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Abstract 
 
For high-speed flow over blunt bodies, gas temperature increases dramatically. As a result, 
gas molecules start dissociating, and vibration and electron energy modes are being excited. 
Gas becomes thermally nonequilibrium and chemically reactive. Effects of vibration and 
electron energy excitations, translation-vibration energy relaxation, and chemical reactions 
among different species need to be considered in numerical simulations. In current paper, a 
CFD solver based on a fifth-order WENO scheme is developed for the simulation of 
nonequilibrium and reactive high-speed flows, as part of the ADPDIS3D computer code 
package. The code is implemented based on a two-temperature model. It is assumed that 
translation and rotation energy modes are in equilibrium at the translation temperature 
whereas vibration and electron energy modes are in equilibrium at the vibration 
temperature.  The code is validated and applied to numerical simulations of hypersonic 
nonequilibrium flows.  
 
 

1. Introduction 
 
Hypersonic flow is categorized by certain physical phenomena that do not typically play 
an important role in subsonic and supersonic flows. These effects could be thin shock 
layers, entropy layers, viscous-inviscid interactions due to the high displacement 
thickness of boundary layers, and high temperature gas effects [1].  
 
At temperatures less then 500K-800K, gas flow stays calorically perfect. Only translation 
and rotation energy modes are fully excited while the excitations of vibration and 
electron energy modes and chemical reactions are negligible. As a result, specific heat 
capacities remain constant. When temperatures increase to 800K-2000K, vibration 
energy mode takes an important role in sharing the total energy with the translation and 
rotation modes. Near the lower temperature limit of this regime, translation-vibration 
energy relaxation between harmonic oscillator molecules dominates because most of the 
molecules are near the ground vibrational state. Near the higher limit of this regime, 
vibration-vibration energy relaxation becomes significantly active because not only are 
vibrationally excited molecules highly populated but also vibration-vibration energy 
relaxation is considerably faster than its translation-vibration counter-part. Also, the 
vibrational oscillation becomes inharmonic as the temperature approaches the 
dissociation level. However, results within the harmonic oscillator approximation are 
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known to be sufficiently accurate for most practical purposes [2]. For temperatures above 
2000k-2500k, vibration energy mode is fully excited and O2 starts dissociating. Around 
4000k, O2 is completely dissociated and N2 starts dissociating. When the temperature 
reaches 9000k, most of the N2 is dissociated. Coincidentally, this is the temperature 
around which the dissociated N and O atoms become ionized. Around 12000k, all the 
gases are completely dissociated and about 14% of them are ionized such that there is a 
sufficient amount of free charges, enough to make electromagnetic forces. Radiation 
emitted and absorbed by the gas can become important and could eventually modify the 
energy distribution in the flow field. At 20000k, double dissociation begins. And finally 
when it reaches 30000k, the gas is completely ionized [3]. These regimes correspond to 
M∞ greater or much greater than 30. 
 
All the high temperature gas effects are due to molecular collisions which occur at finite 
rates. When the collision rates are much faster than flow rates, it is called as “equilibrium 
flow”. On the other hand, if the collision rates are much slower than flow rates, it is 
called as “frozen flow”. Unfortunately, neither of these two situations can completely 
describe the hypersonic flow over a space/air vehicle. There will always be regions where 
the collision rates are in the same vicinity of the flow rates. Moreover different species 
will have different reaction rates and different energy relaxation rates. Therefore, energy 
transfers between bulk kinetic energy, translation energies, chemical energies, and 
vibration energies of different species are actively in progress at many locations in a 
hypersonic thermochemical nonequilibrium flow. When these effects start to play 
dominant roles, the flow is called “nonequilibrium flow”. 
 
In the past years, interest in various types of vehicles in hypersonic flow regime produced 
numerous structured grid based nonequilibrium flow solvers. According to recent 
publications, Laura, DPLR, and Lore are the most frequently referenced and are 
intensively validated against each other [4] and also against wind tunnel tests. LAURA 
(Langley Aerothermodynamic Upwind Relaxation Algorithm) is mainly developed by 
Peter Gnoffo et al. at the NASA Langley Research Center [5-8]. It uses Roe's flux 
difference splitting scheme with Yee's second-order symmetric total variation 
diminishing scheme to model the inviscid fluxes. Steady state solution is obtained using 
either point or line relaxation time integration scheme. The vibration energy mode is 
assumed to be in equilibrium with the electron energy, and translation energy is assumed 
to be in equilibrium with the rotation energy mode. The code supports multi-block 
structured grids and MPI communication for massive parallel computing. 
 
DPLR (Data-Parallel Line Relaxation) is initially developed at University of Minnesota 
by Michael Wright and Graham Candler [9]. The code is further developed at NASA 
Ames research center [4]. DPLR implicit method is optimized for efficient parallel 
computing by arranging the body normal dependent data with local CPU in order to 
perform the relaxation process simultaneously in parallel mode. DPLR uses third order 
modified Steger-Warming flux splitting scheme with MUSCL data reconstruction to 
model the inviscid fluxes. Unlike LAURA, the vibration energy mode is separately 
treated, and translation energy is assumed to be equilibrium with the rotation and electron 
energy modes. It also supports multi-block structured grids.  
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Lore [10] was developed at the Advanced Operations and Engineering Services Group in 
Europe. The flow solver uses modified AUSM scheme with MUSCL data reconstruction 
to achieve second-order accuracy coupled with a van Albada limiter. Time advancement 
to a steady-state solution is achieved using an alternating direction line Gauss-Seidel 
implicit relaxation method. The code supports multi-block structured grids. This code 
covers a wide range of flight regimes from subsonic to hypersonic. 
 
In current paper, a CFD solver based on a fifth-order WENO scheme is developed for the 
simulation of nonequilibrium and reactive high-speed flows. The solver is implemented 
to the ADPDIS3D computer code package developed mainly by Yee and Bjorn [11-17]. 
The code is based on a two-temperature model of Park [18]. It is assumed that translation 
and rotation energy modes are in equilibrium at the translation temperature whereas 
vibration and electron energy modes are in equilibrium at the vibration temperature. The 
flow solver uses the fifth-order WENO scheme of Jiang and Shu [19] with Roe’s data 
reconstruction to model the inviscid fluxes. In order to validate the code, Yee's second-
order total variation diminishing scheme is also implemented. Viscous fluxes are 
calculated by a sixth-order central scheme. Time integration of the governing equations is 
obtained using explicit Runge-Kutta method. The code is validated and applied to 
numerical simulations of hypersonic nonequilibrium flows. 
 
 

2. Governing equations 
 

2.1 Governing equations 
 
For nonequilibrium and chemically reactive five species air flows, the governing 
equations are Navier-Stokes equations with source terms. Specifically, governing 
equations consist of five mass conservation equations, three momentum conservation 
equations, and two energy conservation equations, i.e., 
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In above equations, sD is diffusion coefficient of species, µ is viscosity of gas mixture, 

sh is specific total enthalpy of species, K and VK are heat conductivities relating to 
translation temperature and vibration temperature, Ve  and ,V se are specific internal 
energies of gas mixture and species, ,T V sQ −  is energy relaxation, sω  is the generation rate 
of diatomic species. sy is the molar fraction of species, relating to mass fraction and 
molar mass as following, 

 ( )
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The other variables are defined as 
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where R  is the universal gas constant, se  is specific internal energy of species. 
 
2.2 Coordinate transform 
 
The flow solver uses finite difference methods on structured grids. The following grid 
transform is applied to the governing equations. 
 

 

( , , , ) ( , , , )
( , , , ) ( , , , )
( , , , ) ( , , , )

x x x y z t
y y x y z t
z z x y z t
t t

ξ η ζ τ ξ ξ
ξ η ζ τ η η
ξ η ζ τ ζ ζ

τ τ

= =⎧ ⎧
⎪ ⎪= =⎪ ⎪⇔⎨ ⎨= =⎪ ⎪
⎪ ⎪= =⎩ ⎩

 (6) 

 
Jacobian matrix of the transform is,  
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With the transform relation, the governing equations in ( , , ,ξ η ζ τ ) coordinate system can 
be written as 
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Where 
1 1 2 3x y z tF J F J F J F JUξ ξ ξ ξ= + + +  



AIAA Paper 2009-4041 
 

5 

2 1 2 3x y z tF J F J F J F JUη η η η= + + +  

3 1 2 3x y z tF J F J F J F JUζ ζ ζ ζ= + + +  

1 1 2 3x y zG J G J G J Gξ ξ ξ= + +  

2 1 2 3x y zG J G J G J Gη η η= + +  

3 1 2 3x y zG J G J G J Gζ ζ ζ= + +  
 

The corresponding fluxes (inviscid & viscous) and source terms are also written in matrix 
form as  
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In above equations, sj sj jv u u= −  is diffusion velocity of species s. 
 
 

3. Numerical methods 
 
For the thermally non-equilibrium and chemically reacting system (8) in the direction, 

( )1 2 3k , ,k k k= , the corresponding inviscid flux term is 
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The Jacobian matrix of inviscid flux is defined as,  
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All three matrices are obtained from Gnoffo et al.’s report [20]. Subscript “s” refers to 
row s and species s whereas subscript “r” refers to column r and species r. Both s and r 
vary from 1 to 5 in the present model. The unit vector n  is defined from vector k as  

1 2 3( , , )n ( , , )
kx y z

k k kn n n= =  

( )l , ,x y zl l l=  and ( )m , ,x y zm m m=  are two unit vectors such that n , l , and  m  are 
mutually orthogonal.  
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x y zW um vm wm= + +  
 
The eigenvalues of Jacobian matrix (10) are  
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Suppose the numerical scheme can be written as, 
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The flux terms can be obtained by fifth-order WENO scheme or second-order TVD 
scheme. Details of the flux calculation are discussed below.  
 
 
3.1 Jiang-Shu fifth-order WENO scheme 
 
For the CFD solver developed in current paper, the fifth-order WENO scheme of Jiang 
and Shu [19] is used for  inviscid fluxes as shown in Eq. (9). At first, the flux can split 
into two parts with the global Lax-Friedrichs splitting, i.e., 
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where α is the maximum eigenvalue of the Jacobian matrix.  
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In the paper, only the computation of the positive part of split flux is described. The 
formulas for the negative part are symmetric. Here the flux version of ENO scheme is 
used as the basis to formulate WENO scheme.  
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In Eq. (21), the weight kω  is defined by  
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In above equation, kIS  is a smoothness measurement of the numerical flux on the kth 
candidate stencil. As shown in Jiang and Shu’s paper,  
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2kIS F j k F j k F j k= + − + + − + + −  (25) 

where [ ],F l⋅  is the lth undivided difference. All the parameters in Eqs. (22) and (24) are 
obtained from Jiang and Shu’s paper.  
 
3.2 Harten-Yee second-order TVD scheme 
 
In order to validate the code, Yee’s second-order total variation diminishing (TVD) 
scheme is also implemented [21]. The flux term can be obtained as following, 
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With  
 2 2( )Q x x ε= +  (30) 
 
The parameter is defined relating to the velocity. The fluxes in other dimensions are 
similarly treated in a dimension-by-dimension manner. 
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In equations (28) to (30), la is the l th eigenvalue of A , lα  is the jump in the 
characteristic variables corresponding to l th eigenvalue, g is flux limiter. All these 
variables are determined by approximate Riemann solver.  
 (U U )R LRα = −  (31) 

 
3.3 Roe’s data reconstruction 
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Roe’s data reconstruction of the inviscid fluxes is used together with the fifth-order 
WENO scheme and the second-order TVD scheme. As shown in above schematic, 
variables at i+1/2 computed by,  
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4 Nonequilibrium models 
 
4.1 Models of vibration and electron energy 
 
Three models of vibration and electron energy are implemented in the code. In Candler’s 
model [22], vibration energy and electron energy are considered separately with different 
formula. While in Gnoffo et al.’s model [20] and McBride & Gordon’s model [23], 
vibration and electron energy are calculated together from the curve fits of experimental 
correlations. The difference between these three models comes from how they evaluate 
specific total enthalpy of species and specific heat in constant pressure of species.  
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In Candler’s model, specific total enthalpy of species and specific heat in constant 
pressure of species are defined as,  
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The related parameters are listed in Table 1.  
 

Table 1. Parameters used in Candler’s model 
Species  0

sh (J/kg) sM (g) vsθ (K) elsθ (K) 0g  1g  
N2 0 28 3395 - - - 
O2 0 32 2239 11341 3 2 
NO 2.996123e6 30 2817 - - - 
N 3.362161e7 14 - 27665 9 10 
O 1.543119e7 16 - 22831 9 5 

 
In Gnoffo et al.’s model, specific total enthalpy of species and specific heat in constant 
pressure of species are defined as, 
 ( ) ( ), ,, ( )( )s s

s V p t p r V s Vh T T c c T T h T= + − +  (40) 

 ( )
5

1

1

s s k
p k

ks

Rc T A T
M

−

=

= ∑  (41) 

where 
5

6
1

( )
s k

sk V
s V

ks

A TRh T A
M k=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

. 
 
Parameters of the curve fit are listed in Table 2. With the temperature increasing from 
300 K to 35000 K, five sets of curve fits are employed for different temperature range,  
 

1. 300 ≤ T ≤ 1000  2. 1000 ≤ T ≤ 6000  3. 6000 ≤ T ≤ 15000 
4. 15000 ≤ T ≤ 25000 5. 25000 ≤ T ≤ 35000 
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Table 2. curve fit parameters in Gnoffo et al.’s model 
Species Range A1 A2 A3 A4 A5 A6 

N2 1 3.674826 -1.208150e-3 2.324010e-6 - 6.321755e-10 - 2.257725e-13 - 1061.16 
2 2.896319 1.515486e-3 - 5.723527e-7 9.980739e-11 - 6.522355e-15 - 905.862 
3 3.727 4.684e-4 - 1.140e-7 1.154e-11 - 3.293e-16 - 1043.00 
4 9.637690 - 2.572840e-3 3.301980e-7 - 1.431490e-11 2.033260e-16 - 1043.00 
5 - 5.168080 2.333690e-3 - 1.295340e-7 2.787210e-12 - 2.135960e-17 - 1043.00 

O2 1 3.625598 - 1.878218e-3 7.055454e-6 - 6.763513e-9 2.155599e-12 - 1047.52 
2 3.621953 7.361826e-4 - 1.965222e-7 3.620155e-11 - 2.894562e-15 - 1201.98 
3 3.721 4.254e-4 - 2.835e-8 6.050e-13 - 5.186e-18 - 1044.00 
4 3.486660 5.238420e-4 - 3.912340e-8 1.009350e-12 - 8.871830e-18 - 1044.00 
5 3.961980 3.944550e-4 - 2.950580e-8 7.397450e-13 - 6.420930e-18 - 1044.00 

NO 1 4.045952 - 3.418178e-3 7.981919e-6 - 6.113931e-9 1.591907e-12 9745.39 
2 3.189 1.338228e-3 - 5.289932e-7 9.591933e-11 - 6.484793e-15 9828.33 
3 3.845 2.521e-4 - 2.658e-8 2.162e-12 - 6.381e-17 9764.00 
4 4.330870 - 5.808630e-5 2.805950e-8 - 1.569410e-12 2.410390e-17 9764.00 
5 2.350750 5.864300e-4 - 3.131650e-8 6.049510e-13 - 4.055670e-18 9764.00 

N 1 2.503071 - 2.180018e-5 5.420528e-8 - 5.647560e-11 2.099904e-14 56098.9 
2 2.450268 1.066145e-4 - 7.465337e-8 1.879652e-11 - 1.025983e-15 56116.0 
3 2.748 - 3.909e-4 1.338e-7 - 1.191e-11 3.369e-16 56090.0 
4 - 1.227990 1.926850e-3 - 2.437050e-7 1.219300e-11 - 1.991840e-16 56090.0 
5 15.52020 - 3.885790e-3 3.228840e-7 - 9.605270e-12 9.547220e-17 56090.0 

O 1 2.946428 - 1.638166e-3 2.421031e-6 - 1.602843e-9 3.890696e-13 29147.6 
2 2.542059 - 2.755061e-5 - 3.102803e-9 4.551067e-12 - 4.368051e-16 29230.8 
3 2.548 - 5.952e-5 2.701e-8 - 2.798e-12 9.380e-17 29150.0 
4 - 9.787120e-3 1.244970e-3 - 1.615440e-7 8.037990e-12 - 1.262400e-16 29150.0 
5 16.42810 - 3.931300e-3 2.983990e-7 - 8.161280e-12 7.500430e-17 29150.0 

 
 
In McBride and Gordon’s model, specific total enthalpy of species and specific heat in 
constant pressure of species are defined as, 
  

 ( ) 2 3 4

1 2 3 4 5 6 7 12

, 1 ln( ) 1
2 3 4 5

s V
s s s s s s s s

h T T T T T T Ta a a a a a a b
RT T T T

= − + + + + + + +  (42) 

 2 3 4
1 2 3 4 5 6 72

1 1s
p

s s s s s s s

c
a a a a T a T a T a T

R T T
= + + + + + +  (43) 

 
Parameters of the curve fit are listed in Tables 3 to 7 for each species.  
 

Table 3. Curve fit parameters for N2 in MaBride & Gordon’s model 
Parameter 200 – 1000 K 1000 – 6000 K 6000 – 20000 K 

a1s 2.210371497×104 5.877124060×105 8.31013916×108 
a2s -3.818461820×102 -2.239249073×103 -6.42073354×105 
a3s 6.082738360 6.066949220 2.020264635×102 
a4s -8.530914410×10-3 -6.139685500×10-4 -3.065092046×10-2 
a5s 1.384646189×10-5 1.491806679×10-7 2.486903333×10-6 
a6s -9.625793620×10-9 -1.923105485×10-11 -9.705954110×10-11 
a7s 2.519705809×10-12 1.061954386×10-15 1.437538881×10-15 
b1s 7.108460860×102 1.283210415×104 4.938707040×106 
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Table 4. Curve fit parameters for O2 in MaBride & Gordon’s model 
Parameter 200 – 1000 K 1000 – 6000 K 6000 – 20000 K 

a1s -3.425563420×104 -1.037939022×106 4.975294300×108 
a2s 4.847000970×102 2.344830282×103 -2.866106874×105 
a3s 1.119010961 1.819732036 6.690352250×101 
a4s 4.293889240×10-3 1.267847582×10-3 -6.169959020×10-3 
a5s -6.836300520×10-7 -2.188067988×10-7 3.016396027×10-7 
a6s -2.023372700×10-9 2.053719572×10-11 -7.421416600×10-12 
a7s 1.039040018×10-12 -8.193467050×10-16 7.278175770×10-17 
b1s -3.391454870×103 -1.689010929×104 2.293554027×106 

 
Table 5. Curve fit parameters for NO in MaBride & Gordon’s model 

Parameter 200 – 1000 K 1000 – 6000 K 6000 – 20000 K 
a1s -1.143916503×104 2.239018716×105 -9.575303540×108 
a2s 1.536467592×102 -1.289651623×103 5.912434480×105 
a3s 3.431468730 5.433936030 -1.384566826×102 
a4s -2.668592368×10-3 -3.656034900×10-4 1.694339403×10-2 
a5s 8.481399120×10-6 9.880966450×104 -1.007351096×10-6 
a6s -7.685111050×10-9 -1.416076856×10-11 2.912584076×10-11 
a7s 2.386797655×10-12 9.380184620×10-16 -3.295108350×10-16 
b1s 9.098214410×103 1.750317656×104 -4.677501240×106 

 
Table 6. Curve fit parameters for N in MaBride & Gordon’s model 

Parameter 200 – 1000 K 1000 – 6000 K 6000 – 20000 K 
a1s 2.5 8.876501380×104 5.475181050×108 
a2s 0 -1.071231500×102 -3.107574980×105 
a3s 0 2.362188287 6.91678274×101 
a4s 0 2.916720081×10-4 -6.847988130×10-3 
a5s 0 -1.729515100×10-7 3.827572400×10-7 
a6s 0 4.012657880×10-11 -1.098367709×10-11 
a7s 0 -2.677227571×10-15 1.277986024×10-16 
b1s 5.610463780×104 5.697351330×104 2.550585618×106 

 
Table 7. Curve fit parameters for O in MaBride & Gordon’s model 

Parameter 200 – 1000 K 1000 – 6000 K 6000 – 20000 K 
a1s -7.953611300×103 2.619020262×105 1.779004264×108 
a2s 1.607177787×102 -7.298722030×102 -1.082328257×105 
a3s 1.966226438 3.317177270 2.810778365×101 
a4s 1.013670310×10-3 -4.281334360×10-4 -2.97532262×10-3 
a5s -1.110415423×10-6 1.036104594×10-7 1.854997534×10-7 
a6s 6.517507500×10-10 -9.438304330×10-12 -9.438304330×10-12 
a7s -1.584779251×10-13 2.725038297×10-16 2.725038297×10-16 
b1s 2.840362437×104 3.392428060×104 8.89094263×105 

 
Comparisons of vibration and electron energy ( VE ) and its corresponding specific heat in 
constant volume ( Vc ) for each species are shown in figs. 1 to 5.  
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Figure 1. vibration & electron energy and corresponding specific heat in constant volume of N2 
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Figure 2. vibration & electron energy and corresponding specific heat in constant volume of O2 
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Figure 3. vibration & electron energy and corresponding specific heat in constant volume of  NO 
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Figure 4. vibration & electron energy and corresponding specific heat in constant volume of N 
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Figure 5. vibration & electron energy and corresponding specific heat in constant volume of O 
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Figures 1 to 5 show that electron energy mode is quite significant when the vibration 
temperature increase to around 10,000 K.  
 
4.2 Thermal properties 
 
The viscosity of each species is calculated from the following curve fits. For the five 
species considered in current code, coefficients of curve fits are listed in Table 8, with the 
original data being obtained from Candler’s dissertation [22]. 
 [ ]0.1exp ( ln ) lns s s sA T B T Cµ = + +  (44) 

 
Table 8. Curve fit coefficients of species viscosity 

Species N2 O2 NO N O 
As 0.0268142 0.0449290 0.0436378 0.0115572 0.0203144 
Bs 0.3177838 -0.0826158 -0.0335511 0.6031679 0.4294404 
Cs -11.3155513 -9.2019475 -9.5767430 -12.4327495 -11.6031403 

 
By combining the viscosity of each species, the total viscosity is calculated as 

 
5

1

s s

s s

y µµ
φ=

=∑  (45)  

Heat conductivities of each species corresponding to translation temperature and 
vibration temperature are calculated as 

 , ,
5( )
2s s vtr s vrot sc cκ µ= +  (46) 

 Vs s Vcκ µ=  (47) 
Total heat conductivities are calculated from species heat conductivities in a way similar 
to calculating total viscosity from species viscosities,  

 
5

1

s s

s s

y κκ
φ=

=∑  (48) 

 
5

1

s Vs
V

s s

y κκ
φ=

=∑  (49) 

In equations (45) to (49),  
21 14

1 8(1 )s sr
s r

r r s r

MMy
M M

µφ
µ

−⎡ ⎤ ⎡ ⎤⎛ ⎞⎢ ⎥= + +⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑  

 
The diffusion coefficient is determined by assuming a constant Lewis number, 

 e
s

p

LD
c

κ
ρ

= (Neutral heavy species, eL  = 1.4) (50) 

 
4.3 Chemical reactions 
 
For the five species air, there exist five reactions: three dissociation reactions for diatomic 
species and two exchange reactions.  
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2 2N M N M+ +  
  2 2O M O M+ +  

  NO M N O M+ + +  
  2N O NO N+ +  
  2NO O O N+ +  
 

In dissociation reactions, M  stands for a generic particle that acts as a collision partner in 
the reaction.  
 
Rates for each reaction are calculated using the following formula,  

2

1 1

2

1
N m N N m

f m b m
m N m N N m

R k k
M M M M M
ρ ρ ρ ρ ρ⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

2

2 2

2

2
O m O O m

f m b m
m O m O O m

R k k
M M M M M
ρ ρ ρ ρ ρ⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

3 33
NO m N O m

f m b m
m NO m N O m

R k k
M M M M M
ρ ρ ρ ρ ρ⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∑  

2

4 4

2

4
N O NO N

f b
N O NO N

R k k
M M M M
ρ ρ ρ ρ

= − +  

2

5 5

2

5
ONO O N

f b
NO O O N

R k k
M M M M

ρρ ρ ρ
= − +  

 
Chemical reaction source terms are obtained from reaction rates as,  
 

 

2 2

2 2

1 4

2 5

3 4 5

1 3 4 5

2 3 4 5

( )

( )

( )
( 2 )
( 2 )

N N

O O

NO NO

N N

O O

M R R

M R R

M R R R
M R R R R
M R R R R

ω

ω

ω
ω
ω

= +⎧
⎪

= −⎪⎪
⎨ = − +
⎪ = − − − −⎪
⎪ = − − + +⎩

 (51) 

 
4.4 Models of reaction rate coefficients 
 
The forward and backward reaction rate coefficients are defined based on translation 
temperature, and vibration temperature. Specifically, the following four models have 
been implemented,  
 

• Park’s model 1 [24] 
• Dunn & Kang’s model [25] 
• Park’s model 2 [26] 
• Park’s model 3 [27] 
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In Park’s models, the forward and backward reaction rate coefficients have the form of  
 ( ) ( )expf

f f fk T C T Tη θ= −  (52) 

 ( ) ( )
( )

f

eq

k T
b k Tk T =  (53) 

 
For dissociation reactions, VT TT=  or 0.7 0.3

VT T T= . While T is equal to translation 
temperature for exchange reactions. The backward reaction rate coefficients for all 
reactions are only defined on the translation temperature. For different Park’s model, the 
parameters in Eq. (52) and the formula of equilibrium constant ( eqk ) are different. 
 
For Park’s model 1, the formula of equilibrium constant is as follows, 
 2 3 4

1 2 3 4 5exp( )eqk a a z a z a z a z= + + + +  (54) 
 
where 10000z T=  . Table 9 lists the parameters used in Eq. (54) for each reaction. The 

parameters in Eq. (52) are listed in Table 10.  
 

Table 9. Parameters for equilibrium constant in Park’s model 1 
Reaction a1 a2 a3 a4 a5 

1 3.898 -12.611 0.683 -0.118 0.006 
2 1.335 -4.127 -0.616 0.093 -0.005 
3 1.549 -7.784 0.228 -0.043 0.002 
4 2.349 -4.828 0.455 -0.075 0.004 
5 0.215 -3.657 0.843 -0.136 0.007 

 
Table 10. Parameters for forward reaction rate coefficients in Park’s model 1 

Reaction Partner fC  (m3/kg s) fη  fθ  (K) 
1 N2 3.700e+15 -1.600 113200 

O2 3.700e+15 
NO 3.700e+15 
N 1.110e+16 
O 1.110e+16 

2 N2 2.750e+13 -1.000 59500 
O2 2.750e+13 
NO 2.750e+13 
N 8.250e+13 
O 8.250e+13 

3 N2 2.300e+11 -0.500 75500 
O2 2.300e+11 
NO 2.300e+11 
N 4.600e+11 
O 4.600e+11 

4 - 3.180e+7 0.100 37700 
5 - 2.160e+2 1.290 19220 
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For Park’s model 2, the formula of equilibrium constant is as follows, 
 2 3

1 2 3 4 5exp( ln )eqk a a z a z a z a z= + + + +  (55) 

where 10000z T=  . Table 11 lists the parameters used in Eq. (55) for each reaction. The 

parameters in Eq. (52) are the same as those listed in Table 10.  
 

Table 11. Parameters for equilibrium constant in Park’s model 2 
Reaction a1 a2 a3 a4 a5 

1 1.858 -1.325 -9.856 -0.174 0.008 
2 2.855 0.988 -6.181 -0.023 -0.001 
3 0.792 -0.492 -6.761 -0.091 0.004 
4 1.066 -0.833 -3.095 -0.084 0.004 
5 -2.063 -1.480 -0.580 -0.114 0.005 

 
 
For Park’s model 3, the formula of equilibrium constant is as follows, 
 1 2

1 2 3 4 5exp( ln )eqk a z a a z a z a z−= + + + +  (56) 

where 10000z T=  . Table 12 lists the parameters used in Eq. (56) for each reaction. The 

parameters in Eq. (52) are listed in Table 13.  
 

Table 12. Parameters for equilibrium constant in Park’s model 3 
Reaction a1 a2 a3 a4 a5 

1 1.606 1.5732 1.3923 -11.533 -0.004543 
2 0.64183 2.4253 1.9026 -6.6277 0.035151 
3 0.63817 0.68189 0.66336 -7.5773 -0.011025 
4 0.967940 0.891310 0.7291 -3.9555 0.006488 
5 -0.003732 -1.7434 -1.2394 -0.94952 -0.046182 

 
Table 13. Parameters for forward reaction rate coefficients in Park’s model 3 

Reaction Partner fC  (m3/kg s) fη  fθ  (K) 
1 N2 7.00e+15 -1.600 113200 

O2 7.00e+15 
NO 7.00e+15 
N 3.00e+16 
O 3.00e+16 

2 N2 2.00e+15 -1.500 59500 
O2 2.00e+15 
NO 2.00e+15 
N 1.00e+16 
O 1.00e+16 

3 N2 5.00e+9 0.000 75500 
O2 5.00e+9 
NO 1.10e+11 
N 1.10e+11 
O 1.10e+11 

4 - 6.40e+11 -1.000 38400 
5 - 8.40e+6 0.000 19450 
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For Dunn & Kang’s model, the forward reaction rate coefficient is calculated by formula 
similar to Eq. (52). However, the backward reaction rate coefficient is calculated using 
the following equation, with considering the equilibrium constant.  
 ( ) ( )expb

b b bk T C T Tη θ= −  (57) 
 
The parameters in Eqs. (52) and (57) are listed in Table 14.  

 
Table 14. Parameters for reaction rate coefficients in Dunn & Kang’s model 

Reaction Partner fC   
(m3/kg s) 

fη  fθ  (K) bC   
(m3/kg s) 

bη  bθ  (K) 

1 N2 4.70e+11 -0.5 113000 2.72e+4 -0.5 0 
O2 1.90e+11 1.10e+4 
NO 1.90e+11 1.10e+4 
N 4.085e+16 -1.5 2.27e+9 -1.5 
O 4.085e+16 2.27e+9 

2 N2 7.20e+12 -1.0 59500 6.00e+3 -0.5 0 
O2 3.24e+13 2.70e+4 
NO 3.60e+12 3.00e+3 
N 3.60e+12 3.00e+3 
O 9.00e+13 7.50e+4 

3 N2 3.90e+14 -1.5 75500 1.00e+8 -1.5 0 
O2 3.90e+14 1.00e+8 
NO 7.80e+14 2.00e+8 
N 7.80e+14 2.00e+8 
O 7.80e+14 2.00e+8 

4 - 7.00e+7 0.0 38000 1.56e+7 0.0 0 
5 - 3.20e+3 1.0 19700 1.30e+4 1.0 3580 

 
 
4.5 Energy relaxation 
 
In two temperature model, energy relaxation only happens between translation energy 
and vibration & electron energy, which can be expressed as 

 
1

*

,
,

( )
sS

vs vs shk vs
T v s s

vs shk vs shk

e T e T TQ
T T

ρ
τ

−

−

− −
=

−
 (58) 

where, * ( )vse T  is the vibration energy per unit mass of species s evaluated at the local 
translational temperature. The quantities shkT  and ,vs shkT  are the translational and vibration 
temperatures evaluated just behind the bow shock wave.  

,
,

1 8( )rr
vs s L T cs s

r sr L T s v s sr

y RTa
y a N M

τ τ τ
τ σ π−

−

= + = + =∑
∑

 

( )1 1
3 4

,
1 exp 0.015 18.42sr L T sr srA T
p

τ µ−
−

⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (p in atm) 
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413 321.16 10 ( )
s r

r sr vs sr
s r

M MA M Mµ θ µ−= × = +  

( )2
21 50,0003.5exp 10s

s v
shk

S T T
θ σ −⎛ ⎞= − =⎜ ⎟

⎝ ⎠
 

 
Here, sθ  is a defined characteristic temperature.  
 
 

5 Code validation and application 
 
To validate the code, we have tested three cases of one- and two-dimensional hypersonic 
nonequilibrium flows, i.e.,   
 

• Grossman et al.’s shock tube problem [28];  
• Hornung’s Nitrogen dissociation over 1 inch radius cylinder [29];   
• Gnoffo’s air flow over 1m radius cylinder;  

 
For the shock tube problem, both the fifth-order WENO scheme and the second-order 
TVD scheme are used. However, only the WENO scheme is used for the other two cases. 
Viscous fluxes are calculated by a sixth-order central scheme. Time integration of the 
governing equations is obtained using explicit Runge-Kutta method.  
 
5.1 One dimensional shock tube problem 

 
A 1-D shock tube problem was studied by Grossman and Walters [28] to test their 
computer code on the simulation of nonequilibrium and reactive flows. Later, it was also 
considered by Meng-Sing Liou et al. [30]. The problem involves five species air at high 
temperature and pressure. The temperature and pressure ratios of driver section to driven 
section are 30 and 100, respectively. In current test, the shock tube is 1 m long. The 
problem is solved by a second-order TVD scheme and a fifth-order WENO scheme.   
 
The initial flow conditions are: 
 

0 0.5mx≤ ≤ :   P = 100 atm, T = 9000 K, ρ = 2.641 kg/m3 
0.5 1.0mx≤ ≤ :  P = 1 atm, T = 300 K, ρ = 1.1737 kg/m3 

 
In this test case, initial concentrations of five species equilibrium air are calculated based 
on Dunn & Kang’s model [25] with constant pressure and constant temperature 
conditions. Densities of the mixture are exactly the same as those in Grossman and 
Walters’ paper. 
 
The following are simulation results at t=1.2d-4 second. Numerical simulation results are 
compared well with the exact real gas solution plotted in Grossman and Walters’ paper. 
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Figure 6. Pressure distribution along the shock tube 
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Figure 7. Density distribution along the shock tube 
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Figure 8. Velocity distribution along the shock tube 
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Figure 9. Specific energy distribution along the shock tube 
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Above figures show quite good agreements between our simulation results and the exact 
solution plotted in Grossman and Walters’ paper. The only significant discrepancy 
happens in density of gas mixture between the shock and the contact surface. There 
density of numerical simulation is lower than that of exact solution. Similar discrepancy 
happened in Grossman and Walters’ simulation results. Figure 9 is re-plotted by adding 
the density of Grossman and Walters’ numerical simulation as shown in Fig. 10.    
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Figure 10. Molar Specific energy distribution along the shock tube (re-plotted) 

 
The discrepancy in density might be caused by the numerical viscosity in finite difference 
scheme. Figure 10 shows that numerical viscosity in Steger-Warming scheme is much 
larger that those in current TVD scheme and WENO scheme. In all figures, the exact 
solution is obtained from the figure in Grossman and Walters’ paper, which is calculated 
using Colella and Glaz’s method [31].  
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5.2 Hornung’s Nitrogen dissociation over 1 inch radius cylinder 
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Figure 11. Geometry and free stream flow conditions 

 
In order to check new implemented subroutines, the test process is divided into three 
steps: 

1) Perfect gas flow. In this step, numerical simulation is conducted using original 
Jiang-Shu WENO scheme. The results are used as the standard solutions; 
 2) Perfect gas flow. Unlike the first step, here numerical simulation is conducted 
using new implemented Jiang-Shu WENO scheme and viscous flux subroutines for 
nonequilibrium flow (five species, two temperatures, viscosity and heat conductivity for 
gas mixtures). The temperature boundary condition on the cylinder is extrapolated. 
However, source terms are neglected. Here,  

 
CN2 = 1.00, CN = CO2 = CNO = CO = 0 

  
3) Nonequilibrium flow with isothermal boundary condition. 

 
For last three steps, the mass fractions of initial gas are 
   CN2 = 0.927, CN = 0.073 
   CO2 = CNO = CO = 0 

Geometry: Cylinder 
         Ri = 1.27 cm 
         X0 = 2.5 cm 
         Y0 = 5.0 cm 
Free stream conditions: 
         U∞ = 5594 m/s 
         ρ∞ = 4.98e-3 kg/m3 
         P∞ = 2910 Pa 
         T∞ = 1833 K 
         M∞ = 6.18 
Grid:     121 × 121 
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Comparisons of simulation results at steps 1 and 2 are shown in following two figures.  
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Figure 12. Pressure contours of steps 1 (red) and 2 (blue) 
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Figure 13. Density contours of steps 1 (red) and 2 (blue) 
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Figures 12 and 13 show pressure and density contours of simulations at steps 1 and 2. For 
both figures, blue contours stand for step 2 whereas red contours stand for step 1. 
Actually, the contours agree quite well. The good agreement between simulation results 
indicates that the new implemented inviscid and viscous subroutines are correct. 
 
Figure 14 compares pressure contours of numerical simulations at steps 2 (green) and 3 
(red). At step 3, chemical and thermal source terms are included. The figure shows that 
chemical reaction and thermal nonequilibrium dramatically decrease the shock standoff 
distance.   
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Figure 14. Pressure contours of steps 2 (green) and 3 (red) 

 
To validate the simulation results of nonequilibrium flow, the results at step 3 are also 
compared with Hornung’s experimental measurements as shown in the following three 
figures. The fringe number is calculated using the fomula, 

 ( ) ( )1.0 0.28
4160

NL C
F

ρ ρ
λ

∞− +
=  (59) 

 
In above equation, L is the geometrical path in experiment (0.1524 m), λ is the 
wavelength used for photograph (5.330-7 m), CN is mass fraction of atomic Nitrogen. To 
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convert computational result to interferogram, the contours of constant fringe number, 
( )2cos Fπ , is plotted. 
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Figure 15. Comparison of shock standoff distance (Dots stands for experimental measurement). 

 
Figure 16. Comparison of fringe patterns (the lower half is experimental measurement). 
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Figure 17. Quantitative comparison of fringe number. 

 
As shown in figures 15 to 17, the shock standoff distance agrees well with experiment 
and the fringe pattern matches quite well with Hornung's experimental measurements. 
The test result on this case validated that the implementations of nonquilibrium and 
reactive flow solver to the ADPDIS3D code is correct.   
 
5.3 Gnoffo’s air flow over 1 m radius cylinder 
 
Similar to section 5.2, the test scenario of this case is divided into three steps: 
    1) Perfect gas flow. In this step, numerical simulation is conducted using original 
Jiang-Shu WENO scheme. The results are used as the standard solutions; 
 2) Perfect gas flow. Numerical simulation is conducted using new implemented 
Jiang-Shu WENO scheme and viscous flux subroutines for non-equilibrium flow. The 
temperature boundary condition on the cylinder is extrapolated. However, source terms 
are neglected. To compared with the result of step 1, mass fractions are chosen as    
 

CN2 = 1.00, CN = CO2 = CNO = CO = 0  
 

   3) Nonequilibrium flow with isothermal boundary condition. The isothermal 
boundary conditions on the cylinder currently used are as follows,  
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0sc
η
∂

=
∂

, where sc  is mass fraction                    0p
η
∂

=
∂

 

  u = v = w = 0, no-slip condition 
 
The two temperatures on the cylinder are assigned to be equal to Tw (= 500 K). Total 
density is computed from pressure and translational temperature. Then species densities 
are calculated with total density and mass fraction. Total energy and vibration energy are 
calculated using species densities and two temperatures. 
 
For steps 3 & 4, the mass fractions of initial gas are as follows,  
  
   CN2 = 0.76, CO2 = 0.24 
   CNO = CN = CO = 0 
 
To make the results comparable, all simulations are carried out on a 61 × 129 grid, 
exactly the same as what Gnoffo used in his simulation. Flow conditions and geometry 
are schematically shown below.  
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Figure 18. Geometry and free stream flow conditions. 

 
Test results at steps 1 and 2 are neglected, because they are quite similar to what we get 
in section 5.2. The simulation results are also compared with Gnoffo’s results obtained 
from Laura.  

 
Geometry: Cylinder 
         Ri = 2.54 cm 
         X0 = 4.00 cm 
         Y0 = 7.50 cm 
 
Freestream conditions: 
          U∞ = 5000 m/s 
          ρ∞ = 1.0e-4 kg/m3 
          Tw = 500 K 
          T∞ = 200 K 
 
Grid:  61 × 129  
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Figure 19. Comparison of temperature distributions along the stagnation line. 
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Figure 20. Comparison of pressure contours. 
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Figure 21. Comparison of pressure distributions along the stagnation line. 
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Figure 22. Comparison of species density distributions along the stagnation line 
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In figures 19 to 21, solid black line represents numerical simulation results of Gnoffo, 
obtained using the Laura code. The other two lines represent the results from the 
ADPDIS3D code using different models of vibration and electron energy. Dashed red 
line and Dashdotted blue line stands for the results using Candler’s model and McBride’s 
model, respectively. In Gnoffo’s simulation, McBride’s model is used.  
 
These figures show that when McBride’s model of vibration and electron energy is used, 
our simulation result with the ADPDIS3D code have a good agreement with Gnoffo’s 
simulation based on Laura code. When Candler’s model of vibration and electron energy 
is used, our results have visible differences with Gnoffo’s result near the shock. The 
reason for the differences is that Candler’s model of vibration and electron energy is too 
simple, only being accurate enough for low temperature. Figure 22 shows that the species 
density distributions along the stagnation line obtained from current WENO scheme have 
quite reasonal agreement with those obtained from Laura code. Again, the test results on 
this case validate that the implementations of nonquilibrium and reactive flow solver to 
the ADPDIS3D code is correct.  
 
 

6. Summary 
 
A CFD solver based on a fifth-order WENO scheme is developed for the simulation of 
nonequilibrium and reactive high-speed flows. The solver is implemented to the 
ADPDIS3D computer code package developed mainly by Yee and Bjorn, based on 
Park’s two-temperature model. It is assumed that translation and rotation energy modes 
are in equilibrium at the translation temperature whereas vibration and electron energy 
modes are in equilibrium at the vibration temperature. The flow solver uses the fifth-
order WENO scheme of Jiang and Shu with Roe’s data reconstruction to model the 
inviscid fluxes. In order to validate the code, Yee’s second-order TVD scheme is also 
implemented. Viscous fluxes are calculated by a sixth order central scheme. Time 
integration of the governing equations is obtained using explicit Runge-Kutta method. 
The code is validated by appling to numerical simulations of Grossman and Walters’ 
shock tube problem, Hornung’s Nitrogen dissociation problem over 1 inch radius 
cylinder, and a new problem of five species air over 1 meter radius cylinder. The results 
show that the WENO solver is accurately enough to simulate nonequilibrium and reactive 
hypersonic flows.    
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