ¼ yþÞ and the logarithmic scaling in

the overlap region yþvd ¼ ð1=kÞ log yþ þ 5:1; k � 0:4
� �

are

also plotted as references.

D. Instantaneous structures

Having shown that the flow field of step 3 is statistically

similar to step 1 and step 2, instantaneous flow fields of step

3 are analyzed in this section. Figure 8 shows a typical veloc-

ity field plot of the instantaneous velocity fluctuation v0 at

yþ¼ 15. In this figure the flow is from left to right. The most

recognizable pattern has a crescent shape. Each one corre-

sponds to two counter-rotating vortices, as revealed by the

cross-stream section (y-z) of the flow field (v0, w0) in Fig. 9.

Positive patches of v
0

corresponds to negative patches of u0

and vice versa. This u0v0-anticorrelation, which gives positive

Reynolds shear stress –u0v0, is associated with the so-called

lift-up mechanism.11

The induced positive and negative u0 fluctuations via

this mechanism correspond, respectively, to high and low

FIG. 6. Kinetic energy budget. Left: production P (—), transport T (-.-.), pressure term P (- - -). Right: viscous diffusion D (- - -) and viscous dissipation –U
(—). Line with no symbols: step 1. Line with stars: step 2. Line with squares: step 3.

FIG. 7. (Color online) Plots of the van Driest transformed mean velocity

profiles for step 1 (solid line), step 2 (dash dotted line), step 3 (dashed line).
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speed streaks. These streaks span the entire near-wall region

up to yþ � 60 (Fig. 9).

The density and temperature fluctuations, q0 and T0,
corresponding to this typical crescent vortex are given in

Fig. 10. Away from the wall, around yþ � 15–25, a region

where v0 is positive corresponds to a region where T0 is posi-

tive and vice versa, as one would expect from a “lift-up

mechanism” applied to the mean temperature profile. The

same observation holds for the density fluctuation (but with

an opposite sign). Note that very near the wall, an interesting

feature takes place. On a given wall-normal line, say at

zþ¼ 230 in Fig. 10, the temperature fluctuations at yþ � 3

have the opposite sign of T0 at yþ � 25, as also shown in

Fig. 11. It is not clear what causes this somewhat unexpected

near-wall behavior of the temperature fluctuations. It should

be pointed out that this peculiar behavior is not due to the fil-

tering process as it is also observed in the flow of step 1.

The sign of the velocity perturbation v0 between the legs

of the crescent vortex can be used to classify two kinds of

crescent vortices. The first kind is depicted in Fig. 9, where

the velocity v0 is negative between the legs of the crescent vor-

tex and is positive outside (light-gray crescent contour–red

online). The flow structure in the (x, z)-plane, corresponding

to the second kind of vortex, and supplemented with a cross-

stream section in (y, z)-plane, is shown in Fig. 12. For this vor-

tex, the velocity v0 is positive between its legs and is negative

outside (dark crescent contour–blue online). This vortex

shares several features with the vortex of the first kind. First,

it produces positive Reynolds shear stress –u0v0 � 0, since

positive (negative) wall normal velocity v0 induces negative

(positive) streamwise fluctuation u0 via the lift-up mechanism.

Second, fluid flowing away from the wall (v0 � 0) carries high

temperature from the wall towards a cooler region, producing

a positive temperature fluctuation T0 � 0, as one would expect

from the pure convection of the temperature by the wall-nor-

mal velocity, as shown in Fig. 13. The same reasoning can be

applied to fluid flowing towards the wall.

The crescent vortices and velocity fields in both the

(x, z)- and (z, y)-planes shown in Figs. 9 and 12 come from

an individual snapshot, but the patterns are representative of

FIG. 8. (Color online) Spatial distri-

bution of the wall-normal velocity at

yþ � 15 in a (xþ, zþ)-plane (enhanced

online). [URL: http://dx.doi.org/10.1063/

1.3600659.1]

FIG. 9. (Color online) Features of a typical crescent vortex of the first kind. Left to right and top to bottom: (1) spatial distribution of v0 at yþ � 15; (2) spatial

distribution of –u0v0 at yþ � 15; (3) cross-stream distribution of (v0, w0) at xþ � 680; (4) cross-stream distribution of u0.

FIG. 10. (Color online) Cross-stream distributions of q0 (left) and T0 (right), corresponding to the crescent vortex shown in Fig. 9.
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those found across the whole field at different times. These

flow structures are significant to the turbulent flow dynamics

in the near-wall region, since they occur frequently in the

flow and are associated with most positive Reynolds shear

stress events. Both kinds of crescent vortices and their rela-

tion to one another are further considered below.

E. Statistical analysis

Statistical analyses of velocity and vorticity fluctuations

were conducted to confirm the validity of the qualitative

observations made based on instantaneous fields. Analyses

were carried out by locating the regions associated with posi-

tive Reynolds shear stress –u0v0 and averaging in space

across these regions for different times. The statistics for

each kind of crescent vortex are first collected separately.

This yielded a space-time average of the flow structure corre-

sponding to each kind. Both statistics, depicted in Figs. 14

and 15, show similar features. The (u0,w0) velocity field fluc-

tuations in the (x, z)-plane reveals a dipolar distribution (a

dipole with y-axis) and shows the existence of positive and

negative u0 fluctuations, corresponding to high and low speed

streaks, respectively. These streaks exhibit a characteristic

width of approximately 80–100 wall units, they extend a

larger distance in the streamwise direction, and they span the

entire near-wall region from the wall up to yþ � 50–60.

The two counter-rotating streamwise vortices for each

crescent vortex are represented by two adjacent patches of

positive and negative x0x. These patches of x0x are connected

by a region of positive x0z, as shown in Figs. 14 and 15.

When rescaling both streamwise and spanwise vorticity

using the wall quantities �w and us, their amplitudes are simi-

lar to the scaled rms values, given in Figs. 4 and 5. The 3D

structure of the crescent vortices is now clear: its “legs” rep-

resent two counter-rotating streamwise vortices 6x0xð Þ
while its “head” represents a spanwise vortex with x0z � 0.

Furthermore, by adding together the statistics of the two

kinds of crescent vortices, we obtain a complete space-time av-

erage of the fluid structure corresponding to these crescent vor-

tices. As shown in Fig. 16, it consists of a spanwise vortex with

positive x0z surrounded by a quadrupolar flow field (u0, w0).
Around this vortex’s center, a high-speed streak u0 � 0 impacts

a low-speed streak u0 � 0 and results in a stagnation point

u0 � 0 with a negative gradient @u0/@x� 0 and a positive gradi-

ent @zw
0 � 0. On each side of this stagnation point (xþ � 0,

zþ � 0), there are two patches of 6x0x but with opposite distri-

butions in the spanwise direction. The distributions of v0 and u0

around this stagnation point are anti-correlated and provide the

positive Reynolds shear stress –u0 v0 � 0. The structure of the

flow around these regions of turbulent kinetic energy produc-

tion is very similar to that obtained by Johansson et al.12 in

channel flow. For example, the structure of the velocity compo-

nent u0 is very similar to the one given in Fig. 5 and 6 in Ref.

12, highlighting a negative @xu
0 with a stagnation point u0 � 0.

Around this point, the v0 observed in Figs. 16 has similar topol-

ogy as in Fig. 5 and 6 in Ref. 12, with @xv
0 � 0. This positive

gradient of v0 is the signature of a spanwise vortex with positive

FIG. 11. (Color online) Profiles of the temperature (solid) and density

(dash-dotted) fluctuations, along the wall-normal line passing through

zþ¼ 230 in Fig. 10.

FIG. 12. (Color online) Features of a typical crescent vortex of the second kind. Left to right and top to bottom: (1) spatial distribution of v0 at yþ � 15; (2)

spatial distribution of –u0v0 at yþ � 15; (3) cross-stream distribution of (v0, w0); (4) cross-stream distribution of u0.
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x0z, which constitutes the head of crescent vortices. Note that

the quadrupolar flow (u0, w0) is not symmetrical around the

stagnation point, as is the case in Ref. 12. This is due to the fact

that the symmetry with respect to x in the channel flow simula-

tion in Ref. 12 is absent in the boundary layer flow.

III. A CONCEPTUAL MODEL FOR STREAMWISE
VORTICES GENERATION

Streamwise vortices play the essential role in all self-sus-

taining mechanisms of near-wall turbulence (e.g., Refs. 13, 14).

There have been different explanations as to how these vortices

are generated and maintained. For example, Hamilton et al.13

reported that the nonlinear advective term, v0@yx0x, is primarily

responsible for generating streamwise vortices from stream-

wise-dependent perturbations, while Schoppa and Hussain,14

asserted that the vortex stretching term, x0x@xu0, is primarily re-

sponsible for the generation. In this section, we present a com-

prehensive conceptual model for the generation of streamwise

vortices based on the present simulations.

In this model, illustrated in Fig. 17, a spanwise vortex

with positive x0z is stretched in the spanwise direction due to

a positive @zw
0. This spanwise vortex is then tilted in the

streamwise direction by the spanwise shear of the streaks,

i.e., @zu
0, and stretched in the x-direction by the streaks, i.e.,

@xu0, and two streamwise vortices are generated.

FIG. 13. (Color online) Cross-stream distribution of q0 (left) and T0 (right), corresponding to the crescent vortex shown in Fig. 12.

FIG. 14. (Color online) Statistics of the crescent vortices of first kind. Left to right and top to bottom: v0, flow field (u0, w0) in (xþ, zþ)-plane, streamwise

x0x�x=u2
s and spanwise x0z�x=u2

s vorticity components.
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In Fig. 17, two patches of adjacent v0, with alternating

sign in the x-direction, were used to represent this spanwise

vortex. Such a representation makes clear the generation pro-

cess of streamwise vortices from the “deformation” of a

spanwise vortex by the spanwise shear of the streaks.

The newly generated streamwise vortices enhance

these streaks via the lift-up mechanism and produce three

patches of positive Reynolds shear stress (–u0v0 � 0), as

shown in Fig. 17 and also in Figs. 9 and 12. It is worth

noting that this is the only flow configuration in which the

streamwise vortices, generated by the streaks, will in turn

enhance the initial streaks via the lift-up mechanism and

therefore enhance their generation process. If the initial

spanwise vorticity was negative, these streamwise vortices

will generate streaks having the opposite sign of the initial

streaks. They will weaken these streaks and impede their

generation process.

In this section we provide supporting evidence for this

conceptual model. Namely, we will use the same method

as above to decompose the streamwise velocity perturba-

tion u0 into a coherent part, representing the streaks, and an

incoherent part and confirm the tilting and stretching role

of the streaks. A simulation with M1¼ 20 is also used to

study the validity of these mechanisms for higher Mach

numbers.

A. Tilting of spanwise vorticity by the streaks

First, the equation of the streamwise vorticity

x0x ¼ @w0

@y � @v0

@z reads

@x0x
@t
¼ x0x@xu0 þ x0y@yu0 þ x0z@zu

0 � @w0

@x

d �U

dy

� x0x
@u0

@x
þ @v0

@y
þ @w0

@z

� �

þ Baro:x0x þ Conv:x0x:þ
1

R
Dx0x:

The term Conv:x0x refers to the usual convection term. The

term Baro:x0x refers to the barotropic torque due to the gra-

dients of density and pressure. The first term on the rhs rep-

resents the stretching of the vorticity x0x while the second

and third terms are the nonlinear tilting terms.

FIG. 15. (Color online) Statistics of the crescent vortices of second kind. Left to right and top to bottom: v0, flow field (u0, w0) in (xþ, zþ)-plane, streamwise

x0x�x=u2
s and spanwise x0z�x=u2

s vorticity components.
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The term � @w0

@x
d �U
dy contains the mean flow gradient effect

d �U
dy . The last term accounts for the vorticity diffusion.

Since there is no mean streamwise vorticity in the

boundary layer, its generation downstream of the inflow can

only be explained by tilting of spanwise and/or wall-normal

vorticity. Once generated, this vorticity will be stretched

x0x@xu0ð Þ, advected, ðConv:x0xÞ interact with the mean pro-

file @w0

@x
d �U
dy

� �
and dissipated 1

R Dx0x
� �

. In the next paragraph,

we focus on the nonlinear generation mechanism of x0x.

The contribution of a term, say A, to the production of

the vorticity is determined by computing the quantity

< A;x0x > ¼
ð

x;z

Ax0x dx dz:

If this contribution is positive, the term is a source term, oth-

erwise it is a sink term. The contribution of all these terms

was computed by post-processing the instantaneous results

from the current simulation data of the flow field at step 2.

This evaluation revealed that the tilting x0z@zu
0 and the

stretching x0x@xu0 are source terms whereas x0y@yu0 is a sink

term, as shown in Fig. 18. Note that the contribution of the

compressibility terms is negligible and it is not shown here.

The vorticity equation can be further simplified by not-

ing that w0y@yu0 þ w0z@zu
0 ¼ �@xw0@yu0 þ @zu

0@xv0. The contri-

butions of the tilting terms @zu
0@xv0 and �@xw0@yu0 are shown

in Fig. 19. The positiveness of the contribution of @zu
0@xv0

shows that this term is a source term, with a maximum

located around yþ � 18.

Hence, the streamwise vorticity is generated by the tilt-

ing of the spanwise vorticity @xv0 by the spanwise shear of

the streamwise velocity @zu
0. This tilting mechanism is due to

the spanwise shear of the streak component of the streanwise ve-

locity u0, as shown below.

Following the remark made in Sec. II B, a streak spanning

the near-wall region can be represented by the coherent part of

the streamwise velocity perturbation u0, decomposed as follow:

u0 ¼ ustreaksðx; z; t; yÞ þ uincðx; z; t; yÞ

and where the streaks are defined as

ustreaks ¼ P0ðyÞu0ðx; z; tÞ

with

u0 ¼
ðyyþ¼60

y¼0

P0ðyÞu0ðx; y; z; tÞ dy; uinc ¼ u0 � ustreaks:

FIG. 16. (Color online) Statistics of the crescent vortices of both kinds. Left to right and top to bottom: v0, flow field (u0, w0) in (xþ, zþ)-plane (the dot marks a

stagnation point), streamwise x0x�x=u2
s and spanwise x0z�x=u2

s vorticity components.
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The polynomial P0 keeps the same sign over the inner region

and vanishes at the wall and at y ¼ yyþ¼60. The simplest

form satisfying these constraints is P0ðyÞ � y2 y� yyþ¼60

� �2
.

The tilting term @zu
0@xv0 is decomposed as

@u0

@z

@v0

@x
¼ @ustreaks

@z
þ @uinc

@z

� �
@v0

@x
¼ @ustreaks

@z

@v0

@x
þ @uinc

@z

@v0

@x
:

As shown in Fig. 20, the contribution of the streaks to the tilt-

ing of the spanwise vorticity is not only positive (source term)

but also dominates the contribution of the incoherent part and

accounts for almost all the tilting mechanism for yþ � 10.

B. Stretching of the spanwise vorticity

A second element of the conceptual model is the intensi-

fication of the spanwise vortex due to the spanwise stretch-

ing, driven by positive @zw
0. Using the same approach as

before for the x0x-budget, we have found that the term

x0z@zw
0 in the x0z-equation

@x0z
@t
¼ x0z@zw

0 þ x0y@yw0 þ x0x@xw0

� @w0

@z

d �U

dy
� x0z

@u0

@x
þ @v0

@y
þ @w0

@z

� �

þ Baro:x0z þ Conv:x0z þ
1

R
Dx0z;

is a source term, as shown in Fig. 21. The tilting terms have

been written as x0y@yw0 þ x0x@xw0 ¼ @zu
0@yw0 � @zv

0@xw0.
This stretching in the spanwise direction of x0z is related to

the compression, in the streamwise direction, of the spanwise

vortex by the streaks, due to the negative @xu0. In fact, when

a high-speed streak impacts a low-speed streak, a stagnation

point (in a frame of reference moving with the low-speed

FIG. 17. (Color online) The conceptual model. A spanwise vortex, repre-

sented by two patches of 6v0, is tilted by the spanwise shear of the streaks

@zu
0. This deformation can yield one of the two kinds of crescent vortices.

They both induce streaks u0 (short arrows) through the lift-up mechanism

and give positive Reynolds shear stress –u0v0. The quadrupolar flow (u0, w0),
around the initial spanwise vortex, is represented by the (black) arrows.

FIG. 19. (Color online) Stretching term x0x@xu0 represented by a solid line

(blue online), the tilting term @zu
0@xv0 is represented by a dashed line (black

online), and the tilting term �@yu0@xw0 is represented by a dash-dotted line

(red online).

FIG. 20. (Color online) The role of the streaks in the tilting process. Solid

line (blue online): @u0

@z
@v0

@x , dashed line (black online): @ustreaks

@z
@v0

@x , dash-dotted

line (red online): @uinc

@z
@v0

@x .

FIG. 18. (Color online) The stretching term x0x@xu0 is represented by a solid

line (blue online), the tilting term x0z@zu
0 is represented by a dashed line

(black online), and the tilting term x0y@yu0 is represented by a dash-dotted

line (red online). M1¼ 2.5 (with squares) and M1¼ 20.
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streak) is formed and the flow is deviated in the spanwise

direction. This u0;w0ð Þ flow was shown in Fig. 16.

IV. DISCUSSION

In this section, we will present some points found

through our work that reveal a close correspondence to well-

known instantaneous experimental events obtained in the

incompressible boundary layers.

Bogard and Tiederman15 have shown that stagnation

points are important because they are associated with regions

containing high Reynolds shear stress production. These

authors discussed the physical origin of these points, which,

according to them, are a straightforward kinematic conse-

quence of the impact of a high speed streak on the back of a

low speed streak. Quoting these authors, “when a low speed

fluid is lifted away from the wall by the streamwise vortices,

it will present an obstacle onto which the high-speed fluid will

impact and then flow around. This would cause the impinge-

ment point––termed in the present paper a stagnation point––

and produce a shear layer with a strong negative velocity gra-

dient in the streamwise direction.” These shear layers are an

important feature of the wall-bounded turbulence, and have

been shown to be related to the turbulence production in fully

turbulent flow at low Reynolds numbers (e.g., Ref. 12), as

well as inside localized regions of turbulence. In addition to

the negative streamwise gradient @xu0, they are characterized

by a positive @xv0 (e.g., see Figs. 5 and 6 in Ref. 12), which is

in agreement with the positive gradient @xv
0 � 0, as shown in

Fig. 16. Therefore, there is a similarity, both in topology and

role, between these shear layer structures and the structure of

the flow observed in this paper. Both represent localized

regions where the turbulence is being produced.

Furthermore, by measuring the statistical properties of

the vorticity field in a boundary layer flow, Balint et al.16

found that the stretching of spanwise vorticity in the span-

wise direction, due to a positive @zw
0, is more frequent than

compression. According to Antonia and Kim,17 it is plausible

that this @zw
0 is the result of a wallward motion of fluid

which, on encountering the wall, diverts in both the positive

and negative z-directions. In the present study, the spanwise

vorticity is also stretched in the z-direction (rather than com-

pressed) due to the positiveness of @zw
0, which is related to

the stagnation point events, shown in Fig. 16.

The existence of spanwise vortices with xz � 0, being

tilted by the streaks to generate streamwise vortices, shows

that they are a building block of the self-sustained process of

near-wall turbulence and suggests that manipulating the flow

to create negative spanwise vorticity will reduce the turbu-

lence activity. Several experiments (e.g., Ref. 18) have al-

ready been conducted in this field. A model has been

proposed in Ref. 18 based on this result. It shows that the

mean velocity gradient of the turbulent boundary layer close

to the wall is reduced by the negative spanwise vorticity cre-

ated in the near-wall region of the turbulent boundary layer

over an oscillating wall.

Finally, it is worth mentioning that the local Mach number

at yþ¼ 60 is equal to 1.2 for the M1¼ 2.5 case and increases

up to 4.5 for the M1¼ 20 case.6 We have found that despite

the difference in the free-stream Mach numbers and local

Mach numbers, the coherent structures (crescent vortices) in

the near-wall region for yþ � 60 exhibit a strong similarity.

This similarity is indeed expected since the statistics (rms val-

ues and energy budget) for compressible turbulent boundary

layers with free stream Mach number ranging from 2.5 to 20

were shown to be similar.6 Therefore, the coherent structures

and the mechanisms at work are expected to be the same.

V. CONCLUSION

In this paper, we have shown that reducing the complex-

ity of the full turbulent flow into a simplified flow consisting

of only the coherent part of the near-wall turbulence brings

out valuable insights into the coherent structures. This reduc-

tion is based on a few well connected steps. Step 3 serves as

simplification of the full flow through restriction of the

dimension of the system in the wall-normal direction. Step 2

is more faithful to the true dynamics of the wall region, yet

both step 2 and step 3 are able to capture all the essential fea-

ture of the dynamics.

We have demonstrated that crescent-shaped vortical

structures, which contain both signs of streamwise vorticity,

populate the near-wall region. We have analyzed the flow

around these vortical structures and shown that it is similar

to the internal shear layer identified by other techniques in

incompressible flows.12 We have also provided a physical

interpretation of the crescent-shaped vortical structure: a

spanwise vortex with positive x0z, surrounded by a quadrupo-

lar flow having a stagnation point u0 � 0, and stretched by

positive @zw
0 in the z-direction and compressed by negative

@xu
0 in the x-direction. This crescent vortical structure forms

the basis of our proposed conceptual model, in which stream-

wise vortices are generated through tilting of positive x0z by

the streaks x0z@zu
0ð Þ and then stretched in the x-direction

x0x@xu0ð Þ. Through the lift-up mechanism, these streamwise

vortices create streaks.

FIG. 21. (Color online) The x0z -equation. The stretching term x0z@zw
0 is rep-

resented by squares (blue online), tilting term @zu
0@yw0 is represented by a

thick solid line (black online), and �@zv
0@xw0 is represented by a dash-dotted

line (magenta online). The linear term �@zw
0 d �U

dy is also shown with stars (red

online).
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The role of these streaks in the generation of the span-

wise vortices was not addressed in this paper. Therefore to

present a complete self-sustained process for near-wall tur-

bulence, the feedback of these streaks into the generation

mechanism of spanwise vortices has to be investigated.

Although we have used a compressible boundary layer in

this study, considering the results reported in Part I and some

results presented here for different Mach numbers, the essential

elements of the crescent-shaped vortical structures and their

regeneration mechanisms discussed in the present paper apply

to both compressible and incompressible boundary layers.
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