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Abstract Direct numerical simulations of receptivity in a boundary layer over a
flat plate and a sharp wedge were carried out with two-dimensional perturbations
introduced into the flow by periodic-in-time blowing-suction through a slot. The
free stream Mach numbers are equal to 5.92 and 8 in the cases of adiabatic flat plate
and sharp wedge, respectively. The perturbation flow field was decomposed into
normal modes with the help of the multimode decomposition technique based on the
spatial biorthogonal eigenfunction system. The decomposition allows filtering out
the stable and unstable modes hidden behind perturbations having another physical
nature.

1 Introduction

The progress being made in computational fluid dynamics provides an opportunity
for reliable simulation of such complex phenomena as laminar-turbulent transition.
The dynamics of flow transition depends on the instability of small perturbations
excited by external sources. Computational results provide complete information
about the flow field that would be impossible to measure in real experiments.

Recently, a method of normal mode decomposition was developed for two- and
three-dimensional perturbations in compressible and incompressible boundary lay-
ers [6, 2, 7]. The method was applied to analysis of DNS data for perturbations
introduced through the wall in the vicinity of the actuator [9]. The analysis demon-
strated very good agreement between amplitudes of the modes filtered out from the

A. Tumin
The University of Arizona, Tucson, AZ 85721, USA, e-mail: tumin@email.arizona.edu

X. Wang
University of California, Los Angeles, CA 90095, USA, e-mail: xiaowen@seas.ucla.edu

X. Zhong
University of California, Los Angeles, CA 90095, USA, e-mail: xiaolin@seas.ucla.edu

427

© Springer Science+Business Media B.V. 2010

P. Schlatter and D.S. Henningson (eds.), Seventh IUTAM Symposium on Laminar-Turbulent
Transition, IUTAM Bookseries 18, DOI 10.1007/978-90-481-3723-7_69,



428 A. Tumin, X. Wang, X. Zhong

DNS data and linear theory of the flow receptivity to blowing-suction through the
wall.

In the present work, we apply the multimode decomposition to DNS results in
a boundary layer past a flat plate and a sharp wedge downstream from the actuator
in order to compare amplitudes of the modes found from the computations with the
predictions of the linear stability theory.

2 Outline of the method

The method of multimode decomposition of perturbations having a prescribed fre-
quency is based on the biorthogonal eigenfunction system for linearized Navier-
Stokes equations [7]. For the clarity of further discussion, we reproduce the main
definitions necessary for discussing the present work.

We consider a compressible two-dimensional boundary layer in the Cartesian co-
ordinates, where x and z are the downstream and spanwise coordinates, respectively,
and coordinate y corresponds to the distance from the wall. We write the governing
equations (the linearized Navier-Stokes equations) for a periodic-in-time perturba-
tion (the frequency is equal to zero in the case of a roughness-induced perturbation),
∼ exp(−iωt), in matrix form as

∂
∂y

(
L0

∂A
∂y

)
+L1

∂A
∂y

= H1A+H2
∂A
∂x

+H3
∂A
∂ z

+H4A (1)

where vector A is comprised of velocity components, pressure, temperature, and
some of their derivatives; L0,L1,H1,H2,H3, and H4 are 16× 16 matrices (their
definitions are given in Ref. [8]). Matrix H4 originates from the nonparallel char-
acter of the flow. It includes terms with the y-component of the mean flow velocity
and derivatives of the mean flow profiles with respect to the coordinate x.

In the quasi-parallel flow approximation, the solution of the linearized Navier-
Stokes equations can be expanded into normal modes of the discrete and continuous
spectra {Aαβ ,Bαβ} [7], where Aαβ and Bαβ are eigenfunctions of the direct and
adjoint problems. Subscripts α and β indicate the eigenfunctions corresponding to
the streamwise, α , and spanwise, β , wavenumbers, respectively. The eigenfunction
system {Aαβ ,Bαβ} has an orthogonality relation given as

〈
H2Aαβ ,Bα ′β

〉
≡

∞∫

0

(
H2Aαβ ,Bα ′β

)
dy = Γ ∆αα ′ (2)

where Γ is a normalization constant, ∆αα ′ is a Kronecker delta if either α or α ′

belongs to the discrete spectrum, and ∆αα ′ is a Dirac delta function if both α and
α ′ belong to the continuous spectrum.

In a weakly nonparallel flow, one can employ the method of multiple scales by
introducing fast (x) and slow (X = εx,ε ≪ 1) scales. The mean flow profiles depend
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on y and X only, whereas the perturbation will depend on both length scales. In
the case of a discrete mode, solution of the linearized Navier-Stokes equation is
presented in the form

Aβ (x,X ,y) =
[
Dν (X)Aαν β (X ,y)ei

∫
αν (X)dx + εA(1)

αν β (X ,y)ei
∫

αν (X)dx + . . .
]

(3)

where the function Dν (X) has to be determined. After substitution of Eq. (3) into

Eq. (1), we arrive in order O(ε) at an inhomogeneous equation for A(1)
αν β . The solv-

ability condition of this equation allows finding Dν (X) (one can find details and
relevant references in [8]).

3 Numerical Approach

In the present work, we used the DNS results for flows past a flat plate and a sharp
wedge with periodic-in-time perturbations introduced through the wall [10, 11].
The flow is assumed to be thermally and calorically perfect. The governing equa-
tions are the Navier-Stokes equations for a compressible gas in the conservative
form. The fifth-order shock-fitting finite difference method of Zhong [12] is used
to solve the governing equations in a domain bounded by the bow shock and the
flat plate (or wedge). In other words, the bow shock is treated as a boundary of
the computational domain. The Rankine-Hugoniot relations across the shock and a
characteristic compatibility relation coming from downstream flow field are com-
bined to solve the flow variables behind the shock. The shock-fitting method makes
it possible for the Navier-Stokes equations to be spatially discretized by high-order
finite difference methods. Specifically, a fifth-order upwind scheme is applied to
discretize the inviscid flux derivatives. By using the shock-fitting method, the inter-
action between the bow shock and the wall forcing induced perturbations is solved
as a part of solutions with the position and velocity of the shock front being solved
as dependent flow variables. A second-order TVD scheme [13] is applied to simu-
late the steady base flow in a small region including the leading edge to supply inlet
conditions for the shock-fitting simulation. The same numerical method was used in
Refs. [3, 4, 5]. Both cases correspond to the adiabatic wall boundary condition.

4 Results

4.1 Flat plate

Free-stream flow conditions: Mach number M∞ = 5.92, temperature T∞ = 48.69
K, pressure p∞ = 742.76 Pa. The Prandtl number and the specific heats ratio are
0.72 and 1.4, respectively. The periodic-in-time blowing-suction has been applied
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through a slot having coordinates of the leading and trailing edges at 33 mm and
37 mm from the leading edge, respectively. The frequency of the perturbation was
100 kHz. Analyses of the mean flow velocity, temperature profiles and their deriva-
tives have shown that they agree well with the self-similar solution for a boundary
layer over a flat plate. Therefore, self-similar profiles have been used in the stability
equations. In order to deal with the two-dimensional perturbations within the solver
of Refs. [7, 8], the spanwise wave number β scaled with the Blasius length scale,
L = (µ∞x/ρ∞U∞)1/2, was chosen equal to 10−5.
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Fig. 1 Discrete modes and the continu-
ous spectrum. FA and SA stand for fast
and slow acoustic modes, respectively.
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Fig. 2 Real parts of the phase veloc-
ities of the discrete modes F and S
scaled with the free stream velocity U∞.

In order to illustrate further analysis of DNS results, features of the spectrum
should be introduced. Figure 1 shows the branches of the continuous spectrum and
two discrete modes at x = 0.08 m. One of the discrete modes is labeled as mode
F (fast), the other is labeled as mode S (slow). The modes’ names stem from their
phase velocity features in the vicinity of the leading edge. One can see in Fig. 2
that mode S is synchronized with the slow acoustic wave (cr = 1−1/M∞), whereas
mode F is synchronized with the fast acoustic wave (cr = 1+1/M∞). At the chosen
flow parameters, mode F is always stable, and mode S is the unstable mode. One can
see that mode F is synchronized with vorticity/entropy modes having dimensionless
phase velocity cr = 1 at x ≈ 0.25 m. The significance of the decaying mode F stems
from its synchronization with mode S, where the decaying mode can give rise to the
unstable mode (switching of the modes), which may lead to the transition [1].

Figure 3 shows pressure perturbation on the wall (scaled with the free stream
pressure) obtained in the DNS (indicated as “measured”) and projections on the
discrete modes F and S. Amplification and decay of the discrete modes has been
evaluated including the nonparallel flow effects as it is outlined in section 2. We
do not show the amplitudes of the modes calculated within the quasi-parallel flow
approximation. In the case considered, the nonparallel flow effect is significant. The
“measured” data for the wall pressure perturbation have wiggles near the actuator



Direct Numerical Simulation and Theoretical Analysis of Perturbations 431

0.0 0.5 1.0 1.5

1E-6

1E-5

1E-4

1E-3

0.01

F, DNS projection

S, DNS projection

S2F, theory

S, theory

P
w
al
l/P

in
f

 DNS "measured"
 DNS projection, mode S
 DNS projection, mode F
 mode F, theory
 mode S, theory
 "S2F centaur", theory

x (m)

F, theory

Fig. 3 Discrete modes and the contin-
uous spectrum.
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Fig. 4 Real parts of the phase veloc-
ities of the discrete modes F and S
scaled with the free stream velocity U∞.

region due to input from the various modes presented in the signal. The filtered out
amplitude of the unstable mode S is smooth, and it is in good agreement with the
theoretical prediction on the whole interval. It is interesting to look at the filtered
out decaying mode F. It is in good agreement with the theoretical prediction (thin
solid line) up to x ≈ 0.25 m. After that, it has a jump and the amplitude becomes
comparable with the amplitude of the mode S. The result can be attributed to the

next term in the expansion (3). The second term, A(1)
αν β (X ,y), can be expanded into

the eigenfunction system. It is a standard problem of finding eigenfunctions of a
perturbed operator using the unperturbed basis. For the non-resonance case when
eigenvalues of modes F and S are distinct (αS 6= αF ), it is straightforward to find

a projection of A(1)
αSβ (X ,y) on AαF β (X ,y) (indices S and F indicate slow and fast

discrete modes, respectively):

CF (X) =
DS (X)

i(αF −αS)

〈
H2

∂A(0)
S

∂X ,B(0)
F

〉
+
〈

H̄4A(0)
S ,B(0)

F

〉

〈
H2A(0)

F ,B(0)
F

〉 (4)

where H̄4 = ε−1H4. For the purpose of brevity, we use only indices F and S indicat-
ing the fast and slow modes, respectively. The input of mode F into the second term
of Eq. (3) has a wave number (and phase speed) corresponding to mode S. We call
this contribution of the mode F as “S2F centaur” in order to emphasize the twofold
character of the term. The wall pressure perturbation associated with “S2F centaur”
is shown in Fig. 3 as well. Although the theoretical result for mode F downstream
from the point of synchronism demonstrates qualitatively the same behavior as the
amplitude of the DNS projection onto the mode F, there is a quantitative discrepancy
that has yet to be understood.
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4.2 Wedge

Free-stream flow conditions: Mach number M∞ = 8, temperature T∞ = 54.8 K, pres-
sure p∞ = 389 Pa. The Prandtl number and the specific heats ratio are 0.72 and
1.4, respectively. The periodic-in-time blowing-suction has been applied through a
slot having coordinates of the leading and trailing edges at 51.84 mm and 63.84
mm from the leading edge, respectively. Frequency of the perturbation is 104.44
kHz.The wedge half-angle is equal to 5.3o degrees. In this example, we use the ve-
locity and temperature profiles obtained in the computation. The result of the DNS
data projection onto the mode S and comparison with theoretical results is shown in
Fig. 4.

The results of sections 4.1 and 4.2 illustrate how the multimode decomposition
technique may serve as a tool for gaining insight into the flow dynamics in the
presence of perturbations belonging to different modes.
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