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The receptivity phenomenon, which is the process of environmental disturbances
initially entering the boundary layers and generating disturbance waves, is one of
the important but not well understood mechanisms involving laminar–turbulent
transition of hypersonic flows. This paper presents a numerical simulation study of the
receptivity to weak free-stream fast acoustic waves for a Mach 7.99 axisymmetric flow
over a 7◦ half-angle blunt cone. In hypersonic boundary-layer flow over a blunt cone,
the process of receptivity to free-stream disturbances is altered considerably by the
presence of a bow shock and an entropy layer. In the present study, both steady and
unsteady flow solutions are obtained by computing the full Navier–Stokes equations
with a fifth-order shock-fitting finite-difference scheme, which is able to account for
the effects of bow-shock/free-stream-disturbance interaction accurately. The current
numerical results for the steady base flow are compared with previous experimental
and numerical results. In addition, a normal-mode linear stability analysis is used to
identify the main components of boundary-layer disturbances generated by forcing
free-stream fast acoustic waves. It is found that neither the first mode nor the second-
mode instability waves are excited by free-stream fast acoustic waves in the early
region along the cone surface, although the Mack modes can be unstable there.
Instead, the second mode is excited downstream of the second-mode Branch I neutral
stability point. The delay of the second-mode excitation is because the hypersonic
boundary-layer receptivity is governed by a two-step resonant interaction process:
(i) resonant interactions between the forcing waves and a stable boundary-layer
wave mode I near the leading-edge region; and (ii) resonant interactions between
the induced stable mode I and the unstable second Mack mode downstream. The
same receptivity mechanism also explains the results that no first Mack mode
components are generated by the current receptivity process because there is no
resonant interaction between fast acoustic waves and the first Mack mode.

1. Introduction
The prediction of laminar–turbulent transition in hypersonic boundary layers is a

critical part of the aerodynamic heating analyses on hypersonic vehicles. Despite
decades of extensive research, the prediction of hypersonic boundary-layer transition
is still mostly based on empirical correlation methods or the semi-empirical en

method because a number of physical mechanisms leading to transition are currently
not well understood. The receptivity phenomenon, which is the process of environ-
mental disturbances initially entering the boundary layers and generating disturbance
waves, is one of these important, but less understood, mechanisms. It is necessary to
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understand the receptivity mechanisms in order to predict accurately the locations
of transition. Though incompressible boundary-layer receptivity to free-stream
disturbances is relatively well understood (Saric, Reed & Kerschen 2002), the process
of hypersonic boundary-layer receptivity is much more complex (Morkovin 1987;
Reshotko 1991) and is currently an active research area (Fedorov 2002, 2003; Fedorov
& Khokhlov 2002; Ma & Zhong 2003a, b).

Most of our current knowledge on hypersonic boundary-layer stability and transi-
tion is based on the results of linear stability theory (LST) (Mack 1984), which is
concerned with the linear growth or decay of boundary-layer normal modes. Mack
(1984) showed that the stability characteristics of high supersonic and hypersonic
boundary layers are very different from those of subsonic boundary layers. He found
that, in addition to the first-mode instability waves, there are higher acoustic instability
modes in hypersonic boundary layers. The unstable modes in hypersonic boundary
layers are generally termed Mack modes in the literature. It was shown in Ma &
Zhong (2003a) that the first, second and higher modes are in fact different segments
of a single wave mode. Among the instability wave modes in hypersonic boundary
layers, the second mode is the most dangerous in term of laminar–turbulent transition
because it induces the dominant instability at hypersonic Mach numbers, especially for
practical hypersonic flight applications where the free-stream disturbances are often
very weak and the by-pass transition is not likely, and the second mode instability is a
dominating instability before the transition of the boundary layers. The existence and
dominance of the second mode instability in hypersonic boundary layers has been
confirmed in experiments for hypersonic flows over sharp or blunt cones (Demetriades
1974, 1977; Stetson & Kimmel 1992; Maslov, Mironov & Shiplyuk 2002).

The LST analysis is the foundation of the commonly used en method for boundary-
layer transition prediction, which assumes that the transition is a result of exponential
growth of the most unstable normal modes. For supersonic and hypersonic boundary-
layer flows over a flat surface, the most unstable mode is the first Mack mode at
relatively low Mach numbers and the second Mack mode for hypersonic boundary
layers. The transition criteria used in the en method are established based on the ratio
of amplitude growth of the most unstable mode computed by LST. The en method is
a reasonable approach for practical hypersonic flight situations where environmental
free-stream disturbances are small. However, the en method has the drawback that the
initial generation of the unstable modes, which is the subject of a receptivity study, is
not considered. Because the wave growth and transition in boundary layers depend
on the initial amplitudes of the wave modes, the en transition prediction method
without the consideration of the receptivity processes is not satisfactory. Therefore,
an understanding of the mechanisms and characteristics of the receptivity process
of hypersonic boundary layers is necessary in order to develop a better transition
prediction method.

Stetson et al. (1984) and Stetson & Kimmel (1993) carried out boundary-layer
stability experiments on an axisymmetric blunt cone in a Mach 7.99 free stream.
The half angle of the cone was 7◦, the nose radius was 3.81 × 10−3 m, and the free-
stream Reynolds number based on the nose radius was 33 449. The total length of
the cone was about 270 nose radii, corresponding to a Reynolds number of about 9
million. Detailed fluctuation spectra of the disturbance waves developing along the
body surface were measured in the experiments. It was found that the disturbances
in the boundary layer were dominated by the second mode instability. Significant
superharmonic components of the second modes were observed after the second
mode became dominant. Compared with similar hypersonic flow over a sharp cone,
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the second mode instability of the blunt cone appeared in much further downstream
locations. This indicates a stabilization of the boundary layer by slight nose bluntness.
Stetson and colleagues also found evidence of entropy-layer instability in the region
outside the boundary layer in a test case of larger nose radius. This particular
stability experiment was identified by NATO RTO Working Group 10 on boundary
layer transition (Schneider 2001) as one of the best available stability experiments for
computational fluid dynamics (CFD) code validation.

Stability experiments of hypersonic flows over sharp or blunt cones have also been
carried out by other workers. Demetriades (1974, 1977) carried out extensive stability
experiments on hypersonic boundary layers over axisymmetric cones. He presented
detailed disturbance spectra in the boundary layers and obtained visualization of
the laminar rope waves, which are the signature of the second mode waves in the
hypersonic boundary layers.

Maslov and his colleagues (2001, 2002) reported their stability experiments on super-
sonic and hypersonic flows over sharp or blunt cones. One of the test cases was Mach
5.92 flow over a 7◦ half-angle blunt cone, which had similar geometry and flow condi-
tions to those tested in Stetson et al.’s 7◦ blunt cone experiments. Maslov et al.
measured the fluctuation spectra of the disturbance waves in the boundary layer for
test cases of instability waves induced by two different mechanisms: (i) natural distur-
bances in the wind tunnel; and (ii) artificial disturbances introduced into the boundary
layer by high-frequency glow discharge on the cone surface. They found that, in the
case of a sharp cone without artificial forcing disturbances, the disturbance waves in
the boundary layer at the measurement location are dominated by the second mode
waves. On the other hand, for the case of the blunt cone, the first mode disturbances
have smaller amplitudes and the second mode disturbances are practically absent.
They also found that when the disturbances are induced by glow discharge on an
early part of the cone surface, the amplification of the disturbances is similar for
both the blunt and the sharp cones, i.e. they are mainly the second mode waves for
both cases. They conjectured that the considerable difference in the case of natural
disturbances is caused by different receptivity conditions and by the development of
the disturbances at low Reynolds numbers on the sharp and blunt cones.

The normal-mode linear stability characteristics of the boundary-layer flow over
the same blunt cone as Stetson et al.’s experiments have been studied by a number of
workers (Malik, Spall & Chang 1990; Herbert & Esfahanian 1993; Kufner, Dallmann
& Stilla 1993; Kufner & Dallmann 1994). Malik et al. (1990) computed the neutral
stability curve and compared the growth rates obtained by LST with the experimental
results. The steady base flow solution was computed by using the parabolized
Navier–Stokes equations. They found that the nose bluntness stabilizes the boundary
layer. The growth rates predicted by the LST were compared with Stetson et al.’s
experimental results at the surface location of s = 175 nose radii. The linear stability
analyses predicted slightly lower frequency for the dominant second mode, but much
higher amplification rates than the experimental results. Herbert & Esfahanian (1993)
conducted similar base flow and LST calculations for the same Mach 7.99 flow by
using a much finer grid resolution. Their LST results at the s = 175 surface station
agree reasonably well with those of Malik et al. In a separate study, Kufner et al.
(1993) and Kufner & Dallmann (1994) carried out extensive LST calculations for
the same flow over the blunt cone. It was found that there are only small variations
in the LST growth rates obtained independently by the three group of authors. The
small variations among these three sets of LST growth rates are possibly caused
by differences in their mean flow solutions. However, all LST results consistently
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predicted much higher growth rates than those of the stability experiments at the 175
nose radii surface station. A satisfactory explanation for the growth-rate discrepancy
between the LST and experimental results has not been found. It has been speculated
that the discrepancy is a result of the nonlinear effects in the experimental wave fields
because there are significant superharmonic components at the 175 nose radii station
in the experimental results. On the other hand, the nonlinear effects are neglected in
the linear stability analysis. Other factors may also be responsible for the discrepancy.
For example, the effects of bow shock, entropy layer, and non-parallel boundary layer
are neglected in the normal mode linear stability analysis. Since these complex physical
effects and interactions neglected by theoretical analyses are taken into account in
a direct numerical simulation of the full Navier–Stokes equations, direct numerical
simulation studies of the stability and receptivity will not only be a useful research tool
in understanding new hypersonic boundary stability mechanisms, but also be helpful
in evaluating the accuracy of LST results for hypersonic boundary-layer stability.

The direct numerical simulation of hypersonic and supersonic boundary-layer
receptivity was carried out in our previous studies (Ma & Zhong 2001, 2002, 2003a–c).
A parametric study was carried out on the receptivity characteristics affected by dif-
ferent free-stream waves, frequencies, nose bluntness characterized by Strouhal
numbers, Reynolds numbers, Mach numbers and wall cooling (Zhong 1997a, 2001).
It was found that the receptivity parameters decrease when the forcing frequencies
or nose bluntness increase. The mechanisms of the receptivity of supersonic flat-
plate boundary layer to free-stream fast acoustic waves were studied by using both
direct numerical simulation and the LST (Ma & Zhong 2001, 2002, 2003a, b). The
results showed that the receptivity of the flat-plate supersonic boundary layer to
free-stream fast acoustic waves leads to the excitation of both Mack modes and a
family of stable modes, which were termed mode I, mode II, etc. by Ma & Zhong.
The receptivity characteristics of supersonic boundary layers were found to be very
different from those of the incompressible counterpart owing to a different length
scale between the free-stream forcing waves and Tollmien–Schlichting (T-S) waves
(Saric et al. 2002). Specifically, at low Mach number, the differences between the
wavelengths of the acoustic waves and instability waves require a change in curvature
on a surface as a wavelength matching point. At supersonic Mach numbers, the
wavelength matching mechanism is not necessary. Therefore at high Mach numbers,
interaction between acoustic and vortical waves can occur anywhere in the flow. It was
found that the forcing fast acoustic waves do not interact directly with the unstable
Mack modes in supersonic boundary layers. Instead, the stable mode I waves play an
important role in the receptivity process because they interact with both the forcing
fast acoustic waves and the unstable Mack-mode waves. Through these interactions,
the stable mode I waves transfer disturbance energy from the forcing fast acoustic
waves to the second Mack-mode waves. The results also showed that the receptivity
mechanisms of the second mode are very different from those of modes I and II.
The different mechanisms between the second mode and mode I (or mode II) lead to
different responses to different incident wave angles, frequencies and wall boundary
conditions.

Ma & Zhong (2003c) subsequently carried out numerical simulations of the recep-
tivity to free-stream disturbances of Mach 7.99 flow over a 5.3◦ sharp wedge. The free-
stream disturbances included fast acoustic, slow acoustic, entropy and vorticity waves.
It was found that, similar to the flat-plate case, the stable mode I waves play an
important role in the receptivity process because they interact with both the forcing
acoustic waves and the unstable Mack modes. On the other hand, the forcing slow
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acoustic waves can directly generate Mack-mode waves because of their resonant
interactions. At small incident angles, slow acoustic waves are more efficient in generat-
ing the unstable second Mack modes than the fast acoustic waves. For receptivity
to free-stream entropy waves or vorticity waves, the generation of boundary-layer
disturbances are mainly through fast acoustic waves generated behind the shock due
to the interactions between shock waves and free-stream disturbances. These extensive
DNS studies have produced clear pictures of the mechanisms of the receptivity of
supersonic and hypersonic boundary layers.

The results of the numerical simulation studies of Ma & Zhong (2002, 2003a–c)
are consistent with the theoretical analysis of the receptivity of hypersonic boundary
layers by Fedorov & Tumin (2001), Fedorov & Khokhlov (2001, 2002) and Fedorov
(2002, 2003). Fedorov and colleagues found that the disturbance spectra reveal the
following features: (i) the mode I and Mack modes are synchronized with fast and slow
acoustic waves near the leading edge; (ii) further downstream, mode I is synchronized
with entropy and vorticity waves; (iii) near the lower neutral branch of the Mack
second mode, mode I is synchronized with the Mack second mode.

The previous numerical studies of Ma & Zhong (2001, 2002, 2003a–c) and theore-
tical studies of Fedorov and colleagues on high-speed boundary-layer receptivity have
been for supersonic or hypersonic flows over sharp flat plates or wedges only. The
effects of nose bluntness and entropy layers on receptivity were not considered in these
studies. In hypersonic boundary-layer flow involving a blunt nose, the receptivity to
free-stream disturbances is altered considerably by the presence of a bow shock and
an entropy layer created by the blunt nose. Before entering the boundary layer, free-
stream disturbances first pass through and interact with the bow shock. Irrespective
of the nature of a free-stream disturbance waves, their interaction with the bow
shock always generates all three types of disturbance wave after passing through
the shock. These three types of wave are acoustic, entropy and vorticity waves. The
transmitted waves are propagated downstream and interact with the boundary layer
near the body. On the other hand, an entropy layer is created by the bow shock
and gradually merges with the boundary layer as it is convected downstream. In the
stability experiments of Stetson et al. (1984), evidence of entropy-layer instability was
observed in the region outside the boundary layer for a test case with a blunt cone
of larger nose radius.

This paper presents a numerical study on the receptivity to free-stream acoustic
waves for hypersonic flow with the effects of nose bluntness and the entropy layer.
The flow conditions duplicate the experiments of Stetson et al. (1984) and aim
to investigate new physics in high-Mach-number flows that can lead to transition,
and thereby motivate new experiments. The numerical results are compared with
available experimental and other computational results. More importantly, the
detailed receptivity and stability mechanisms are studied by numerical simulation. The
effects of nose bluntness, entropy layer, shock-disturbance interaction, non-parallel
boundary layers and surface curvature on the receptivity process are accurately taken
into account by the high-order shock-fitting scheme. Whenever possible, the current
numerical results are compared with those of the experiments by Stetson et al. and
with the numerical simulation results by Herbert & Esfahanian (1993). In addition, a
new axisymmetric LST code is developed to study the linear stability and receptivity
properties of the axisymmetric boundary layer. The new axisymmetric LST code is
validated by comparing its results with the other LST results on the same flow field.
Subsequently, the LST results are used to identify and analyse the wave structures
and interactions based on the simulation results. From the analyses of the simulation
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results, we study the hypersonic boundary-layer receptivity mechanisms, and the
corresponding effects from nose bluntness and the entropy layer. In addition, the
second-mode growth rates obtained by the linear stability analysis are also compared
with those of the numerical simulation as a first step in explaining the discrepancy
between the experimental and LST growth rates.

2. Governing equations and numerical methods
The governing equations for both steady and unsteady flow computations are briefly

presented in this section. Details of the governing equations and numerical methods
for two- and three-dimensional flows have been described in previous papers (Zhong
1997a, b). The governing equations are the unsteady three-dimensional Navier–Stokes
equations written in the following conservation-law form:

∂U ∗

∂t∗ +
∂F ∗

j

∂x∗
j

+
∂F ∗

vj

∂x∗
j

= 0, (1)

where U ∗ = (ρ∗, ρ∗u∗
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∗u∗
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∗u∗
3, e

∗), and superscript ‘∗’ represents dimensional varia-
bles. The Cartesian coordinates, (x∗, y∗, z∗), are represented by (x∗

1 , x∗
2 , x∗

3 ) in tensor
notation. In the current simulation of axisymmetric flow over a blunt cone, the x∗-axis
is along the centre line of the axisymmetric cone pointing downstream. The origin of
the Cartesian coordinate system is located at the centre of the spherical nose.

We non-dimensionalize the flow velocities by the free-stream velocity U ∗
∞, length

scales by the nose radius r∗
n , density by ρ∗

∞, pressure by p∗
∞, temperature by T ∗

∞, time
by r∗

n/U ∗
∞, etc. The dimensionless flow variables are denoted by the same dimensional

notation, but without the superscript ‘∗’.
A fifth-order shock-fitting method of Zhong (1998) is used to compute the flow

field bounded by the bow shock and wall surface. The flow variables behind the
shock are determined by the Rankine–Hugoniot relations across the shock and a
characteristic compatibility equation from behind the shock. The details of the shock-
fitting formulae and numerical methods can be found in Zhong (1998).

3. Flow conditions
The flow conditions for the test case studied in this paper are the same as those

of Stetson et al.’s (1984) experiments on air flow over a blunt cone. The specific flow
conditions are:

M∞ = 7.99, Rern
= ρ∗

∞U ∗
∞r∗

n/µ
∗
∞ = 33 449

p∗
t = 4 × 106 Pa, T ∗

t = 750 K

γ = 1.4, Pr = 0.72, Gas constant = 286.94 Nmkg−1K−1

Free-stream unit Reynolds number: Re∗
∞ = 8.78 × 106 m−1

Blunt cone half-angle: θ = 7◦, zero flow angle of attack

Spherical nose radius: r∗
n = 3.81 × 10−3 m

Parameters in Sutherland’s viscosity law: T ∗
r = 288 K, T ∗

s = 110.33 K

µ∗
r = 0.17894 × 10−4 kg ms−1

where p∗
t and T ∗

t are total pressure and total temperature, respectively. The body sur-
face is a no-slip and adiabatic wall for the steady base flow solution. The total length
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of the cone of the experimental model is l∗ = 1.016 m. The corresponding Reynolds
number at this length is Rel = 8.92 × 106.

The cone surface consists of two distinct sections: a spherical nose region followed
by a straight conical section of 7◦ half-angle. The junction of the two sections of the
cone surface is continuous up to the first surface derivatives. However, there is a finite
jump in surface curvatures at the junction. This discontinuity in surface curvatures at
the junction creates slight adverse pressure gradients along the cone surface after the
junction.

As stated earlier in this paper, the origin of the Cartesian coordinate system,
(x, y, z), is located at the centre of the nose spherical cone, where the x-coordinate
points from left to the right along the the centreline of the axisymmetric cone. In
addition to x, a natural coordinate s is also used in this paper to measure the dimen-
sionless curve length of a surface location started from the stagnation point. The
non-dimensional s and x, which are normalized by the nose radius r∗

n , are related to
each other by the following relation:

x =

{
− cos(s)

(
s � 1

2
π − θ

)
,(

s − 1
2
π + θ

)
cos θ − sin θ

(
s > 1

2
π − θ

)
,

(2)

where θ is the half-angle of the cone. In the current test case, θ = 7◦.
In the experiments of Stetson et al., the wall surface was close to, but not exactly,

adiabatic. The actual surface temperatures were about 10 % to 20 % lower than
those of an adiabatic wall in the same free stream. The stability and receptivity
properties of hypersonic boundary layers are strongly affected by the changes in
surface temperature. In this paper, only the case of an adiabatic wall for the steady
base flow is considered. The case of an adiabatic wall is chosen because all previous
LST studies (Malik et al. 1990; Herbert & Esfahanian 1993; Kufner et al. 1993) and
Kufner & Dallmann (1994) on the same flow were based on the assumption of the
adiabatic wall, with the exception of Kufner et al. (1993) and Kufner & Dallmann
(1994) who studied the effects of wall temperatures in addition to the case of the
adiabatic wall. Therefore, the same adiabatic wall is used in this study so that current
results can be compared with those of the previous LST studies. The effects of wall
temperature and other parametric effects require a separate study.

4. Free-stream forcing waves
In order to reproduce similar flow conditions to those used in Stetson et al.’s experi-

ments, it is natural to introduce initial forcing waves to excite the instability waves
in the boundary layer to study the receptivity process. In Stetson et al.’s experiments,
the free stream is dominated by acoustic waves generated by the boundary layer over
the wind-tunnel wall. Therefore, we simulate the stability experiment by imposing
free-stream acoustic disturbances. Since the wave fields in the experiments contain a
wide range of second-mode frequencies, we simultaneously introduce two-dimensional
planar fast acoustic waves with 15 independent frequencies, including dominant
frequencies of second mode waves.

The wave fields are represented by the perturbations of instantaneous flow variables
with respect to the local steady base flow variables. The free-stream perturbations of
an arbitrary flow variable can be written in the following form:

q∞(x, y, t)′ = |q ′|
15∑

n=1

An exp

(
i

[
nω1

(
x

c∞
− t

)
+ φn

])
, (3)
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where c∞ is the phase velocity in the free stream, and q represents any of the flow
variables, including velocity components, density, pressure and temperature. In the
equations above, |q ′|An is the free-stream wave amplitude of a given flow variable q

at the nth frequency of

ωn = nw1 (n = 1, 2, . . . , 15), (4)

where w1 is the minimum frequency of the wave packet. The minimum frequency ω1

is chosen such that the frequencies span the dominant second-mode frequencies
observed in the experiment. The relative amplitude An of a given wave frequency ωn

is determined according to figure 17 of Stetson & Kimmel (1992), such that,

15∑
n=1

A2
n = 1. (5)

Since the wave components of different frequencies are linearly independent, the initial
phase angles, φn, of the forcing acoustic wave at frequency ωn are chosen randomly.
The forcing frequencies can also be represented by a dimensionless frequency Fn

defined by

Fn = 106 ω∗
nν

∗

U ∗2
∞

. (6)

For fast acoustic waves in the free stream, perturbation amplitudes of non-
dimensional flow variables satisfy the following dispersion relations:

|ρ ′|∞ = |p′|∞/γ = |u′|∞M∞ = εM∞, (7)

|s ′|∞ = |v′|∞ = 0, (8)

where ε is a dimensionless number representing the total amplitude of the group of
15 free-stream fast acoustic waves. In this paper, only linear receptivity is considered
by using a very small value of ε.

The numerical simulation for an unsteady hypersonic boundary-layer receptivity
problem is carried out in three steps. First, a steady base flow field is computed by
advancing the unsteady flow calculations to convergence with no disturbances imposed
in the free stream. Secondly, unsteady viscous flows are computed by imposing free-
stream perturbations given by (3) to the steady base flow solution. The unsteady
simulation is carried out for 20 to 50 time periods until the unsteady flow reaches
a temporal periodic state. Thirdly, the unsteady computations are carried out for
a number of additional periods in time to record the perturbations. A temporal
Fourier transform is performed on the perturbation variables to obtain the Fourier
amplitudes and phase angles of the perturbations of the unsteady flow variables for
each individual frequency throughout the flow field.

5. Steady base flow solution
The steady base flow solution is obtained first by computing the flow to a steady

state without free-stream forcing waves. The simulation is carried out by adopting
a multi-zone approach using 35 zones with a total of 4700 × 121 grid points for
the axisymmetric flow field from the nose to the 280 nose radius surface station
downstream.

For their LST calculations, Esfahanian (1991) and Herbert & Esfahanian (1993)
performed highly accurate steady base flow calculations of the same flow as considered
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Figure 1. �, The experimental bow shock shape of Stetson et al. (1984) is compared
with —, the current numerical solution.

in this paper. The thin-layer approximation of the Navier–Stokes equations was used
in their computations with a set of 1300 × 100 grid points. Though lower than the grid
resolution used in the current study, Esfahanian & Herbert’s mean-flow calculations
had the highest grid resolution among all previous published calculations on this flow
field. In this paper, the steady base solution of the full Navier–Stokes equations is
compared with that of Esfahanian (1991) and Herbert & Esfahanian (1993) and the
experimental results of Stetson et al.

Figure 1 compares the shape of the bow shock measured by Stetson’s experiment
and computed by the current simulation. In the simulation, the bow shock shape,
which is not known in advance, is obtained as the solution for the outer computational
boundary. The experimental shape of the bow shock measured by Stetson et al. is
marked by symbols in the same figure. The figure shows that the numerically computed
bow shock agrees very well with the experimental measurements. The shape of the
bow shock obtained by Esfahanian & Herbert’s calculations has also been compared
with the current solution. Though the comparison is not presented here owing to the
length limitation, it is found that the numerical shock shape obtained by Esfahanian
& Herbert agrees very well with the current results as well as experimental results.
Therefore, the bow-shock shape is accurately predicted by the high-order shock-fitting
scheme used in the current computations.

Figure 2 compares three sets of steady pressure and temperature distributions along
the cone surface. It shows that the surface pressure predicted by the current calcula-
tions can match both experimental results and Esfahanian & Herbert’s numerical
results. The maximum wall pressure is reached at the stagnation point. The surface
pressure drops sharply as flow expands around the nose region. Because of the
discontinuity in surface curvatures at the junction of the spherical nose and straight
cone, the flow experiences an overexpansion at the junction and goes through a
recompression along the cone surface afterward. As a result, there is slight adverse
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Figure 2. (a) Steady pressure and (b) temperature distributions along the cone surface. �, The
experimental results of Stetson et al. (1984) and �, numerical results of Herbert & Esfahanian
(1993) are compared with —, the current results.

pressure gradient along the surface locations after the junction. Further downstream,
the surface pressure approaches a constant value. As for the comparison of the steady
surface temperature distributions, this figure shows that the current results agree very
well with the results of Herbert & Esfahanian. The maximum steady adiabatic wall
temperature is also reached at the stagnation point. The steady adiabatic wall tem-
perature drops as x increases along the surface. However, both sets of independently
obtained numerical solutions with an adiabatic wall predict higher surface tempera-
tures than the experimental results, which indicates that the cone surface in Stetson
et al.’s experiments was not perfectly adiabatic. The experimental surface temperatures
are about 10 % to 20 % lower than those of the numerical solutions for an adiabatic
wall.

The tangential velocity profiles across the boundary layer at a surface location of
s = 94 and 128 are compared in figure 3. The experimental measurements could only
reach a certain minimum distance away from the wall surface because of the size limit
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Figure 3. Tangential velocity profiles along the wall-normal direction at the surface locations
of (a) 94 nose radii and (b) 128 nose radii. The experimental results are obtained by Stetson
et al. (1984): (a) �, run 105; (b) �, run 76; �, run 104. —, current results; �, Herbert &
Esfahanian (1993).

of the experimental probes. The figures show that the current numerical results agree
very well with those obtained by Herbert & Esfahanian’s (1993) calculations. The
computed velocity magnitudes agree well with the experimental measurements in the
flow region outside the boundary layer. The computed velocities inside the boundary
layer, however, are slightly larger than the corresponding experimental values. The
cause of the discrepancy between the two sets of independently obtained numerical
simulation and the experimental results is currently not known. It is possible that
the discrepancy is a result of the uncertainty in experimental measurements. In
addition to the velocity profiles shown in figure 3, the agreements between the two
sets of numerical solutions in all other variables are also very good. The profiles of
current pressure and temperature at the s = 54 surface station are compared with
those of Esfahanian & Herbert in figure 4. No experimental results are available for
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Figure 4. (a) Pressure and (b) temperature profiles at the surface station of s = 54.
—, Current results are compared with �, those of Esfahanian (1991).

comparison in these figures. Again, current results agree very well with the solution
by Esfahanian & Herbert. Figure 4 shows that, while the pressure is not constant
in the wall normal direction, it is close to constant across the boundary layer in the
near-wall region. On the other hand, the temperature profile shown in figure 4 is a
typical temperature profile across an adiabatic-wall compressible boundary layer.

The effects of entropy layer on steady base flow are examined by comparing the
steady flow solution at different surface stations along the cone surface. The entropy
layer can be characterized by several parameters. In this paper, we study the effects
of the entropy layer by means of a parameter, ρ(dut/dyn), the peaks of which are
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generalized inflection points (GIPs). Lees & Lin (1946) showed that the existence of
a GIP is a necessary condition for the inviscid instability in a compressible boundary
layer. Figure 5 shows the contours of ρ(dut/dyn) obtained by the current simulation.
Only a small part of the flow field near the nose region is shown in the figure in order
to demonstrate the entropy layer more clearly. The figure shows that there is a peak
in the contour lines outside the boundary layer. This peak is located initially behind
the bow shock and outside the boundary layer. The peak gradually approaches the
wall and merges with the boundary layer on the wall. This is a clear indication of
the creation of the entropy layer at the bow shock and the subsequent effects of the
entropy layer on the steady base flow field.

Figure 6 plots the ρ(dut/dyn) profiles at four surface locations ranging from s =7.87
near the nose to s = 46.96 downstream. Again, in the region near the nose, there is
an entropy layer outside the boundary layer. This entropy layer is represented in a
peak located initially behind the bow shock and outside the boundary layer. In the
region near the nose of s =7.87 and s = 19.75, figure 6 shows two distinct regions in
the ρ(dyn/dut ) profiles with two separate peaks: one inside the boundary layer and
another outside the boundary layer. The latter peak is created by the entropy layer.
Since the generalized inflection point is located at d(ρ(dut/dyn)/dy =0, the additional
peak outside the boundary layer can be responsible for the inviscid instability in the
entropy layer. At the location of s = 7.87, the peak associated with the entropy layer
is located approximately at yn = 1. As the entropy layer moves downstream, this peak
gradually moves towards the wall, and eventually merges with the boundary layer
on the wall. As s increases to 32.87 in figure 6, the peak associated with the entropy
layer is about to merge with the peak inside the boundary layer. Further downstream
at s = 46.96, the peak outside the boundary layer has been absorbed, or swallowed,
by the boundary layer. After that, there is only one peak in the profile. Eventually,
further downstream the profiles become essentially similar to those of a sharp cone
without the entropy-layer effects.
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Figure 6. The profiles of ρ(dut/dyn) along the wall-normal direction at four surface
locations, (a) s = 7.87, (b) 19.75, (c) 32.87, (d) 46.96.

6. Linear stability theory (LST)
6.1. Growth rate comparisons

In this paper, the LST is used to identify the main components of boundary-layer
disturbances from the results of numerical simulations. In the LST, a local Reynolds
number, R, based on the length scale of the boundary-layer thickness is used:

R =
ρ∗

∞u∗
∞L∗

µ∗
∞

, (9)

where L∗ is the length scale of the boundary-layer thickness defined as

L∗ =

√
µ∗

∞s∗

ρ∗
∞u∗

∞
, (10)

where s∗ is the natural surface coordinate defined as the curve length along the wall
surface measuring from the nose. The relation between R and local Reynolds number
Res based on s∗ is

R =
√

Res =
√

sRern
. (11)

A non-dimensional angular frequency ω and wavenumber α are normalized by u∞
and L∗:

α = α∗L∗, (12)

ω = ω∗L∗/u∗
∞. (13)
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The dimensionless frequency F is related to ω by

ω = 10−6FR. (14)

The LST is based on the normal mode analysis under a local parallel-flow assump-
tion. Specifically, the linear fluctuations of flow variables are decomposed into the
following normal mode form:

q ′ = q̂(yn) exp(i(−ωt + αs)), (15)

where q̂(yn) is the complex amplitude of the disturbances, n and s are the local natural
coordinates along the wall-normal and surface directions respectively, α = αr + iαi , is
the streamwise complex wavenumber. The variable q stands for any of the independent
flow variables u, v, w, p, ρ (or T ). In a spatial linear stability analysis, for a given
frequency ω, complex parameter α and complex function q̂(y) are obtained as an
eigenvalue and eigenfunction of the stability equations. For a spatial stability problem,
ω is a real number while α is a complex wavenumber. The real and imaginary parts
of α, αr and αi , represent the spatial wavenumber and growth rate of a wave mode,
respectively. A linear wave mode is unstable when αi is negative. The real part of the
wavenumber αr is related to the phase velocity of a wave mode by

a =
ω

αr

=
10−6FR

αr

, (16)

where a is the non-dimensional phase velocity normalized by the free-stream velocity.
In the current study, an axisymmetric LST computer code based on the multi-

domain spectral method of Malik (1990) is developed for analysing the linear stability
properties of axisymmetric compressible boundary layers. The asymptotic boundary
condition (Malik 1990) is used near the shock boundary in the LST. The shock effects
are not considered in the LST because most comparisons between the LST and the
DNS in this paper are located downstream with x > 100. The shock effects on the
LST results will be proved to be negligible far away from the leading edge (x > 100)
through the comparison with the DNS results. Before being used to carry out the
linear stability computations to identify instability modes in the hypersonic boundary
layer, the LST code is validated by comparisons with other published LST results
and experimental results. The grid independence of the LST results is also verified by
comparing results of different grid resolutions. Two sets of grids contain 100 and 200
grid points across the boundary layer, respectively. It is found that the results from
two sets of grids are almost identical to each other. Based on this assessment, the grid
resolution of 100 grid points is used in the LST calculations in the current study.

Figure 7 compares spatial growth rates at the surface station of s = 175. The
experimental results of Stetson et al., and other published LST results (Malik et al.
1990; Herbert & Esfahanian 1993), are plotted in the same figure for comparison.
The figure shows that the current LST results on the second-mode growth rates
(100 kHz <f ∗ < 170 kHz) compare well with the other LST results. The differences
between the current LST results and those of other authors are mainly caused by
different steady base flow solutions used in different LST computations. The current
second-mode growth rates are closer to those of Esfahanian & Herbert than those of
Malik et al. A possible reason for such a close agreement is that the grid resolutions
of these two calculations of the steady base flow solutions are relatively higher. In
this figure, the growth rates of the first mode in the current calculations are for
two-dimensional disturbances only, while those of Malik et al. are the most unstable
oblique first mode. As a result, the two sets of results do not agree in the first mode
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Figure 7. Comparison of the growth rates of the Mack modes predicted by LST —, Malik
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experiments of Stetson et al. (1984) at s = 175 (x = 172).

region of lower frequencies. Since only two-dimensional receptivity is considered
in this paper, no effort is made to obtain the growth rates of the most unstable
three-dimensional oblique first Mack mode in the current LST calculations.

As discussed earlier in this paper, figure 7 shows that the LST predicts much higher
second-mode growth rates than the experiments did. The disagreement between
experimental growth rates and the LST results shown in figure 7 may be due to
nonlinear effects in the experimental waves or other reasons. Since the numerical
simulation of the current paper involves minimum simplifications in flow models,
the growth rates predicted by the full Navier–Stokes simulation are expected to shed
light on the reason for the difference in growth rates predicted by LST and those
observed in experiments. Figure 7 also shows that at the surface location of 175 nose
radii, the second mode instability range is between 100 kHz and 170 kHz. The first
mode unstable frequency range is lower than 100 kHz. In other words, second mode
waves of frequencies between 100 kHz and 170 kHz, and first mode waves at lower
frequencies should become unstable at the surface station of 175 nose radii.

In order to compare the growth rates of the second Mack mode computed by LST
and those simulated by the current direct numerical simulation, we also conducted
a separated simulation where the forcing disturbances are introduced by surface
blow-and-suction. The forcing waves contain the same set of 15 frequencies. Figure 8
compares wavenumbers and the growth rates of the second mode between the LST
results and simulation results at n= 8 (f ∗ =119.4 kHz). The figure shows a perfect
agreement between the wavenumbers, and a close agreement between the growth rates.
This comparison shows that the LST is an accurate tool in computing hypersonic
boundary-layer instability. On the other hand, the disagreements in the early region
near the blow-and-suction slot (x < 200) are caused by the transient effects from the
blowing and suction.

Besides the growth rate comparison, the second-mode eigenfunctions of the current
LST calculations are compared with Esfahanian (1991) LST results. Figure 9 compares
the second mode temperature perturbation eigenfunctions obtained by the current
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Figure 8. Comparison of (a) wavenumbers and (b) growth rates obtained by —, LST predic-
tion of the second mode and �, numerical simulation of the full Navier–Stokes equations (n= 8,
f ∗ = 119.4 kHz). The disturbances in the simulation are induced by surface blow-and-suction.

LST computations and those of Esfahanian & Herbert for s = 175 and ω = 0.1934
(127.56 kHz). There is excellent agreement between the two independently obtained
LST results for the profiles of the second-mode temperature perturbations across
the boundary layer. Though not shown here, good agreements are also observed in
comparisons of eigenfunctions for all other flow variables between the current LST
results and those of Esfahanian & Herbert.

6.2. Linear stability analysis of wave modes

The previous LST studies on Stetson’s blunt cone (Malik et al. 1990; Herbert &
Esfahanian 1993; Kufner et al. 1993; Kufner & Dallmann 1994) mainly focused on
the calculations of the growth rates of the unstable first and second Mack modes.
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Other boundary-layer wave modes, which are always stable, have not been studied.
In our previous receptivity study (Ma & Zhong 2002, 2003a, b), it was found that
a family of other wave modes, which are always stable in a linear stability analysis,
play an important role in the receptivity process. They were termed modes I, II, III,
etc. by Ma & Zhong. In order to understand the receptivity process, it is necessary to
compute the characteristics of these stable wave modes in the current axisymmetric
flow in addition to the traditional unstable Mack modes. So far, the characteristics
of these stable wave modes in hypersonic flows with nose bluntness have not been
studied. Therefore, an LST study is carried out for the current case.

Figure 10 shows the spectra of eigenvalues, α, at ω = 0.1934, s = 175. The relative
positions of mode I and the second Mack mode in the spectra are marked by circles.
When ω increases gradually, the relative positions of mode I and the second mode
will gradually change accordingly. We can track the position of each mode and obtain
its trajectory. The solid line and dashed line in figure 10 represent the trajectories of
mode I and the Mack modes with increasing ω, respectively. It shows that mode I starts
from the left-hand acoustic spectrum branch (Mack 1984, 1987) for very low frequency
(ω < 0.01), and passes across the entropy/vorticity spectrum branch in the middle with
increasing ω. On the other hand, the trajectories of the second mode start from the
right-hand acoustic spectrum branch and approach the entropy/vorticity spectrum
branch in the middle with increasing ω. The trajectory of mode II is very similar to
that of mode I, but the starting frequency is much higher. Here, modes I and II are
in fact ‘multiple-viscous solutions’ by Mack (1987) and by Eibler & Bestek (1996).

Figure 11 shows the distributions of the phase velocities (equation (16)) of three
discrete modes, mode I, mode II and the Mack modes (including the first and the
second modes), as functions of frequencies at s = 175. The phase velocities of the fast
acoustic wave (1 + 1/M∞), entropy/vorticity wave (1), and slow acoustic wave
(1 − 1/M∞) are also shown in the figure for comparison. Both mode I and mode II
originate from the fast acoustic wave with an initial phase velocity of 1 + 1/M∞.
Before these two modes become distinct modes, their eigenvalues merge with the fast
acoustic spectrum branch. After these two wave modes appear as discrete modes, their
phase velocities decrease gradually with increasing ω. As a result, the phase-velocity
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surface station of s = 175.

differences between mode I (or mode II) and the fast acoustic waves become larger as
ω increases. On the other hand, the first mode originates from the slow acoustic wave
side with an initial phase velocity close to 1 − 1/M∞. Furthermore, the phase velocity
curve of the first mode shows an opposite trend when ω increases. As ω increases,
the phase velocity of the first mode increases and intersects with the phase velocity
curve of mode I at the location with ω = 0.1825. After passing the intersection point,
the first mode convert to the second mode. As was shown in our previous study
(Ma & Zhong 2003a), the first mode and the second mode identified by Mack are
in fact different sections of a single wave mode, which is confirmed in the phase
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velocity curve shown in figure 11 and growth rate curve shown in figure 12. Therefore,
both the first and the second Mack modes are simply called Mack modes in order
to be consistent with Mack’s generally accepted terminology. In the vicinity of the
intersection point between mode I and the first mode, the phase velocity of the first
mode drops a little, and phase velocity of the Mack modes increases again after it
clearly becomes the second mode. Similarly, Mode II eventually intersects with the
Mack mode at a high frequency.

Figure 11 also shows that the distributions of phase velocities for both mode I
and mode II are discontinuous. In fact, mode I (or mode II) merges with the middle
entropy/vorticity spectrum branch when their trajectories pass across it (figure 10).
Later, another eigenvalue from this spectrum branch becomes discrete mode I. As
a result, there is a gap in the phase velocity curves of mode I (or mode II) shown
in figure 11. Consequently, there are two branches of mode I (or mode II) in the
phase velocity curves. They are labeled as mode I(1) and mode I(2) for mode I, mode
II(1) and mode II(2) for mode II in the figure, respectively. With the further increase
of ω, the phase velocities of mode I (or mode II) continue to decrease further and
eventually intersect with the phase velocity curve of the Mack modes.

It should be noted that similar results were also observed in our previous study for
hypersonic flow over a wedge (Ma & Zhong 2003c). In Ma & Zhong (2003c), the
characteristics of mode I(1) and mode I(2) were investigated by using both DNS and
LST. Mode I(1) and mode I(2) are indeed two different eigenvalues from the LST
results. However, near the jump region, the profiles of mode I(1) and mode I(2) are
very close to each other. In the DNS study, there is continuous development of mode
I waves when mode I(1) was introduced from the inlet in upstream. In other words,
the jump in the phase speed curve for mode I from the LST results is not shown in
the DNS results. Moreover, the phase speed curve from the DNS can match that of
mode I(1) and mode I(2). Therefore, it is reasonable to conclude that mode I(1) and
mode I(2) are the same physical mode, so are mode II(1) and mode II(2).

In the receptivity study, we are more interested in the resonant interaction between
mode I and the first mode. At the intersection point between mode I and the first mode
(ω = 0.1825 for s =175), mode I is synchronized with the Mack mode because the two
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modes have the same frequency, phase velocity and wavenumber. Therefore, there
is a resonant interaction between mode I and the Mack mode near this intersection
location. In addition, both modes have very similar profiles of perturbation
eigenfunctions across the boundary layer at this location. The only exception is
that the two modes have different growth rates (αi). In fact, the growth rates of the
Mack modes have already been shown in figure 7 at s = 175 for a range of frequencies.
Here, the growth rates of the Mack modes at the same station are compared
with those of other boundary-layer normal modes in figure 12. While the growth
rates of the Mack modes are continuous, there are gaps in the growth rate curves for
mode I and mode II. The figure shows that both mode I and mode II are always stable.
When they initially appear at relatively low frequency, these two modes are close to
neutrally stable with zero growth rates. As ω increases, their growth rates are always on
the stable side and rapidly become more stable. On the other hand, the Mack modes
are unstable in multiple regions of different frequencies. The Mack modes are slightly
unstable in the range of ω between 0.0485 and 0.126 (33.1 kHz< f ∗ < 86.1 kHz). The
Mack mode in this range is the conventional first mode identified by Mack (1984). In
the range of ω between 0.171 and 0.243 (116.7 kHz <f ∗ < 165.9 kHz), the unstable
Mack modes are the conventional second mode identified by Mack. In this range, the
growth rates of the second mode increase to a peak and decay afterward. The second
Mack mode has the largest growth rate at ω = 0.198 (f ∗ = 135 kHz), s = 175.

Another important characteristic of boundary-layer instability modes is the neutral
stability curve for frequencies versus Reynolds numbers. The current results on neutral
stability curves are compared with that of Malik (1990) in figure 13. Dimensional
frequencies f ∗ are used in the figure because the experimental results were presented
using dimensional frequencies. The dimensional frequencies can be converted easily to
dimensionless frequencies F by using (6). The synchronization locations between mode
I and the Mack modes are also plotted in the same figure because the synchronization
locations between mode I and the Mack modes play an important role in the
receptivity process (Ma & Zhong 2002, 2003a, b). There are two peaks in the neutral
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stability curve. The first peak with lower frequencies (lower than 100 kHz) is for the
first Mack mode instability, while the second peak with higher frequencies (higher
than 100 kHz) is for the second mode instability.

Overall, there is good agreement between the present result and Malik’s result in
the neutral stability curve, (13). There are some slight differences between the two sets
of results, especially in the border region between the first and second Mack modes,
owing to different steady base flow solutions used in the two LST calculations. The
current steady base flow solution is obtained with a much higher grid resolution
than that used in Malik’s LST calculations. Based on the current results, the critical
local Reynolds number (R) for the onset of the boundary-layer instability is the
second mode instability at the surface location of 1580, which corresponds to s = 75
and x =72.5. This critical value is very close to Malik’s result R = 1540 for s = 70.9
and x = 68.8. Below this critical Reynolds number, all boundary-layer wave modes
are stable. The first unstable two-dimensional first modes appear at R =2270, which
corresponds to the s = 154 surface station. Figure 13 also shows that both the first
and the second modes are stable when frequencies are higher than 180 kHz.

7. Receptivity to free-stream noise
Having obtained the steady base-flow solution by numerical simulations and the

characteristics of the boundary-layer normal modes by the LST, the receptivity to
free-stream fast acoustic waves is studied by numerical simulations. The free-stream
forcing waves are a mixture of 15 independent planar fast acoustic waves of different
frequencies, i.e.

f ∗
n = nf ∗

1 (n = 1, 2, . . . , N; N = 15), (17)

where the lowest frequency is f ∗
1 = 14.92 kHz (F1 = 9.04). The remaining 14 frequencies

are multiples of f ∗
1 given by (17), where the highest frequency is f ∗

15 = 223.8 kHz
(F15 = 135.5). The relative wave amplitudes among different frequencies in the free
stream are set according to the experimental free-stream wave spectra reported by
Stetson et al. The phase angles of the free-stream forcing waves of the 15 frequencies
given by (3) are chosen randomly. The 15 sets of wave frequencies, relative amplitudes
An, and phase angles used in the current receptivity simulation are given in table 1. The
overall free-stream wave amplitude used in the simulation is ε = 6.2578 × 10−4, which
is sufficiently small that the receptivity process falls in the linear regime. Consequently,
the wave components of 15 frequencies are independent, and they can be decomposed
one from another by a temporal Fourier analysis. Since the receptivity results for a
given frequency fn are proportional to the values of An in a linear receptivity process,
the particular value of An in forcing wave spectra used in a simulation are not critical.

The unsteady calculations are carried out until the solutions reach a periodic state
in time. Temporal Fourier analysis is then carried out on the local perturbations of
unsteady flow variables. A Fourier transform for the perturbation field of an arbitrary
flow variable q leads to:

q ′(x, y, t) = Re

{
N∑

n=0

|qn(x, y)| exp(i[−nω1t + φn(x, y)])

}
, (18)

where nω1 is the frequency of the nth wave mode, q ′(x, y, t) represents an arbitrary
perturbation variable. The Fourier transformed variables, |qn(x, y)| and φn(x, y), are
spatially varying real variables representing the local perturbation amplitudes and
phase angles at the wave frequency of nω1. For perturbations on the body surface,
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n f ∗
n (kHz) Fn An φn(rad)

1 14.92 9.035 0.7692 2.4635(−6)
2 29.84 18.07 0.4162 0.1600
3 44.77 27.11 0.2827 2.2149
4 59.68 36.14 0.2065 4.1903
5 74.61 45.18 0.1707 6.0510
6 84.53 54.21 0.1406 5.2671
7 104.5 63.25 0.1132 2.1070
8 119.4 72.28 9.7164(−2) 5.7511
9 134.3 81.31 0.1081 5.0005

10 149.2 90.35 9.0781(−2) 5.2319
11 164.1 99.39 7.7722(−2) 2.1679
12 179.1 108.4 5.8428(−2) 5.4738
13 194.0 117.5 5.0729(−2) 0.5649
14 208.9 126.5 7.6987(−2) 5.5812
15 223.8 135.5 5.7108(−2) 4.4043

Table 1. Forcing acoustic wave components of 15 frequencies in the free stream.

we can compute local growth rate, αi and local wavenumber αr from the numerical
perturbation fields by,

αi = − 1

|qn|
d|qn|
ds

, (19)

αr =
dφn

ds
, (20)

where |qn| can be any variables which disturbances do not make disappear at the wall
surface, and the derivatives are taken along the natural coordinate s along the body
surface. The wave modes induced in the boundary layer are identified by comparing
the simulation results with the LST ones. If the flow perturbations of the simulation
results in a local region of the boundary layer are dominanted by a single wave
mode, the parameters, αr and αi , computed by (19) and (20) are the wavenumbers
and growth rates of this mode. In this case, αi and αr are smooth functions of x. On
the other hand, if the simulation results contain simultaneously multiple wave modes
in a local region of the boundary layer, αi and αr computed by (19) and (20) do not
represent the wavenumbers and growth rates of a single wave mode. Instead, these
two parameters represent a modulation of two or more wave modes. As a result, the
distributions of αi and αr along the surface direction will be oscillatory functions of
x. In this case, further decomposition of different wave components is required in
order to obtain the growth rates and wavenumbers of the individual wave modes.

Although the steady base flow has an adiabatic wall with a zero temperature gra-
dient on the wall, it has been generally accepted that the temperature perturbations
should be set to zero because of the relatively high frequencies of the second mode.
In the current study, both cases of different temperature perturbation conditions on
the wall, i.e. ∂T ′/∂yn = 0 and T ′ = 0, are simulated with the same adiabatic base flow.
It is found that the overall stability and receptivity characteristics are similar for
both cases; but, the case of adiabatic temperature perturbations has much stronger
instability than the case of isothermal temperature perturbations. Only the results of
the test case of T ′ = 0 boundary condition are presented in this paper because this
case is closer to the actual instability of the second mode.
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Figure 14. Amplitude distributions of the induced pressure perturbations along the cone
surface. The lines represent 15 different frequencies of f ∗

n = nf ∗
1 , where f ∗

1 = 14.922 kHz and
n= 1, 2, . . . , 15.

7.1. General characteristics of the induced waves

Figures 14 shows the distributions of amplitudes of the pressure perturbations,
|pn(x, y)|, for the 15 forcing frequencies along the cone surface. The pressure per-
turbation amplitudes, |pn(x, y)|, are obtained by a temporal FFT calculation according
to (18). Each line in figure 14 represents one of the 15 frequencies given by (17). The
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Figure 15. The evolution of the amplitudes of the pressure perturbations along the wall at
three frequencies (for . . . , n = 5, —, 8, –··–, 15).

relative amplitudes in the free-stream forcing waves for each frequency are different
because they are chosen to be proportional to those of Stetson et al.’s experiments,
as shown in table 1. Figure 14 shows that the receptivity process leads to complex
induced wave structures in the boundary layer. The wave structures are different for
different frequencies. For perturbations of a fixed frequency, the disturbance wave
structures are also different for different sections of the cone surface.

Figure 14(a) shows the amplitude development along the cone surface for the first
group of the six lowest frequencies, ranging from 14.9 kHz to 84.5 kHz (n= 1, . . . , 6
in table 1). The figure shows that the amplitude distributions for four of the six
frequencies (n= 1, 2, 5, 6) are relatively smooth, which is an indication that the
perturbations are dominated by a single wave mode. On the other hand, the amplitude
distributions for the two remaining frequencies (n= 3, 4) are oscillatory, which
indicates that the induced waves in the boundary layer simultaneously contain multiple
wave modes. The oscillations in the wave amplitude curves are caused by a wave
modulation of two or more independent waves.

Figure 14(b) shows the amplitude development along the cone surface for the next
group of three frequencies at n= 7, 8, 9 (table 1). The three frequencies vary from
104.5 kHz to 134.3 kHz. There is strong amplitude growth near the exit of the current
computational domain for these three frequencies although there is oscillation in
amplitudes caused by modulation between different waves. Figure 14(c) shows that
there are very strong oscillations in amplitude development along the cone surface
for two different frequencies with n=10, 11. Meanwhile, there are clear amplitude
amplifications for more higher frequencies with n= 12, 13, 14, 15.

The different developments of boundary-layer disturbances induced by free-stream
acoustic waves with different frequencies can be explained after the main components
of boundary-layer disturbances are identified in the next section.
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7.2. Wave-mode identification and comparison with LST results

In the numerical simulation, the receptivity results of 15 independent frequencies
are simultaneously obtained. The results of the LST are used to identify different
dominant wave modes induced in the boundary layer by the free-stream fast acoustic
waves. In this paper, the results of the comparison analyses on the phase velocity,
streamwise wavenumber and wave structure for three representative frequencies are
presented here. These three frequencies are: 74.61 kHz (n= 5), 119.4 kHz (n= 8) and
223.8 kHz (n= 15). For other frequencies, the results of the comparison between the
numerical simulation and LST are very similar to those of the three representative
frequencies. In addition, only streamwise wavenumbers are compared with the LST
results at four different locations with x =10, 50, 172, and 272, respectively, for all 15
independent frequencies.

The evolution of the amplitudes of surface pressure perturbations |pn(x, y)| along
the wall surface owing to the free-stream acoustic waves at these three frequencies are
redrawn in figure 15. The phase velocities of the induced boundary-layer disturbances
obtained from the numerical simulation are calculated based on the phase angles
of the pressure perturbations on the wall surface by using (20) and (16). At each
frequency, the induced boundary-layer disturbances can be identified by comparing
the wavenumbers, the phase velocities, and wave structures from simulation with the
eigenvalues and eigenfunctions obtained from the corresponding LST calculations.

Wave fields at 74.61 kHz (n = 5)

The development of wave components at a relatively low frequency of 74.61 kHz
(n= 5 and F = 45.2) is first considered. At this frequency, figure 13 shows that the
Mack modes become unstable at the surface station of s =165 (R = 2349.3), where
the instability waves belong to the first Mack mode. As shown in figure 15, at this
frequency, the amplitudes of the induced pressure disturbances in the boundary
layer increase initially until reaching a peak located approximately at the station of
x = 109.2. After a decay between the stations of x = 109.2 and x =200, the disturb-
ances at this frequency begin to grow and decay again. The behaviours of the induced
waves at this frequency can be understood by the comparison with the LST results
at the same frequency.

Figures 16(a) and 16(b) compare the streamwise wavenumbers and phase velocities
of the induced boundary-layer disturbances at f ∗ = 74.61 kHz between the numerical
simulation results and the LST calculations. The LST results include those of the
Mack modes and mode I. These two figures show that, at this frequency, in most
parts of the cone surface, there is a good agreement in the streamwise wavenumbers
and the phase velocities between the induced boundary-layer disturbances and the
mode I waves. The induced waves at this frequency have very different wavenumbers
and phase velocities from those of the Mack modes. Figure 16 also shows that,
near the nose region, the numerical solutions of the disturbance waves have about
the same phase velocity as that of the forcing fast acoustic wave. As the induced
waves propagate downstream, the phase velocities of the disturbance waves gradually
decrease, agreeing very well with the phase velocities of the mode I waves. This
agreement indicates that mode I waves, other than the Mack mode waves, are
generated inside the boundary layer at this frequency. This is a natural consequence
of the mode I waves being synchronized with the forcing fast acoustic waves in the
nose region. The wave synchronization results in resonant interaction between mode I
and the forcing acoustic waves, which leads to generation and amplification of mode
I waves in the boundary layer.
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Figure 16. Comparison of (a) the streamwise wavenumbers and (b) phase velocities of the
induced boundary-layer disturbances obtained by the current simulation with those of mode I
and the Mack modes obtained by LST (n= 5 and f ∗ = 74.61 kHz).

To confirm the conclusion that mode I waves at 74.61 kHz are generated in the
nose region, profiles of the induced disturbances obtained by a temporal Fourier
analysis of the simulation results at x =109.2 are compared with the LST results of
the corresponding eigenfunctions of mode I and the first Mack mode. The location
of x = 109.2 is near the peak of mode I amplitudes generated directly by the forcing
waves. The real and imaginary parts of the pressure and temperature perturbations,
which are calculated by (21) and (22) for temperature perturbations, are compared in
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Figure 17. Comparison of the real and imaginary parts of pressure and temperature perturba-
tion profiles of the induced boundary-layer disturbances obtained by the current simulation
with those of mode I and the Mack modes obtained by LST at x = 109.2 (n=5 and
f ∗ = 74.61 kHz).

figure 17. In these figures, boundary-layer disturbance results are normalized by non-
dimensional pressure perturbations on the wall at the same location. The figures show
that the structures of the induced disturbances from the numerical simulation match
very well the structures of mode I wave from the LST inside the boundary layer.
The thickness of the boundary layer is about 12L∗ at this station. There are visible
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differences in the pressure perturbation structures outside the boundary layer because
there are forcing acoustic waves components in the simulation results. Figure 17
shows very significant differences between the numerical simulation profiles and
those of the first Mack mode in the region around the edge of the boundary layer.
Though not shown here, there are also very good agreements in the wave structures
between the simulation results and those of the mode I waves predicted by LST
for other variables. Meanwhile the eigenfunctions of the first Mack mode and those
of the numerical simulation are very different. Based on the comparisons of phase
velocities, wavenumbers, and perturbation eigenfunctions, it is clear that the induced
disturbances in the boundary layer at this frequency are not the first Mack-mode
waves, but are mainly mode I waves. The mode I waves are generated by their
resonant interactions with the forcing acoustic waves.

Figure 17 also shows that the wave structures of mode I are very different from
those of the first Mack mode. While there is only one peak in real parts of pressure
perturbations in mode I, there are two peaks for the first Mack mode. Furthermore,
there are very strong wave amplitudes in the profiles of temperature disturbances for
the first Mack mode near the edge of the boundary layer (around 12L∗), but such a
phenomenon does not exist in the profiles of mode I. These characteristics of the wave
structures of different normal modes can be used to identify induced boundary-layer
disturbances by forcing waves. It should be noted that mode I waves can only be
distinguished from the first Mack mode waves in this way before these two modes are
synchronized with each other at a downstream location. At the synchronized location
between mode I and the Mack modes at a downstream location, it can be shown that
the two families of wave modes have almost the same wave structures.

Having identified the induced disturbances in the boundary layer being mode I
waves at the frequency of n= 5, the growth and decay of induced boundary-layer
disturbances at this frequency shown in figure 15 can be explained by using the LST
results. Although mode I is stable, based on the LST results, figure 15 shows that the
induced mode I waves at this frequency are amplified before reaching a peak value
in amplitudes at x =109.2. The growth of the stable mode I waves in the receptivity
process can be explained by using the distribution of streamwise wavenumbers and
phase velocities of mode I waves shown in figure 16. From these two figures, the
wavenumbers and phase velocities of mode I waves are almost the same as those of
the forcing fast acoustic waves near the nose. Owing to the synchronization between
mode I waves and the fast acoustic waves near the nose, mode I waves are generated
by means of resonant interactions between these two waves. Though predicted to be
always stable by LST, mode I waves are amplified before reaching the peak amplitude
as a result of their resonant interactions with the fast acoustic waves. As the induced
mode I waves propagate downstream, their phase velocities gradually decrease while
those of the forcing acoustic waves remain relatively unchanged. Hence, the differences
between the two sets of phase velocities increase. When the phase velocities of the
mode I waves decrease to a certain value, there are no more resonant interactions
between mode I waves and the forcing acoustic waves. Consequently, the amplitudes
of the mode I waves decay owing to their inherent stable properties after they reach
the peak amplitude at x =109.2. Meanwhile, the modulation between mode I waves
with the forcing acoustic waves and other waves leads to the secondary growth of
mode I waves with the peak amplitude located at x = 233 (figure 15, n= 5). Such
modulation also results in the oscillation of phase velocities further downstream,
which is shown in figure 16.
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Based on McKenzie & Westphal’s (1968) theory on interaction between disturbance
waves and oblique shock waves, slow acoustic waves should be produced by the
interaction of the incoming disturbance with the bow shock. However, we found that
the phase velocity of disturbances immediately behind the shock is close to that of
fast acoustic waves based on our numerical simulations. Therefore, acoustic waves
generated behind the shock by free-stream disturbances are either pure fast acoustic
waves or dominated by fast acoustic waves. Slow acoustic waves are negligible.
Therefore, there is no, or negligible, first mode generated by slow acoustic waves
through resonant interactions.

Wave fields at 119.4 kHz (n = 8)

The development of wave components at a higher frequency of 119.4 kHz (n= 8 and
F =72.3) is considered next. Figure 15 shows that, at this frequency, the amplitudes
of the induced disturbances in the boundary layer increase initially, reach a peak
approximately at the surface station of 30 nose radii, and decay afterward. In the
following region between the surface station of 65 nose radii to approximately 190
nose radii, the amplitudes of the disturbance waves stay at an approximately constant
level with slight fluctuations. The wave amplitudes increase dramatically in the region
downstream of the surface station at s = 192.

Again, the results of LST analysis are used to identify the dominant normal
modes included in the boundary layer at different locations for disturbances at this
frequency. At first, the distributions of streamwise wavenumbers and phase velocities
of the induced boundary-layer disturbances at this frequency are compared with
those of different normal modes obtained by LST. The comparisons are presented in
figure 18. Similar to the results shown in figure 11, there is a gap in the streamwise
wavenumber and phase velocity curves for mode I obtained by the LST calculations.
The wavenumbers and the phase velocities of the numerical solutions of the induced
waves in the boundary layer are compared with those of mode I and the second Mack
mode predicted by LST calculations. Figure 18 shows that the streamwise wave-
numbers of the induced waves are very close to those of mode I waves in the early
region of x < 66, which indicates that the induced boundary-layer disturbances are
dominated by mode I waves in this region. These mode I waves are generated by
their resonant interactions with the forcing fast acoustic waves near the nose. The
fact that the induced waves in this region are dominated by the mode I waves can
be verified by comparing the wave structures of the numerical simulation with the
eigenfunctions of mode I waves obtained from LST. It is found that the structure
of induced wave modes in the receptivity simulation agree very well with those of
mode I. The comparisons between disturbance structure with the eigenfunctions of
the mode I waves from the LST at this frequency are not presented here because they
are very similar to the results shown in figure 17 for the case of n= 5.

Ma & Zhong (2002, 2003a, b) showed that there exists similarity in development of
mode I waves for different frequencies if non-dimensional frequency ω defined in (14)
is used. This observation also applies to the current case. For the two frequencies of
n=5 and n= 8 discussed so far, the locations of mode I waves reaching their respective
peak amplitudes are x = 37.1 for n= 8 and x = 109.2 for n= 5. The corresponding
values of the non-dimensional frequencies ω can be calculated as:

ω = 0.083for frequency of n = 8,

ω = 0.087for frequency of n = 5.
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Figure 18. Comparison of the wavenumbers and phase velocities of the induced boundary-
layer disturbances obtained by the current simulation with those of mode I and the Mack
modes obtained by LST (n= 8 and f ∗ = 119.4 kHz).

These two computed values of ω are very close to each other, which also demonstrates
that the waves in these two frequencies in the early surface locations are indeed mode
I waves. This comparison also indicates the similarity in wave patterns of the growth
and decay of mode I waves at different frequencies when the distributions are scaled
by ω. Again, for the current frequency at n= 8, the resonant interactions between
the mode I waves inside the boundary layer and the fast acoustic waves outside the
boundary layer result in the amplification of the induced boundary-layer disturbances
in the region of x < 37.1.

Meanwhile, the modulation between the mode I waves and the fast acoustic waves,
and the stable properties of mode I waves can explain the growth and decay of
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boundary-layer disturbances during their propagation downstream in the region
between 37.1 <x < 192 (figure 15). The wave modulation also leads to strong fluctua-
tions in the distribution of amplitudes of the boundary-layer disturbances in the same
region as shown in figure 18. At the earlier surface stations (x < 66), this kind of
amplitude fluctuation is around the streamwise wavenumbers of mode I, when the
components of mode I waves included in boundary-layer disturbances are relatively
strong. In the subsequent region (66< x < 192), the modulation of wave modes is
around the phase velocity of the fast acoustic waves, which indicates the relative
dominance of the fast acoustic waves in boundary-layer disturbances in this region.

In the downstream region of x > 200, the boundary-layer disturbances at the fre-
quency of n= 8 are strongly amplified, as shown in figure 15. From the distributions
of the streamwise wavenumber and phase velocity curves shown in figure 18, the
wavenumbers and phase velocities of the induced boundary-layer disturbances match
those of the second Mack mode in the region after the 250 surface station, which
indicates that the second Mack mode is dominant in this region.

The identification of induced Mack-mode waves is confirmed by comparing the dis-
turbance structures of the numerical simulation with the eigenfunctions of the second
Mack mode obtained by LST. Figure 19 shows the comparisons of the eigenfunctions
for the pressure and temperature perturbations, respectively, at the surface station
of x = 271. There is a good agreement in the wave structures between the numerical
simulation results and those of LST for the second Mack mode. The slight differences
in the comparison are due to there being other weak wave components, such as the
forcing fast acoustic waves, in the boundary-layer disturbances besides the second-
mode waves. Nevertheless, it is evident that the induced perturbations at this frequency
in the boundary layer are dominantly the unstable second Mack mode at this surface
location. Having verified that the second Mack-mode waves are the dominant waves
inside the boundary layer at the surface region downstream of the 200 nose radii
station, it is not difficult to understand the strong amplification of induced boundary-
layer disturbances because of the instability of the second Mack mode waves. The
growth rates of boundary-layer normal modes at frequency at n= 8 from the LST
are shown in figure 20. At this frequency, the second-mode Branch I neutral stability
point is located at x = 143.4. The second Mack-mode waves become unstable in the
region of x > 143.4. In addition, the growth rates of the second-mode waves reach
peak value of αi = −0.0051 at x = 234. However, there are no amplified second-mode
waves at the frequency of n=8 (figure 15) between 143.4 < x < 192. On the contrary,
the amplitudes of boundary-layer disturbances decay slightly in this region. Therefore,
the generation of the second-mode waves does not coincide with the Branch I neutral
stability point. As shown in figure 18, the phase velocities of the Mack mode are much
lower than those of the forcing fast acoustic waves. Thus, there is no direct interaction
between the Mack-mode waves and the forcing fast acoustic waves. Instead, mode
I waves serve as a ‘bridge’ in wave interactions in the sense that they can interact
with both the Mack modes and the fast acoustic waves. During their propagation
downstream, mode I waves generated by fast acoustic waves reach the synchronization
point between mode I waves and Mack-mode waves located at x = 192 (ω = 0.185).
Here, the location of the synchronization point in terms of ω is very close to that
shown in figure 11 with ω = 0.1825 at the station s = 175 (or x = 172) where the
local Reynolds number Re is fixed while the frequency varies. At this synchronization
point, both mode I and the Mack mode have very similar profiles of eigenfunctions
and the same phase velocity. As a result, the mode I waves convert to the Mack-
mode waves through resonant interactions. Because the Mack-mode waves are much
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Figure 19. Comparison of the real and imaginary parts of pressure and temperature perturba-
tion profiles of the induced boundary-layer disturbances obtained by the current simulation
with those of the second Mack mode from the LST at x = 271 (n=8 and f ∗ = 119.4 kHz).

more unstable than the mode I waves as shown in figure 20, the amplitudes of the
second Mack waves grow significantly afterward. Because the second Mack-mode
waves are generated by the mode I waves at the synchronization point, there is no
amplification of the second-mode waves in the region before this point, even though
the second Mack-mode unstable region begins much earlier. After the generation of
the second-mode waves, the boundary-layer disturbances are significantly amplified
resulting from the unstable property of the second mode in the downstream region
with x > 192, which is shown in figure 15. The receptivity mechanism of the second
Mack mode to free-stream fast acoustic waves is consistent with the conclusion of
our previous study on receptivity of supersonic flow over a flat plate (Ma & Zhong
2003b).
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The second mode is generated by its resonant interactions with the mode I waves,
which in turn are generated by the forcing fast acoustic waves in the nose region
through separate resonant interactions. Such a receptivity mechanism based on the
resonant interactions between the forcing waves and various boundary-layer wave
modes is very different from those of the subsonic boundary layers. The resonant
interaction mechanism also explains why the second Mack mode is not generated in
the boundary layer before the synchronization point between mode I and the second
mode (x =192), even though the second Mack mode becomes unstable at the earlier
surface stations of the 143.4 nose radii. Therefore, the synchronization locations
between mode I and the Mack modes shown in figure 13 are important in hypersonic
boundary-layer receptivity studies. For this reason, the synchronization location curve
is drawn in figure 13 together with the neutral stability curve of the Mack modes.
The current receptivity results demonstrate the importance of the receptivity studies
in transition prediction because the initial wave generation determines the amplitudes
of the subsequent growth of an instability wave.

Having identified the main wave modes included in boundary-layer disturbances
owing to forcing fast acoustic waves, the process of receptivity can be demonstrated
in the change of wave patterns in the flow field. The wave patterns in the flow
field can be represented by contours of real or imaginary parts of the temperature
perturbations from a temporal FFT analysis of the simulation results. The real and
imaginary parts of the temperature perturbations can be calculated by

Re(Tn(x, y)) = |Tn(x, y)| cosφn(x, y), (21)

Im(Tn(x, y)) = |Tn(x, y)| sinφn(x, y), (22)

where Tn(x, y) and φn(x, y) are amplitudes and phase angles of the temperature
perturbations of frequency fn computed by (18). Figure 21 shows the contours of the
real part of the temperature perturbations in the whole computational flow field for
the frequency of f ∗ = 119.4 kHz (n= 8). The long computational domain is divided
into nine sections in order to present the details of the wave modes clearly. The
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Figure 21. Contours of the real parts of the temperature perturbations in the flow field for
wave components at f ∗ = 119.4 kHz (n= 8).

contours show the development of temperature perturbations of a fixed frequency
in the entire flow field, from the nose region to the 273 nose radii surface station
downstream. The outer boundary of the computational domain is the bow shock. The
interaction of forcing waves with boundary-layer wave modes and the subsequent
development of the induced waves can be observed in these figure 21.

In the early region of x < 20, figure 21 shows that the forcing waves from the
free stream at the frequency of 119.4 kHz pass through the bow shock and enter the
boundary layer to generate mode I waves in the boundary layer. The mode I waves
are generated by resonant interactions with the forcing waves in this region. In the
subsequent region of 20 < x < 60, mode I gradually becomes less synchronized with
the forcing waves. Consequently, it develops and decays along the boundary layer
in this region. The disturbance waves in this early region in the boundary layer are
dominantly mode I waves, the amplitudes of which become weaker along the surface.
The growth and decay of the mode I waves shown in this figure are consistent with
the amplitude distribution of this frequency shown in figure 14. In the next region of
60 < x < 200, the wave modes are a mixture of forcing waves and mode I waves. The
fluctuations in the boundary layer in this region remain roughly constant as shown
in figure 14. Further downstream, the second Mach mode of this frequency begins to
develop. The figure distinctly shows that different wave structures are developed in the
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boundary layer. The second mode becomes the dominant waves in the region further
downstream at x > 220 (see figure 14). In this region, the figure shows a rope wave,
which is the signature feature of the second Mack mode, at the edge of the boundary
layer. After they are generated, the second mode waves grow rapidly because they are
linearly unstable. Though not shown in these figures, the second mode will peak at its
Branch II neutral stability point located outside the current computational domain
and decays afterward (based on LST prediction).

The main induced wave modes, mode I, mode II and the Mack mode, in the boun-
dary layer can be identified from the simulation results because they have different
wave speeds and different structures in their perturbation eigenfunctions. The wave-
numbers, wave speeds and perturbation eigenfunctions of each wave mode can be
obtained by an LST analysis. Therefore, the wave modes contained in the numerical
simulation solutions can be identified by comparing their perturbation patterns with
those obtained by LST. Figure 22 shows numerically obtained contours of the real
part of the temperature perturbations in three localized regions of the flow field where
the perturbations are dominated by one of the three major modes in the boundary
layer. Specifically, the figure shows mode I in the region around 170 nose radii at the
frequency of f ∗ = 119.4 kHz (n= 8), mode II in the region around 261 nose radii at
f ∗ =179.1 kHz (n= 12), and the second Mack mode in the region around 261 nose
radii at f ∗ = 119.4 kHz (n= 8). The wave structures inside the boundary layer are
different among these three wave modes. Modes I and II have distinctively different
structures from the second Mack mode near the wall. The second Mack mode has a
typical ‘rope wave’ structure with strong perturbations at the edge of the boundary
layer, while modes I and II have stronger wave amplitudes inside the boundary layer.
The wave structures of mode I are slightly different from those of mode II in the
middle region of the boundary layer.

Wave fields at 223.8 kHz (n= 15)

The development of wave components at a frequency of 223.8 kHz (n= 15 and
F =135.5) is considered as the high-frequency case. The neutral curve in figure 13
shows that both the first and second Mack modes are always stable at this high
frequency. Similar to the previous cases of lower frequencies, the wave modes
of the numerical simulation results can be identified by the comparison with the
corresponding LST results.

As shown in figure 15, the amplitudes of the induced disturbances at the frequency
of n= 15 in the boundary layer grow and decay first in a very small mode I region of
x < 9.5. Figure 23 compares the streamwise wavenumbers and phase velocities of the
induced boundary-layer disturbances at this frequency with the real part of eigenvalues
of the Mack modes, modes I and mode II from the LST. This figure indicates that,
owing to their resonant interactions with the fast acoustic waves, mode I waves are
generated near the nose region and amplified in the region of x < 9.5. Similar to the
previous cases of lower frequencies, the identification of the induced mode I waves in
this region can be verified by matching the structures of boundary-layer disturbances
from the simulation with those of mode I waves from the LST. The comparisons
are not shown here because they are similar to those of the lower-frequency cases
presented earlier.

Because the second Mack mode is stable, there should be no amplified second mode
at the frequency of n= 15. However, figure 15 shows that the amplitudes of another
wave mode at this frequency gradually grow during its propagation downstream after
x > 50. In the region between the surface station of 50 to 230 nose radii, the amplitudes
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Figure 23. Comparison of the streamwise wavenumbers and phase velocities of the induced
boundary-layer disturbances obtained by the current simulation with those of mode I, mode II
and the Mack modes obtained by LST (n= 15 and f ∗ = 223.8 kHz).

of the disturbance waves go through a region of growth and decay, with the peak
amplitude located at around 178 nose radii. Figure 23 shows that this wave mode
has the same phase velocities and wavenumbers as those of mode II, which indicates
that mode II waves are generated by forcing fast acoustic waves.

The identification of the induced mode II waves at the frequency of n= 15 in the
region of x > 50 can be further verified by comparing the perturbation eigenfunctions
across the boundary layer at a fixed surface location. Figure 24 compares the wave
structures of the induced boundary-layer disturbances at x = 177.3 (R =2455) with
the eigenfunctions of mode II from the LST. There is a very good agreement in
the pressure and temperature perturbations except for visible differences outside the
boundary layer. The differences outside the boundary layer are caused by the fact that,
in addition to the mode II waves, there are also forcing acoustic wave components in
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Figure 24. Comparison of the real and imaginary parts of pressure and temperature
perturbation profiles of the induced boundary-layer disturbances obtained by the current
simulation with those of mode II from the LST at x = 177.3 (n= 15 and f ∗ = 223.8 kHz).

the induced flow field. Similar to the excitation of the mode I waves in the previous
cases of lower frequencies, although mode II waves are linearly stable from the
LST results, there is a resonant interaction between mode II waves and the fast
acoustic waves because their phase velocities are very close to each other, as shown
in figure 23. This wave synchronization leads to the amplification of mode II waves.
As the induced mode II waves propagate downstream, they eventually decay because
their wave velocities gradually decrease and differ from those of the fast acoustic
waves. Consequently, the interactions between the mode II waves and the forcing fast
acoustic waves gradually become weaker as they propagate downstream. Without the
resonant interactions, the induced mode II waves eventually decay because they are
linearly stable.
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Figure 25. Comparison of the wavenumber spectra of the induced boundary-layer distur-
bances at different frequencies with those of boundary-layer normal modes obtained by LST
at four surface stations. (a) x = 10, (b) 50, (c) 172, (d) 272.

Wave number spectra

Having identified the dominant induced wave modes in the boundary layer at the
three representative frequencies of n= 5, 8, 15, it is clear that the induced wave modes
are mainly components of the mode I, the second Mack mode, and mode II, depending
on the locations and frequencies. The first Mack mode does not appear in the induced
wave field. For all 15 frequencies, the receptivity mechanism of the hypersonic
boundary layer is the resonant interaction mechanism among the relevant wave modes
and the forcing waves. Figure 14 shows the amplitudes of the pressure perturbations
on the cone surface for all these frequencies. The induced wave modes of all 15
frequencies can be identified easily by using similar analyses based on comparisons
with LST results. Here, the excitations of different boundary-layer wave modes of all
15 frequencies are demonstrated by comparing the streamwise wavenumbers for the
current receptivity simulation with the real parts of the eigenvalues of mode I, mode II
and the Mack modes from the LST at four different surface locations of x = 10, 50, 172
and 272. Figure 25 shows the results of the comparison. Such comparisons can also
be used to identify the dominant wave modes for all frequencies as the waves travel
through these surface locations.

At the early station near the nose at x = 10, figure 25(a) shows that the streamwise
wavenumbers of the induced boundary-layer disturbances agree with those of mode
I from the LST calculations for most of the 15 frequencies. This agreement indicates
that the wave amplitude spectra shown in figure 26 are mode I waves for all of the
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Figure 26. Fluctuation spectra of pressure perturbations on the cone surface at four surface
locations. The regions of dominant induced waves are marked in the figure. (a) x = 10, (b) 50,
(c) 172, (d) 272.

15 frequencies. There is a better agreement in the streamwise wavenumbers for lower
frequencies with f ∗

n � 164.1 kHz (n � 11). The agreement at the lower frequencies is
better because of the dominance of mode I waves included in the boundary layer at
lower frequencies. The visible differences in the wavenumbers at higher frequencies
with n � 12 are due to the modulation of the mode I waves and other wave component
inside the boundary layer.

Figure 25(b) compares the wavenumbers of the induced boundary-layer distur-
bances at different frequencies with the LST results at the surface location of x = 50.
At this surface location, mode II waves begin to be generated at high frequencies of
n= 14, 15, while mode I waves are the dominant components for lower frequencies
of n � 13. The deviation of the wavenumber at the frequency of n= 11 is due to the
modulation of mode I waves with other modes, which is also shown in figure 14
where the total boundary-layer disturbances at n= 11 decay to a minimum value at
x = 50. As the induced mode I waves propagate downstream, starting from higher
frequencies, mode I waves decay and mode II waves are generated. No second modes
are generated because they are stable modes for the higher frequencies even when
there is a synchronization location between mode I and the Mack modes at this
surface location. The dominant induced wave modes are marked in figure 26.

At the further downstream location of x = 172, figure 25(c) shows that there are
more mode II waves generated in the high-frequency band with n � 12, while mode I
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waves are still the main components in the low-frequency band with n � 8. In the
middle-frequency band with 9 � n � 11, the second Mack-mode waves are generated
by the mode I waves. In fact, boundary-layer disturbances at the frequency of n= 9
at this location is in the initial generation region from the mode I waves to the second
Mack-mode waves. Because the second modes are unstable in these middle frequencies
of 9 � n � 11, the second Mack modes become dominant as they propagate further
downstream. Therefore, at this surface station, the induced waves are a mixture of the
following three modes: mode I, the second Mack mode and mode II. The dominant
induced wave modes are also marked in figure 26 in the same surface location.

Figure 25(d) presents the comparison of wavenumber spectra at a still further down-
stream location of x = 272. At this location, there are clearly second-mode waves
shown in the middle frequency band of 7 � n � 10. At frequencies lower than n= 7,
mode I waves are dominant, while mode II waves are dominant at higher frequencies
with n � 11. These wavenumber spectra show a very clear picture of the receptivity
process that mode I is generated first by their resonant interactions with the forcing
acoustic waves. The second Mack mode is then generated by the mode I waves
through separate resonant interactions when mode I propagates downstream. There
are significant second Mack mode components through the resonant interaction only
when the second mode is unstable in the region of resonant interactions with mode
I. Otherwise, mode II waves are generated by their resonant interactions with the
forcing acoustic waves further downstream location. At a fixed location, the induced
waves are again a mixture of all three dominant wave modes, which are marked in
figure 26 in the same surface location. The first Mack mode is not generated because
it does not interact with mode I.

Based on the above discussions, the specific regions of the dominant induced wave
modes are marked in figure 26. At surface location of x = 10 nose radii, wave modes
induced in the boundary layer of all 15 frequencies are dominantly mode I waves.
The mode I waves are linearly stable and eventually decay. They are generated and
amplified in a local region when they are in resonance with the forcing fast acoustic
waves. At a later station of x = 50, the waves of lower frequencies are still dominated
by mode I waves, but mode II waves begin to develop at higher-frequency waves.
At the downstream location of x =172, the mode I wave frequency region continues
to decrease. The second mode begins to develop in a small frequency band around
150 kHz. Meanwhile, the induced waves at higher frequencies are dominated by mode
II waves. At a further downstream location of x =272, the unsteady second Mack
mode has grown substantially in a frequency band around 130 kHz. The second
Mack mode becomes dominant instability waves because it is linearly unstable. As
the boundary layer becomes thicker at further downstream locations, the frequencies
of the most unstable second mode decrease. There are also mode I and II waves
at lower and higher frequencies, respectively. Again, there are no first Mack mode
components in the boundary layer.

To summarize the LST analysis of the simulation results of the receptivity, it is
clear that the synchronization location between mode I and the second Mack mode
plays the most important role in the receptivity of the second Mack mode in the
boundary layer. In the current hypersonic flow over a blunt cone, the synchronization
location is located downstream of the branch I neutral stability location of the second
mode. As a result, there are no noticeable second mode components in the region
before the synchronization location, even though the second Mack mode is linearly
unstable there. Similarly, there are no first Mack mode components generated by the
receptivity process because the unstable region of the first Mack mode is upstream of
the synchronization location. In addition, owing to the resonant interactions with the
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Figure 27. Pressure perturbations on the wall normalized by amplitudes of the pressure
perturbations at the same frequency in the free stream.

forcing acoustic waves, there is amplification of the mode I waves in the early region
near the nose and amplification of the mode II waves in the region downstream. The
mode I and mode II waves grow owing to their respective resonant interactions with
the forcing waves, even though these two modes are always stable.

Overall, the receptivity mechanisms of the current axisymmetric hypersonic
boundary layer over a blunt cone are very different from those of the incompressible
boundary-layer flow. The resonant interactions between the forcing waves and the
boundary-layer wave modes, and the resonant interactions among the boundary-layer
normal modes, are the main mechanisms of the excitation of the unstable Mack
modes in the hypersonic boundary layer over a blunt cone.

7.3. Response coefficients

Figure 14 shows that the boundary-layer receptivity is strongly dependent on the
wave frequencies. In order to simulate the free-stream disturbances of Stetson et al.
wind-tunnel experiments by the current numerical simulation, the amplitudes of free-
stream forcing fast acoustic waves are not the same for different frequencies (table 1).
Consequently, the perturbation amplitudes shown in figure 14 do not accurately reflect
the frequency effects on the receptivity because of different forcing wave amplitudes
at different frequencies. In order to obtain the frequency effect on the receptivity,
the pressure perturbations of the induced boundary-layer disturbances of a given
frequency are normalized by the amplitudes of the pressure perturbations at the same
frequency in the free stream. Figure 27 shows the profiles of the normalized amplitudes
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of pressure perturbations along the wall as functions of the x-coordinate. Overall, the
amplitudes of pressure perturbations in the computational domain induced by free-
stream fast acoustic waves are less than 4 when they are normalized by amplitudes
of free-stream forcing acoustic waves of the same frequency. Maximum receptivity is
obtained at the frequency of n= 8 owing to the growth of the unstable second-mode
waves after they are generated by the mode I waves. These figures show that the
growth of the mode I and mode II waves for different frequencies are in the same
order of magnitudes (around 1.0) because they are generated by the same mechanism
of resonant interactions with the forcing acoustic waves. On the other hand, the
second mode growth is much stronger because the second modes are linearly unstable
after they are generated by the receptivity process.

In a boundary-layer receptivity study, a receptivity coefficient, which is defined as
the ratio of the amplitude of the induced second-mode wave at the Branch I neutral
stability point to that of the forcing free-stream disturbance waves, is usually used
to quantitatively describe the strength of the receptivity (Saric et al. 2002). However,
for hypersonic boundary receptivity, as discussed earlier in this paper, there are no
second Mack mode waves generated by free-stream fast acoustic waves at the Branch
I neutral point by the receptivity process. Instead, the second Mack mode waves are
generated by the mode I waves at the synchronization point between mode I and the
second mode The synchronization point between mode I and the second mode for
the current Mach 7.99 flow over a blunt cone is located downstream of the Branch I
neutral stability point (figure 13). Therefore, a response coefficient is used in this paper
to quantitatively study the acoustic receptivity of the boundary layer. Specifically, the
response coefficient of the boundary layer to forcing disturbances for a given mode is
defined as

Kmode =
|p′

mode|
|p′

∞| , (23)

where |p′|mode is the maximum amplitude of pressure perturbations for the given wave
mode, which includes mode I, mode II and the second Mack mode. The response
coefficients can be used to measure the maximum responses of a given wave mode
to forcing disturbances. For the second Mack mode, this maximum value is located
at the Branch II neutral point, which is outside the computational domain of the
current simulation. Therefore, the response coefficients for the second Mack mode
are not available in this study. Since the response coefficients are not the same as
the commonly used Branch I receptivity coefficient used in the literature (Saric et al.
2002), they are termed the response coefficients in this paper.

In the upstream region near the nose, the disturbance waves are dominated by mode
I waves for different frequencies. Response coefficients of mode I waves are obtained
for frequencies with n � 10. The locations of peak mode I waves move upstream
toward the nose when frequencies increase. For higher frequencies with n � 11, the
locations of the peaks of amplitudes for the mode I waves are so close to the junction
between the spherical nose and cone that the growth of mode I waves is affected by
the effect of discontinuity in surface curvature at the junction. Therefore, the response
coefficients defined in (23) are not available for higher frequencies of n � 11. From
figure 27, mode II waves reach local peak values for frequencies with n= 13, 14, 15.
The amplitude peaks for mode II perturbations at lower frequencies are not available
in this study because they are located outside the current computational domain. At
low frequencies with n � 6, the second-mode waves will appear in the region outside
the current computational domain. In the frequency band of 7 � n � 9, the second
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Figure 28. The response coefficients of mode I waves and mode II waves at different
frequencies.

modes are generated in the simulation, but their Branch II neutral points are located
outside the current computational domain. For frequencies with n= 10 or n= 11,
the induced second-mode waves are strongly modulated by other wave components
inside the boundary layer. As a result, the peak second-mode waves are difficult to
determine from the simulation results. For still higher frequencies, the second Mack
modes are always stable. No significant second mode components are found in the
receptivity simulation results. Therefore, only response coefficients of mode I waves
and mode II waves are presented in this paper.

Figure 28 shows the response coefficients of the mode I waves and mode II
waves at different frequencies. Overall, the magnitudes of the response coefficients of
mode I and mode II waves are of the order of 1 for different frequencies. From our
previous study on receptivity of a sharp flat-plate boundary layer to free-stream fast
acoustic waves (Ma & Zhong 2002, 2003a, b), the response coefficients of mode I
and mode II waves decrease with increasing frequencies. This trend is also true for
mode I response coefficients at frequencies with n � 7. However, figure 28 shows that
the response coefficients of mode I waves or mode II waves increases with increasing
frequencies after n � 8.

8. Summary and conclusions
The receptivity of Mach 7.99 flow over a 7◦ half-angle blunt cone, corresponding

to Stetson et al.’s boundary-layer stability experiments, has been studied in this paper
by numerical simulation. Even though there is still a discrepancy in growth rates of
the second mode between the current numerical results and the experimental results
of Stetson et al., it brought out some new physics on receptivity that has never been
documented in experiments.

Both steady base flow and unsteady flow solutions of the receptivity process have
been calculated by using a fifth-order finite-difference shock-fitting method to solve
the full Navier-Stokes equations. Fast acoustic waves at a range of frequencies are
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imposed in the free stream in front of the bow shock as forcing waves in the unsteady
flow simulation.

The current steady-flow solution of the full Navier-Stokes equations agrees very
well with those computed by Herbert & Esfahanian (1993) by using the thin-layer
Navier-Stokes equations. In addition, the current solution agrees well with Stetson
et al.’s experimental results on surface pressure, bow shock locations, and tangential
velocities outside the boundary layer. The steady base flow solution demonstrates the
effects of the entropy layer on the steady flow field. The entropy layer is created at the
bow shock, initially outside the boundary layer near the nose region. The presence
of the entropy layer creates an additional generalized inflection point in the region
outside the boundary layer. The entropy layer is gradually merged with the boundary
layer as it is convected downstream. Eventually, it is swallowed by the boundary layer
at a surface location of approximately 60 nose radii for the current flow. Further
downstream, the boundary-layer profiles gradually approach the same flow over a
sharp cone.

Having obtained the steady base flow solution, the receptivity to free-stream fast
acoustic waves is investigated by numerical simulation. A total of 15 frequencies have
been considered in the receptivity simulation. The unsteady simulation results show a
complex development of wave modes induced in the boundary layer by the free-stream
acoustic waves. The wave modes induced in the boundary layer by the receptivity
process are identified by comparison with the corresponding LST results. It is found
that the basic receptivity mechanisms of the current axisymmetric hypersonic flow over
a blunt cone are resonant interactions between the forcing waves and boundary-layer
wave modes, and resonant interactions among different boundary-layer wave modes.
Depending on the surface region and wave frequency, the disturbance waves induced
in the boundary layer contain mode I, mode II and the second Mack mode waves.
The wave structures obtained from the simulation are compared with those obtained
from the LST for mode I, mode II and the second mode. Very good agreement was
obtained for each frequency at a region where one of the wave modes is expected to
be dominant.

Through comparison with the LST results, it is found that the synchronization loca-
tion between mode I and the second mode plays the most important role in the
receptivity of the second Mack mode in the boundary layer. Specifically, mode I waves
are generated first by the forcing fast acoustic waves by their mutual resonant inter-
actions. As the induced mode I waves propagate downstream, they are synchronized
with the second Mack mode. The resonant interactions between mode I and the
second Mack mode at the synchronization location lead to the generation of the
second Mack mode. In the current flow over a blunt cone, the synchronization location
is located downstream of the branch I neutral stability location of the second mode.
As a result, there are no noticeable second mode components in the region before
the synchronization location, even though the second mode is linearly unstable there.
Similarly, there is no first Mack mode components generated by the receptivity process
because the unstable region of the first Mack mode is upstream of the synchronization
location. Therefore, mode I plays a very important role in the receptivity process. The
receptivity mechanism based on resonant interactions leads to the delay of excitation
of the second mode in the current hypersonic flow over a blunt cone. This may
explain stabilization of the second mode excitation in hypersonic boundary flow
by nose bluntness. In addition, owing to the resonant interactions with the forcing
acoustic waves, there is amplification of mode I waves in the region near the nose
and amplification of mode II waves in the region downstream. The mode I and
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mode II waves grow by their respective resonant interactions with the forcing waves
even though these two modes are always stable. The results also show the excitation
of mode II waves for higher-frequency waves at downstream locations. Overall, the
receptivity mechanism is very different from those of the incompressible boundary-
layer flow. The resonant interactions between the forcing waves and boundary-layer
wave modes and the resonant interactions among these normal modes is the main
cause of the excitation of the unstable Mack modes in a hypersonic boundary layer
over a blunt cone.

In an effort to investigate the growth rate discrepancy between the LST predictions
and those measured in Stetson et al.’s experiments, the growth rates of the second
Mack mode calculated by LST are compared with experimental results and with
those obtained by current numerical simulation. The LST results are consistent with
other authors in that they predict much higher growth rates than those measured by
Stetson et al. The direct numerical simulation in this paper provides an independent
comparison with the LST results. It was found that the second Mack mode calculated
by the current numerical simulation has the same wave numbers and slightly higher
growth rates as the second mode predicted by the LST calculations. Therefore,
the current simulation results support the validity of the LST calculations. The
disagreements between the LST results and those of the experiments may be due
to nonlinear effects in the experimental waves or other reasons. In addition, the
non-dimensional phase velocities of the major normal modes (mode I, mode II and
the Mack modes), have also been calculated in this paper. Both mode I and mode
II originate from the fast acoustic wave limit with an initial phase velocity of the
fast acoustic wave. On the other hand, the first Mack mode originates from the slow
acoustic wave side with an initial phase velocity. It is found that the distributions of
phase velocities for both mode I and mode II for the current hypersonic flow over
a blunt cone are discontinuous when they cross the line of the phase velocity of the
entropy/vorticity wave.

This work was sponsored by the Air Force Office of Scientific Research, USAF,
under AFOSR Grant F49620-00-1-0101, monitored by Dr John Schmisseur. The views
and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements either expressed
or implied, of the Air Force Office of Scientific Research or the US Government.
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