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Abstract

This article presents a family of very high-order non-uniform grid compact finite difference schemes with spatial orders
of accuracy ranging from 4th to 20th for the incompressible Navier–Stokes equations. The high-order compact schemes on
non-uniform grids developed in Shukla and Zhong [R.K. Shukla, X. Zhong, Derivation of high-order compact finite dif-
ference schemes for non-uniform grid using polynomial interpolation, J. Comput. Phys. 204 (2005) 404] for linear model
equations are extended to the full Navier–Stokes equations in the vorticity and streamfunction formulation. Two methods
for the solution of Helmholtz and Poisson equations using high-order compact schemes on non-uniform grids are devel-
oped. The schemes are constructed so that they maintain a high-order of accuracy not only in the interior but also at the
boundary. Second-order semi-implicit temporal discretization is achieved through an implicit Backward Differentiation
scheme for the linear viscous terms and an explicit Adam–Bashforth scheme for the non-linear convective terms. The
boundary values of vorticity are determined using an influence matrix technique. The resulting discretized system with
boundary closures of the same high-order as the interior is shown to be stable, when applied to the two-dimensional incom-
pressible Navier–Stokes equations, provided enough grid points are clustered at the boundary. The resolution character-
istics of the high-order compact finite difference schemes are illustrated through their application to the one-dimensional
linear wave equation and the two-dimensional driven cavity flow. Comparisons with the benchmark solutions for the two-
dimensional driven cavity flow, thermal convection in a square box and flow past an impulsively started cylinder show that
the high-order compact schemes are stable and produce extremely accurate results on a stretched grid with more points
clustered at the boundary.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Numerous techniques for the solution of viscous incompressible Navier–Stokes equations can generally be
classified into two broad categories: global and local methods. Global methods encompass spectral and
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pseudospectral methods which make use of the whole computational domain for the calculation of derivatives
and quadrature formulas [1–3]. These methods have the advantage that they converge exponentially towards
the exact solution as the number of modes is increased and hence have been very widely used in numerical
calculations demanding high accuracy for a wide range of length scales, such as direct numerical simulation
of turbulence. The main drawback of these methods is their inability to handle complicated boundary condi-
tions and flow in complex geometries. Besides, clustering of collocation nodes at the boundary, in the case of
Chebyshev spectral methods, also leads to very strict stability restrictions for long time integration [1,3,4].
Spectral element [5] and domain decomposition techniques have been quite successful in extending the appli-
cability of spectral methods to some complicated flow problems. However, such methods are computationally
expensive and are relatively difficult to implement. Unlike these global methods, local methods such as finite
difference, finite volume and finite element methods compute the derivatives using neighboring nodes and are
much more robust in handling complex boundary conditions and complicated geometries. The main disadvan-
tage of these methods is their slow convergence towards the actual solution with grid refinement which neces-
sitates use of many more grid points to achieve a desired accuracy level, when compared to global methods.

Compact higher order finite difference schemes [6–8] provide an effective way of combining the robustness
of finite difference schemes and the accuracy of spectral methods. The computation of derivatives in compact
finite differences is implicit in the sense that the derivative values at a particular node are computed not only
from the function values but also from the values of the derivative at the neighboring nodes. Such an approach
yields a global scheme without sacrificing the advantage of low computational cost and robustness of a scheme
on a local stencil, since solution of the resulting multidiagonal sparse system can be carried out very efficiently.
Compared to the finite difference schemes of the same order of accuracy, compact schemes utilize a smaller
stencil and give better resolution especially at higher wavenumbers. Extensive study and discussion of the res-
olution characteristics of the higher order compact schemes on a uniform grid was carried out by Lele in [8].
Since then compact schemes have attained wide popularity in solving various problems involving incompress-
ible and compressible flows [9–17]. In spite of this the application of higher order compact schemes has been
restricted due to the instability of high-order boundary closures. An extensive review of the issues involving
the instability of high-order boundary closures on uniform grids along with a discussion of the underlying con-
cepts has been given in [18].

An alternative point of view adopted in [19–25] is to relate the instability associated with high-order bound-
ary closures to the large oscillations of high-order interpolating polynomials (Runge phenomena) near the
boundaries of a uniform grid. A Chebyshev interpolation polynomial utilizes crowding of collocation nodes
at the boundary to suppress Runge phenomena. An extension of this idea to high-order compact schemes on
non-uniform grid, with more grid points clustered at the boundary, was shown to yield stable boundary clo-
sures with the same order of accuracy as the interior [21]. Instead of using a grid transformation which remains
susceptible to boundary instability an alternative route of deriving compact schemes from the interpolation
polynomial was adopted in [21]. It was found that in accordance with the eigenvalue analysis, the computa-
tions for one and two-dimensional wave equations remained stable on a sufficiently stretched grid by suppress-
ing oscillations due to Runge phenomena. The high-order schemes were subsequently applied to a
two-dimensional linear convection diffusion equation in order to demonstrate their stability and accuracy.
Note that the idea of using high-order interpolation polynomials has been utilized in [22–25] to develop a spec-
tral finite volume method on unstructured grids. However, our present approach differs from these previous
works utilizing high-order finite difference schemes on Chebyshev collocation nodes in that we use high-order
compact schemes on a stretched non-uniform grid [4,21] which avoids the severe stability restrictions on time
step size. In addition, our high-order compact schemes are constructed on a single domain, though in principle
the idea can be extended to multiple domains.

The purpose of this paper is to extend the higher order compact schemes which were developed for linear
model equations in [21] to incompressible Navier–Stokes equations in two dimensions. Compared to linear
two-dimensional convection diffusion equation, the incompressible Navier–Stokes equations involve non-lin-
ear convective terms and an additional constraint of incompressibility. Hence, it is not clear if the high-order
compact schemes on non-uniform grids, which are stable for linear wave and convection-diffusion equation,
will maintain their stability and high accuracy for the incompressible Navier–Stokes equations. Previous inves-
tigations employing compact schemes for numerical solution of the Navier–Stokes equations have usually
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been limited to orders of accuracy of four [9,10,12,15–17] and six [14]. In order to circumvent the problem of
instability of high-order uniform compact schemes the accuracy of boundary closure schemes was lowered in
[10]. Another approach is to use filtering in order to remove modes that are not resolved properly. However,
filtering adds dissipation to the numerical scheme and this often results in a loss of sharp flow features in the
computed solution [3]. In contrast to all these techniques, our aim in this work is to employ very high-order
(4th–20th-order) collocated compact schemes to the incompressible Navier–Stokes equations without filtering.
The overall order of the schemes is kept uniform throughout the computational domain by constructing
boundary closure schemes which have the same order as the interior.

In this paper we are concerned with the two-dimensional incompressible driven cavity flow, convection in a
differentially heated cavity with adiabatic top and bottom walls, and flow over an impulsively started cylinder.
These problems have been widely used as test cases for the assessment and validation of numerical methods.
Various different formulations that have been used successfully in the past to solve two-dimensional incom-
pressible driven cavity problem include vorticity–streamfunction [29–33], velocity–pressure [27,28,36,38,39],
vorticity–velocity [12,40–43], and pure streamfunction [15] formulation. The two most widely used techniques
in order to handle the incompressibility constraint have been the fractional step approach and the influence
matrix technique (cf. [1]). The influence matrix technique of Kleiser and Schumann [38] makes use of the prin-
ciple of superposition for linear problems to compute a divergence free velocity field. This method has been
used successfully in the past for the numerical solution in both the primitive variable [39] and the vorticity–
streamfunction formulation [1]. The advantages and disadvantages of each formulation along with the issues
involved in their implementation have been discussed in [37]. Due to its relative ease of implementation we use
the vorticity–streamfunction formulation in our current work. However, in principle the schemes can be
applied to the primitive variable formulation using either the influence matrix technique or the projection
method for enforcing divergence free velocity field.

The paper is organized as follows: the details of the governing equations along with the desingularization
technique employed to compute accurate numerical solutions are described in Section 2. The high-order com-
pact schemes on non-uniform grids, with the same order for the boundary closures as for the interior schemes
are described in Section 3. The temporal discretization scheme together with the influence matrix technique for
computing the boundary values of vorticity, and Helmholtz/Poisson solver are described in Section 4. Results
from numerical experiments showing the accuracy and stability of high-order compact schemes on a non-uni-
form grid with more grid points clustered at the boundary, when used to solve driven cavity flow, a convection
benchmark problem and uniform flow past a circular cylinder, are presented in Section 5 before the
conclusions.
2. Governing equations

2.1. Governing equations in vorticity–stream function formulation

We consider the incompressible Navier–Stokes equations for the unsteady two-dimensional flows in terms
of the variables vorticity x and stream function w given by
ox
ot
þ Jðx;wÞ ¼ 1

Re
r2xþ ofy

ox
� ofx

oy

� �
;

r2w ¼ �x;

ð1Þ
along with appropriate initial and boundary conditions. Here, J is the Jacobian with respect to the x � y coor-
dinates and represents the non-linear term:
Jðx;wÞ ¼ u � rx ¼ ox
ox

ow
oy
� ox

oy
ow
ox
: ð2Þ
Re is the Reynolds number defined as Re = UL/m, with U, L and m representing a characteristic velocity, a
characteristic length scale, and the kinematic viscosity, respectively, and f = [fx, fy]T represents the forcing
term. In this work we consider the numerical solution of (1) in a square domain X = [0,1]2 with the upper
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lid sliding towards the right with a velocity U0(x) as shown in Fig. 1(a). The boundary conditions for the
stream function w are given by
Fig. 1.
compu
wjoX ¼ 0;
ow
ox

����
x¼0;1

¼ ow
oy

����
y¼0

¼ 0 and
ow
oy

����
y¼1

¼ U 0ðxÞ; ð3Þ
where oX represents the boundary of X. The Dirichlet boundary condition in (3) corresponds to the boundary
being a constant streamline of value 0 whereas the Neumann boundary condition accounts for the no-slip con-
dition at the cavity walls.

For the case of singular driven cavity flow, with U0(x) = �1 and f = [0,0]T, one encounters singularities at
the four corners of the domain. In particular the vorticity values at A(0,1) and B(1,1) are not finite due to the
discontinuity in the boundary values of the horizontal velocity. A severe degradation in accuracy due to
Gibb’s phenomena was reported in [31] when the solution to this problem was obtained using a Galerkin-
Legendre spectral method without any treatment of the singularities. Schultz et al. [35] obtained the solution
to the Navier–Stokes equations by subtracting the Stokes contribution from the original singular problem.
Botella and Peyret [27] obtained their benchmark spectral results for the singular driven cavity flow by sub-
tracting the contribution of the first two singular terms, and using a projection method in [u,p] formulation.
The effectiveness of the singularity subtraction technique was also demonstrated in the Legendre spectral com-
putations of Auteri et al. [32] using an influence matrix technique in uncoupled vorticity–streamfunction for-
mulation. Later, the technique was also employed in the Legendre spectral computations in [33] using a
projection method in the primitive variables to investigate the stability of the singular driven cavity problem.

High-order compact schemes are global, like spectral methods, in that they use the whole computational
domain for calculation of the derivatives. Due to this global nature of the high-order schemes we expect
Gibb’s oscillations to corrupt the numerical solutions obtained through the high-order compact schemes,
unless proper treatment of singularities is performed. For this reason the singularity subtraction technique,
for computing the numerical solutions to the singular driven cavity problem, is incorporated in our current
work. Since the singularities at the corners C(1,0) and D(0,0) are weaker, following previous work only
the singular contributions of the upper corners A and B are used in the computations.

2.2. Desingularization for the singular driven cavity problem

The details of the desingularization technique used for the singular driven cavity flow have been described
in [27] and here we just outline the main ideas. The singular solutions to the corner flows at the points A and B
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(a) Schematic of the driven cavity problem showing the corners and the no-slip boundary conditions, and (b) a representative of the
tational grid employed for the problem.
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are obtained analytically in terms of expansion powers of Re following the analysis for creeping flow by Batch-
elor [26], and its extension to flow at finite Re by Gupta et al. in [34]. As in [27] only the first two terms are
retained for the purpose of computations. The singular solution is then subtracted from the original governing
equations in order to obtain a more regular problem in terms of perturbation variables ~w, ~x as shown below
o~x
ot
þ Jð~xþ xS

Re;
~wþ wS

ReÞ ¼
1

Re
r2 ~xþ uA

0 � rxA
0 þ uB

0 � rxB
0 ; r2 ~w ¼ �~x: ð4Þ
The boundary conditions on the perturbed streamfunction ~w are given by
~w ¼ �ðwA
Re þ wB

ReÞ; oy
~w ¼ �oyðwA

Re þ wB
ReÞ ¼ �ðuA

Re þ uB
ReÞ on y ¼ 0;

~w ¼ 0; oy
~w ¼ �1 on y ¼ 1;

~w ¼ �wB
Re; ox

~w ¼ �oxw
B
Re ¼ vB

Re on x ¼ 0;

~w ¼ �wA
Re; ox

~w ¼ �oxw
A
Re ¼ vA

Re on x ¼ 1;

ð5Þ
where ox = o/ox and oy = o/oy. The singular solutions used in the Eq. (5) are given by
uS
Re ¼ uA

Re þ uB
Re ¼ ðuA

0 þ uB
0 Þ þ ReðuA

1 þ uB
1 Þ;

wS
Re ¼ wA

Re þ wB
Re ¼ ðw

A
0 þ wB

0 Þ þ ReðwA
1 þ wB

1 Þ;
xS

Re ¼ xA
Re þ xB

Re ¼ ðxA
0 þ xB

0 Þ þ ReðxA
1 þ xB

1 Þ:
ð6Þ
In the above expressions the superscripts A and B stand for the singular solutions at the corners A and B,
respectively, whereas the subscript Re represents the total singular solution resulting from the contributions
from both, the zeroth-order (Stokes) term, represented by the subscript 0, and, the first inertial term, repre-
sented by 1, of the series expansion in increasing powers of Re. For brevity detailed analytical expressions
of the terms in the above equations are not reported and we refer the interested readers to Refs. [27,32].
3. Very high-order compact schemes on non-uniform grids

The numerical approximation of the governing Eq. (4), with the boundary conditions (5), is carried out on a
computational grid such as the one shown in Fig. 1(b). The calculation of the first and the second derivatives
in the spatial variables x and y, for the convective and viscous terms, is accomplished through the application
of the high-order compact schemes on a non-uniform grid. We employ the non-uniform grid compact schemes
for the first and second derivatives derived in [21] for arbitrary orders of accuracy using polynomial interpo-
lation. Throughout this paper the distribution of the grid points for x 2 [a,b] in one-dimension is taken to be
[4]
xi ¼
bþ a

2
þ ðb� aÞ sin�1ð�a cosðpi=NÞÞ

2 sin�1 a
; i ¼ 0; . . . ;N ; ð7Þ
where the parameter a is used to change the stretching of the grid points from one limit of a Chebyshev grid at
a! 0 to the other limit of a uniform grid at a = 1. The grid spacing hi = xi � xi�1 is defined as the distance
between nodes i and i � 1. This distribution of grids has the advantage of forcing a stability restriction given
by O(N) as compared to O(N2) for Chebyshev collocation and thus avoids the severe time step restriction
resulting from the CFL condition. The parameter a is a variable that can be chosen in order to satisfy the sta-
bility requirement arising from the eigenvalue analysis of the first derivative operator matrix, as described later
in this section.

Next we describe the procedure for computing first and second derivatives using high-order compact
schemes on non-uniform grid in moderate detail. Consider a function u(x), x 2 [a,b], whose values ui are pre-
scribed on the one-dimensional grid given by (7). The compact scheme discretizations relate the unknown vec-
tors U(1) and U(2) composed of discrete first and second derivatives u0i and u00i to the vector U composed of
known discrete function values ui through relationships of the form
PU ð1Þ ¼ QU ; and PU ð2Þ ¼ QU ; ð8Þ
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where matrices P, Q, P , Q are banded and are calculated using polynomial interpolation [21]. For example a
fourth-order scheme, in both the interior and at the boundaries for the calculation of the pth derivative with
p = 1 for the first derivative and 2 for the second is given by
uðpÞ0 þ a1uðpÞ1 ¼ b0u0 þ b1u1 þ b2u2 þ b3u3;

ai�1uðpÞi�1 þ uðpÞi þ aiþ1uðpÞiþ1 ¼ bi�1ui�1 þ biui þ biþ1uiþ1 for 1 6 i 6 N � 1;

aN�1uðpÞN�1 þ uðpÞN ¼ bN�3uN�3 þ bN�2uN�2 þ bN�1uN�1 þ bN uN ;

ð9Þ
where the various coefficients have been tabulated in Table 1. At the boundary one-sided compact schemes are
used in order to preserve tridiagonal matrices. The stencil width of the right hand side matrices Q and Q are
increased so that the boundary schemes have the same order as the interior. Throughout this paper, for con-
venience, we set the order of a scheme, for either the calculation of the first derivative or the second derivative,
to be one less than the degree of the polynomial used for interpolation. It should be noted that a scheme which
uses a particular stencil for the calculation of second derivative will actually be one order less accurate than a
scheme using the same stencil for the calculation of the first derivative. The schemes constructed in this man-
ner achieve maximum accuracy on a given stencil. Since the schemes are derived using polynomial interpola-
tion they can be implemented for various orders of accuracy just by increasing the stencil width. It is also
noted that explicit analytical expressions for the coefficients of a general compact scheme for the second deriv-
ative are available only for tridiagonal schemes and not for other multidiagonal schemes [21] and hence only
tridiagonal compact schemes are used in the present work.

The value of parameter a in (7) determines the clustering of grid points near the boundary. In this work
we choose a to be the maximum value for which the scheme yields only negative real eigenvalue compo-
nents of the spatial first derivative operator matrix formed by removing the first row and column of P�1Q

[21,20]. This is a necessary condition for the stability of the scheme when used for long time integration of
a linear wave equation with fixed time varying boundary condition at one end [18]. The various values of
maximum a that yield stable 16th-order and 20th-order schemes for various grid combinations that are
used in the present work are listed in Table 2. The higher the order of a scheme, the more restrictive is
the corresponding stability criteria and thus a value of a that makes a 16th-order scheme stable will give
a stable scheme for lower orders of accuracy too. Note that the condition of existence of the second deriv-
ative schemes [21] is always found to be satisfied in each of the schemes for the non-uniform grid distri-
butions listed in Table 2.

4. Discretization of incompressible Navier–Stokes equations

4.1. Time discretization

The temporal discretization of the governing Eq. (4) considered in the present work is semi-implicit and
utilizes Adam–Bashforth explicit scheme for the non-linear Jacobian terms and second-order implicit Back-
ward Differentiation scheme for the diffusion terms. The viscous term is treated implicitly in order to avoid
the strong stability restriction. This combination of schemes has been widely used in obtaining incompressible
flow solutions and is generally referred to as the AB/BDI2 scheme [1]. Since the smallest spatial scales are
more difficult to resolve, when compared to the smallest temporal scales (cf. [44], this is a consequence of
the stability restriction imposed by the CFL condition) it is reasonable to expect that a second-order accuracy
in time will be sufficient for the present calculations. The time-discretized equations resulting from the appli-
cation of the AB/BDI-2 scheme are given by
ðr2 � cÞ~xnþ1 ¼ Sn;n�1
x in X

r2 ~wnþ1 ¼ �~xnþ1 in X;
ð10Þ
where
Sn;n�1
x ¼ c

3
ð~xn�1 � 4~xnÞ þ Reð2Jð~wn þ wS

Re; ~xn þ xS
ReÞ � Jð~wn�1 þ wS

Re; ~xn�1 þ xS
ReÞÞ; ð11Þ



Table 1
Coefficients of the fourth-order non-uniform grid compact scheme

p = 1 p = 2

a1 ðh1 þ h2Þðh1 þ h2 þ h3Þ
h2ðh2 þ h3Þ

� �
h1ð3h1 þ 4h2 þ 2h3Þ þ h2ðh2 þ h3Þ

h1ð2h2 þ h3Þ � h2ðh2 þ h3Þ

� �

b0 � 2

h1

þ 1

h1 þ h2

þ 1

h1 þ h2 þ h3

� � �6h2
2�ð4h2þ2h3Þð6h1þ3h2þ3h3Þ

ðh1þh2Þðh1þh2þh3Þðh2ðh2þh3Þ�h1ð2h2þh3ÞÞ

� �

b1 ðh2þh1Þðh3þh2þh1Þð2h2
2þ2h2h3�h1h3�2h1h2Þ

h1h2
2ðh3þh2Þ2

( )
6ðh1þh2Þ2þ6ð2h1þ2h2þh3Þðh2þh3�h1Þ

h2ðh2þh3Þðh2ðh2þh3Þ�h1ð2h2þh3ÞÞ

( )

b2 h2
1ðh1 þ h2 þ h3Þ
h2

2h3ðh1 þ h2Þ

( )
6h1ððh2 þ h3Þ2 þ h1ðh2 þ h3Þ � h2

1Þ
h2h3ðh1 þ h2Þðh1ð2h2 þ h3Þ � h2ðh2 þ h3ÞÞ

( )

b3 h2
1ðh1 þ h2Þ

ðh2 þ h3Þ2h3ðh1 þ h2 þ h3Þ

( )
6h1ðh1h2 þ h2

2 � h2
1Þ

h2h3ðh1 þ h2Þðh1ð2h2 þ h3Þ � h2ðh2 þ h3ÞÞ

� �

ai�1 hiþ1

hiþ1 þ hi

� �2 hiþ1

hi þ hiþ1

� �
h2

i þ hihiþ1 � h2
iþ1

h2
i þ 3hihiþ1 þ h2

iþ1

( )

ai+1 hi

hiþ1 þ hi

� �2 hi

hi þ hiþ1

� �
h2

iþ1 þ hihiþ1 � h2
i

h2
i þ 3hihiþ1 þ h2

iþ1

( )

bi�1

�
2h2

iþ1ð2hi þ hiþ1Þ
hiðhiþ1 þ hiÞ3

( )
hiþ1

hi þ hiþ1

� �
12

h2
i þ 3hihiþ1 þ h2

iþ1

( )

bi 2ðhiþ1 � hiÞ
hihiþ1

� �
�12

h2
i þ 3hihiþ1 þ h2

iþ1

( )

bi+1 2h2
i ðhi þ 2hiþ1Þ

hiþ1ðhiþ1 þ hiÞ3

( )
hi

hi þ hiþ1

� �
12

h2
i þ 3hihiþ1 þ h2

iþ1

( )

aN ð �h1 þ �h2Þð �h1 þ �h2 þ �h3Þ
�h2ð �h2 þ �h3Þ

� � �h1ð3 �h1 þ 4 �h2 þ 2 �h3Þ þ �h2ð �h2 þ �h3Þ
�h1ð2 �h2 þ �h3Þ � �h2ð �h2 þ �h3Þ

� �
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Table 1 (continued)

p = 1 p = 2

bN � 2
�h1

þ 1
�h1 þ �h2

þ 1
�h1 þ �h2 þ �h3

� � �6 �h2
2�ð4 �h2þ2 �h3Þð6 �h1þ3 �h2þ3 �h3Þ

ð �h1þ �h2Þð �h1þ �h2þ �h3Þð �h2ð �h2þ �h3Þ� �h1ð2 �h2þ �h3ÞÞ

� �

bN�1 ð �h2þ �h1Þð �h3þ �h2þ �h1Þð2 �h2
2þ2 �h2

�h3� �h1
�h3�2 �h1

�h2Þ
�h1

�h2
2ð �h3þ �h2Þ2

( )
6ð �h1þ �h2Þ2þ6ð2 �h1þ2 �h2þ �h3Þð �h2þ �h3� �h1Þ

�h2ð �h2þ �h3Þð �h2ð �h2þ �h3Þ� �h1ð2 �h2þ �h3ÞÞ

( )

bN�2 �h1
2ð �h1 þ �h2 þ �h3Þ
�h2

2 �h3ð �h1 þ �h2Þ

� �
6 �h1ðð �h2 þ �h3Þ2 þ �h1ð �h2 þ �h3Þ � �h1

2Þ
�h2

�h3ð �h1 þ �h2Þð �h1ð2 �h2 þ �h3Þ � �h2ð �h2 þ �h3ÞÞ

( )

bN�3 �h1
2ð �h1 þ �h2Þ

ð �h2 þ �h3Þ2 �h3ð �h1 þ �h2 þ �h3Þ

( )
6 �h1ð �h1

�h2 þ �h2
2 � �h1

2Þ
�h2

�h3ð �h1 þ �h2Þð �h1ð2 �h2 þ �h3Þ � �h2ð �h2 þ �h3ÞÞ

� �

where �h1 ¼ �hN , �h2 ¼ �hN�1, �h3 ¼ �hN�2.

Table 2
Value of grid stretching parameter a for stable schemes

Order N

33 49 65 97 151 201 251 301 401 501

16 0.9 0.95 0.975 0.990 0.9960 – – 0.9991 – –
20 – – – 0.983 0.9931 0.9961 0.9975 0.9982 0.9990 0.9993

Only the values used in computations are reported.
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and c = 3Re/2Dt with the boundary conditions on the perturbed streamfunction at time nDt, ~wn given by (5).
The superscript n in the above equations denotes the time level at which the flow variables are being computed
and it is noted that the expression for Sn;n�1

x , with n > 1 involves terms already calculated at previous time steps
n and n � 1. In order to keep the overall time stepping scheme second-order accurate, following [1], we use a
starting scheme which extrapolates the solution obtained at the time instant 2Dt/3 (computed by setting flow
variables at n = �1 equal to those at n = 0) to the solution at Dt (corresponding to n = 1), where Dt is the time
step size.
4.2. Spatial discretization

The spatial approximation of the time discretized Eq. (10) along with appropriate boundary conditions is
achieved by the extension of the one dimensional compact differencing operators given by (8) to two dimen-
sions. This leads to relationships of the form
P 1Ux ¼ Q1U ; P 1U xx ¼ Q1U ;

U yP T
2 ¼ UQT

2 ; U yyP T
2 ¼ UQT

2 ;
ð12Þ
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between the derivative matrices Ux = [ux(xi,yj)], Uxx = [uxx(xi,yj)], etc. and the function values U = [u(xi,yj)],
with i = 0, . . . ,Nx and j = 0, . . . ,Ny for a domain discretized using (Nx + 1) · (Ny + 1) grid points. Various
matrices P1, Q1, etc. are banded as in one-dimension and are computed using polynomial interpolation.
The distribution of grid nodes also involves a straightforward extension of the one-dimensional case (7) to
two-dimensions and for a domain X = [0,1]2 is given by
xi ¼
1

2
þ sin�1ð�ax cosðpi=N xÞÞ

2 sin�1 ax

; i ¼ 0; . . . ;N x;

yj ¼
1

2
þ sin�1ð�ay cosðpj=N yÞÞ

2 sin�1 ay

; j ¼ 0; . . . ;Ny :

ð13Þ
The constants ax and ay control the amount of stretching in each direction and can be different in general.
However, in the present work we only use a distribution of grid points that are equivalent in both x and y

directions so that ax = ay = a and Nx = Ny = N. The parameter a is chosen according to the values listed in
Table 2 so that the highest order scheme remains stable for the solution of a linear one-dimensional wave
equation. The numerical solution of the semi-discrete Helmholtz and Poisson Eq. (10) is accomplished
through an influence matrix technique and matrix-diagonalization method which are described in the follow-
ing two sections.
4.3. Numerical approximation of Helmholtz equation

4.3.1. Matrix-diagonalization method

In this section we describe the matrix-diagonalization method that is used to solve the algebraic system
resulting from the high-order compact discretization of the Helmholtz equation with Dirichlet boundary con-
ditions given by
r2u� cu ¼ f in X

u ¼ g on oX:
ð14Þ
As before, X = [0,1]2 denotes a square domain with oX as its boundary. We follow the algorithm discussed in
[1] in the context of spectral collocation method employing (12) for the spatial approximation of (14) on a
non-uniform grid leading to
D1U þ U DT
2 � cU ¼ F ; ð15Þ
where U represents the matrix of unknowns in the interior points of the discretized domain
XN ¼ ðxi; yjÞ; i ¼ 1; . . . ;Nx � 1; j ¼ 1; . . . N y � 1: ð16Þ
The matrices D1 and D2 are computed as
D1 ¼ P�1
1 Q1; D2 ¼ P�1

2 Q2; ð17Þ

with the dimensions reduced to (Nx � 1) · (Nx � 1) and (Ny � 1) · (Ny � 1) by removing the first and last col-
umns and rows corresponding to the boundaries. The matrix F is of dimensions (Nx � 1) · (Ny � 1) and is
made up of f and g. Next the matrices D1 and D2 are assumed to be diagonalizable and denoting the diagonal
matrix whose entries are eigenvalues by K1 and K2 we obtain
D1 ¼ R1K1R�1
1 ; D2 ¼ R2K2R�1

2 ; ð18Þ
where matrices R1 and R2 are formed by eigenvectors of D1 and D2. Using these relations (15) simplifies to
K1
bU þ bU K2 � c bU ¼ bF ; ð19Þ
where bU ¼ R�1
1 UðRT

2 Þ
�1 and bF ¼ R�1

1 F ðRT
2 Þ
�1. The solution to (19) is immediately found as
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ûi;j ¼
f̂ i;j

k1;i þ k2;j � c
; i ¼ 1; . . . Nx � 1; j ¼ 1; . . . ;Ny � 1; ð20Þ
where k1, i and k2, j are the eigenvalues of D1 and D2. Note that diagonalization of D1 and D2, in order to deter-
mine eigenvalues and eigenvectors, is carried out once for all at the preprocessing stage so that each solution of
Helmholtz equation with Dirichlet boundary conditions involves only four matrix-matrix products which
makes the calculations very efficient in terms of CPU usage. The method also assumes that the eigenvalues
and eigenvectors resulting from diagonalization be purely real and non-zero and this is found to be the case
in all the calculations involving high-order compact schemes on non-uniform grids listed in Table 2. However,
computations involving high-order compact schemes on a uniform grid do give rise to eigenvalues which have
both real and imaginary parts and in those cases we resort to an alternative method of solution described next.

4.3.2. Direct solver

In this section we describe an alternative technique for the solution of (14) discretized using the compact
finite difference schemes on non-uniform grids given by (12) and (13). We first represent the discrete function
at (xi,yj) in the form of a vector of length (Nx + 1) · (Ny + 1) as
U ¼ ½ðu1;0; u2;0; . . . ; uNxþ1;0Þ; ðui;1Þ; . . . ; ðui;jÞ; . . . ; ðui;Nyþ1Þ�T; 0 6 i 6 Nx þ 1: ð21Þ
The discrete second derivative values Uxx and Uyy, which are composed in a similar way, are related to U

through following relationships:
A1Uxx ¼ B1U; A2Uyy ¼ B2U: ð22Þ

The matrices A1, A2, B1, and B2 are sparse and are related to the second derivative matrices given by (12) as
shown below
½A1� ¼

½P 1� ½0� . . . ½0�

½0� ½P 1� ..
.

..

. . .
.

½P 1� ½0�
½0� . . . ½0� ½P 1�

2666666664

3777777775
; ½B1� ¼

½Q1� ½0� . . . ½0�

½0� ½Q1� ..
.

..

. . .
.

½Q1� ½0�
½0� . . . ½0� ½Q1�

2666666664

3777777775
;

In the above expression coefficients p0;1; p1;0; . . . ; pNy ;Ny�1 correspond to the entries of the matrix P 2. The matrix
B2 has a similar form except that the bandwidth is increased with entries pi, j replaced by entries from the ma-
trix Q2. Next, using the fact that matrices A1 and A2 commute (i.e. A1A2 = A2A1), the discrete approximation
to the Helmholtz equation is obtained as
ðA2B1 þ A1B2 � cA1A2ÞU ¼ A1A2F; ð23Þ
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where, the various matrices and known vector F are obtained after proper treatment of boundary conditions.
A direct method based on the solution of this sparse system is implemented in the present work to obtain
numerical results for computations on a uniform grid.

4.4. Influence matrix

The spatial discretization of the semi-discrete Eq. (10) using (12) yields
ðr2
d � cÞ~xn ¼ Sn;n�1

x in XN ;

r2
d
~wn ¼ �~xn in XN ;

ð24Þ
with the boundary conditions
~wn ¼ �ðwA
Re þ wB

ReÞ; D2
~wn ¼ �ðuA

Re þ uB
ReÞ on y ¼ 0;

~wn ¼ 0; D2
~wn ¼ �1 on y ¼ 1;

~wn ¼ �wB; D1
~wn ¼ vB

Re on x ¼ 0;

~wn ¼ �wA; D1
~wn ¼ vA

Re on x ¼ 1;

ð25Þ
where D1 ¼ P�1
1 Q1 and D2 ¼ P�1

2 Q2, and r2
d is the discrete high-order compact approximation for the Laplace

operator. To solve the equation for ~xn, boundary conditions on ~xn are required, which are obtained using an
influence matrix technique. The details of the implementation of the influence matrix technique for a spectral
Chebyshev collocation method are described in [1] and here we follow the same approach. The basic idea be-
hind the method is to use the principle of superposition of solutions for the linear Eq. (24) by constructing a set
of elementary solutions in the preprocessing stage and using them to compute the influence matrix. This influ-
ence matrix is then used at each time step to compute boundary values of vorticity. In order to compute the
influence matrix the following problems are solved for ðxl;wlÞ; l ¼ 1; . . . ; 2ðN x þ Ny � 2Þ at the beginning of
the computations,
ðr2
d � cÞxl ¼ 0 in XN ;

r2
dwl ¼ �xl in XN ;

xljgm
¼ dm;l for gm 2 oXI

N ;

wljgm
¼ 0 for gm 2 oXI

N ;

ð26Þ
where dm, l is the Kronecker delta. The discrete points oXI
N in (26) denote the set of grid points on the

boundary oX except for the corners A, B, C and D, and gm, m = 1, . . . , 2(Nx + Ny � 2) refer to the grid
points on oXI

N . The influence matrix M is then constructed as Mi;j ¼ Dnwljgj
, where Dn (�o/on) denotes dis-

crete normal derivative operator matrix and can be D1 or D2 depending on the boundary. The influence
matrix M found in this way has four null eigenvalues. The reason for this has been analyzed in [29]. Here
the same method as in [29] is used to alleviate the problem which involves removal of four points on the
boundary given by
P 1 ¼ ðx1; 0Þ; P 2 ¼ ðxNx�1; 0Þ; P 3 ¼ ðx1; 1Þ; and P 4 ¼ ðxNx�1; 1Þ: ð27Þ
With the influence matrix in place Eq. (24) are solved at each time step by first assuming zero boundary con-
ditions on vorticity and Dirichlet boundary conditions on the streamfunction given by (25). We denote the
solution so obtained by ðŵn; x̂nÞ and construct a vector U of length 2(Nx + Ny � 4) given by Dn

~wn � Dnŵn

on the boundary excluding corners and points P1, P2, P3, and P4, where subscript n denotes normal and super-
script n denotes time level. The boundary values of vorticity are then computed using M�1U, and are used to
compute actual vorticity field in the interior. Note that the boundary values of vorticity at the four corners and
the removed points are set equal to 0. The streamfunction can then be recovered by solving the Poisson equa-
tion for ~wn.
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The efficiency of this method depends on the condition number of the influence matrix. Fig. 2 shows the
variation of the condition number of the influence matrix M computed numerically for non-uniform grid
(13) with various amounts of grid points, stretching parameters taken from Table 2, and different choices
of c using various high-order compact schemes. It is observed that the influence matrix is relatively well con-
ditioned with the condition number almost the same for all the high-order compact schemes. This shows that
the matrix M can be inverted without significant loss of accuracy. We note that the actual values of the vor-
ticity at the boundary have to be computed using ~w ¼ �r2 ~xn as in [29].

5. Numerical results

5.1. One-dimensional wave equation

In order to study the resolution characteristics of the high-order compact finite difference schemes on non-
uniform grids we solve the one-dimensional wave equation
ou
ot
þ ou

ox
¼ 0; 0 6 x 6 1 ð28Þ
with initial and boundary conditions given by
uðx; 0Þ ¼ sinðxpxÞ; uð0; tÞ ¼ � sinðxptÞ; ð29Þ

for various values of wavenumber x. As shown in [21], the high-order schemes are stable for the wave equa-
tion computations only if the grid stretching parameter a is prescribed in accordance with the eigenvalue anal-
ysis (Table 2). The Fourier analysis of the resolution characteristics of the high-order non-uniform grid
compact schemes was presented in [21]. However, such an analysis assumes periodic boundary conditions
and our aim here is to analyze the resolution properties of schemes when they are applied to solve the non-
periodic problem defined by (28) and (29).

Runs are made for a range of values of wavenumber, x, using high-order compact schemes with even
orders of accuracy ranging from four to 16 on a fixed number of grid points, N = 49. The values of
x are chosen such that the computational domain is not a multiple of the wavelength. The value of the grid
stretching parameter a is set equal to 0.95 to ensure that the stability requirement of the highest order
scheme (16th-order) is satisfied. A 4th-order explicit Runge–Kutta scheme is used for temporal time march-
ing with the time step size chosen small enough so that the temporal discretization errors are negligible com-
pared to those due to spatial discretization. Refinements in the time step size are used to ensure that the
computed solutions are independent of time step size and the solutions are advanced in time for more than
50 periods.
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Fig. 3(a) shows the maximum point wise error of the numerical solutions obtained using various high-order
schemes for 10 runs with different values of x against the number of grid points per wavelength, defined as
2p/(xhmax), where hmax represents the maximum grid spacing. As x increases, the number of modes in the
domain increase and there are less grid points to resolve each wave mode. The results clearly reveal the ability
of higher order schemes to resolve the high wavenumber modes. When x is small there are more grid points in
resolving the wave modes and the magnitude of error remains small for various schemes. However as x
increases the number of grid points available to resolve the particular wave mode decrease and the advantage
of using a higher order scheme is evident.

We further compare the resolution properties of multi-diagonal high-order compact schemes on a non-uni-
form grid for a fixed order of accuracy of 16. The multi-diagonal schemes are constructed by increasing the
bandwidth of the matrix P and decreasing the bandwidth of the matrix Q in (8). Also note that the explicit
scheme corresponds to a scheme with matrix P equivalent to identity matrix. Fig. 3(b) shows the maximum
point wise error of the numerical solutions obtained using various multi-diagonal high-order compact schemes
for runs with different x. The results show that for small wavenumber x all the schemes including the 16th-
order explicit scheme give nearly same accuracy solutions. However as x increases there are less grid points to
resolve each wave mode and it is observed that the explicit scheme shows significant error when compared to
the multi-diagonal schemes. For example at a wavenumber x of 76/3, when the number of points per wave-
length is close to 3, the octadiagonal gives the most accurate result with maximum point wise error of less than
0.1% whereas explicit scheme gives the least accurate result with the maximum point wise error exceeding
100%. It is noted that these results are consistent with previous studies [8] which show that the multi-diagonal
schemes show smaller truncation error and have better resolution at higher wavenumbers than the corre-
sponding explicit scheme for the same order of accuracy.

Next, we present a comparison of the computational cost involved in completing 105 steps of time advance-
ment for the solution of one-dimensional linear wave equation, and the accuracy of the numerical solution
using various compact schemes on different non-uniform grids, in Fig. 4(a). Wavenumber x for this set of
computations is equal to 64/3. We observe that for the same computational expense, the high-order compact
schemes offer a significant advantage in accuracy when compared to the lower order schemes. A similar com-
parison for the multi-diagonal schemes is shown in Fig. 4(b), for computations using x = 76/3. The better res-
olution ability of the multidiagonal high-order compact schemes, when compared to an explicit scheme of the
same order of accuracy, is apparent.

The numerical tests on the linear wave equation confirm the accuracy and the stability of the high-order
non-uniform grid compact schemes. It is also noted that the pentadiagonal and the multi-diagonal schemes,
with a longer bandwidth of the matrix P, offer slightly better resolution than the tridiagonal compact schemes,
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Fig. 4. Computational cost and accuracy obtained on integrating the one-dimensional wave equation using: (a) tridiagonal compact
schemes for various orders of accuracy and (b) multi-diagonal compact schemes for 16th-order of accuracy.
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for the same order of accuracy. However, explicit analytical expressions for the coefficients of a general com-
pact scheme for the second derivative are available only for the tridiagonal schemes, and the calculation of
these coefficients for other multidiagonal schemes requires numerical solution of a linear system [21]. For this
reason only tridiagonal compact schemes are used in the present work for the solution of the incompressible
Navier–Stokes equations and applications involving use of high-order compact schemes with longer band-
width of the derivative stencil are left for future work.

5.2. Driven cavity flow with upper lid moving with variable velocity

In the following we apply the incompressible Navier–Stokes solver described in Section 4 to the solution of
the driven cavity flow with the upper lid moving at a prescribed variable velocity U0(x) as shown in Fig. 1.

5.2.1. Analytical driven cavity
In this test case, taken from [47,48], we consider flow in a square cavity with the upper lid moving with

U 0ðxÞ ¼ f1ðxÞf02ð1Þ. The functions f1(x) and f2(y) are chosen to be polynomials which ensure that there is
no discontinuity in not only the velocity but also the vorticity at the two upper corners of the square domain
X = [0, 1]2. The purpose here is to compare the numerical solution with the exact analytical solution and to
examine the high-order of accuracy of compact schemes on non-uniform grids. In order to obtain an analyt-
ical solution, a vertical forcing term given by
fyðx; y; ReÞ ¼ 1

Re
½f00002 ðyÞ

Z
f1ðxÞdxþ 2f01ðxÞf

00
2ðyÞ þ f0001 ðxÞf2ðyÞ� þ ½f2

1ðxÞff2ðyÞf0002 ðyÞ � f02ðyÞf
00
2ðyÞg

� f2ðyÞf02ðyÞff1ðxÞf001ðxÞ � f021 ðxÞg�; ð30Þ
is applied to the whole square domain, X = [0, 1]2. The exact analytical solution is then given by [47,48]
ueðx; yÞ ¼ f1ðxÞf02ðyÞ; veðx; yÞ ¼ �f01ðxÞf2ðyÞ; xeðx; yÞ ¼ �ff001ðxÞf2ðyÞ þ f1ðxÞf002ðyÞg: ð31Þ

Reynolds number Re is set equal to 1000 along with f1(x) = (x � x2)8 and f2(y) = 210(y16 � y8) for this set of
computations. Fig. 5(a) and (b) depict the streamlines and the iso-vorticity contours of the computed solution,
respectively, obtained using a 16th-order compact scheme on a 49 · 49 (a = 0.95) non-uniform grid; the com-
putations on the corresponding uniform grid with a = 1 are unstable. Fig. 6 shows the L1 (maximum) norm
of the error in the velocity and the vorticity fields defined as
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Fig. 5. (a) Streamlines and (b) iso-vorticity contours for the analytical driven cavity at Re = 1000 computed using a 16th-order compact
scheme on a 49 · 49 non-uniform grid with a = 0.95.
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EU ¼ ku� uek1 þ kv� vek1 ¼ max
16i;j6N

juij � ue;ijj þ max
16i;j6N

jvij � ve;ijj;

Ex ¼ kx� xek1 ¼ max
16i;j6N

jxij � xe;ijj;
ð32Þ
for computations performed on 33 · 33 (a = 0.9), 49 · 49 (a = 0.95), 65 · 65 (a = 0.975) and 97 · 97 (a = 0.99)
grids. It is observed that the error decreases with the increasing order of the compact schemes for the same
computational grid. It may also be noted that since this problem is completely specified by 16th-order poly-
nomials, a 16th-order non-uniform grid compact scheme yields solutions (not shown in the figure) with the
maximum point wise error close to the numerical machine precision.

5.2.2. Singular driven cavity flow

The analytical driven cavity flow serves as a useful test problem for establishing the high-order of accuracy
of the compact schemes on non-uniform grids. However, a more realistic and practical test problem is the sin-
gular driven cavity problem in which the upper lid moves with a constant unit horizontal velocity. We employ
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the desingularization method described in Section 2.2 to obtain accurate solutions and to make a comparison
with the previously published spectral benchmark solutions of Botella and Peyret [27].

Before making an assessment of the accuracy of the computed solutions we check for the numerical stability
of the computations on uniform and non-uniform grids. Fig. 7(a) shows a plot of the evolution of the total
kinetic energy of the driven cavity given by
EðtÞ ¼ 1

2

Z 1

0

Z 1

0

fu2ðx; y; tÞ þ v2ðx; y; tÞgdxdy; ð33Þ
for computations with Re equal to 1000 on 65 · 65 uniform and non-uniform grids. The time step-size Dt is set
equal to 10�2. To the best of our knowledge quadrature rules employing high-order compact schemes on non-
uniform grids are not available and the method used in the current work in order to compute integrals, such as
those arising in (33), is discussed in Appendix A. We observe that the computations on a uniform grid employ-
ing 12th-order compact finite difference scheme are unstable whereas those employing the same scheme on a
non-uniform grid, with grid stretching parameter a = 0.975, remain stable. All the high-order compact
schemes on a non-uniform grid, with the same order of boundary closure as the interior, remain stable pro-
vided enough grid points are clustered at the boundary in accordance with the grid stretching parameter a
listed in Table 2.

Next we study the temporal accuracy of the incompressible flow solver for the unsteady solutions. Follow-
ing [33] solutions to the singular driven cavity flow are computed for Re = 1000 at a non-dimensional time
t = 6.25. A 16th-order compact scheme on a 97 · 97 non-uniform grid with a = 0.99 is utilized and runs
are made for a range of values of time step size Dt. The solution obtained using a time step size of
Dt = 10�5 is taken as the reference exact solution and the error based on vorticity is calculated for various
other time step sizes as
ei;jðDtÞ ¼ xi;jjDt � xi;jjDt¼10�5 ; 0 6 i 6 N x; 0 6 j 6 Ny : ð34Þ

Fig. 7(b) shows the L2 and L1 norms of the error e as a function of time step size Dt. The second-order slope
of the curve indicates that the employed AB/BDI-2 scheme is indeed O((Dt)2) accurate.

In order to evaluate the spatial accuracy of the high-order compact schemes in solving the singular driven
cavity problem, we perform computations on non-uniform grids with 33 · 33, 49 · 49, 65 · 65, 97 · 97 and
151 · 151 grid points and a as prescribed in Table 2. Table 3 shows numerical comparison of the vorticity val-
ues along the horizontal ðy ¼ 1

2
Þ and the vertical ðx ¼ 1

2
Þ centerlines of the cavity computed using a 16th-order



Table 3
Convergence of vorticity x through the horizontal and the vertical centerlines of the cavity for flow at Re = 1000 obtained using a
16th-order compact scheme

x,y 49 · 49 65 · 65 97 · 97 151 · 151 Ref. [27]

x(x,0.5) 0.0000 �5.46328 �5.46197 �5.46213 �5.46216 �5.46217
0.0391 �8.24642 �8.24605 �8.24614 �8.24616 �8.24616
0.0547 �6.50940 �6.50868 �6.50866 �6.50867 �6.50866
0.1406 3.43030 3.43016 3.43016 3.43016 3.43016
0.5000 2.06738 2.06722 2.06722 2.06722 2.06722
0.7734 2.00283 2.00173 2.00174 2.00174 2.00174
0.9062 �0.82401 �0.82402 �0.82398 �0.82398 �0.82398
0.9297 �1.50176 �1.50308 �1.50306 �1.50306 �1.50306
1.0000 �7.66320 �7.66374 �7.66370 �7.66369 �7.66369

x(0.5,y) 1.0000 14.3501 14.7427 14.7536 14.7534 14.7534
0.9688 9.38136 9.45966 9.49498 9.49495 9.49496
0.9531 4.64727 4.85454 4.85761 4.85754 4.85754
0.7344 2.09130 2.09122 2.09121 2.09121 2.09121
0.5000 2.06738 2.06722 2.06722 2.06722 2.06722
0.2813 2.26788 2.26773 2.26772 2.26772 2.26772
0.1016 �1.63460 �1.63439 �1.63436 �1.63436 �1.63436
0.0625 �2.31805 �2.31785 �2.31786 �2.31786 �2.31786
0.0000 �4.16607 �4.16639 �4.16647 �4.16648 �4.16648
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compact scheme on various grids. The benchmark spectral solutions of [27] obtained using 160 · 160 Cheby-
shev modes are also tabulated for comparison. It is observed that the solutions show a consistent convergence
towards the benchmark results, with the solution on 151 · 151 grid showing differences in the vorticity values
that are less than 10�5 in magnitude. Note that in all these tabulated cases we use the high-order compact
polynomial interpolation [21] to obtain the values of flow variables at points that do not coincide with the grid
nodes. The characteristic features of the flow computed on a 97 · 97 grid (a = 0.99) using a 16th-order com-
pact scheme are depicted in Fig. 8(a) and (b). The choice of streamlines and iso-vorticity lines values is the
same as in [27] and we observe that the qualitative flow features of the problem are reproduced very
accurately.

An estimation of error in terms of the relevant norms should give us an indication of the accuracy of the
computed solutions. In absence of analytical solutions for the singular driven cavity an estimate on the error
has to be obtained by using a high-order solution on a refined grid as the reference exact solution. However,
since the problem is singular the global nature of compact schemes is expected to pollute the computed solu-
tion near the two top corners A and B. Note that Botella and Peyret [27] used a 10th-order filtering scheme in
connection with spectral collocation method in order to obtain results with good convergence near the two
singular corners. In order to avoid the singularity, in our present work we analyze the convergence of velocity
field sufficiently far from the two corners and define errors in the horizontal velocity along the vertical center-
line and the vertical velocity along the horizontal centerline as
Eu ¼ kuð0:5; yÞ � ueð0:5; yÞk1 ¼ max
16j6N

juðNx�1Þ=2;j � ue;ðN x�1Þ=2;jj

Ev ¼ kvðx; 0:5Þ � veðx; 0:5Þk1 ¼ max
16i6N

jvi;ðNy�1Þ=2 � ve;i;ðNy�1Þ=2j:
ð35Þ
The reference exact solution ue, ve is obtained by interpolating the solution obtained using a 16th-order
compact scheme on a 151 · 151 grid with a = 0.996 to the nodes of the coarser grids. Fig. 8(c) and (d) show
the errors Eu and Ev plotted against the number of grid points for various high-order compact schemes.
A general trend of decreasing errors with increasing grid nodes for each of the high-order compact schemes
is confirmed. However, we note that the errors do not necessarily decrease with increasing orders of accu-
racy. We believe that the reason for this is the presence of singularities in the driven cavity problem. Even
though we solve a more regular problem obtained by singularity subtraction, only the first two terms in the
series expansion of the singular solution are retained. We have also observed convergence of numerical
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Fig. 8. (a) Streamlines and (b) iso-vorticity contours for Re = 1000 computed using 16th-order compact scheme on 97 · 97 non-uniform
grid with a = 0.99. Errors (c) Eu and (d) Ev for various grid resolutions using different high-order compact schemes for flow at Re = 1000.
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solutions to be even worse (results are not presented here) when only the first Stokes term is retained in the
analytical solution for the purpose of computations and hence more singular terms need to be retained in
order to obtain better convergence. In spite of this behavior we note that the magnitude of error for the
high-order schemes remains quite small with a 16th-order scheme on a 65 · 65 grid giving maximum
point-wise errors of less than 10�4.

A further illustration of the accuracy and the efficiency of the non-uniform grid compact schemes is given
by computation of the unsteady flow at higher Re of 9000 and 10,000. Previous work by Auteri et al. [33]
has established that the singular driven cavity flow shows Hopf bifurcation from steady flow to unsteady
periodic flow at a critical Re which lies in the interval 8017.6 6 Rec 6 8018.8. Thus for the computations
at Re = 9000 and 10,000 we expect the flow to show unsteady periodic behavior which needs the use of
accurate long time integration of the governing equations. For these cases we perform computations on
a 151 · 151 grid using a 20th-order compact scheme on a non-uniform grid with a = 0.993 according to
Table 2. Computations are done for nearly two million time-steps with Dt = 10�3 starting from the
steady-state solution at Re = 1000. The choice of the time step size Dt is sufficiently small when compared
to the smallest Kolmogorov time scale, s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mL=U 3

p
¼ 10�2 for the flow at Re = 104. This ensures that the

smallest temporal scales of the flow are resolved accurately. Following previous studies the criterion used
for monitoring the time evolution of the flow is chosen to be the kinetic energy E(t), defined by (33).
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Fig. 9(a) and (b) depict the kinetic energy of the singular driven cavity as a function of time for flow at Re
equal to 9000 and 10,000. Sizeable fluctuations are observed in the kinetic energy for flow at Re = 9000 and
10,000. For the flow at Re = 9000 we compute the maxima and the minima in the horizontal and the ver-
tical velocities at the center of the cavity (0.5,0.5) as
1 qua
umax ¼ 0:02753ð0:02752Þ�; umin ¼ 0:02712ð0:02711Þ�; vmax ¼ 0:00938ð0:00942Þ�;
vmin ¼ 0:00898ð0:00901Þ�:

ð36Þ
The period of the extrema of the kinetic energy is, in our case, 2.247 ± 10�3 (2.2456 ± 8 · 10�4)*1; these values
match extremely well with the results of Botella and Peyret [28] who used a Chebyshev collocation method.

Next we compare the qualitative features of the unsteady flow at Re = 10,000. The variation of the kinetic
energy for the flow at Re = 10,000 as shown in Fig. 9(b) is found to be consistent with the results in [36]. Slight
difference between the actual values of kinetic energy is attributed to the fact that an exponential ramp profile
was employed in the simulations in [36] to smoothen the discontinuity in the horizontal velocity at the two
upper corners. Another set of calculations for the unsteady flow at Re = 10,000 is performed using the same
grid but a reduced time step of Dt = 5 · 10�4. The result of the variation of the kinetic energy with time is
shown in Fig. 9(b) against the results obtained using Dt = 10�3. The two results are found to be extremely
close to each other and thus certify the accuracy of the unsteady flow computations at high Re. The smooth
streamlines and iso-vorticity contours for the quasiperiodic unsteady flow at Re = 10,000 at three different
time instants are shown in Fig. 10.

In order to assess the resolution capabilities of various high-order schemes we next present some numerical
results computed for the singular driven cavity flow at Re = 7500 using various high-order compact schemes
on the same 151 · 151(a = 0.996) grid. Fig. 11 shows the iso-vorticity contours obtained using 4th, 10th and
16th-order compact schemes, respectively. We observe that the solutions employing the lowest order scheme
(4th-order) show oscillations with wavelengths of grid spacing in the iso-vorticity contours, close to the upper
moving wall. For a 10th-order scheme the contours are resolved better than the 4th-order scheme, but some
oscillations are still present. For a still higher order of 16, as depicted in Fig. 11, the iso-vorticity contours are
fully resolved and the computed solution is free of oscillations. Thus the iso-vorticity contours are better
resolved through the use of higher order compact schemes for a given fixed grid. Note that the computed solu-
tion is smooth in most of the remaining domain. The reason for this is that there are sharp gradients close to
the upper moving wall and hence for this choice of computational grid (151 · 151) high-resolution (order)
ntities in ()* are from [28].
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Fig. 10. Streamlines (top) and iso-vorticity (bottom) contours for the flow at Re = 10,000 computed at times t= (a) 2003.5; (b) 2008.75;
(c) 2014.0.
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schemes are required to capture these flow features accurately. Alternatively, a refined grid could also be
employed without increasing the order of the scheme. The streamfunction is much more regular and smooth
streamlines are computed for all the higher-order compact schemes (results are not shown here).

Thus the driven cavity flow results show that the high-order non-uniform grid compact schemes are stable
for very high-orders (tested up to 20th-order) of accuracy and provide increased resolution, which is essential
for high Re computations. Such high-order solutions are not possible using a conventional uniform grid com-
pact scheme due to numerical instability.

5.3. Natural convection in a differentially heated square cavity

In this section we perform computations for natural convection of air (Prandtl number = 0.71) in a square
cavity whose top and bottom walls are adiabatic and lateral walls are maintained at different temperatures.
Benchmark solutions to this problem obtained using a 2nd-order finite difference scheme and a Chebyshev
collocation spectral method are documented in [45,46], respectively. Note that this problem is free of any sin-
gularity in the boundary conditions, except the presence of corners and hence is more attractive for testing
high-order compact schemes. The governing equations for this problem are the incompressible Navier–Stokes
equations for the unsteady two-dimensional flows in terms of variables vorticity x and stream function w,
which are supplemented by the energy equation for the non-dimensional temperature h:
ox
ot
þ Jðx;wÞ ¼ Prffiffiffiffiffiffi

Ra
p r2xþ Pr

oh
ox
;

oh
ot
þ Jðh;wÞ ¼ 1ffiffiffiffiffiffi

Ra
p r2h; r2w ¼ �x; ð37Þ



a b c

Fig. 11. (Top) Iso-vorticity contours and (bottom) close up of the contours in the upper right corner, for the flow at Re = 7500 obtained
using: (a) 4th; (b) 10th and (c) 16th-order schemes.
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where Pr is the Prandtl number and Ra denotes the Rayleigh number. The boundary conditions for w and h
are given by
wjoX ¼
ow
ox

����
x¼0;1

¼ ow
oy

����
y¼0;1

¼ 0; and hð0; yÞ ¼ 0:5; hð1; yÞ ¼ �0:5;
oh
oy

����
y¼0;1

¼ 0: ð38Þ
Discretization of these equations following a procedure similar to the one for the driven cavity flow leads to
following discrete algebraic equations
ðr2
d � cÞhnþ1 ¼ Sn;n�1

h ;

r2
d �

c
Pr

� �
xnþ1 ¼ Sn;n�1

x ;

r2
dw

nþ1 ¼ �xnþ1;

ð39Þ
subject to boundary conditions
wn ¼ Dnw
n ¼ 0 on oXN ;

hnjx¼0;1 ¼ 0:5;�0:5; and Dnh
njy¼0;1 ¼ 0:

ð40Þ
These discrete algebraic equations are solved using an influence matrix technique which is very similar to the
one employed for the driven cavity problem.
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In order to evaluate the spatial accuracy of the high-order compact schemes in solving the natural convec-
tion problem we perform computations for Ra = 107, on non-uniform grids with 33 · 33, 49 · 49, 65 · 65,
97 · 97 and 151 · 151 grid points, and a as specified in the first row of Table 2 for orders of accuracy ranging
from 4 to 16. Fig. 12(a) and (b) show the smooth isotherms and streamlines for the flow computed using a
16th-order compact scheme on a 97 · 97 non-uniform grid, respectively. In order to get a quantitative assess-
ment on the accuracy of the high-order non-uniform grid compact schemes, we compute the error in the tem-
perature and the velocity fields by treating the solution obtained by using the highest order scheme (16th) on
the highest resolution grid (151 · 151) as the exact solution. Fig. 12(c) and (d) show the maximum point-wise
errors in the temperature and the velocity fields, Eh and EU (EU given by the first equation in (32)), plotted
against the number of grid points for various high-order compact schemes. It is noted that even though the
error in the velocity and the temperature fields decreases when the order of accuracy of the schemes is
increased from four to six, subsequent increases in order do not produce a significant decrease in error. In
order to ensure that our error estimate is not affected by the grid resolution of the exact solution, we recom-
pute the error based on an exact solution obtained from a 16th-order compact scheme on a refined 301 · 301
non-uniform grid, with the grid stretching parameter a as prescribed in Table 2. No discernible differences are
observed from the error estimate shown in Fig. 12(c) and (d) (results are not shown here). We believe that the
reason for these slow convergence rates of the very high-order schemes is the lack of sufficient regularity in the
solution which is evident from the small scale features present in the flow field. As a result, the actual accuracy
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achieved by the high-order compact schemes is limited by the resolution of the grid employed and not by their
formal order. The Nusselt numbers along the vertical centerline x = 0.5, Nu1

2
, and the wall x = 0, Nu0, defined

as
Nu0;12
¼
Z 1

0

ffiffiffiffiffiffi
Ra
p

uh� oh
ox

� �����
x¼0;0:5

dy; ð41Þ
computed using a 16th-order compact scheme on a 151 · 151 grid, in our case are 16.523; these are in perfect
agreement with the benchmark results of [46] obtained using a spectral Chebyshev collocation method.

5.4. Viscous flow past a circular cylinder

As a final test of the accuracy of the high-order compact schemes we compute the solution for steady and
unsteady flow past a two-dimensional circular cylinder. Due to its practical importance this problem has been
extensively studied both experimentally [58,59] and through computations [49–57].

We consider a circular cylinder of unit radius, R = 1, which is placed in an infinite domain. Flow in the far-
field is assumed to be given by the potential solution corresponding to a circular cylinder placed in a uniform
flow with unit free stream velocity, U1 = 1. The geometry of the problem along with the computational grid
employed to obtain the solution is shown in Fig. 13. The inner radius of the computational domain rmin is set
equal to 1, corresponding to the radius of the cylinder. We consider the incompressible Navier–Stokes equa-
tions in polar (r,/) vorticity–streamfunction formulation
ox
ot
þ 1

r
ow
o/

ox
or
� ow

or
ox
o/

� �
¼ 1

Re
1

r
o

or
r
ox
or

� �
þ 1

r2

o2x

o/2

� �
1

r
o

or
r
ow
or

� �
þ 1

r2

o2w

o/2

� �
¼ �x

ð42Þ
subject to the boundary conditions
wðrmin;/Þ ¼ 0; wðrmax;/Þ ¼ rmax �
r2

min

rmax

� �
sin /; 0 6 / 6 2p;

ow
or

����
r¼rmin

¼ 0;
ow
or

����
r¼rmax

¼ 1þ r2
min

r2
max

� �
sin /; 0 6 / 6 2p:

ð43Þ
U∞

rφ

rmax

rmin

Fig. 13. Computational domain and a representative grid for the flow past a circular cylinder.
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The Reynolds number Re is based on the cylinder diameter and the remaining flow quantities: x, w and time t

are non-dimensionalized based on the cylinder radius R, and U1. The time discretization of (42) is accom-
plished through the AB/BDI-2 scheme. As shown in Fig. 13 we employ a computational grid which is uniform
in the / direction and non-uniform (stretched) in the radial direction:
Fig. 1
401 · 4
vortici
ri ¼
rmax þ rmin

2
þ rmax � rmin

2

� 	 sin�1ð�a cosðpi=N rÞÞ
sin�1 a

; i ¼ 0; . . . ;N r

/j ¼
2pj
N/

; j ¼ 0; . . . ;N/ � 1:

ð44Þ
Since the problem is periodic in the azimuthal direction / we use periodic higher order compact schemes on
uniform grid for discretization along /. The discretization in the radial direction is achieved through the use of
higher order compact schemes on the computational grid given by the first equation in (44) with the same or-
der of boundary closures as the interior. We present computational results employing compact schemes with
even orders of accuracy ranging from 4 to 20. In each of the test cases the order of uniform grid periodic and
non-uniform grid compact schemes, utilized for discretization in r and / directions, respectively, is kept the
same. The parameter a for discretization in the radial direction is chosen according to the values listed in
the second row of Table 2 for the stability of the 20th-order non-uniform grid compact scheme. The resulting
Poisson and Helmholtz equations are solved using matrix diagonalization method which is very similar to the
one used in Cartesian coordinates. The values of vorticity at the outer and inner boundaries at rmax and rmin

are determined using the influence matrix technique. The implementation of the algorithm is very similar to
the one for the driven cavity, the only difference being the reduced size of the influence matrix (2Nr · 2Nr)
and its non-singularity which obviates the need for any special treatment (such as the removal of four bound-
ary points in the case of a square domain).

5.4.1. Transient flow past an impulsively started cylinder

We start by presenting numerical results for the initial transient flow past an impulsively started cylinder.
High accuracy solutions to this problem have been computed for a range of Re using vortex methods [49,51]
and 2nd and 4th-order finite difference method [50]. For these computations we set rmax = 16.0 corresponding
to the outer boundary of the computational domain. Time step size Dt is chosen as 5 · 10�4. We solve the
problem on three grid resolutions, 301 · 300, 401 · 400 and 501 · 501 with Re = 1000. The transient solution
is computed up to a non-dimensional time of 10.0.

Fig. 14 depicts the streamlines and iso-vorticity contours for the flow at a non-dimensional time of 6.0,
computed using the 20th-order compact scheme on a 401 · 400 grid. We observe that the sharp gradients
in vorticity and the small recirculating flow regions in the streamline contours are captured quite effectively
by the 20th-order scheme. In Fig. 15(a) we show a comparison of the vorticity at the cylinder surface with
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the results of [52] at various time instants. The agreement is satisfactory and establishes the high accuracy of
both non-uniform grid compact schemes and uniform grid (periodic) compact schemes. In order to obtain a
quantitative assessment on the accuracy we compute the maximum point wise error in radial velocity along the
rear symmetry axis of the cylinder (/ = 0), given by u = (1/r)(ow/o/), at time t = 6.0 for various high-order
compact schemes on 301 · 300 grid. The numerical solution obtained from the 20th-order scheme on
501 · 500 grid is treated as the exact solution. A plot of the error against the order of accuracy of the schemes
employed is depicted in Fig. 15(b). We observe that the error continues to decrease with increasing order of
accuracy with the maximum drop observed by increasing the order of accuracy from 4 to 6. At relatively
higher orders of accuracy we no longer observe a decrease in error by increasing the order of the scheme.
The most likely reason for this is the lack of regularity in the solution which is evident from the presence
of small scale features in the flow field, and hence, the grid resolution and not the formal order, dictates
the accuracy of the computed solutions.

5.4.2. Long time computations for steady and unsteady flow

In this section we demonstrate the stability and accuracy of the high-order compact schemes in long time
integration of the incompressible Navier–Stokes equations for steady and unsteady flow over a circular cylin-
der. In order to minimize the effect of potential flow boundary conditions at the outer boundary we set
rmax = 25.0 for Re = 20 and 40 and rmax = 50.0 for Re = 100. For the flow at Re = 20 and 40 we compute
the final steady state solution and compare various parameters: the length of the wake bubble, the separation
angle and the drag coefficient with previous studies. For the flow at Re = 100 various experimental and com-
putational studies have predicted the well-known phenomena of periodic vortex shedding and for this case we
compare the unsteady drag and lift coefficients and the Strouhal number. The drag and lift coefficients are
computed using following formulas [49]
CD ¼
1

Re

Z 2p

0

ox
or
� x

� �����
r¼rmin

sin /d/;

CL ¼
1

Re

Z 2p

0

ox
or
� x

� �����
r¼rmin

cos /d/;

ð45Þ
where a cylinder radius of unity has been assumed for our present computations. The integral over / along the
cylinder surface is computed numerically using the trapezoidal rule which is quite accurate for a periodic do-
main [3].
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We perform simulations for flows at Re = 20 and 40 employing 97 · 150, 151 · 200, 201 · 300, and
151 · 200, 201 · 300, grid resolutions, respectively. Non-dimensional time step size Dt is chosen as 0.005
and the flow is computed up to a non-dimensional time of 1000.0 using various high-order compact schemes
starting from the potential flow over the entire domain. Fig. 16 shows the streamlines and the iso-vorticity
contours for the steady state flow at Re = 40. The contours agree well with those presented in [57].

A comparison of the values of the wake bubble length, angle of separation and coefficient of drag
(CD), computed in the present study by using a 20th-order compact scheme on a 201 · 300 grid resolu-
tion, with the previous studies is presented in Table 4. Good agreement is observed, in general, for both
Re = 20 and 40. Next, we present results on convergence study for CD using various high-order compact
schemes by treating the solution obtained on the finest grid (201 · 300) as the exact one. Fig. 17(a) and
(b) show the errors in CD for numerical solutions at Re = 20 and 40, respectively, plotted against the
order of accuracy of the employed schemes. Note that the calculation of drag involves derivative of vor-
ticity: a quantity which is more irregular than vorticity itself. Hence, we expect the effect of increasing
orders of accuracy to be more pronounced in the computation of drag. This observation is verified from
Table 4
Wake bubble length (L), angle of separation (h), and drag coefficient for Re = 20 and 40

Re = 20 Re = 40

L h (�) CD L h (�) CD

Tritton [58] – – 2.22 – – 1.48
Coutanceau and Bouard [59] 0.73 42.3 – 1.89 52.8 –
Fornberg [57] 0.91 – 2.00 2.24 – 1.50
Dennis and Chang [56] 0.94 43.7 2.05 2.35 53.8 1.52
Calhoun [54] 0.91 45.5 2.19 2.18 54.2 1.62
Linnick and Fasel [55] 0.93 43.5 2.06 2.28 53.6 1.54
Present 0.92 43.2 2.07 2.34 52.7 1.55
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Fig. 17(a) and (b), where the error in the computed value of drag coefficient continues to decay with
increasing order of accuracy of the employed scheme and the 20th-order scheme gives most accurate value
on coarser grids.

We now proceed to the numerical results for flow over a cylinder at Re = 100. Computations are performed
on a 251 · 300 grid up to a non-dimensional time of 1000.0 using Dt = 2.5 · 10�3. As the time progresses flow
shows an unsteady periodic behavior in the numerical solution. Fig. 18(a) and (b) show the periodic time
dependent variation of the drag and lift coefficient for this flow. The value of the Strouhal number calculated
from the variation of the lift coefficient is 0.1647 which shows excellent agreement with the previous study of
Liu et al. [53] who reported a value of 0.165. The smooth iso-vorticity contours at two different time instants
differing by 6.0 are shown in Fig. 19. The time averaged value of drag, for the present computations, is 1.354
which is again in excellent agreement with the value of 1.35 reported in [53].
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Fig. 18. Variation of: (a) CD and (b) CL with time for flow past a circular cylinder at Re = 100.
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Fig. 19. Iso-vorticity contours for flow at Re = 100 obtained using 20th-order compact scheme on a 251 · 300 grid at t = 751.0 (top) and
t = 757.0 (bottom). Contour levels are �2:0.1:2 and �0.1:0.025:0.1 excluding 0.
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Overall, the results of computations for the incompressible flow show that the high-order compact schemes
can be used for computations without any numerical instability problems and provide high-resolution along
with high-order of accuracy. The equality between the order of accuracies of the boundary closures and the
interior schemes ensures the overall high-order in the entire domain. In this paper we have shown only simple
domain computations. Extension to more complex flows in complicated geometries will be presented in future
work. In addition, because our schemes for computations and imposition of boundary conditions are not spe-
cific to the equations being solved we can also apply these schemes to other formulations like primitive vari-
ables with the projection method.
6. Conclusions

In this paper compact finite difference schemes over non-uniform grids with very high-orders of accuracy
ranging from four to 20 are implemented to solve two-dimensional viscous incompressible flow. Two methods
for the numerical solution of Poisson and Helmholtz equations using high-order compact schemes on non-uni-
form grid are developed. It is shown that the high-order non-uniform grid compact schemes with order of
accuracy of up to 20, along with the boundary closures of the same order as the interior, remain stable
and give highly accurate results on a non-uniform grid with more grid points clustered at the boundary.
The high-order of accuracy and the resolution characteristics of the non-uniform grid compact schemes are
verified along with their stability through their application to the linear wave equation and the incompressible
flow in the analytical and the singular driven cavity. The high resolution properties of the high-order schemes
on non-uniform grids when applied to the incompressible flow are demonstrated through their application to
the singular driven cavity at high Reynolds numbers. An extensive comparison of the present numerical results
with the previous benchmark solutions for the singular driven cavity flow, convection in a square box and
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uniform flow past a circular cylinder establishes the high-order of accuracy and stability of the high-order
compact schemes on non-uniform grid.
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Appendix A

Here, we present the details of the quadrature rules that are used in this work in order to numerically

compute one and two-dimensional integrals. Consider an integral of the form

Fig. A
unifor
I ¼
Z 1

0

Z 1

0

f ðx; yÞdxdy: ðA:1Þ
In order to compute this integral numerically using high-order compact finite difference schemes we consider a
function I(x,y) given by
Iðx; yÞ ¼
Z x

0

Z y

0

f ðg; fÞdgdf: ðA:2Þ
Then the governing partial differential equation for I(x,y) can be written as
o2I
oxoy

¼ f ðx; yÞ; Iðx; 0Þ ¼ Ið0; yÞ ¼ 0: ðA:3Þ
Discretization of the above equation using compact finite difference operator relations given by (12) yields
Q1IQT
2 ¼ P 1FP T

2 : ðA:4Þ
The above sparse linear system can be solved for discrete value of I at (x = 1, y = 1) to get a numerical esti-
mate of the integral (A.1). Fig. A.1 shows a plot of error for numerical calculation of (A.1) obtained using
Order of accuracy

E
rr

or

2 4 6 8 10 12 14 16 18
10-18

10-16

10-14

10-12

10-10

10-8

10-6
33X33
49X49
65X65
97X97

Order of accuracy

E
rr

or

2 4 6 8 10 12 14 16 18
10-18

10-16

10-14

10-12

10-10

10-8

10-6
33X33
49X49
65X65
97X97

a b

.1. Maximum point wise errors for numerical integration using high-order compact schemes on various: (a) uniform and (b) non-
m grids.
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various high-order schemes on uniform and non-uniform grids for f(x,y) = 2x/(1 + x2 + y2)2. We observe
excellent agreement between computed and exact result for the value of integral with computations on uni-
form grid showing some increase in error at very high-orders of accuracy which is related to the Runge phe-
nomena for high-order polynomial interpolation on a uniform grid.
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