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The receptivity of a Mach 5.92 flat plate boundary layer to periodic two-dimensional wall
perturbations is studied by numerical simulations and linear stability theory �LST�. Free stream flow
conditions are the same as the leading edge receptivity experiment of Maslov et al., J. Fluid Mech.
426, 73 �2001�. Steady base flow is simulated by solving compressible Navier–Stokes equations
with a combination of a fifth-order shock-fitting method and a second-order total variation
diminishing scheme. The accuracy of the steady base flow is validated by comparisons with the
experimental measurements of Maslov et al. and self-similar boundary-layer solution. In receptivity
simulations, streamwise velocity perturbation, blowing suction, and temperature perturbation are
introduced to the steady base flow with a forcing slot on flat plate. A model of wall perturbation is
proposed based on physical properties of the electric pulse generator used in the experiment of
Maslov et al. Stability characteristics of boundary-layer waves are identified and evaluated by
comparing the results of LST and numerical simulation. Numerical simulation results show that all
three types of wall perturbations eventually result in the same type of instability wave �mode S� in
the boundary layer, which indicates that receptivity mechanism of the hypersonic boundary layer to
wall perturbation is independent of specific perturbation type. On the other hand, the hypersonic
boundary layer is found to be most sensitive to blowing-suction and least sensitive to temperature
perturbation. © 2009 American Institute of Physics. �DOI: 10.1063/1.3103880�

I. INTRODUCTION

Due to the fact that a turbulent boundary layer generates
much higher shear stress and heat flux than a laminar one,
laminar-turbulent transition significantly affects aerodynamic
performance and thermal protection system of hypersonic
transportation vehicles and re-entry vehicles. Therefore, ac-
curate prediction of boundary-layer transition is very impor-
tant to drag calculation and aerothermal design of hypersonic
vehicles.

In order to predict and control boundary-layer transition,
extensive studies have been carried out to reveal transition
mechanisms.1–5 It is recognized that the process of boundary-
layer transition strongly depends on the amplitude level of
environmental perturbations.6–8 In an environment of small
amplitude perturbations, transition over a smooth surface is
mainly caused by the instability of boundary-layer wave. The
corresponding transition generally consists of the following
three stages:

• Stage 1: receptivity process during which small ampli-
tude environmental perturbations enter the boundary
layer and excite boundary-layer waves;

• Stage 2: linear development or growth of unstable
boundary-layer waves which can be predicted by solv-
ing the eigenproblem of homogeneous linearized sta-
bility equations;

• Stage 3: boundary-layer transition caused by nonlinear
growth and three-dimensional effects when the un-
stable waves reach certain amplitudes.

To high amplitude perturbations, laminar boundary-layer
flow can breakdown to turbulence right after the receptivity
process due to strong initial excitations of boundary-layer
waves. On the other hand, for boundary-layer flows over
nonsmooth surface, strong transient growth induced by sur-
face roughness may directly lead to transition.6–8 All these
transition mechanisms related to high amplitude perturba-
tions and transient growth are called bypass transition.

Receptivity process is of critical importance to transition
prediction because it provides initial conditions of amplitude,
frequency, and phase angle for boundary-layer waves.9 Al-
though low-speed receptivity has been relatively well
understood,8,10 receptivity process of supersonic and hyper-
sonic boundary-layer flows is more complex than that of
low-speed flows due to additional effects of compressibility,
shock wave, high temperature, etc. Recently, theoretical, ex-
perimental, and numerical simulation studies on the excita-
tions of boundary-layer waves in two- and three-dimensional
supersonic and hypersonic boundary layers have been carried
out by many researchers.4,11–15

Mack1 was the first to carry out extensive computations
on linear stability characteristics of the compressible bound-
ary layer. He used compressible linear stability theory �LST�
to calculate the amplitude ratio �A /A0� of constant-frequency
disturbances as a function of Reynolds number, where A and
A0 were local disturbance amplitude and initial disturbancea�Electronic mail: xiaowen@seas.ucla.edu.
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amplitude. The transition Reynolds number was determined
by an amplitude-ratio criterion. For a cooled-wall flat plate
supersonic boundary layer, it was found that the calculated
transition Reynolds number increased much faster than that
measured in his experiments. Such results indicated that LST
alone was insufficient to accurately determine transition Rey-
nolds number. It was necessary to consider the properties of
environmental disturbances and initial excitations of
boundary-layer waves. Fedorov15 investigated the mecha-
nisms of instability wave excitation in flat plate boundary
layers by temperature perturbation and blowing-suction lo-
cated on the body surface. It was found that blowing-suction
was more effective in generating instability waves. Hanifi
et al.16 studied the temporal transient growth phenomena of
boundary-layer flows at a series of Mach numbers from 0.1
to 4.5 using spectral collocation method. They found that the
maximum transient growth increased with Mach number in-
creasing, and it could be scaled with R2, square of the
Reynolds number based on the local length scale of
boundary-layer thickness. In addition, the time at which the
maximum transient growth was reached could be scaled with
R. Fedorov and Khokhlov11 studied the receptivity of hyper-
sonic boundary layers over a flat plate to wall disturbances
with a combination of asymptotic method and numerical
simulation. They found that strong excitations occurred in
local regions where forcing disturbances were resonant with
boundary-layer waves. When the resonance point of forcing
and boundary-layer wave approached the lower neutral point
of the second mode, near the synchronization point of the
first mode and the second mode, the receptivity coefficient
tended to infinity. By using asymptotic method, this singu-
larity was successfully resolved and the receptivity coeffi-
cient was found to be extremely high. They also found that
hypersonic boundary layers were more sensitive to blowing-
suction disturbances than to wall vibrations and temperature
disturbances. Forgoston and Tumin17 studied the three-
dimensional wave packet generated by a local temperature
spot in a hypersonic boundary layer. They showed that the
solution to this initial-value problem could be expanded in a
biorthogonal eigenfunction system as a sum of discrete and
continuous modes. The inverse Fourier transforms for modes
F and S were computed and agreed well with the correspond-
ing asymptotic approximations of the Fourier integral. Re-
cently, Tumin18 calculated three-dimensional spatially grow-
ing perturbations in a two-dimensional compressible
boundary layer. Within the scope of linearized Navier–Stokes
equations, the solution could be presented as an expansion
into a biorthogonal eigenfunction system.

Due to the difficulties in carrying out supersonic and
hypersonic receptivity experiments, very few experimental
studies have been reported. Kendall2 experimentally studied
the growth of natural fluctuations in zero pressure gradient
boundary layers at several Mach numbers ranging from 1.6
to 8.5. Substantial growths of flow fluctuations were ob-
served within the laminar boundary layer in the early region
where the boundary layer was predicted to be linearly stable.
The growth rates of these fluctuations in the region down-
stream of the initial growth were in a reasonable agreement
with the LST results of Mack.1 Kosinov and Maslov19 inves-

tigated the growth of artificially induced disturbances in a
supersonic boundary layer. The disturbances were measured
by a hot-wire anemometer. Fourier components of experi-
mentally measured disturbances were calculated and com-
pared to the theoretical results of LST in a parallel flow
approximation. Their results showed a qualitative match be-
tween experimental and theoretical disturbance growths.
Maslov and Semenov20 studied the receptivity of a super-
sonic boundary layer to artificial acoustic waves by utilizing
two parallel flat plates. The acoustic waves generated by an
electric discharge system on the lower plate radiated into the
external flow and penetrated into the boundary layer of the
upper plate as free stream acoustic disturbances. It was found
that the acoustic disturbances were converted into boundary-
layer waves most efficiently at the leading edge, in the neigh-
borhood of lower and upper branches of the neutral curve. A
similar experiment was carried out on a Mach 5.92
boundary-layer flow by Maslov et al.4 to study leading edge
receptivity. It was observed that Tollmien–Schlichting waves
were generated by acoustic waves impinging on the leading
edge. They also found that receptivity coefficients strongly
depended on wave inclination angles. Kosinov et al.21 inves-
tigated the excitation of unstable boundary-layer waves at
the leading edge of a flat plate. In their experiments, con-
trolled external disturbances were generated by an electric
discharge system on the lower plate then impinged on the
leading edge of the upper flat plate. In order to figure out
generation coefficients, amplitudes of disturbances near the
leading edge and the excited waves inside the boundary layer
were measured by a constant-temperature hot-wire anemom-
eter and a single-wire probe. They found that both Tollmien–
Schlichting waves and acoustic waves were generated in the
boundary layer.

Recently there have been many numerical simulation
studies in supersonic and hypersonic boundary-layer recep-
tivity. Collis and Lele22 numerically investigated the forma-
tion of stationary cross-flow vortices in a three-dimensional
boundary layer due to surface roughness located near the
leading edge of a swept wing. The results showed that con-
vex surface curvature enhanced receptivity while nonparallel
effects strongly reduced initial amplitude of stationary cross-
flow vortices. Malik et al.3 investigated the responses of a
Mach 8 flow over a sharp wedge of a half angle of 5.3° to
three types of external forcing: a planar free stream acoustic
wave, a narrow acoustic beam enforced on the bow shock
near the leading edge, and a blowing-suction slot on the
wedge surface. They concluded that these three types of forc-
ing eventually resulted in the same type of instability waves
in the boundary layer. Zhong23 studied acoustic receptivity of
a hypersonic flow over a parabola by solving full Navier–
Stokes equations. It was found that generations of boundary-
layer waves were mainly caused by the interaction of the
boundary layer with the transmitted acoustic waves instead
of entropy and vorticity waves. In a series of papers, Ma and
Zhong5,13,14 studied the receptivity of a supersonic boundary
layer to various free stream disturbances with a combination
of numerical simulation and LST. It was found that, in addi-
tion to conventional first and second Mack waves, there ex-
isted a family of stable waves which played an important
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role in the excitation of unstable waves. Egorov et al.24 nu-
merically solved unsteady two-dimensional flows relevant to
the receptivity of supersonic and hypersonic boundary layers
using a total variation diminishing �TVD� scheme. To com-
pare with numerical simulation results, theoretical analysis
was carried out with parallel LST and nonparallel LST. It
was noticed that nonparallel effect stabilized the second
mode. For small forcing amplitudes, the second mode
growth rates obtained from numerical simulation had a good
agreement with those predicted by nonparallel LST. Their
simulations also showed nonlinear saturation of fundamental
harmonic and rapid growth of higher harmonics. Wang25

studied the receptivity of the same hypersonic boundary
layer as in the investigation of Malik et al.3 to periodic
blowing-suction disturbances introduced in a narrow region
on the wall. The effects of frequency, location, and length of
the blowing-suction slot on receptivity were investigated
based on series of numerical simulations. The numerical re-
sults showed that mode F, mode S, and acoustic modes were
excited by wall blowing suction. Far downstream of the forc-
ing region, mode S became the dominant mode in the bound-
ary layer. All cases of numerical simulations consistently
showed that the synchronization point of modes F and S
played an important role in the excitation of mode S. Mode S
was strongly excited when the blowing-suction slot was lo-
cated upstream of the synchronization point. On the other
hand, when the blowing-suction slot was downstream of the
synchronization point, there was a very weak excitation of
mode S, despite the fact that the blowing-suction slot was
still within the unstable region of mode S. A concurrent the-
oretical study was carried out by Tumin et al.12 to compare
theoretical and numerical results of receptivity coefficients
and to analyze receptivity characteristics. The perturbation
field downstream of the blowing-suction slot was decom-
posed into boundary-layer waves with the help of a bior-
thogonal eigenfunction system. It was found that there was a
good agreement between normal-mode amplitudes calculated
with the help of the theoretical receptivity model and those
obtained from projecting the numerical results onto the nor-
mal modes. Egorov et al.26 studied stability and receptivity
of a Mach 6 flow over a flat plate with a porous coating by
numerically solving two-dimensional Navier–Stokes equa-
tions. Their numerical results were in a good agreement with
theoretical analysis based on LST. It was confirmed that the
porous coating stabilized the supersonic boundary layer.
Zhong and Ma27 numerically studied the receptivity of a
Mach 7.99 axisymmetric flow over a 7° half-angle blunt
cone to free stream fast acoustic waves. They found that no
Mack modes were excited by free stream fast acoustic waves
in early region along the cone surface. The delay of the sec-
ond mode excitation was owing to the fact that the hyper-
sonic boundary-layer receptivity was governed by a two-step
resonant interaction process.

In this paper, the receptivity of a Mach 5.92 flat plate
boundary layer to periodic two-dimensional wall perturba-
tions is studied by numerical simulations and LST. The ob-
jectives of the current research are to study the receptivity of
the hypersonic boundary layer to wall perturbations, and to
investigate the effect of different wall perturbation on recep-

tivity. Free stream flow conditions of the hypersonic bound-
ary layer are the same as those of the leading edge receptiv-
ity experiment of Maslov et al.4 Steady base flow is
simulated first by solving two-dimensional compressible
Navier–Stokes equations with a combination of a fifth-order
shock-fitting finite difference method and a second-order
TVD scheme. The accuracy of the steady base flow is vali-
dated by comparisons with the experimental measurements
of Maslov et al. and self-similar boundary-layer solution. In
receptivity simulations, periodic wall perturbations are intro-
duced to the steady base flow at a forcing slot located on the
flat plate. A model of wall perturbation is proposed based on
physical properties of the electric pulse generator used in the
experiment of Maslov et al. Stability characteristics of
boundary-layer waves are identified and evaluated by com-
paring the results of LST and numerical simulations. The
effect of wall perturbation on the receptivity is investigated
by considering three types of perturbations: streamwise
velocity perturbation, blowing-suction, and temperature
perturbation.

II. GOVERNING EQUATIONS
AND NUMERICAL METHODS

In current numerical studies, a Mach 5.92 boundary
layer over a flat plate as shown in Fig. 1 is considered. The
flow is assumed to be thermally and calorically perfect. Gov-
erning equations of numerical simulations are compressible
Navier–Stokes equations in the conservative form, i.e.,

�U� �

�t�
+

�

�x1
� �F� 1i

� + F� 1v
� � +

�

�x2
� �F� 2i

� + F� 2v
� � = 0, �1�

where U� � is a column vector containing conservative vari-
ables of mass, momentum, and energy, i.e.,

U� � = ���,��u1
�,��u2

�,e��T. �2�

In this paper, the superscript “*” represents dimensional
variables. Flux vectors in Eq. �1� are divided into their invis-
cid and viscous components because the two components are

discretized with different schemes. The components, F� 1i
� and

bow shock

boundary layer

slot of 2D wall perturbations

flat plate

x*

y*

M∞=5.92

FIG. 1. A schematic of the receptivity of a Mach 5.92 flow over a flat plate
to periodic two-dimensional wall perturbations.
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F� 2i
� , stand for inviscid flux whereas F� 1v

� and F� 2v
� are viscous

flux components. The flux components are written as

F� ji
� = �

��uj
�

��u1
�uj

� + p��1j

��u2
�uj

� + p��2j

uj
��e� + p��

�,

�3�

F� jv
� = �

0

− �1j
�

− �2j
�

− �1j
� u1

� − �2j
� u2

� + k�
�T�

�xj
�

� ,

with j� �1,2�. In Eq. �3�, �ij �i=1,2� is the Kronecker Delta
function. In perfect gas assumption, pressure and energy are
given by

p� = ��R�T�, �4�

e� = ��cv
�T� +

��

2
�u1

�2 + u2
�2� , �5�

where R� is gas constant, and cv
� is specific heat at constant

volume. For compressible Newtonian flow, the viscous stress
tensor is calculated as follows:

�ij
� = ��	 �ui

�

�xj
� +

�uj
�

�xi
�
 −

2

3
��	 �u1

�

�x1
� +

�u2
�

�x2
�
�ij , �6�

with i , j� �1,2�. In current simulation, viscosity coefficient,
��, and heat conductivity coefficient, k�, are calculated using
Sutherland’s law together with a constant Prandtl number, Pr.
They are both functions of temperature only,

�� = �r
�	T�

Tr
�
3/2Tr

� + Ts
�

T� + Ts
� , �7�

k� =
��cp

�

Pr
, �8�

where �r
�=1.7894�10−5 N s /m2, Tr

�=288.0 K, Ts
�

=110.33 K, and cp
� is specific heat at constant pressure.

Dimensional flow variables are nondimensionalized by
free stream parameters. Specifically, density, temperature,
velocity, and pressure are scaled by ��

� , T�
� , u�

� , and ��
� u�

�2.
Furthermore, x1

� is nondimensionalized by unit length in
meters, whereas x2

� is nondimensionalized by the local length
scale of boundary-layer thickness, ���

� x1
� /��

� u�
� . Referring to

the coordinate system shown in Fig. 1, x1
� and x2

� are x� and
y�, respectively. The two variables, u1

� and u2
�, are velocities

in streamwise and wall-normal directions. In order to show
numerical simulation results clearly and make it easy to com-
pare flow field between numerical simulation and the experi-
mental measurement of Maslov et al. both dimensional and
nondimensional variables are used in current paper to plot
results.

The fifth-order shock-fitting finite difference method of
Zhong28 is used to solve the governing equations in a domain

bounded by bow shock and flat plate. In other words, bow
shock is treated as a boundary of the computational domain.
Rankine–Hugoniot relations across the shock and a charac-
teristic compatibility relation coming from downstream flow
are combined to solve flow variables behind the shock. The
shock-fitting method makes it possible for Navier–Stokes
equations to be spatially discretized by high-order finite dif-
ference methods. Specifically, a fifth-order upwind scheme is
applied to discretize inviscid flux derivatives. Meanwhile, a
sixth-order central scheme is used for the discretization of
viscous flux derivatives. By using shock-fitting method, the
interaction between bow shock and wall forcing induced per-
turbations is solved as a part of solutions with position and
velocity of the shock being solved as dependent flow vari-
ables. Runge–Kutta methods are used for temporal integra-
tion. In leading edge region, there exists a singular point at
the tip of the flat plate, which will introduce numerical insta-
bility if the fifth-order shock-fitting method is used to simu-
late flow. Therefore, the computational domain for shock-
fitting simulation starts from a very short distance
downstream of the leading edge. A second-order TVD
scheme used by Zhong and Lee29 is applied to simulate
steady base flow in a small region including the leading edge
to supply inlet conditions for shock-fitting simulation. In re-
ceptivity simulations, two-dimensional wall perturbations are
introduced in a downstream region so that the fifth-order
shock-fitting method can be used to simulate the responses of
the boundary layer to external perturbations.

The same numerical method has been used by Ma and
Zhong5,13,14 in their receptivity studies of supersonic and hy-
personic boundary layers over a flat plate and a sharp wedge
to various free stream disturbances. The good agreement be-
tween numerical and LST results indicates that the fifth-order
shock-fitting finite difference method is accurate to simulate
receptivity problems of high-speed boundary-layer flows.
The numerical method has also been validated in a theoreti-
cal study and comparison with numerical simulation of
Tumin et al.,12 where numerical perturbation field down-
stream of the blowing-suction slot was decomposed into
boundary-layer waves with the help of a biorthogonal eigen-
function system. The results showed a good agreement be-
tween normal-mode amplitudes calculated with a theoretical
receptivity model and those obtained from projecting nu-
merical results onto normal modes.

III. FLOW CONDITIONS AND PERTURBATION MODEL

Free stream flow conditions of the hypersonic boundary-
layer flow are the same as the experiment of Maslov et al.,4

i.e.,

M� = 5.92, T�
� = 48.69 K,

p�
� = 742.76 Pa, Pr = 0.72,

f� = 50 kHz, F = 3.0 � 10−5,

Re�
� = 13 � 106/m, � = 1.4,

where Re�
� is unit Reynolds number defined as
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Re�
� = ��

� u�
� /��

� . �9�

In free stream, Sutherlands law is not valid for such low
temperature as T�

� =48.69 K. However, numerical simula-
tions are carried out for flow after the shock, where tempera-
ture is much higher than free stream temperature. Therefore,
it is valid to use Sutherlands law in our numerical
simulations.

The streamwise coordinate, x� as shown in Fig. 1, can be
converted to local Reynolds number by

Rex = Re�
� x�. �10�

In LST analysis, Reynolds number based on the local length
scale of boundary-layer thickness, L�, is generally used.
They are expressed as

R =
��

� u�
� L�

��
� , L� =���

� x�

��
� u�

� . �11�

Hence, the relation between R and local Reynolds number
Rex is given by

R = �Rex. �12�

In both steady and unsteady simulations, inlet conditions
are specified. High-order extrapolation is used for outlet con-
ditions because the flow is hypersonic at the exit except a
small region near the flat plate. Flow variables behind the
shock are solved by combining Rankine–Hugoniot relations
across the shock and a characteristic compatibility relation
coming from downstream flow.

For steady base flow simulation, the wall is adiabatic,
and the physical boundary condition of velocity on flat plate
is nonslip condition. In receptivity simulations, special treat-
ment of wall boundary conditions is needed. When stream-
wise velocity perturbation and blowing suction are intro-
duced, temperature perturbation is set to zero, which is a
standard boundary condition for theoretical and numerical
studies of high frequency disturbances. Meanwhile, nonslip
condition is applied on flat plate except the forcing region.
On the other hand, when temperature perturbation is intro-
duced, temperature perturbation is set to zero except the forc-
ing region. Meanwhile, nonslip condition is applied on flat
plate.

In the experiments of Maslov et al.,4 leading edge recep-
tivity of a Mach 5.92 flow over a flat plate to two- and
three-dimensional artificial disturbances was investigated.
An electric pulse generator centered at x�=35 mm
�R=2133.07� was used to introduce disturbances. It gener-
ated high-voltage electric pulses with a duration of 2 �s and
at a frequency of 50 kHz. Experimental results showed that
disturbances were introduced by a local glow discharge when
voltages on electrodes were comparably low �600 V�. When
voltages on electrodes were increased to 700 V, size of the
glow discharge increased and a flat streamwise extended oval
was also observed. Maslov et al. analyzed physical proper-
ties of the forcing disturbances and found that the glow dis-
charge introduced disturbances through a blowing-suction
mechanism whereas the streamwise extended oval intro-
duced thermal energy. In addition, the air between electrodes

was partially ionized when high voltages are imposed. Ions
moved toward electrodes due to Coulomb force, which lead
to streamwise velocity perturbation near the wall.

Based on physical properties of the electric pulse gen-
erator used in the experiments of Maslov et al., a model of
periodic two-dimensional wall perturbation is proposed in
this paper, which consists of streamwise velocity perturba-
tion, blowing suction, and temperature perturbation. The
model is mathematically expressed as

� u��

��v���

T��
 = �Qu�1F�l1��du�/dy��y�=0

Qv�2G�l2���u��
�

QT�3H�l3�T�
� S�t�� , �13�

where the superscript “ �” represents disturbance.
�du� /dy��y�=0 is the derivative of streamwise velocity on flat
plate calculated from numerical steady base flow, whereas
��u��

� and T�
� are streamwise mass flux and temperature in

free stream, respectively. In Eq. �13�, Qu, Qv, and QT are
three constants with the value being either 1 or 0. A combi-
nation of �Qu ,Qv ,QT� determines perturbation type. For ex-
ample, �1, 0, 0� is the case of streamwise velocity perturba-
tion, �0, 1, 0� is the case of blowing suction, whereas �0, 0, 1�
is the case of temperature perturbation. The three parameters,
�1, �2, and �3, represent dimensionless amplitudes of pertur-
bations. In receptivity simulations, dimensionless amplitudes
are small enough to preserve linear properties of perturba-
tions. F�l1�, G�l2�, and H�l3� are perturbation profile func-
tions. The three variables, l1, l2, and l3, are dimensionless
coordinates defined within forcing region �xi

�	x�	xe
��,

where xi
� and xe

� are coordinates of the leading and trailing
edges of the forcing slot. In the experiments of Maslov et al.,
xi

� and xe
� are equal to 33 and 37 mm �R=654.98 and 693.54�,

respectively. In Eq. �13�, S�t�� is a function of time defined as

S�t�� = �1, if mod�t�,20 �s� 	 2 �s

0, if mod�t�,20 �s� 
 2 �s,
� �14�

where mod is the residual function. The value 20 �s is the
period of perturbation at a frequency of f�=50 kHz.
Whereas the value 2 �s is the time interval during which
perturbation is enforced, because the electric pulse used in
the experiments of Maslov et al. only has a duration of 2 �s.

Due to linear properties of perturbations, the temporal
function S�t�� can be decomposed to its sinusoidal compo-
nents using Fourier cosine transform, i.e.,

S�t�� = �
n=0

�

bn cos�2�nf���� , �15�

where ��= t�−1 �s. The coefficients bn are calculated as

bn = �
0.1, if n = 0

2 sin	n�

10



n�
,

if n = 1,2,3, . . . .� �16�

Figure 2 shows the coefficients bn of sinusoidal components.
It is noticed that sinusoidal component at the frequency of
f�=50 kHz �n=1� has the maximum amplitude. When the
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coefficient bn is negative, the corresponding sinusoidal com-
ponent has a 180° phase angle discrepancy to the first sinu-
soidal component.

Dimensional circular frequency of wall perturbations is
related to dimensional frequency by

�� = 2�f�. �17�

Dimensional circular frequency and frequency are nondi-
mensionalized as follows:

� =
��L�

u�
� , �18�

F =
2�f���

�

��
� u�

�2 =
����

�

��
� u�

�2 . �19�

With the definitions of Reynolds number R and dimension-
less frequency F, dimensionless circular frequency can also
be expressed as

� = RF . �20�

IV. STEADY BASE FLOW

Steady base flow is simulated by solving two-
dimensional compressible Navier–Stokes equations with a
combination of a fifth-order shock-fitting finite difference
method and a second-order TVD scheme. In leading edge
region, there exists a singular point at the tip of flat plate,
which will introduce numerical instability if the fifth-order
shock-fitting method is used. Therefore, a second-order TVD
scheme used by Zhong and Lee29 is applied to simulate
steady base flow in a small region including the leading
edge. Computational domain for the fifth-order shock-fitting
method starts at x�=0.0025 m and ends at x�=0.879 m, cor-
responding to R=180.28 and R=3380.38, respectively. In ac-
tual simulations, the computational domain is divided into 19
zones with a total of 3746 grid points in streamwise direc-
tion. The number of grid points in wall-normal direction is

121 upstream of x�=0.309 m �R=2004.24� and 176 down-
stream of that position. 41 points are used in the overlapped
region between two neighboring zones, which is proved to
be sufficient to make the solution accurate and smooth within
the whole domain. An exponential stretching function is used
in wall-normal direction to cluster more points inside the
boundary layer. On the other hand, the grid points are uni-
formly distributed in streamwise direction. Spatial conver-
gence of the results based on this grid structure has been
evaluated by grid refinement studies.

For shock-fitting simulation in the first zone, inlet con-
ditions are obtained from the results of shock-capturing
simulation in a small region including the leading edge,
where a second-order TVD scheme is used to simulate
steady base flow. For shock-fitting simulations in other
zones, inlet conditions are interpolated from the results
of previous zone. Computational domain for shock-
capturing simulation starts at x�=−0.0005 m and ends at
x�=0.0035 m �R=213.31�. Three sets of grid structures are
used to check grid independence of numerical simulation
results. Figure 3�a� compares density contours near the lead-
ing edge for three sets of grid structures. It shows that den-
sity contours on 201�176 mesh agree well with those on
241�181 mesh, whereas they have significant discrepancies
with density contours on 161�101 mesh. This figure indi-
cates that the grid structure of 201�176 is fine enough to
ensure grid independence of numerical simulation results.
However, the grid structure of 161�101 is too coarse to
achieve spatially converged results. Similar conclusion can
be drawn in Fig. 3�b�, where density distributions in wall-
normal direction are compared. In this figure, density distri-
butions are evaluated at x�=0.0025 m �R=180.28�.

To validate the combination of the fifth-order shock-
fitting method and the second-order TVD scheme, Figs. 4�a�
and 4�b�, compares wall-normal velocity contours and distri-
butions near the leading edge obtained by the combination of
a second-order TVD scheme and a fifth-order shock-fitting
method. Flow field including the leading edge is simulated
by TVD scheme, while flow field after x�=0.0025 m
�R=180.28� is simulated by shock-fitting method. Figure
4�a� shows that wall-normal velocity contours calculated by
the two methods have a good agreement near the upstream
edge of the overlapped region, which indicates that TVD
solutions are accurate enough to be used as inlet conditions
for the fifth-order shock-fitting simulation in the first zone.
The small discrepancies of the contours near bow shock are
caused by viscous effect. Due to viscosity, bow shock has a
finite thickness for TVD simulation, while it is assumed to be
infinitely thin for shock-fitting simulation. Similar conclu-
sion can be drawn in Fig. 4�b�, where wall-normal velocity
distributions at the location of x�=0.003 m �R=197.4� are
compared. The combination of a fifth-order shock-fitting
method and a second-order TVD scheme has also been vali-
dated in cases of supersonic and hypersonic steady base
flows by Ma and Zhong5,13,14 and Wang.25

Figures 5�a� and 5�b� shows pressure contours of steady
base flow computed by the fifth-order shock-fitting method.
In Fig. 5�a�, the upper boundary of flow field represents bow
shock induced by displacement thickness of the boundary

n
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FIG. 2. The coefficients bn of sinusoidal components.
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layer. The lower boundary is the flat plate. A part of pressure
contours from x�=0.33 m to x�=0.36 m �R=2071.23 to
R=2163.33� is amplified in Fig. 5�b� to show clearly pres-
sure distributions within the boundary layer. It is noticed that
pressure is approximately a constant across the boundary
layer and along the Mach lines, which is consistent with
boundary layer theory and inviscid supersonic aerodynamics.
At a fixed location �constant x��, pressure behind the shock is
higher than that on flat plate due to the existence of bow
shock. Figure 6 shows distributions of wall pressure and
pressure behind bow shock computed by the fifth-order
shock-fitting method. Large pressure gradient near the lead-
ing edge is caused by the interaction between viscous bound-
ary layer and inviscid outer flow. From upstream to down-
stream, viscous-inviscid interaction becomes weaker with
bow shock moving away from the boundary layer. As a re-
sult, pressure approaches a constant further downstream with
pressure gradient decreasing. Again, Fig. 6 shows that at a

fixed location �constant x��, pressure behind the shock is
higher than that on flat plate.

Figure 7 shows bow shock position and distribution of
Mach number behind the shock. In this figure, a straight line
tangential to shock near the leading edge is plotted helping to
illustrate that the shock is not a straight line. A decrease in
shock angle from upstream to downstream indicates that the
shock becomes weaker downstream. The dramatic increase
of Mach number near the leading edge is also due to inter-
action between viscous boundary layer and inviscid outer
flow. After x�=33 mm �R=654.98�, intensity of viscous-
inviscid interaction decreases quickly with blow shock mov-
ing away from the boundary layer. Mach number behind the
shock approaches a constant downstream. The increase in
Mach number also indicates that bow shock becomes weaker
from upstream to downstream.

In order to check the accuracy of numerical simulation,
steady base flow simulated by the fifth-order shock-fitting

3
5

4

4

7

1

3

5

4

5

7

7

1

35

5

7

7

x* (m)

y*
(m

)

0 0.001 0.002 0.003

0

0.001

0.002

0.003

7 0.0836143
5 0.0706953
3 0.0193571
1 0.0117808

Grid structure

241 × 181

161 × 101

(kg/m3)

201 × 176

ρ*

(a)

ρ* (kg/m3)

y*
(m

)

0.02 0.04 0.06 0.08
0

0.0002

0.0004

0.0006

0.0008

Grid structure

241 × 181

161 × 101

201 × 176

(b)

FIG. 3. Comparisons of density contours and wall-normal distributions for
three sets of grid structures.

11

1

4

4

4

7

7

7 1
4

7

x* (m)

y*
(m

)

0 0.001 0.002 0.003

0

0.001

0.002

0.003

13 132.066
10 101.559
7 71.0514
4 40.5441
1 10.0367

v* (m/s)

(a)

v* (m/s)

y*
(m

)

0 10 20 30 40 50
0

0.0002

0.0004

0.0006
Shock-fitting method

TVD scheme

(b)

FIG. 4. Comparisons of wall-normal velocity contours and distributions
near the leading edge.

044101-7 Effect of wall perturbations Phys. Fluids 21, 044101 �2009�



method is compared to the experimental measurements of
Maslov et al. and self-similar boundary-layer solution. Ac-
cording to the experiments of Maslov et al., viscous-inviscid
interaction is strong within the region of 0.2 mmx�

33 mm �50.99R654.98�. Figures 6 and 7 show that
pressure and Mach number have large gradients upstream of
the location of x�=33 mm �R=654.98�, which is consistent
with the experimental results.

Figures 8 and 9 show distributions of dimensionless
streamwise velocity u� /u�

� and normalized Mach number
M /M� in wall-normal direction at three different locations of
x�=96, 121, and 138 mm �R=1134.46,1254.19,1329.66�.
Current numerical simulation results are compared to self-
similar boundary-layer solution and experimental measure-
ments of Maslov et al. In these two figures, � is defined as
�=y� /L�. Solid lines represent M /M� and u� /u�

� obtained
from self-similar solution. Unfilled symbols represent experi-
mental measurements of Maslov et al. whereas the other

three lines stand for current numerical simulation results.
The good agreement between numerical simulation results
indicate that the flat plate boundary layer has reached a self-
similar state far downstream of the leading edge, which is
evaluated in the paper of Maslov et al. by comparing experi-
mental measurements. Figures 8 and 9 show that numerical
simulation results agree well with experimental measure-
ments and self-similar solution near the plate. However, in
the region of �
5, numerical simulation results have a bet-
ter agreement with experimental measurements. The differ-
ence between numerical simulation results and self-similar
solution is mainly caused by viscous-inviscid interaction be-
cause the effect of bow shock is neglected in self-similar
solution. The analysis of Figs. 8 and 9 indicate that steady
base flow is accurately computed by the fifth-order shock-
fitting method.
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V. STABILITY CHARACTERISTICS
OF BOUNDARY-LAYER WAVES

Stability characteristics of boundary-layer waves of the
Mach 5.92 flow is studied by LST using a multidomain spec-
tral method of Malik.30 Velocity, pressure, and temperature
disturbances are represented by harmonic waves of the form

�
ũ

ṽ

w̃

p̃

T̃

� =�
û�y�
v̂�y�
ŵ�y�
p̂�y�

T̂�y�
�ei��x+�z−�t�. �21�

The two parameters, � and �, are wave number components
in streamwise and spanwise directions, and � is circular fre-
quency. For two-dimensional wall perturbations, �=0. Sub-
stituting disturbances in Eq. �21� and steady base flow into
linearized Navier–Stokes equations, an ordinary-differential-
equation �ODE� system is obtained, i.e.,

	A
d2

dy2 + B
d

dy
+ C
� = 0, �22�

where � is disturbance vector defined by �û , v̂ , p̂ , T̂ , ŵ�T. The
coefficient matrices of A, B, and C are given in Malik’s
paper.30 In spatial stability analysis, the two parameters, �
and �, are specified as real numbers. The streamwise wave
number, �, is a complex number and solved as the eigen-
value of the ODE system. The complex wave number � can
be expressed as

� = �r + i�i, �23�

where −�i is local growth rate. A boundary-layer wave is
unstable when �i0 whereas it is stable when �i
0. The
points �i=0 are called neutral points of a boundary-layer

wave. A wave is generally unstable only in certain domains
bounded by neutral points. The real part, �r, is local wave
number which can be used to define local phase velocity,

a =
�

�r
. �24�

Both wave number and phase velocity can be used to iden-
tify a boundary-layer wave.

Steady base flow needed for LST analysis can be ob-
tained either by numerically solving Navier–Stokes equa-
tions or by computing a self-similar boundary-layer solution.
Although numerical simulation result is more accurate than
self-similar solution, it is inconvenient to use numerically
simulated steady base flow for LST analysis at series of lo-
cations. Therefore, the self-similar boundary-layer solution is
used in current LST study.

Figure 10�a� shows profiles of streamwise velocity and
temperature in wall-normal direction at the location of
x�=0.159 m �R=1437.71�. Numerical simulation results are
compared to self-similar solutions in the figure. Profiles of
first- and second-order derivatives of streamwise velocity
and temperature are compared in Figs. 10�b� and 10�c�, re-
spectively. These three figures show that numerical simula-
tion result agrees well with self-similar solution. The only
exception is the small difference in the second-order deriva-
tives near the edge of the boundary layer. The disagreement
of numerical simulation results with self-similar solution in
second-order derivatives is mainly caused by the effect of
bow shock and nonparallel effect. Unlike self-similar solu-
tion, both effects are taken into account in numerical simu-
lation. It was tested by Ma and Zhong13 that linear stability
characteristics based on self-similar solution were very close
to those based on numerically simulated steady base flow.

Figure 11 shows eigenvalue spectra of boundary-layer
waves at a frequency of f�=100 kHz at x�=0.189 m
�F=53.03�10−6, R=1567.48�. The figure shows wave spec-
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tra corresponding to fast acoustic wave, entropy and vorticity
waves, and slow acoustic wave. The two discrete waves
marked by circles are modes F and S. They are identified by
corresponding eigenfunctions of ur� and pr�, as shown in Figs.
12�a� and 12�b�. The two figures show that eigenfunctions
decrease quickly outside of the boundary layer, which indi-
cates that these waves exist in the boundary layer. Mode F is
a stable mode, which was called mode I by Ma and
Zhong.13,14 This mode originates from fast acoustic spectrum
on the left side of the figure and passes entropy and vorticity
spectra at the center as dimensionless frequency increases.
Mode S originates from slow acoustic spectrum on the right
side of the figure. It becomes unstable in certain range of
dimensionless frequency. The figure also shows that mode S

at the frequency of f�=100 kHz is unstable at x�=0.189 m
�R=1567.48� with �i0.

Figure 13 shows dimensionless phase velocities of
boundary-layer waves at two locations of x�=0.159 m and
x�=0.189 m �R=1437.71 and 1567.48� as a function of di-
mensionless circular frequency. The three horizontal dashed
lines represent dimensionless phase velocities of fast acous-
tic wave �a=1+M�

−1�, entropy and vorticity waves
�a=1�, and slow acoustic wave �a=1−M�

−1�, respectively.
The excellent agreement of phase velocities at two different
locations indicates that phase velocity is approximately a
function of dimensionless circular frequency only. The figure
clearly shows that mode F originates from fast acoustic spec-
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trum. As � increases, phase velocity of mode F decreases.
When mode F passes entropy and vorticity spectra near
�=0.1, there exists a jump of phase velocity, which is con-
sistent with theoretical analysis of Fedorov and Khokhlov.31

On the other hand, mode S originates from slow acoustic
spectrum. The figure also shows that mode S synchronizes
with mode F at the point of �s=0.115 63 and as=0.930 76.

At the synchronization point, dimensionless phase ve-
locities of modes S and F are the same, and their eigenfunc-
tions have similar profiles as shown in Fig. 14. In this figure,
flow fluctuations, pr� and ur�, in wall-normal direction are
normalized by pressure fluctuation on the wall. The figure
shows that flow fluctuations are confined within the bound-
ary layer. Except the differences near edge of the boundary
layer, eigenfunctions of modes F and S agree very well at the
synchronization point. Although Fig. 13 shows that the syn-
chronization point has a constant value of dimensionless cir-
cular frequency ��s=0.11563�, the dimensional location of
the synchronization point, xs

�, are different for different di-
mensionless frequencies F. The synchronization location in
x� coordinate for a given dimensionless frequency can be
calculated using the following formula:

xs
� =

��s/F�2

Re�
� . �25�

This equation indicates that the synchronization point moves
upstream with dimensionless frequency increasing.

Figure 15 shows growth rates of modes F and S at the
same set of locations as a function of dimensionless circular
frequency. The horizontal dotted line stands for neutral
waves ��i=0�. In Fig. 15, the growth rates of either mode S
or mode F are approximately functions of dimensionless cir-
cular frequency only. Mode S is unstable in the region from
�I=0.008 27 to �II=0.184 65, whereas mode F is always
stable. For unstable mode S, it is also noticed that mode S
around and downstream of the synchronization point is more

unstable than that upstream of the synchronization point. The
parameters �I and �II are called branches I and II neutral
points of mode S. The figure shows that mode S is stable
upstream of branch I neutral point and downstream of branch
II neutral point. The locations of branches I and II neutral
points in x� coordinate, which changes with different dimen-
sionless frequencies, can be calculated by

xI
� =

��I/F�2

Re�
� , �26�

xII
� =

��II/F�2

Re�
� . �27�

Equations �26� and �27� indicate that when F increases, the
corresponding coordinates of xI

� and xII
� decrease. In other

words, branches I and II neutral points move upstream when
F increases. Table I lists locations of synchronization point
�xs

��, branches I and II neutral points �xI
�, and xII

� �, together
with the coefficient bn for the first nine sinusoidal compo-
nents of periodic wall perturbation. The sinusoidal compo-
nent at the frequency of f10

� =500 kHz has a zero amplitude,
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y*/L*

u r′ p r′

0 10 20 30 40
0

4

8

12

0

0.2

0.4

0.6

0.8

1

pr′

ur′

(a)

y*/L*

u r′ p r′

0 10 20 30 40

0

4

8

12

0

0.2

0.4

0.6

0.8

1

pr′

ur′

(b)

FIG. 12. Eigenfunctions of streamwise velocity and pressure of discrete
boundary-layer waves: �a� mode F; �b� mode S.

044101-11 Effect of wall perturbations Phys. Fluids 21, 044101 �2009�



as shown in Fig. 2. The other sinusoidal components are
neglected because branch II neutral point moves upstream of
the forcing region for sinusoidal component at a frequency
higher than 500 kHz. As a result, the effect of mode S insta-
bility is weak when the frequency of sinusoidal component is
higher than 500 kHz.

VI. RECEPTIVITY TO TWO-DIMENSIONAL
WALL PERTURBATIONS

Receptivity of the hypersonic boundary layer to periodic
two-dimensional wall perturbations is discussed in this sec-
tion. The model of wall perturbation is proposed based on
physical properties of the electric pulse generator used in the
experiment of Maslov et al. Perturbations are introduced to
steady base flow at a forcing slot with the leading and trail-

ing edges at xi
�=33 mm and xe

�=37 mm �R=654.98 and
693.54�. The specific slot width is selected based on the ex-
periment of Maslov et al. The authors have investigated the
effect of slot width on receptivity for some other cases.
Those results are not discussed here because the focus of this
paper is on the effect of wall perturbation on receptivity.
Specifically, three types of wall perturbations are considered.
The effect of wall perturbation on receptivity is investigated
by three cases of numerical simulations. In each case, fre-
quency of perturbation is equal to 50 kHz. The values of
�1, �2, and �3 in Eq. �13� are assigned to be 1.0�10−7,
1.0�10−5, and 1.0�10−3, respectively. Subsequent re-
sponses of the hypersonic boundary layer to wall perturba-
tions are simulated by the fifth-order shock-fitting method.
Details of three types of wall perturbations are listed in
Table II.

Table II shows that case A is the case of streamwise
velocity perturbation, case B is the case of blowing suction,
whereas case C is the case of temperature perturbation.
Dimensional amplitudes of three types of wall perturbations
are calculated according to Eq. �13�. They are scaled by
following free stream variables: u�

� =827.97 m /s,
��u��

� =44.01 kg /m2 s, and T�
� =48.69 K, respectively.

Although �1 is assigned to be 1.0�10−7, dimensionless am-
plitude of streamwise velocity perturbation is equal to
1.073�10−4. The difference comes from different scaling. In
Eq. �13�, �1 is scaled with the first order derivative of stream-
wise velocity, whereas dimensionless amplitude of stream-
wise velocity perturbation in Table II is scaled with stream-
wise velocity.

A. Receptivity to streamwise velocity perturbation

Receptivity of the Mach 5.92 flat plate boundary layer to
streamwise velocity perturbation is studied first. The param-
eters of streamwise velocity perturbation are as follows: �A�
streamwise velocity perturbation,
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�Qu,Qv,QT� = �1,0,0�, �1 = 1.0 � 10−7, f� = 50 kHz,

According to Eq. �13�, case A introduces streamwise velocity
perturbation to steady base flow, which models the ionization
of gas molecules in the experiment of Maslov et al.

The profile function of streamwise velocity perturbation,
F�l1�, is written as

F�l1� = − �20.25l1
5 − 35.4375l1

4 + 15.1875l1
2�/2.456 88,

�28�

where the variable l1 is defined in forcing region as

l1 = 0.620 287�2�x� − xi
��/�xe

� − xi
�� , if x� 	 35 mm

2�xe
� − x��/�xe

� − xi
�� , if x� 
 35 mm.

�
�29�

Similar fifth-order-polynomial profile function has been used
in receptivity studies of a Mach 8.0 flow over a sharp wedge
to wall blowing suction.12,25 Comparing with the generally
used sinusoidal profile function, the specific fifth-order-
polynomial profile function makes the perturbation at the
edges �xi

� and xe
�� more smooth, being continuous up to the

first-order derivative. In Eq. �28�, the constant �2.456 88� is
value of F�l1� at l1=0.620 287, which is used to normalize
profile function.

At first, two sets of grid structures are used to check grid
independence of unsteady numerical simulation results. Fig-
ure 16 compares wall pressure fluctuation amplitude at a fre-
quency of f�=100 kHz for two sets of grid structures. Am-
plitude distributions plotted in the figure are evaluated at the
location of x�=0.312 m �R=2013.95�. It shows that ampli-
tude distribution on 121�121 mesh agree well with that on

241�176 mesh. This figure indicates that the grid structure
of 241�176 is good enough to ensure grid independence of
unsteady numerical simulation results.

To show overall feature of the unsteady flow field, Fig.
17 shows contours of instantaneous pressure fluctuation in-
duced by streamwise velocity perturbation at a frequency of
f�=50 kHz. Downstream of the forcing region, excited pres-
sure fluctuations are divided into two branches. One branch
radiates into external flow outside the boundary layer and
propagates along Mach lines �acoustic waves�, while the
other branch stays within the boundary layer �stable and un-
stable boundary-layer waves�. Outside the boundary layer,
forcing induced acoustic waves are interacted with Mach
waves. Far downstream of the forcing region, stable wave
decays owing to its inherent stability whereas unstable wave
grows substantially due to its instability. Therefore, unstable
wave becomes the dominant wave in the boundary layer.
Similar characteristics of instantaneous pressure fluctuations
are consistently shown in cases B and C. Figure 18 shows
distribution of instantaneous wall pressure fluctuation in case

TABLE I. Locations of synchronization point �xs
��, branches I and II neutral points �xI

�, and xII
� �, and coefficients

bn for the first nine sinusoidal components of wall perturbation.

n
f�

�kHz� Fn�106
xs

�

�m�
xI

�

�m�
xII

�

�m� bn

1 50 26.514 79 1.327 35 6.789 77�10−3 3.384 87 0.196 73

2 100 53.029 59 0.331 84 1.697 44�10−3 0.846 22 0.187 10

3 150 79.544 38 0.147 48 7.544 18�10−4 0.376 10 0.171 68

4 200 106.059 18 0.082 96 4.24 360�10−4 0.211 55 0.151 36

5 250 132.573 97 0.053 09 2.715 91�10−4 0.135 39 0.127 32

6 300 159.088 76 0.036 87 1.886 04�10−4 0.094 02 0.100 91

7 350 185.603 56 0.027 09 1.385 67�10−4 0.069 08 0.073 58

8 400 212.118 35 0.020 74 1.060 90�10−4 0.052 89 0.046 77

9 450 238.633 15 0.016 39 8.382 43�10−5 0.041 79 0.021 86

TABLE II. Dimensional and dimensionless amplitudes of three types of
periodic wall perturbations.

Case �Qu ,Qv ,QT� Amplitude Dimensionless amplitude

A �1, 0, 0� 8.885�10−2 m /s 1.073�10−4

B �0, 1, 0� 4.401�10−4 kg /m2 s 1.000�10−5

C �0, 0, 1� 4.869�10−2 K 1.000�10−3
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Grid structure
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FIG. 16. Comparisons of wall pressure fluctuation amplitude for two sets of
grid structures
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A. Amplification of pressure fluctuation from upstream to
downstream indicates the excitation of unstable waves in the
boundary layer. The standing wave structures indicate modu-
lations between boundary-layer waves at different frequen-
cies excited by sinusoidal components of periodic perturba-
tion. It is also noticed in Fig. 18 that significant increase of
pressure fluctuation starts around the location x�=0.35 m
�R=2133.07�.

In order to identify and evaluate properties of unstable
modes, a fast Fourier transform �FFT� is applied to instanta-
neous wall pressure fluctuation. In Fourier domain, the first
nine sinusoidal components are considered. All the frequen-
cies are expressed as

fn
� = nf� = 50n kHz, �30�

where n� �1,9�. In Eq. �30�, f1
� is the base frequency

whereas the other eight frequencies fn
� are n times of the base

frequency. FFT of instantaneous wall pressure fluctuation
leads to

p��x�,t�� = �
n=1

9

�pn��x
���ei��n��x��−�n

�t��, �31�

where p��x� , t�� represents instantaneous wall pressure fluc-
tuation. In above equation, �pn��x

��� and �n��x
�� are pressure

fluctuation amplitude and phase angle excited by nth sinu-
soidal component of streamwise velocity perturbation, re-
spectively. Once �pn��x

��� and �n��x
�� are computed, a local

wave number ��rn� and a local growth rate ��in� at the fre-
quency of fn

� can be calculated by

�rn = L�
d�n�

dx�
, �32�

�in = −
L�

�pn��
d�pn��
dx�

, �33�

where L� is the length scale of local boundary layer thickness
as defined in Eq. �11�. Values of �rn and �in will represent
true wave number and growth rate only if pressure fluctua-
tion is dominated by a single wave. Otherwise, pressure fluc-
tuation needs to be further decomposed in order to check
properties of a specific mode. For example, Tumin et al.12

decomposed pressure fluctuation at a location just down-
stream of the blowing-suction slot with a biorthogonal eigen-
function system, where mode F, mode S, and acoustic modes
coexisted and none of them was dominant.

In Eq. �33�, wall pressure fluctuation is picked up to
calculate growth rate. It needs to be pointed out that growth
rate calculated from numerical simulation results depends on
the choice of flow fluctuation. For example, growth rate
bases on maximum perturbation in momentum flux will be
different due to deformation of eigenfunctions.

Since our focus is on numerical simulation results, we
only consider the later stage where unstable wave becomes
the dominant wave in the boundary layer. In this case, Eqs.
�32� and �33� can be used to check properties of unstable
mode. Figure 19 shows amplitude distributions of wall pres-
sure fluctuation induced by the first nine sinusoidal compo-
nents of periodic wall oscillation. It is noticed that only per-
turbations at frequencies of fn

� �n6�, as shown in Figs.
19�a� and 19�b� have apparent amplitude growths down-
stream of the forcing region. The fluctuation at the frequency
of f1

� grows very slowly, whereas the perturbations at other
five frequencies start to decrease far before reaching the cor-
responding LST predicted branch II neutral points as listed in
Table I. For fluctuation at even higher frequencies, there are
no dramatic amplitude increases downstream of the forcing
region.

Figure 20 compares growth rate computed by Eq. �33�
and that obtained from LST of pressure fluctuation at the
frequency of f2

�=100 kHz. This figure shows that numeri-
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p
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FIG. 18. Distribution of instantaneous wall pressure fluctuation in case A.

FIG. 17. �Color online� Contours of instantaneous pressure fluctuation in-
duced by streamwise velocity perturbation at a frequency of f�=50 kHz.
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cally computed growth rate has a good agreement with LST
predicted growth rate in a region from �=0.11 to �=0.13,
which indicates that the unstable mode in the boundary layer
is mode S. When dimensionless circular frequency is larger
than 0.13, mode S obtained by numerical simulation be-
comes more stable than that predicted by LST. As a result,
pressure fluctuation starts to decrease far before the LST pre-
dicted branch II neutral point, which is clearly shown in Fig.
19. For example, for the case of n=3, amplitude of pressure
perturbation should keep increasing until x�=0.376 10 m
�R=2211.18�, the corresponding branch II neutral point of
mode S predicted by LST. However, pressure fluctuation in
numerical simulation stops increasing at the location of
x�=0.2 m �R=1612.45�, far upstream of LST predicted lo-
cation. Such results are consistently noticed in all three cases
of receptivity simulations considered in current study. Down-
stream of �=0.13, difference between growth rates obtained
by LST and those computed from numerical simulation may

be caused by nonparallel effect, the pressure gradient, and
bow shock. These factors are neglected in current LST
analysis.

Both our simulations and previous work of Ma and
Zhong5,13,14 consistently get similar results that higher fre-
quency perturbations damp even if they should be amplified
according to LST. According to Egorov et al.,24 the stabili-
zation of boundary layer wave might be caused by nonpar-
allel effect because growth rate of Mack second mode ob-
tained from nonparallel LST is significantly lower than that
obtained from parallel LST. In current simulation, there are
about 16 grid points per wavelength for the highest fre-
quency disturbances.

Figure 21 compares wave numbers computed by Eq.
�32� and that obtained from LST of pressure fluctuation at
the frequency of f2

�=100 kHz. The good agreement of the
two sets of wave numbers in downstream region of
�
0.09 also confirms that mode S is the unstable mode in
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FIG. 19. Amplitude distributions of wall pressure fluctuation at different frequencies in case A �fn
�=nf1

�, f1
�=50 kHz�.
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the boundary layer. The agreement is not as good in up-
stream region because mode F, mode S, and acoustic modes
coexist in the boundary layer. In order to check the properties
of mode S, pressure fluctuation in upstream region needs to
be further decomposed into individual wave components.

As has been demonstrated in Fig. 15, mode S is more
unstable around and downstream of the synchronization
point. Therefore, in Fig. 19�a�, pressure fluctuation at the
frequency of f1

�=50 kHz increases slowly downstream of the
forcing region because mode S is only slightly unstable
upstream of the corresponding synchronization point at
xs

�=1.327 35 m �R=4153.98�. For pressure fluctuations at
frequencies of fn

� �1n6�, significant amplitude growths
start at locations approximately the same as the correspond-
ing synchronization points listed in Table I because mode S
is more unstable around and downstream of the synchroni-
zation point. Pressure fluctuation at higher frequencies de-
crease downstream of the forcing region because forcing slot
is located downstream of the corresponding synchronization
points. It needs to be emphasized that forcing slot is still
located within the unstable region of mode S, upstream of the
corresponding LST predicted branch II neutral points. Such
result is consistent with what we have found in receptivity
study of a Mach 8 flow over a sharp wedge of a half angle of
5.3° to wall blowing suction.25 It seems the synchronization
point plays an important role in the excitation of mode S by
wall perturbations, i.e., mode S is strongly excited only when
forcing slot is located upstream of the synchronization point.

When forcing slot is downstream of the synchronization
point, there is very little excitation of mode S, despite the
fact that forcing slot is still located within the unstable region
of mode S. Further theoretical studies are needed to confirm
and explain the role of the synchronization point in the ex-
citation of mode S.

B. Effect of three perturbation types on receptivity

To investigate the effect of perturbation type on recep-
tivity, two more cases of wall perturbations are considered.
Numerical simulation results of these two cases are com-
pared with those of case A. The parameters of these two
cases of wall perturbations are as follows: �B� blowing
suction,

�Qu,Qv,QT� = �0,1,0�, �2 = 1.0 � 10−5, f� = 50 kHz,

�C� temperature perturbation,

�Qu,Qv,QT� = �0,0,1�, �3 = 1.0 � 10−3, f� = 50 kHz.

According to Eq. �13�, case B introduces wall-normal mass
flux to steady base flow, which models glow discharge in the
experiment of Maslov et al. Temperature perturbation mod-
els streamwise extended oval on the plate observed in the
experiment of Maslov et al. when voltages on electrodes
were increased to 700 V.

The profile function of blowing suction, G�l2�, is the
same as what we have used in receptivity studies of a Mach
8 flow over a sharp wedge to wall blowing suction,12,25 i.e.,

G�l2� =
1

2.456 88
�20.25l2

5 − 35.4375l2
4 + 15.1875l2

2, if l2 	 1

− 20.25�2 − l2�5 + 35.4375�2 − l2�4 − 15.1875�2 − l2�2, if l2 
 1,
� �34�

ω

α r
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Numerical simulation

LST

FIG. 21. Comparison of wave number computed from numerical simulation
and that obtained by LST of pressure fluctuation at the frequency of
f2

�=100 kHz.
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FIG. 20. Comparison of growth rate computed from numerical simulation
and that obtained by LST of pressure fluctuation at the frequency of
f2

�=100 kHz.
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with the variable l2 being expressed as

l2 =
2�x� − xi

��
xe

� − xi
� . �35�

Again, the constant of 2.456 88 in Eq. �34� is value of the
profile function at l2=0.620 287, which is used to normalize
G�l2�.

The profile of temperature perturbation is the reverse of
streamwise velocity perturbation given by Eq. �28�, i.e., tem-
perature perturbation is positive within the forcing region,

H1�l3� = �20.25l3
5 − 35.4375l3

4 + 15.1875l3
2�/2.456 88.

�36�

The constant of 2.456 88 is value of H1�l3� at l3=0.620 287,
which is used to normalize the profile function. The variable
l3 is defined exactly the same as l1 in Eq. �29�.

Figure 22 shows amplitude distributions of wall pressure

fluctuations at three frequencies of 50, 100, and 150 kHz for
three cases of wall perturbations. Amplitude distributions for
pressure fluctuation at even higher frequency are neglected in
this figure because the corresponding pressure fluctuation
amplitudes are comparatively low. Specifically, Figs.
22�a�–22�c� show results of streamwise velocity perturba-
tion, blowing suction, and temperature perturbation, respec-
tively. It is clearly shown that pressure fluctuations at these
three frequencies have similar properties. The pressure per-
turbation at the frequency of f1

�=50 kHz increases slowly
downstream of the forcing region because mode S is slightly
unstable upstream of the corresponding synchronization
point at xs

�=1.327 35 m �R=4153.98�. For fluctuations at
frequencies of f2

� and f3
�, significant amplitude growths

start at locations approximately the same as the corres-
ponding synchronization points at xs

�=0.331 84 m and
xs

�=0.147 48 m �R=2077.00 and 1384.64� because mode S
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FIG. 22. Amplitude distributions of wall pressure fluctuations at the frequency of 50 kHz �n=1�, 100 kHz �n=2�, and 150 kHz �n=3� for three cases of wall
perturbations: �a� case A; �b� case B; �c� case C.
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is more unstable around and downstream of the synchroni-
zation point. Downstream of the forcing region, fluctuation
at the frequency of f2

�=100 kHz has the maximum ampli-
tude. Such results indicate that different wall perturbations
lead to the same boundary-layer instability, which is mode S
as has been identified in Figs. 20 and 21. Receptivity mecha-
nism of the hypersonic boundary layer to wall perturbations
is independent of specific perturbation type.

It is also noticed in Fig. 22 that pressure fluctuation am-
plitudes of blowing suction �case B� are higher than those of
temperature perturbation �case C�. In turn, pressure fluctua-
tion amplitudes of temperature perturbation �case C� are
higher than those of streamwise velocity perturbation �case
A�. In other words, the hypersonic boundary-layer flow is
most sensitive to blowing suction.

In order to quantitatively show the effect of wall
perturbation on receptivity, Figs. 23�a�–23�c� compare nor-
malized amplitudes of pressure fluctuations for cases A, B,

and C at three frequencies of f1
�=50 kHz, f2

�=100 kHz, and
f3

�=150 kHz, respectively. In these figures, �p1��nl, �p2��nl, and
�p3��nl are normalized pressure fluctuation amplitudes ob-
tained by dividing fluctuation amplitudes with the corre-
sponding dimensionless amplitudes listed in Table II. Again,
similar properties of pressure fluctuation amplitudes indicate
that receptivity mechanism of the hypersonic boundary layer
to wall perturbation is independent of perturbation type.
These figures consistently show that instability waves ex-
cited by blowing suction have higher amplitudes than those
excited by streamwise velocity perturbation. Whereas insta-
bility waves excited by streamwise velocity perturbation
have higher amplitudes than those excited by temperature
perturbation. These results are qualitatively consistent with
the theoretical and numerical analysis of Fedorov and
Khokhlov.11 The boundary layer is much more sensitive to
blowing suction than to streamwise velocity perturbation and
temperature perturbation.
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VII. SUMMARY

In this paper, the receptivity of a Mach 5.92 flat plate
boundary layer to periodic two-dimensional wall perturba-
tions is studied by numerical simulations and LST. The ob-
jectives of the current research are to study the receptivity of
the hypersonic boundary layer to wall perturbations, and to
investigate the effect of different wall perturbation on recep-
tivity. Free stream flow conditions of the hypersonic bound-
ary layer are the same as the leading edge receptivity experi-
ments of Maslov et al.4 Steady base flow is simulated by
solving two-dimensional compressible Navier–Stokes equa-
tions with a combination of a fifth-order shock-fitting finite
difference method and a second-order TVD scheme. The ac-
curacy of numerically simulated steady base flow is vali-
dated by comparisons with the experimental measurements
of Maslov et al. and self-similar boundary-layer solution. In
receptivity simulations, three types of periodic two-
dimensional wall perturbations, streamwise velocity pertur-
bation, blowing suction, and temperature perturbation, are
considered. All wall perturbations are introduced to steady
base flow at a forcing slot located on flat plate. A model of
wall perturbation is proposed based on physical properties of
the electric pulse generator used in the experiment of Maslov
et al. Stability characteristics of boundary-layer waves are
identified and evaluated by comparing the results of LST and
numerical simulations. The effect of different wall perturba-
tion on receptivity process are studied by considering three
cases of numerical simulations.

The main conclusions of the current study are as follows.

• All three types of periodic two-dimensional wall per-
turbations eventually result in the same type of insta-
bility wave �mode S� in the boundary layer, which
indicates that receptivity mechanism of the hypersonic
boundary layer to wall perturbation is independent of
specific perturbation type.

• Instability waves excited by blowing-suction have
higher amplitudes than those excited by streamwise
velocity perturbation. Whereas instability waves ex-
cited by streamwise velocity perturbation have higher
amplitudes than those excited by temperature pertur-
bation. Therefore, the hypersonic boundary-layer flow
is most sensitive to blowing suction and least sensitive
to temperature perturbation.
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