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Understanding of transition of hypersonic boundary layers is critical for future
development of re-entry vehicles. The receptivity of such a boundary layer to
external flow disturbances is not well understood, particularly when the surface has
finite-sized roughness. In this work, we explore the use of shock capturing for study
of hypersonic boundary layer receptivity. In such problems, the interaction of the
low-amplitude disturbances with shock structures may not be properly accounted
for due to the localized dissipation inherent in the method. Previously-developed
previously-developed WENO-based third- and fifth order shock capturing methods
are applied to a receptivity problem, the Mach 4.5 flow past a flat plate with a
sharp leading edge. This problem has been studied previously with a high-order
shock fitting scheme. The shock-fitted solution is used to evaluate shock capturing
schemes in terms of accuracy, efficiency and stability. Also, the significance of the
leading edge singularity will be studied, which was not possible with a shock fitting
method.

I. Introduction

The transition to turbulence from a laminar boundary layer in supersonic and hypersonic flow
is key in the future development of space vehicles. Physically, a turbulent flow applies greater
shear and thermal stresses on a vehicles than a laminar flow, hence an accurate prediction to
turbulence plays a critical role in the structural and thermal design of these vehicles. Transition
to turbulence generally occurs due to the nonlinear interaction between the boundary layer and
freestream disturbances.5,6, 18,20 Now, if the freestream disturbances are small in amplitude then the
transition process starts near the leading edge of the body with the receptivity process. This process
is critical since it consists of the initial exchange of energy between the freestream disturbances and
the boundary layer modes, for example, the Tollmien-Schlichting (T-S) modes.19,50 The receptivity
then leads to a transient stage where the boundary layer modes exhibit a linear eigenmode growth.
The nonlinear interaction between several of these amplitude increasing boundary layer modes
leads to turbulence. Other forms of transitions to turbulence are also possible. For example, a
transition known as a “bypass transition” occurs when the amplitude of the freestream disturbances
is relatively large. In a bypass transition the linear growth of boundary layer modes is not present.
A high altitude atmospheric re-entry flight generally undergoes small amplitude disturbances, hence
the process of receptivity becomes crucial in understanding transition.
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A popular transition prediction approach is the eN method, however, it lacks the accountability
of the freestream disturbances in the process of transition, i.e. the process of receptivity. Receptivity
for incompressible flow has been under extensive study over the last few decades.49 However,
studies of compressible flow receptivity have shown that the process of receptivity for supersonic
and hypersonic flows differs fundamentally when compared to receptivity of subsonic and weakly
supersonic flows.21,22,41,43 The process of receptivity consists of the interaction of freestream
disturbances with the boundary layer modes, which have been well characterized by Mack,37 referred
to now as Mack modes. Various theoretical studies have observed the significance of the receptivity
process near the leading-edge and the dependence of boundary layer mode excitation on diffraction,
diffusion and the incident angle of the incoming freestream disturbances.17,34,37,39–43 Experimental
studies have also elaborated on the significant dependence of the transition location on the initial
freestream disturbances, i.e. receptivity.33,35,36,44,45,48

Computational studies using direct numerical simulation (DNS) have also been conducted in
understanding the process of receptivity.15,16 Using a fifth order shock fitting scheme, Zhong32

studied the receptivity of a hypersonic boundary layer over a parabola and concluded that acoustic
disturbances dominate in the transfer of energy to the boundary layer modes over vorticity and
entropy waves. A Mach 4.5 DNS over a flat-plate was performed by Ma & Zhong.21,22 They
observed the generation of a family of stable modes in conjunction with the first two dominant
Mack modes in the process of receptivity. The stable modes were observed to act as a medium in
the transfer of energy between the freestream disturbances and the unstable Mack modes. Egorov
et al., simulated a supersonic boundary layer using a TVD scheme and their result agreed well with
LST.8

The receptivity of a compressible boundary layer over a flat plate under supersonic and hy-
personic conditions involves the propagation of very small wave disturbances, hence a relatively
high order spatial scheme is required to properly capture these physical phenomenon. The analysis
is further complicated by the presence of a bow shock, for example, generated near the leading
edge of the flat plate. It is well known that any wave, whether it is an acoustic wave, an entropy
wave or a vorticity wave interacting with a shock always generates all three of these wave in the
downstream region.7 In the flow over a flat plate the freestream disturbances first pass through the
shock. These waves then diffract near the leading edge and also reflect off the flat-plate boundary
and propagate back to the shock and go through more reflections there. Hence, the receptivity of
a relatively simple geometry is made considerably more complicated. Ma & Zhong21,22 conducted
a DNS of this problem using a fifth order shock fitting scheme.23 The shock fitting algorithm gives
the flexibility of using a relatively high order spatial scheme needed for resolving small amplitude
wave propagation with a presence of a shock at a boundary of the computational domain.

Even with these advantages, the shock fitting method is limited to only resolving simple shock
structures, for example, shocks over a blunt body. The shock fitting method fails to resolve the
leading edge singularity and other complicated shock structures, which maybe present in the flow
for example due to an isolated surface roughness.

A. Previous approaches to shock capturing methods

To overcome some of these limitations of shock fitting, various high order shock capturing algorithms
are available. Shu & Osher24 developed a high order cell based Essentially Non Oscillatory (ENO)
scheme which overcame low order limitations of previous shock capturing schemes such as various
time varying diminishing (TVD) schemes. Jaing & Shu31 further extended the cell based ENO
scheme to a node based Weighted ENO scheme (WENO). They were also able to modify the
smoothness indicators to acquire the nominal order of accuracy in the smooth regions. However,
shock capturing schemes have their own drawbacks. Perhaps the biggest disadvantage is that
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any unsteady solution propagating through the shock reduces to first order accuracy.46 Another
disadvantage is that a shock capturing scheme is computationally expensive relative to conventional
finite difference schemes. The increased expense comes from the automated determination of high-
gradient zones and reduction of algorithm accuracy near these zones in-order to keep the solution
essentially oscillation free. To reduce the dissipative nature of the WENO scheme, Martin & Taylor
et al.28 have performed optimization of the underlying differencing operator in wavenumber space.
Instead of using an upwind stencil, they used a symmetric stencil with a free stability parameter
to reduce dissipation while maintaining the high order of accuracy.

To reduce the computational expense of WENO, various researchers have adapted hybrid ap-
proaches where the WENO algorithm is applied primarily near discontinuities. For example, Piroz-
zoli25 combined a conservative upwind compact finite difference with a conservative WENO method.
However, there was a slight problem with abrupt switching between the two algorithms which was
improved by Ren et al.27 Hill & Pullin26 used a central difference scheme in the smooth regions to
further reduce dissipation. Taylor et al.29 decided not to use two different schemes between smooth
and discontinuous regions. Instead two rate limiters were introduced, which limit the activation of
the WENO weights to discontinuous zones. It was noted earlier that any solution passing through
the shock reduces in accuracy to first order. Casper46 was able to develop a sub cell refinement
procedure for the shock zone in order to maintain the nominal order of accuracy of the method for
a 1D problem. However, drawbacks were noted on the added expense required and further com-
plication of extending the procedure to multi-dimensional problems. A multi-dimensional hybrid
WENO with sub-cell refinement has also been developed.30

B. Scope of this work

Keeping the above questions in mind, the purpose of this work is to examine the accuracy of shock
capturing when applied to hypersonic boundary layer receptivity. This assessment will be made on
the benchmark problem of a Mach 4.5 flow past a flat plate, previously computed by Ma & Zhong
using a higher order shock fitting method.21 The schemes of interest include the third and fifth
order conventional WENO scheme mentioned earlier.31 One objective here is to evaluate shock
capturing schemes in terms of accuracy, stability and efficiency with a conventional shock fitting
finite difference scheme on the complicated physics of receptivity. Another objective here is to
determine whether the leading edge, which was previously excluded, plays any significant role in
the problem of receptivity. This benchmark of the selected shock capturing methods will help asses
their effectiveness and robustness for the hypersonic receptivity simulations. This study will also
test some of its limitations, in terms of dissipation and computational expense, perhaps shedding
critical insight on possible algorithm refinements.

A successful receptivity study will give confidence in these schemes in accessing new and more
complicated receptivity studies such as receptivity of a hypersonic boundary layer with an isolated
or distributed surface roughness elements of finite heights.

II. Governing equations

The conservative form of the compressible Navier-Stokes equations in curvilinear coordinates is
used to obtain solution to the numerical experiments.3 The vector representation of these equations
in two-dimensional Cartesian coordinates, to avoid excessive cluttering, is given by

3 of 14

American Institute of Aeronautics and Astronautics






ρ

ρu

ρv

e




t

+




ρu

ρu2 + p− τxx

ρuv − τxy

(e + p)u− uτxx − vτxy + qx




x

+




ρv

ρuv − τxy

ρv2 + p− τyy

(e + p)v − uτxy − vτyy + qy




y

= 0 (1)

or in a general conservation form

Ut + fx + gy = 0 (2)

where, in both equation (1) and (2), the subscripts x and y denote their respective derivatives in
spatial directions of x and y, while the subscript t denotes a derivative in time.

In equation (1) e, τij and qi represent the total energy, viscous stress tensor and the heat flux,
respectively, given by
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qi = −κ
∂T

∂xi
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Equations (4) and (5) include µ and κ, the dynamic viscosity and the thermal conductivity, respec-
tively. The viscosity is computed using Sutherland’s law, while the thermal conductivity is related
to µ via the Prandtl number; the Prandtl number is taken to be Pr = µcp/κ = 0.72, the Prandtl
number of air. Last, the state equation for thermally and calorically perfect gas is used to close
the system of equations,

p = ρRT . (6)

III. Numerical Method

The method of lines is used to construct a system of semi-discrete ordinary differential equations
from the system of partial differential equations. All numerical experiments conducted in this paper
use Roe average flux splitting.4 This work is interested in numerical experiments of hypersonic and
supersonic flow problems where complex shock structures may be present. Hence, inviscid fluxes
are reconstructed with a shock capturing algorithm. Furthermore, the shock capturing algorithm
must be based on a higher order method such that it is able to propagate low-amplitude waves and
transmit them through a shock with reasonable grid resolution and low numerical dissipation. The
WENO method is used in all of the numerical experiments in this paper.31

A WENO reconstruction of a flux with 2r− 1 order accuracy uses a stencil with 2r− 1 points.
This stencil consists of smaller r substencils. Associated with each substencil is a lower order flux
reconstructions, a smoothness indicator, and a nonlinear WENO weight. The lower order substencil
flux reconstructions are multiplied by their respective weights and then summed over the entire
stencil to reconstruct the higher order flux. The smoothness indicators determine whether a WENO
weight is nearly zero in non-smooth regions or nearly a constant, Cl, in smooth regions. When
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a substencil is in a discontinuous region its WENO weight approaches zero, effectively negating
the associated substencil flux. When the substencil is in a smooth region its weight approaches
the constant, Cl, retaining the nominal accuracy of the substencil flux there. There are many
variations of WENO. In the present work Jiang and Shu’s WENO scheme is used in all numerical
experiments.31 A third order TVD Runge-Kutta scheme is selected to integrated the semi-discrete
equation in time.31

IV. Frequency Analysis

Before proceeding to the benchmark problem of receptivity over a flat plate, it is important to
understand how the nonlinear WENO scheme behaves for a simple wave propagation. This analysis
will provide guidance on the required grid resolution for resolving the flow structures associated
with the linear problem of receptivity

The current analysis follows that of Pirozzoli,2 where a modified wavenumber is obtained nu-
merically for nonlinear shock capturing schemes. Consider the following linear wave equation

Ut + fx = 0, U(x, 0) = U0(x) −∞ < x < +∞ (7)

where

f(U) = aU, a = const. > 0 (8)

and the function is initially sinusoidal,

U0(x) = Û0e
ikx, (9)

where k is a wavenumber. The exact solution to the linear wave equation for this initial condition
is given by

U(x, 0) = Û0e
ik(x−at). (10)

Now, suppose the problem is solved on a periodic grid with uniform resolution xj = j∆x. In
discrete form equation (7) becomes

dUj

dt
= − a

∆x

r∑

l=−r

alUj+l, Uj(0) = Û0e
ijk∆x (11)

Note, for a linear differencing equation (11) has a well-known exact solution

Uj(t) = Û(t)eijk∆x, (12)

where the complex time dependent amplitude is expressed as

Û(t) = Û0e
−i(at/∆x)Φ(k∆x) (13)

and k∆x is the reduced wavenumber and Φ is the modified wavenumber, which ideally is Φ(k∆x) =
k∆x.1

For a nonlinear scheme such as WENO, such an exact solution is not possible. To obtain
the modified wavenumber numerically, Pirozzoli2 proposed to first numerically compute a forward
propagating wave advanced to a small time ts, Uj(ts), then compute its discrete Fourier transform
to obtain the complex wave amplitude at time ts, Û(k∆x)|t=ts . Solving for Φ in equation (13) and
substituting the numerical solution gives the following relationship for the modified wavenumber2

Φ(k∆x) =
i∆x

ats
log

(
Û(k∆x)|t=ts

Û0

)
(14)
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Figure 1. Real (a) and imaginary (b) parts of the modified wavenumber for the the following schemes,
— 3rd upwind, — — 5th order upwind, —o 3rd order WENO, — —o 5th order WENO

Following this analysis, the dispersion and dissipation properties of the WENO schemes can
be approximately determined. The modified wavenumber is calculated for third and fifth order
WENO schemes. To understand the behavior of the nonlinear weights on a linear traveling wave,
the modified wavenumber is obtained with and without active substencil smoothness indicators.
In smooth regions, WENO is designed to revert to the nominal higher order upwind scheme. The
same nominal higher order upwind scheme is achieved by deactivating the nonlinear WENO weights.
Figure 1a and 1b depict, respectively, the real part of the modified wavenumber, scaled by π, and
the non-scaled imaginary part of Φ versus the reduced wavenumber scaled by π, k∆x/π. Note, third
and fifth order upwind curve represent the schemes with deactivated WENO weights, while third
and fifth order WENO curves represent the schemes with activated WENO weights. For upwind
schemes the typical trends for dispersion and dissipation are obtained. Furthermore, activation of
the WENO weights has the effect of making both third and fifth order schemes more dispersive
and dissipative than their linear counterparts. That is, more grid resolution is by default necessary
when using WENO.

Taking this analysis a step further one can estimate the resolution necessary to simulate a
wave traveling a given distance with dissipation below some tolerance. Here, we consider a long-
range propagation over 100 wavelengths, which is relevant to our receptivity study. The amplitude
decay is obtained by setting the time, t, in the linear model solution (13) to that of a hundred
wavelengths of travel, t = 100λ/a, where λ = 2π/k. Normalizing by the original wave amplitude
gives the fractional decay, which is plotted against the reduced wavenumber scaled by π in figure 2.
Note that the typically accepted grid resolution of twenty points per wavelength, or k∆x/π = 0.1, is
appropriate only for the fifth order upwind scheme, that is, it retains more than 97% of its original
amplitude. For the remaining schemes, the amplitude of the propagated wave decays to a value
below ninety, thirty and one percent of its original value for the fifth order WENO, third order
upwind and the third order WENO schemes, respectively.

Indeed, for fifth order WENO any grid using over approximately thirty points per wavelength
would be sufficient, while, for a third order upwind scheme the required grid resolution would need
to be seventy to eighty points per wavelength. Last, for the third order WENO scheme, more than
one hundred points per wavelength are needed in order to reduce a decay within reason.

6 of 14

American Institute of Aeronautics and Astronautics



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k∆ x/π

|U
(1

0
0

λ
/
a

)|
/|

U
(0

)|

 

 

^
^

Figure 2. Fractional amplitude decay over a hundred wavelengths for the the following schemes, —
— 3rd upwind, — 5th order upwind, — —o 3rd order WENO, —o 5th order WENO

V. Problem statement

The receptivity study is focused on a flat-plate boundary layer under supersonic conditions.
An oblique shock develops at the leading edge of the flat plate due to the viscous boundary layer
effects. Freestream disturbances must first pass through the oblique shock, generating acoustic,
entropy and vorticity waves downstream. These waves diffract at the leading edge and reflect at
the flat plate boundary propagating back to the oblique shock, causing further reflections. Since, in
a shock capturing scheme, the order of accuracy near the shock reduces to first order, the accurate
propagation of freestream disturbance across the shock will be crucial. In this study the freestream
parameters are the same as ones used in Ma & Zhong,21,22

M∞ = 4.5 T∞ = 61.16 K
p∞ = 728.4381557 Pa Pr = 0.72

Unit Reynolds number: Re∞ = ρ∞u∞
µ∞ = 7.2× 106 m−1

The flow field is depicted in figure 3. Ma & Zhong21,22 solved this problem using a fifth-order
shock fitting algorithm. With this approach, they were able to get very close to the leading edge,
however, were unable to compute the disturbances at the singular point; instead a TVD scheme
was used to generate the shock root. They observed the coexistence of a family of stable boundary
layer modes, for example, mode I and mode II, with the unstable second Mack mode. Here, mode
I and mode II are generated by the fast acoustic wave commonly referred to as mode F. Although
the unstable Mack mode did not directly respond to the freestream disturbance, it interacted
through the stable boundary layer modes which acted as an energy exchange medium. Hence, the
accuracy of shock capturing schemes will be evaluated on wave propagation through the shock and
the exchange of energy between freestream disturbances and boundary layer modes. Furthermore,
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Figure 3. A diagram of the receptivity of a flat plate boundary layer adapted from Ma & Zhong’s
studies.21

effects of the leading edge will be observed, which were previously excluded. In the studies of Ma
& Zhong, the forcing was provided by a plane acoustic mode varied over several frequencies and
with varying incident angles. We will test one of their cases in this study with a forcing frequency
of 177.81 kHz with an amplitude of û = 5×10−5u∞ and an incident angle of zero degrees for a fast
acoustic wave and an adiabatic wall boundary condition. For this frequency and flow parameters
the resulting wavelength of the fast acoustic mode is approximately 4.8 mm.

VI. Results

A. Grid for the receptivity study

The computational domain roughly starts a third of one wavelength upstream of the leading edge
and ends approximately one hundred wavelengths downstream of the leading edge in the streamwise
direction, or -0.0018 m < x < 0.5 m. In the wall normal direction, the computational boundary
extends from the wall to 0.01 m at the upstream inlet and to 0.136 m at the downstream end. This
distribution gives the computational grid a tapered angle of approximately fourteen degrees, roughly
tracing the shock present due to the leading edge. For this domain, both the third and fifth order
WENO schemes are used to compute the unsteady solutions. As determined previously in section
IV, the third order WENO scheme requires approximately one hundred points per wavelength in
order to appropriately control dissipation over a domain of one hundred wavelengths. The resolution
is kept the same for the fifth order WENO scheme to conduct a grid convergence study. Hence,
10036 points are used in the streamwise direction and 240 points in the wall normal direction. Grid
clustering is used in the wall normal direction so that the boundary layer is resolved roughly with
thirty to forty points through most of the domain. The freestream forcing has a zero incident angle,
and the weak leading edge shock only bends the freestream wave by about a degree.22 Therefore, a
resolution of 240 grid points is sufficient in the wall normal direction. The simulations are run with
a CFL number of 0.49. The boundary conditions along the bottom of the computational domain
upstream of the leading edge are symmetry conditions, while downstream of it they are adiabatic
wall conditions. At the downstream end of the domain, higher order extrapolation is used since
most of the flow is in the supersonic regime.

In the previous study with a shock fitting method (Ma & Zhong22) the grid consisted of roughly
2470 points in the streamwise and 121 points in the wall normal direction respectively. This
resolution disparity is due to two differences. First, the previous study was conducted using a
shock fitting method, that is, the leading edge shock was at the upper domain boundary. In this
work, the leading edge shock needs to captured, hence twice the number of points in the wall normal
direction are used to achieve a sufficient resolution of the shock. Second, the previous study used
an optimized low dissipation fifth order upwind scheme, hence they were able to use only seventeen
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Figure 4. Wall normal velocity comparison at Rex = 50400, blue line 3rd order WENO, current study,
green circles TVD steady state solution, previous study of Ma & Zhong.22

points per wave in the streamwise direction. It is believed that the grid point increase factor of four
in the streamwise direction is only needed for the third order WENO; for the fifth order WENO
the previous wavenumber analysis suggests that a coarser grid with approximately 25-30 points per
wavelength is sufficient. This will be explored in future work.

B. Third order WENO

The simulation is first run without any freestream forcing to a steady state. The steady state
solution agrees well with the previous study of Ma & Zhong22 as depicted by figure 4, which
compares the wall normal velocity profile at Rex = 50400, where Rex is simply Rex = Re∞x. Upon
reaching the steady state solution with an acceptable residual tolerance, the freestream forcing is
activated. The freestream forcing is applied at the inflow boundary and along the top tapered
boundary of the computational domain. Note that the top computational boundary has a positive
tapering and this boundary is in the freestream supersonic region, hence most of the information
there is flowing into the computational domain. Therefore, it may be considered as another inflow
boundary. The additional forcing along the top inflow boundary also aids in countering much
of the added dissipation due to the nonlinear WENO weights. A stationary solution is reached
by advancing time to roughly 140 wavelengths of travel: one hundred wavelengths to clear the
domain and an additional forty to remove any possible remaining numerical transients within the
computational domain.

In the previous study of Ma & Zhong,22 it was shown that a stable boundary layer mode (mode
I) is generated by the fast acoustic wave near the leading edge, which is dominant up to x = 0.1 m,
approximately. There it synchronizes with the second unstable Mack mode, which then is dominant
up to x =0.2 m, approximately. Just downstream of x = 0.2 m, the fast acoustic wave gives rise
to another stable boundary layer mode called mode II, which peaks around x = 0.3 m. The third
order WENO scheme is able to capture these flow phenomena. The strong initial freestream and
mode I interaction can be seen in the instantaneous density perturbation contours near the leading
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Figure 5. Fluctuating density contours between −0.0018 m < x < 0.017 m

edge, as shown in figure 5. The hairpin structure of the second Mack mode is clearly visible in the
density contours over the streamwise region of 0.1 m < x < 0.2 m , as shown in figure 6.

In figure 7 the pressure amplitude along the wall is plotted for both the current study and the
previous computational study of Ma & Zhong.22 Over the very fine grid of a hundred points per
wavelength, the third order WENO scheme accurately captures the second Mack mode instability
associated with the fast acoustic wave. However, differences are present for mode I and mode II
when comparing with previous results of Ma & Zhong.22 The amplitude associated with mode
I is much stronger when compared with the Ma & Zhong study, while the amplitude associated
with mode II is weaker. The differences with mode I are mainly present due to the difference in
the computational domain. That is, in the previous study the leading edge was not part of the
computational domain. Furthermore, the freestream forcing is applied through Rankine-Hugoniot
jump condition at the shock computational boundary and only there; a freestream forcing could
not be applied at the upstream inflow boundary. Hence, the flow very close to the leading edge
would be subjected to an initial adjustment region where it would correct itself. That is, the
freestream plane wave forcing is not a plane wave everywhere. This is particularly true near the
leading edge, where strong freestream and boundary layer mode interaction due to diffusion and
diffraction, as predicted by theoretical studies,39,40 may have been underestimated. The second
Mack mode behavior between x = 0.1 m and x = 0.2 m agrees well with the previous study by Ma
& Zhong.22 The only difference is that the second mode extends well into the region where mode II
reaches its peak amplitude. Last, the difference in mode II is possibly due again to the inclusion of
the leading edge, which results in a much stronger amplification of the mode I. Mode I takes time
to decay, hence it is possible that due to this strong initial amplification the presence of mode I
remains significant in the region where mode II peaks and is modifying the flow behavior. A more
concrete explanation would be possible after decomposition of these individual modes, which will
be pursued in future studies.
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Figure 6. Fluctuating density contours between 0.1 m < x < 0.2 m

C. Fifth order WENO

The simulation for the fifth order WENO was run on the same grid as the third order study.
The fifth order computation was not as straightforward as the third order case, because numerical
noise is present in the fluctuating solution downstream of the shock. Due to the linear nature
of this problem, it is possible to filter this noise with a discrete Fourier transform in time. The
Fourier transform in time is applied over one period. Figure 8a shows the filtered fluctuating density
contours for the fifth order WENO scheme, while figure 8b shows the non-filtered fluctuating density
contours for the same scheme. Moderate noise is present for the higher order WENO scheme. This
issue will be further explored in future studies.

VII. Conclusion

In the present work, two shock capturing algorithms, third order and fifth order WENO, were
compared to a previous study of a supersonic boundary layer over a flat plate. It was found that
the third order WENO scheme is very dissipative over the domain of interest and that a grid of one
hundred points per wavelength was needed to counter its dissipation. For the third order WENO
scheme, a good agreement was obtained for the second Mack mode instability, however differences
were noted for mode I and mode II. These difference are most likely due to the inclusion of the
leading edge, which in the previous study was excluded due to algorithm limitations. A more
in depth analysis will be conducted to understand these difference in future studies. Fifth order
WENO is not as dissipative according to the frequency analysis, and 25-30 points per wavelength
are sufficient for the current study. However the fifth order WENO solution has numerical noise
downstream of the shock. This is a subject of ongoing research and we hope to answer some of
these questions in future studies.
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Figure 7. Pressure amplitude along the wall normalized by the freestream pressure, p∞, dashed blue
line 3rd order WENO, current study, solid black line fifth order shock fitting, previous study of Ma
& Zhong22
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