
 

Numerical Simulation of Hypersonic Boundary-Layer 
Receptivity to Three-Dimensional Wall Perturbations 

Xiaowen Wang* and Xiaolin Zhong†

University of California, Los Angeles, California, 90095 

The receptivity of a hypersonic boundary layer to three-dimensional wall perturbations 
is investigated in this paper by numerical simulations. The work is motivated by Tumin’s [1] 

theoretical analysis on the receptivity of compressible boundary layers to three-dimensional 
wall perturbations with the help of the biorthogonal eigenfunction system. Specifically, 
receptivity processes of a Mach 5.92 boundary-layer flow on a flat plate, corresponding to 
Maslov et al.’s [2] leading-edge receptivity experiments, to small-scale stationary roughness 
elements are studied. Due to the fact that the steady base flow profiles are independent of 
span-wise coordinate, the steady base flow is simulated by solving two-dimensional 
compressible Navier-Stokes equations with a combination of a fifth-order shock-fitting finite 
difference method and a second-order TVD scheme. For receptivity simulations, small-scale 
roughness elements are introduced to the flat plate. The subsequent responses of the 
hypersonic boundary layer are simulated by solving three-dimensional Navier-Stokes 
equations with the fifth-order shock-fitting finite difference method. Effect of thermal 
boundary conditions on the receptivity process is considered by comparing the results of 
receptivity simulations on adiabatic and isothermal flat plates. The preliminary numerical 
results show that pressure perturbations are excited inside the boundary layer downstream 
of the roughness element. In addition, pressure perturbations have relatively large 
amplitudes near the Mach lines generated by the roughness element. Pressure peturbations 
can be enhanced by concave roughness element. Counter rotating stream-wise vortices are 
generated for both cases. However, it is found that roughness element on adiabatic flat plate 
is more efficient in flow heating and stream-wise vorticity generation. Further studies are 
currently under way to investigate the receptivity of the hypersonic boundary layer to 
various wall perturbations.  

Nomenclature 

U  = a vector containing the conservative variables of mass, momentum, and energy 

jiF  = inviscid flux vectors 

jvF  = viscous flux vectors 

ijδ  = Kronecker Delta function 

vc  = specific heat at constant volume 

pc  = specific heat at constant pressure 

ijτ  = elements of viscous stress tensor 
µ  = viscosity coefficient 

*k  = heat conductivity coefficient 
Re∞  = unit Reynolds number 
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I. Introduction 
UE  to the fact that a turbulent flow generates much higher shear stress and heat flux to the wall than a laminar 
flow, the performance and control of hypersonic vehicles are significantly affected by the laminar-turbulent 

transition of the boundary-layer flows over vehicle surfaces. So the accurate prediction of boundary-layer transition 
location is very important to the drag calculation and the aerothermal design of hypersonic vehicles.  

D 
 
 In order to predict and control boundary-layer transition, extensively studies have been carried out to reveal 
transition mechanisms. It is found that the paths of boundary-layer flows from laminar to turbulent depend on the 
environment disturbance level. In an environment of small initial disturbances, the transition of the boundary-layer 
flow over a smooth surface generally consists of the following three stages:  
 

1. Receptivity process during which small environmental disturbances enter the boundary layer and excite 
unstable boundary-layer wave modes; 

 
2. Linear development or growth of boundary-layer unstable wave modes which can be obtained by solving the 

eigen-problem of the homogeneous linearized stability equations; 
 
3. Boundary-layer transition from laminar to turbulent caused by three-dimensional and non-linear effects when 

the unstable wave modes reach certain amplitudes. 
 
 For high level disturbances, the transient growth of boundary-layer waves may directly lead to transition. If the 
levels of disturbances are even higher, laminar boundary-layer flow can transit to turbulence right after the 
receptivity process. All these transitions relating to high level disturbances are called bypass transition.  
 

According to the transition mechanisms, it is clearly demonstrated that the study of receptivity process is 
important because it provides initial conditions of amplitude, frequency, and phase angle for boundary-layer wave 
modes [3]. The receptivity process of supersonic and hypersonic boundary-layer flows is more complex than that of 
subsonic or incompressible flows due to the additional effects of shock wave, compressibility, high temperature, etc. 
It has motivated extensive theoretical, experimental, and numerical studies of the excitations of boundary-layer 
wave modes in two-dimensional and three-dimensional high speed boundary layers.  

 
In 1975, Mack [4] used the compressible linear stability theory (LST) to calculate the amplitude ratio of constant-

frequency disturbances for supersonic boundary layers over insulated and cooled-wall flat plate. The objective of his 
investigation was to determine whether the usage of LST is enough to predict the transition Reynolds number in a 
supersonic wind tunnel as the free-stream Mach number and wall temperature changed. It was found that the ratio of 
transition Reynolds numbers in his calculation of the insulated and cooled-wall cases increases much faster than that 
observed experimentally. The results showed that LST alone is inadequate to determine the transition Reynolds 
number, and it is necessary to consider the properties of the external disturbances. Choudhari [5] studied the 
roughness-induced generation of stationary and nonstationary instability waves in three-dimensional boundary 
layers over a sweep wing of infinite span. The effects of acoustic-wave orientation and different types of roughness 
geometries were also considered. Herbert [6] considered the stability and transition of 3D boundary layers that vary 
both in stream-wise and span-wise directions with a new approach based on an extension of the parabolized stability 
equations to 3D boundary layers. The analysis of cross-flow dominated flow showed that the vector of growth rates 
( iα , iβ ) cannot be solely determined from the local flow characteristics and careful attention must be paid to initial 
conditions. Fedorov and Khokhlov [7] studied the receptivity of a hypersonic boundary layer over a flat plate to wall 
disturbances using a combination of asymptotic method and numerical simulation. They investigated the receptivity 
mechanisms to different wall disturbances, i.e., wall vibrations, periodic blowing-suctions, and temperature 
disturbances. It was found that a strong excitation occurs in local regions where forcing disturbances are resonant 
with boundary-layer wave modes. They also found that hypersonic boundary layers are more sensitive to blowing-
suction disturbances than to wall vibrations and temperature disturbances. Forgoston and Tumin [8] studied a three-
dimensional wave packet generated by a local temperature slot in a hypersonic boundary layer. They found that the 
solution to this initial-value problem can be expanded in a biorthogonal eigen-function system as a sum of discrete 
and continuous modes. Recently, Tumin [1] solved the receptivity problem of compressible boundary layers to three-
dimensional wall perturbations with the help of the biorthogonal eigenfunction system. In case of receptivity to 
roughness elements, there are counter rotating stream-wise vortices, streaks at both sides of the hump, and a wake 
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region downstream from the hump. In supersonic boundary layer, there exist large amplitude perturbations near the 
Mach waves generated by roughness elements.  

 
Kendall [9] experimentally studied the origin 

and growth of natural fluctuations in zero 
pressure-gradient boundary layers for several 
Mach numbers between 1.6 and 8.5. Substantial 
growths of flow fluctuations were observed within 
the laminar boundary layer in the early station 
where the boundary layer is predicted to be stable 
by LST. These fluctuations were found to be 
related to the sound field for higher supersonic 
speeds. The growth rates of these fluctuations in 
the region downstream of the initial growth are in 
a reasonable agreement with the LST results of 
Mack. Maslov and Seminov [10] studied the 
receptivity of a supersonic boundary layer to 
artificial acoustic waves by utilizing two parallel 
flat plates as shown in Fig. 1. The acoustic waves 
generated by an electric discharge system on the 
lower plate radiated into the external flow and 
penetrated into the boundary layer of the upper 
plate as free-stream acoustic disturbances. It was 
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Figure 1. A schematic of the receptivity experiment setup 
of Maslov and Seminov. 
found that the external acoustic waves are 

onverted into boundary-layer oscillations most efficiently at the leading edge, in the neighborhood of the acoustic 
ranch of the neutral curve, and in the vicinity of lower branch of the neutral curve. Recently, a similar experiment 
as carried out at a Mach 5.92 flow by Maslov et al. [2] to study the leading edge receptivity of the hypersonic 
oundary layer. It was found that Tollmien-Schlichting waves are generated by the acoustic waves impinging on the 
ading edge. They also found that the receptivity coefficients depend on wave inclination angles.  

With the development of advanced computers and numerical techniques, numerical simulation of the receptivity 
rocess by directly solving full Navier-Stokes equations has become a powerful approach. By solving the 
ompressible linearized Navier-Stokes equations, Malik et al. [11] investigated the responses of a Mach 8 flow over a 
arp wedge of a half-angle of 5.30 to three types of external forcing: a planar free-stream acoustic wave, a narrow 

coustic beam enforced on the bow shock near the leading edge, and a blowing-suction slot on the wedge surface. 
hey concluded that these three types of forcing eventually result in the same type of instability waves in the 
oundary layer. However the receptivity mechanism was not studied in detail. Ma and Zhong [12] studied the 
ceptivity mechanisms of the same hypersonic boundary layer to various free-stream disturbances, i.e., fast and 
ow acoustic waves, vorticity waves, and entropy waves, by solving the two-dimensional Navier-Stokes equations. 
hey found that the stable modes in the boundary layer play a very important role in the receptivity process. Wang 
nd Zhong [13, 14] extended Ma and Zhong's work by studying the receptivity mechanisms of the same flow over the 
arp wedge to periodic blowing-suction disturbances introduced in a narrow region on the wall. The effects of 
equency, location, profile, and length of the blowing-suction actuator on the receptivity process are also 
vestigated based on the numerical simulation results. The numerical results show that mode F, mode S, and 

coustic modes are excited by the blowing-suction disturbances. All the modes coexist in the boundary layer just 
ownstream of the forcing region. Far downstream of the forcing region, acoustic modes radiate into the external 
ow outside the boundary layer. Mode F decays due to its inherent stability while mode S grows substantially 
ecause of its instability. As a result, mode S becomes the dominant mode in the boundary layer. It is also found that 
e excitation of mode S is strongly affected by profile and length of the blowing-suction actuator. All cases of 

umerical simulations consistently show that the synchronization point of mode F and mode S plays an important 
le in the excitation of mode S by wall blowing-suction. Mode S is strongly excited when the blowing-suction 

ctuator is located upstream of the synchronization point. On the other hand, when the blowing-suction actuator is 
ownstream of the synchronization point, there is a very weak excitation of mode S, despite the fact that the 
lowing-suction actuator is still within the unstable region of mode S. A concurrent theoretical study has also been 
arried out by Tumim, Wang, and Zhong [15] to compare the theoretical and numerical results of receptivity 
oefficients and to analyze the receptivity characteristics. The perturbation flow field downstream of the blowing-
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suction actuator is decomposed into boundary-layer wave modes with the help of the biorthogonal eigenfunction 
system. It was found that there is a good agreement between normal-mode amplitudes calculated with the help of the 
theoretical receptivity model and those obtained by projecting the numerical results onto the normal modes. 
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Figure 2. Numerical simulation setup for receptivity of the 
Mach 5.92 flow to two-dimensional disturbances  (1-source 
plate with 2D perturber, 2-test plate, 3-disturbances actuator,   

4-acoustic radiation, 5-bow shock, 6-boundary layer) 

Stemmer et al. [16] studied the laminar-
turbulent transition mechanisms of a flat plate 
boundary layer to a harmonic point source 
disturbances by numerical simulations based on 
the full Navier-Stokes equations for  three-
dimensional incompressible flow. The results for 
early stages agree very well with LST results and 
with in-flight experiments. Collis and Lele [17] 
numerically investigated the formation of 
stationary crossflow vortices in a three-
dimensional boundary layer due to surface 
roughness near the leading edge of a swept wing 
by solving the compressible Navier-Stokes 
equations. The results showed that convex surface 
curvature enhances receptivity while non-parallel 
effects strongly reduce the initial amplitude of 
stationary crossflow vortices. Zhong [18] studied 
the acoustic receptivity of a hypersonic flow over 
a parabola by solving full Navier-Stokes 
equations. It was concluded that the generations 
of boundary-layer wave modes are mainly due to 
the interaction of the boundary layer with the 
transmitted acoustic waves instead of entropy and 
vorticity waves. In a series of papers, Ma and 
Zhong [19-21] studied the receptivity mechanisms 
of a supersonic boundary layer to various free-stream disturbances by a combination of numerical simulation and 
linear stability theory. It was found that, in addition to the conventional first and second Mack modes, there exists a 
family of stable modes which play an important role in the excitation of unstable modes. Dong and Zhong [22] carried 
out parametric simulations of receptivity to freestream disturbances of a Mach 15 flow over 3D blunt leading edges 
by using high-order shock-fitting finite difference method on parallel clusters. The results showed that the 
magnitude of transient growth inside the boundary layer also increases by introducing random roughness strips on 
the wall. For a Mach 10 oxygen flow, Ma and Zhong [23] investigated receptivity problems in both perfect gas and 
thermochemically non-equilibrium gas to consider the real gas effect on receptivity and stability. Compared with the 
results of perfect gas, the unstable region of non-equilibrium flow is longer and the peak amplitude is higher, which 
means that the real gas effect destabilizes the boundary-layer modes. Egorov et al. [24] developed a numerical 
algorithm and applied it to the simulation of unsteady two-dimensional flows relevant to receptivity of supersonic 
and hypersonic boundary layers. For small forcing amplitudes, the second-mode growth rates obtained by numerical 
simulation agree well with those predicted by the LST with the non-parallel effects. The results of their simulations 
show a non-linear saturation of fundamental harmonic and rapid growth of higher harmonics. Wang and Zhong [25] 
numerically investigated the steady base flow and the receptivity of the hypersonic boundary layer corresponding to 
Maslov et al.'s leading-edge receptivity experiments. Figure 2 schematically shows the numerical simulation setup 
for receptivity to two-dimensional disturbances. The accuracy of the numerical simulation was evaluated by 
comparing the results of simulations and experiments. The good agreement between the two sets of steady base 
flows indicated that the numerical simulation of the fifth-order shock-fitting finite difference method was accurate 
for the hypersonic flow simulation. It was also found that the boundary layer is much more sensitive to blowing-
suction disturbances than to wall oscillations and energy perturbations. These results were consistent with those of 
Fedorov and Khokhlov [7].  
 
 In this paper, the receptivity of a hypersonic boundary layer to three-dimensional wall perturbations is 
investigated by numerical simulations. Specifically, receptivity processes of a Mach 5.92 boundary-layer flow on a 
flat plate, corresponding to Maslov et al.’s [2] leading-edge receptivity experiments, to small-scale stationary 
roughness elements are studied. The work is motivated by Tumin’s [1] theoretical analysis on the receptivity of 
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compressible boundary layers to three-dimensional wall perturbations with the help of the biorthogonal 
eigenfunction system. Due to the fact that the steady base flow profiles are independent of the span-wise coordinate, 
the steady base flow is simulated by solving two-dimensional compressible Navier-Stokes equations with a 
combination of a fifth-order shock-fitting finite difference method and a second-order TVD scheme. For receptivity 
simulations, small-scale roughness elements are introduced to the flat plate. The subsequent responses of the 
hypersonic boundary layer are simulated by solving three-dimensional Navier-Stokes equations with the fifth-order 
shock-fitting finite difference method. Effect of thermal boundary conditions on the receptivity process is considered 
by comparing the results of receptivity simulations on adiabatic and isothermal flat plates.  
 

II. Governing equations and numerical methods 
In the current numerical studies, a Mach 5.92 flow over a three-dimensional flat plate as shown in Fig. 3 is 

considered. The flow is assumed to be thermally and calorically perfect. The governing equations for the simulation 
are the full compressible Navier-Stokes equations in the conservative form, i.e.,  

 1 1 2 2 3 3
1 2 3

( ) ( ) ( )i v i v i v
U F F F F F F
t x x x

∂ ∂ ∂ ∂
+ + + + + +

∂ ∂ ∂ ∂
0=  (1) 

where is a vector containing the conservative variables of mass, momentum and energy, i.e., U
{ }1 2 3, , , ,u u u eρ ρ ρ ρ . , , and  are inviscid flux vectors, while 1iF 2iF 3iF 1vF , 2vF , and  are viscous flux 
vectors. The flux vectors can be expressed as  

3vF
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 (3) 

with { }1, 2,3j∈ . In Eq.  (2), ijδ  (i = 1, 2, 3) is the Kronecker Delta function. With the perfect gas assumption, 
pressure and energy are given by  

 p RTρ=  (4) 

 2 2 2
1 2 3(

2ve c T u u u )ρρ= + + +  (5) 

where  is the specific heat at constant volume. For compressible Newtonian flow, the viscous stress tensor can be 
written as:  

vc

 
2
3

ji
ij ij

j i n

uu u
x x x

nτ µ
⎛ ⎞∂∂ ∂

= + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
µ δ  (6) 

for { }, , 1, 2,3i j n∈ . In the simulation, the viscosity coefficient, µ , and the heat conductivity coefficient,  in 
Eq. (3), are calculated using the Sutherland's law together with a constant Prandtl number, Pr.  

*k
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r
r

r s

T TTT
T T T

µ µ
⎛ ⎞ s+
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 (7) 

 * ( )
( )

Pr
pT c

k T
µ

=  (8) 

where 5 21.7894 10r Ns mµ −= × , T K , T288.0r = 110.33s K= ,  is the specific heat at constant pressure. 
In this paper, the dimensional flow variables are non-dimensionalized by free-stream parameters. Specifically, 
density 

pc

ρ , temperature T , velocities , , and , and pressure 1u 2u 3u p  are non-dimensionalized by ρ∞ , T∞ , u∞ , 

and . 2uρ∞ ∞ 1x  and 2x  are non-dimensionalized by 

unit length in meter, while 3x  is non-
dimensionalized by the local boundary-layer 
thickness, 1x u∞µ ρ∞ ∞ . Referring to the 

coordinate system shown in Fig. 3, 1x , 2x , and 3x  
are x , , and y z , respectively. The three 

variables, , , and , are velocities in stream-
wise, wall-normal, and span-wise directions, 
respectively.  

1u 2u 3u

 
The high-order shock-fitting finite difference 

method of Zhong [26] is used to solve the three-
dimensional Navier-Stokes equations in a domain 
bounded by the bow shock and the flat plate. In 
other words, the bow shock is treated as a 
boundary of the computational domain. The 
Rankine-Hugoniot relation across the shock and a 
characteristic compatibility relation coming from 
downstream flow field are combined to solve the 
flow variables behind the shock. The shock-fitting 
method makes it possible for the Navier-Stokes equat
methods. Specifically, a fifth-order upwind scheme 

and . A sixth-order central scheme is used to d2iF
However, flux vectors of  and  in span-wise
achieve high accuracy.  

3iF 3vF

 
By using the shock-fitting method, the interact

roughness elements is solved as a part of solutions w
dependent flow variables. A three-stage semi-implicit
integration. In the leading edge region, there exists 
numerical instability when the fifth-order shock-fit
computational domain for the shock-fitting simulation
edge. A second-order TVD scheme of Zhong and Lee
including the leading edge to supply inlet conditions
small-scale roughness elements are introduced in a do
combination of the shock-fitting method and the T
hypersonic steady flows over a flat plate by Ma and Zh
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Figure 3. A schematic of the receptivity of the hypersonic 
boundary layer on a flat plate to roughness elements 
ions to be spatially discretized by high-order finite difference 
is used to discretize the two inviscid flux derivatives of 1iF  

iscretize the two viscous flux derivatives of  and1vF 2vF . 

 direction are calculated by Fourier collocation method to 

ion between the bow shock and perturbations induced by 
ith the position and velocity of the shock front being taken as 
 Runge Kutta method of Zhong et al. [27] is used for temporal 
a singular point at the tip of the flat plate, which introduces 
ting method is used to simulate the flow. Therefore, the 
 starts from a very short distance downstream of the leading 
 [28] is used to simulate the steady base flow in a small region 
 for the shock-fitting simulation. For receptivity simulations, 
wnstream region where the shock-fitting method is used. The 
VD method has been validated in cases of supersonic and 
ong [19, 29], and Wang and Zhong [25].  
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The same numerical method has been used by Ma and Zhong in their receptivity studies of supersonic boundary 
layers over a flat plate and a sharp wedge to various free-stream disturbances [19-21]. The good agreement between 
numerical and LST results indicates that the high-order shock-fitting finite difference method is accurate to simulate 
the receptivity problems of supersonic boundary layers. The numerical method has also been validated in the 
theoretical study and comparison with numerical simulation of Tumin, Wang, and Zhong [15]. The numerical 
perturbation field downstream of the blowing-suction actuator is decomposed into boundary-layer wave modes with 
the help of the biorthogonal eigenfunction system. The filtered-out amplitudes of mode S and mode F agree well 
with the solutions of the linear receptivity problem. The Fourier collocation method has been tested by Zhong [30] to 
investigate the receptivity of a Mach 6 flow over a flared cone to freestream disturbances. The numerical results are 
compared with published experiment results. It was found that the steady base flow solutions agree very well with 
the experiment results. The wave numbers and growth rates of numerical solutions compare reasonably well with the 
LST results. 
 

III. Flow conditions and roughness element model 
The free-stream flow conditions for currently studied flow are the same as those used by Maslov et al. [2] in their 

experiments, i.e.,  
 

5.92M∞ =                                48.69 KT∞ =  

742.76Pap∞ =                        Pr 0.72=  
6Re 13 10 m∞ = ×  

 
The dimensional coordinate, x, can be easily converted to the dimensionless local Reynolds number by  
 Re Rex x∞=  (9) 

where  is the unit Reynolds number defined as  Re∞

 Re uρ
µ
∞ ∞

∞
∞

=  (10) 

In linear stability studies of boundary-layer flows, the Reynolds number based on the local length scale of 
boundary-layer thickness, L, is generally used. They are expressed as  

 
u LR ρ
µ
∞ ∞

∞

= , 
xL

u
µ
ρ

∞

∞ ∞

=  (11) 

Hence, the relation between  and local Reynolds number Re  is given by  R x

 RexR =  (12) 
 
For the simulation of steady base flow, the wall is adiabatic, and the physical boundary condition of velocity on 

the flat plate is the non-slip condition. When roughness elements are introduced on the wall, the computational 
domain and grid structure of receptivity simulation are the same as those of steady simulation due to the fact that the 
heights of roughness elements are small. Boundary conditions of temperature and velocities on the lowest grid line 
are specified according to the model of roughness element. Inlet conditions are specified, while high-order 
extrapolation is used for outlet conditions because the flow is hypersonic at the exit boundary except a small region 
near the flat plate.  

 
In Dong and Zhong’s [22] numerical simulations of transient growth in a Mach 15 boundary layer over a blunt 

leading edge, two types of surface roughness models are introduced. For the first type of surface roughness model, 
inhomogeneous normal velocity is applied on the surface with the mass conservation being enforced. Components 
of the randomly distributed small inhomogeneous velocity can be expressed as  
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( , ) sin
( , ) cos

0

wall

wall

wall

u f x z V
v f x z V
w

ε θ
ε θ

=⎧
⎪ =⎨
⎪ =⎩

 (13) 

where ε is the amplitude parameter while V is the inhomogeneous normal velocity. ( , )f x z  is a random function 

between and is set to enforce the mass conservation condition. ( 1,1)− ( , ) 0f x z =∑ θ  is the angle between the 
tangential direction of the surface and the x  axis. According to this model, inhomogeneous normal velocity is 
directly applied to the wall with roughness. Therefore, the specific roughness geometry needs to be considered in 
numerical simulations. However, it is hard for numerical simulations to using grid structures attached to the 
geometries of complex roughness elements.  
 
 The second type of surface roughness model is derived with the assumption of small height of the roughness. 
Due to the existence of roughness elements, the true wall surface changes from 0y = to ( , )y H x zε= , where 

is a given function. ( , )H x z ε is a small  parameter to control the height of roughness elements. The physical non-
slip conditions of velocity on the true wall are  

 

( , ( , ), ) 0
( , ( , ), ) 0
( , ( , ), ) 0

u x H x z z
v x H x z z
w x H x z z

ε
ε
ε

=⎧
⎪ =⎨
⎪ =⎩

 (14) 

Temperature boundary conditions on the wall are different for isothermal and adiabatic walls. For small roughness 
elements, we can do Taylor expansions on boundary conditions, i.e.,  

 2

0

( , ( , ), ) ( ,0, ) ( , ) ( )
y

uu x H x z z u x z H x z O
y

ε ε
=

∂
= + +

∂
ε  (15) 

 2

0

( , ( , ), ) ( ,0, ) ( , ) ( )
y

vv x H x z z v x z H x z O
y

ε ε
=

∂
= + +

∂
ε  (16) 

 2

0

( , ( , ), ) ( ,0, ) ( , ) ( )
y

ww x H x z z w x z H x z O
y

ε ε
=

∂
= + +

∂
ε  (17) 

 2

0

( , ( , ), ) ( ,0, ) ( , ) ( )
y

TT x H x z z T x z H x z O
y

ε ε
=

∂
= + +

∂
ε  (18) 

Substituting Eq. (14) to Eqs. (15)-(17), velocity boundary conditions on 0y =  are obtained as:  

 

0

0

0

( ,0, ) ( , )

( ,0, ) ( , )

( ,0, ) ( , )

y

y

y

uu x z H x z
y

vv x z H x z
y

ww x z H x z
y

ε

ε

ε

=

=

=

⎧ ∂
= −⎪

∂⎪
⎪

∂⎪ = −⎨ ∂⎪
⎪ ∂⎪ = −
⎪ ∂⎩

 (19) 

For the boundary layer over a flat plate as shown in Fig. 3, we have  

 
0 0

0,
y y

w v
y y 0y

u
y= = =

∂ ∂
=

∂ ∂
∂
∂

 (20) 

Therefore, Eq. (19) reduces to  
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0

( ,0, ) ( , ) , ( ,0, ) ( ,0, ) 0
y
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y

ε
=

∂
= − = =

∂
 (21) 

For this model, the computational domain and grid structure of receptivity simulation can be the same as those of 
steady simulation, which makes the numerical simulations much easier to investigate the responses of boundary-
layer flows to complex of roughness elements. Similar models of roughness elements have also been used by 
Battaro and Zebib [31], Collis and Lele [17], Fedorov and Khokholov [7].  
 
 For the current paper, a model of Eq. (21) is used. The parameters of roughness elements are specified as  

 41.0 10ε −= ×  (22) 
 ( , ) ( ) cosH x z F l zβ=  (23) 

where β is the wave number in span-wise direction, which is given as  

 42 with 6.0 10 mz
z

πβ λ
λ

−= = ×  (24) 

 The profile function of roughness elements in stream-wise direction, , can be expressed as  ( )F l

 
( )
( ) ( )

5 4F 20.25 35.4375 15.1875
F F 2.45688

l l l
l l

⎧ = − +⎪
⎨ =⎪⎩

2l
 (25) 

The variable  is a dimensionless coordinate defined within the roughness element (l i ex x x≤ ≤ ) as  

 
( ) ( ) ( )
( ) ( ) ( )

2 0.620287 if 2
2 0.620287 if 2

i e i e i

e e i e i

x x x x x x x
l

x x x x x x x
× × − − ≤ −⎧⎪= ⎨ × × − − ≥ −⎪⎩

 (26) 

where ix  and ex  are the coordinates of the leading 
and trailing edges of the roughness element. For 
the roughness element considered in our 
simulations, ix  and ex  are equal to 312.25 mm 
and 316.25 mm, respectively. 
 

In Eq. (25), the constant of 2.45688 is the value 
of  at the center of the roughness 
element , which is used to 
normalize the profile function. Figure 4 shows the 
profile function F l  and the variable  within 
the roughness element. It is clearly shown that both 

 and are symmetric within the roughness 
region. According to Eq. (21), the positive values 
of  is equivalent to the negative stream-wise 
velocity, which indicate that the stream-wise 
velocity is towards the leading edge of the flat plate. 
It also shows that the specific 5th-order-polynomial 
profile function makes the perturbation at the edges 
smooth.  

( )F l
( 0.620287)l =

( ) l

( )F l l

( )F l

 

IV. Ste
As shown in Fig. 3, stead base flow profiles of the

wise coordinate. Therefore, the steady base flow is sim
stokes equations with the combination of a fifth-ord
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ulated by solving the two-dimensional compressible Navier-
er shock-fitting finite difference method and a second-order 

 Aeronautics and Astronautics 
 

9



 

TVD scheme. In the leading edge region, there exists a 
singular point at the tip of the plate, which introduces 
numerical instability when the fifth-order shock-fitting 
method is used to simulate the flow. Therefore, the 
computational domain for the fifth-order shock-fitting 
method starts at x 0.0025=  m and ends at 

0.879x =  m, corresponding to R 180.28=  
and , respectively. In actual simulations, 
the computational domain is divided into 19 zones with 
a total of 3746 grid points in stream-wise direction. The 
number of grid points in wall-normal direction is 121 
before 

= 3380.38R

0.309x =  m and 176 after that location. 41 
points are used in the buffering region between two 
neighboring zones, which has been proved to be 
sufficient to make the solution accurate and smooth 
within the whole domain. An exponential stretching 
function is used in the wall-normal direction to cluster 
more points inside the boundary layer. On the other hand, 
the grid points are uniformly distributed in stream-wise 
direction. The spatial convergence of the results based 
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Figure 5. Grid independence check of density 
contours simulated by TVD scheme based on three 

sets of grid structures. 
on this grid structure has been evaluated by grid 
efinement studies to ensure the grid independence of the fifth-order shock-fitting simulations.  

For the first zone, the inlet conditions are obtained from the results of the second-order TVD method which is 
sed to simulate the steady base flow in a small region including the leading edge. For other zones, inlet conditions 
re interpolated from the results of the previous zone. The domain for the second-order TVD method starts at 

 m and ends at  m. Three sets of grid structures are used to check the grid independence 
f the numerical results. Figure 5 compares the density contours of numerical simulations based on the three sets of 
rid structures. It shows that the dashdot contours agree well with the dotted contours, while they have discrepancies 
ith the solid contours. This figure indicates that the grid structure (

0.0005x = − 0.0035x =

201 176× ) is enough to ensure grid 
ndependence of the results. However, the grid structure (161 101× ) is too coarse to achieve spatial converged 
umerical results. 
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Figure 6. Density contours near the leading edge of 
the steady base flow on the flat plate obtained by 

TVD method and shock-fitting method. 
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Figures 6 and 7 show the density and wall-normal velocity contours of the steady base flow over the flat plate 
obtained from the second-order TVD method and the fifth-order shock-fitting method, respectively. The flow field 
including the leading edge is simulated by the TVD method, while the flow field after  m is simulated 
by the shock-fitting method. These figures show that density and wall-normal contours have a good agreement near 
the leading edge of the buffering region, which indicates that the TVD solutions are accurate enough to be used as 
inlet conditions for the fifth-order shock-fitting simulation in the first zone. The small discrepancies of the contours 
near the bow shock are due to viscous effect. Because of the viscosity, the bow shock has a finite thickness for TVD 
simulation, while it is infinitely thin for the shock-fitting simulation. The combination of the shock-fitting method 
and the TVD method has also been validated in cases of supersonic and hypersonic steady base flows by Ma and 
Zhong 

0.0025x =

[29], Wang and Zhong [14].  
 

Figure 8 shows the pressure contours of the steady base flow over the flat plate simulated by the fifth-order 
shock-fitting method. The upper boundary of the flow field represents the bow shock induced by the displacement 
thickness of the boundary layer. A part of the pressure field from 0.03x =  m to 0.08x =  m is amplified to show 
clearly the pressure contour within the boundary layer. It is noticed that pressure is almost a constant across the 
boundary layer and along the Mach lines, which is consistent with the theories of the boundary-layer flow and 
supersonic aerodynamics. At a fixed location (constant x ), the pressure behind the shock is higher than that on the 
plate due to the existence of the bow shock.  

 
Figure 9 shows the pressure distributions on the flat plate and behind the bow shock versus x . Near the leading 

edge, there exist great pressure gradients, which are induced by the interaction between the inviscid outer flow and 
the viscous boundary layer. From upstream to downstream, the inviscid/viscous interaction becomes weaker with 
the bow shock moves away from the boundary layer. As a result, the pressure approaches a constant value further  
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ownstream with the pressure gradient decreasing. Again, F
han that on the plate at a fixed location (constant x ).  

  
More results of the steady base flow over the flat plate 

umerical simulated steady flow is compared with that mea
hat the numerical results agree well with the experimenta
owever, in the region near the edge of the boundary laye

xperimental results. The difference between the numerical
y the existence of the bow shock, because the effect of the

American Institute of Aero
 

11
x (m)

p
(p

a)

0 0.25 0.5 0.75

750

1000

1250

1500

pressure behind the bow shock

pressure along the flat plate

Figure 9. Pressure distributions along the wall and 
behind the bow shock of the steady base flow 
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ig. 9 shows that the pressure behind the shock is higher 

can be found in Wang and Zhong’s [25] paper, where the 
sured by Maslov et al. in their experiments. It was found 
l results and the boundary-layer solution near the plate. 
r, the numerical results have a better agreement with the 
 results and the boundary-layer solution is mainly caused 
 shock is neglected in the calculation of the compressible 
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boundary-layer equations. Therefore, the effect of the bow shock needs to be considered for supersonic and 
hypersonic flows.  
 

V. Receptivity simulation results 
In order to study the receptivity process of the hypersonic boundary layer to 3D roughness elements on the wall, 

the two-dimensional steady base flow is firstly extended to three-dimensional base flow according to the fact that 
base flow is independent of span-wise coordinate. Stationary roughness element modeled by Eqs. (21)-(23) is then 
enforced on the flat plate in a region from 312.25ix =  mm to 316.25ex = mm, corresponding to 

and , respectively. The subsequent responses of the hypersonic boundary layer are 
simulated by solving the three-dimensional Navier-Stokes equations with the fifth-order shock-fitting finite 
d fference method. Specifically, a fifth-order upwind scheme is used to discretize the two inviscid flu  deriva ives of 

 and . A sixth-order central scheme is used to discretize the two viscous flux derivatives of  and

2014.76R = 2027.62R =

i x t

1iF 2iF 1vF 2vF . On 

the other hand, flux vectors of  and  in span-wise direction are calculated by Fourier collocation method to 
achieve high accuracy. Since there is only one wave mode in span-wise direction, four grid points are enough for 
Fourier collocation method. The three-dimensional Navier-Stokes equations are solved by the parallel code of Dong 
and Zhong 

3iF 3vF

[22] on a computer cluster of six nodes. The computation load is uniformly distributed to the six nodes.  
 
Figures 10 and 11 show the pressure contours in span-wise and stream-wise cross-sections of the three-

dimensional steady base flow extended from two-dimensional base flow. It is clearly shown in Fig. 10 that pressure 
contours of the 3D base flow in a cross-section is similar to those of 2D base flow as shown in Fig. 8, i.e., pressure is 
a constant across the boundary layer and along the Mach lines. Figure 11 clearly shows that pressure is a constant in 
span-wise direction, because the base flow is independent of the span-wise coordinate. Both Fig. 10 and Fig. 11 
show that, at a fixed location (constant x ), the pressure behind the shock is higher than that on the plate due to the 
existence of the bow shock. Figures 10 and 11 indicate that 2D steady base flow is successfully extended to 3D 
steady base flow.  
 
  
 

 

Figure 10. Pressure contours in span-wise cross-
sections of the three-dimensional steady base flow 

extended from two-dimensional base flow.  

Figure 11. Pressure contours in stream-wise cross-
sections of the three-dimensional steady base flow 

extended from two-dimensional base flow. 
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Figure 12 shows the contours of stream-wise velocity at the surface of 0y =  induced by the 3D stationary 

roughness element. According to the roughness element model of Eq. (21), convex roughness element induces 
negative stream-wise velocity while concave roughness element induces positive stream-wise velocity. The contours 
in Fig. 12 are consistent with the profiles of roughness element in span-wise and stream-wise directions. Figure 13 
shows the steam-wise velocity distributions versus x for different span-wise locations at the surface of y=0. In the 
figure, k = 1, 2, 3, or 4 represents the different span-wise locations corresponding to the phase angles of 0, 2π , π , 

or 3 2π . Again, stream-wise velocity distributions at k = 1 and 3 indicate that convex and concave roughness 
elements induce negative and positive velocities, respectively. It is noticed that no stream-wise velocities are 
induced at k = 2 and 4, because the heights of roughness element are zero at these two locations.  
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Figure 12. Contours of stream-wise velocity  
at the surface of y=0 induced by 3D  

stationary roughness element. 
In current paper, two cases of different wall temperatu
process and the effect of thermal boundary conditions on
obtained by subtracting steady base flow from the flow fie
considered are as follows,  
 

Case 1: Adiabatic boundary condition at 0y =  

 
0y

T
y =

∂
∂

 
Case 2: Isothermal boundary condition at 0y =  
For steady base flow simulation, the adiabatic conditio

erivative in Eq. (18) is equal to zero, i.e.,  
  ( ,0, ) ( ,T x z T x Hε=

A. Receptivity to roughness element at adiabatic wall 
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re conditions are simulated to investigate the receptivity 
 the receptivity process. The perturbation flow field is 
ld of receptivity simulation. Specifically, the two cases 

0=  (27) 

n is applied on the flat plate. Therefore, the temperature 

( , ), ) steadyx z z T=  (28) 
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Figure 14 shows the contours of pressure perturbation at the plane of k = 1 induced by 3D stationary roughness 
element. Downstream of the roughness element, pressure perturbations are excited inside the boundary layer. In 
addition, pressure perturbations have relatively large amplitudes near the Mach lines generated by the roughness 
element, which is consistent with Tumin’s theoretical analysis [1]. In order to check the three-dimensional properties, 

contours of pressure perturbation at the plane of 0y =  are plotted in Fig. 15. It is noticed that pressure perturbation 
is negative in the region upstream of the roughness element, while it is positive downstream. Figure 15 also shows 
that pressure perturbation is periodic with the period of phase angle beingπ .  
 

Figure 14. Contours of pressure perturbation  
at the plane of k = 1 induced by 3D  

stationary roughness element. 
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Figure 15. Contours of pressure perturbation  
at the plane of y = 0 induced by 3D  

stationary roughness element. 

 Figure 16 shows contours of pressure perturbation at the plane of j = 88 (grid line) induced by 3D stationary 
roughness element. Compared with Fig. 15, it is shown more clearly that pressure perturbation is periodic with the 
period of phase angle beingπ , half of the period of roughness element. Figure 17 plots the distributions of pressure 
perturbation versus x for different span-wise locations at the surface of 0y = . Perturbations at k = 2 and 4 are 
small compared with those at k = 1 and 3. Furthermore, pressure perturbation at k = 3 is higher than that at k = 1. In 
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Figure 16. Contours of pressure perturbation  
at the plane of j = 88 induced by 3D  

stationary roughness element. 
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order to check the half-periodic properties of pressure perturbation contours and the difference between 
perturbations at k = 1 and 3 as shown in Fig. 17, Fourier transform is applied to decompose the flow field of 
receptivity simulation in span-wise direction.  
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Figure 18. Distributions of perturbation amplitude 
versus x at the planes of j = 88, 10 and y = 0 induced 

by 3D roughness element (period of π). 

Figure 18 shows the amplitude distributions of first-mo

ines) and y = 0, respectively. It is noticed that the pressur
orcing region, which indicates that the first-mode perturb
scillation of perturbation amplitude is caused by the cond
oughness element schematically shown in Fig. 3. For exam
ondenses the flow and then rarefies the flow, which resu
ashdot line in Fig. 18. This figure also shows that the 
etween the considered plane and the flat plate increasing. P
n the plane of y = 0. At the plane of j = 88 (grid line
onsidered plane exists outside the Mach lines generated 
roperty of pressure perturbation contours is more clearly sh

Figure 19 shows the amplitude distributions of second
grid lines) and y = 0, respectively. It is noticed that the
ownstream with the distance between the considered plane
n Fig. 14, because the second-mode pressure perturbatio
erturbation is due to the fact the pressure perturbation is
ntroduced by roughness element. This figure also shows th
nd then decreases with the distance between the considered

At the plane of k = 1, the phase angles of first- and seco
hat amplitudes of the two perturbations have different si
erturbations decreases the total amplitude in forcing regio
econd-perturbations are π  and 2π , respectively. Therefo
igns within the forcing region. The combination of the pert
his means that the concave roughness element enhances 

irst-mode perturbation doesn’t exist. Therefore, the total am
hould be the same. All these results are consistently sho
mplitudes of first- and second-mode perturbations have the
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versus x at the planes of j = 88, 60 and y = 0 induced 

by 3D roughness element (period of 2π). 

de pressure perturbation at the planes of j = 88, 10 (grid 
e perturbation of the period ofπ  is confined within the 
ation is directly related to the roughness element. The 
ensation and rarefaction of the flow when it passes the 
ple, at the plane of k = 1, the convex element initially 

lts in the increase and decrease of perturbation as the 
amplitude of perturbation decreases with the distance 
erturbation at the plane of j = 10 is much lower than that 
), no first-mode perturbation is observed because the 
by the roughness element. Therefore, the half-periodic 
own in Fig. 16 than in Fig. 15.  

-mode pressure perturbation at the planes of j = 88, 60 
 pressure perturbation of the period of 2π  propagates 
 and the flat plate increasing. Actually, this is also shown 
n propagates along the Mach lines. The 2π  period of 
 proportional to the square of the stream-wise velocity 
at the amplitude peak of perturbation initially increases 
 plane and the flat plate increasing.  

nd-mode perturbations are zero.  Figures 18 and 19 show 
gns within the forcing region. The combination of the 
n. At the plane of k = 3, the phase angles of first- and 
re, amplitudes of the two perturbations have different 
urbations increases the total amplitude in forcing region. 
the pressure perturbation. Outside of the forcing region, 

plitudes of perturbation at the planes of k = 1 and k =3 
wn in Fig. 19. Figures 18 and 19 also show that the 

 same order.  
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 Figures 20, 21, and 22 show the perturbation contours of stream-wise, wall-normal, and span-wise velocities in a 
plane located 2 mm downstream of the roughness element, 2ex x− = mm. It is noticed that there are no velocity 
perturbations above the Mach lines generated by roughness element. In Fig. 20, the stream-wise velocity 
perturbation is negative near the wall, while it is positive near the Mach lines. Such a distribution of steam-wise 
velocity perturbation results in a positive span-wise vorticity. In Fig. 21, the wall-normal velocity perturbation is 
positive near the wall, while it is negative near the Mach lines. There exists a surface of zero wall-normal velocity 
perturbation. In Fig. 22, the span-wise velocity perturbation between surfaces of k = 1 and 3 is positive near the wall 
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Figure 20. Perturbation contours of stream-wise 
velocity in a plane located 2 mm downstream of the 

roughness element (case 1). 

and negative near the Mach lines, which results in a positiv
perturbation between surfaces of k = 3 and 4 results in a ne
steam-wise vortices are induced by the roughness element.  
 
 Figure 23 shows the perturbation contours of temperatu
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Figure 21. Perturbation contours of wall-normal 
velocity in a plane located 2 mm downstream of the 

roughness element (case 1). 
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Figure 22. Perturbation contours of span-wise 
velocity in a plane located 2 mm downstream of the 

roughness element (case 1). 
n

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.00015

0.0003

0.00045

X Y

Z

1.68085E-05
1.12797E-05
7.36699E-06
4.92176E-06
4.12725E-06
3.06975E-06

-5.99927E-08
-4.62815E-07
-6.0406E-07
-7.63884E-07
-1.3802E-06
-1.88852E-06
-2.1735E-06

T′/T∞

Figure 23. Perturbation contours of temperature in a 
plane located 2 mm downstream of the stationary 

roughness element (case 1). 
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element. There is no temperature perturbation above the Mach lines. It is found that the flow is heated near the wall 
and cooled near the Mach lines by introducing roughness element on the flat plate. This result is similar to the 
theoretical analysis of Tumin for a subsonic boundary layer over cooled wall.  

B. Receptivity to roughness element at adiabatic wall 
 
 When the wall changes from adiabatic to isothermal, similar results can be achieved by receptivity simulation. 
Downstream of the roughness element, pressure perturbations are excited inside the boundary layer. In addition, 
pressure perturbations have relatively large amplitudes near the Mach lines generated by the roughness element. In 
the plane of , pressure perturbation is negative in the region upstream of the roughness element, while it is 
positive downstream. Perturbations at k = 2 and 4 are small. The perturbations at k =1 and 3 have strong oscillations 
just downstream of the roughness element. Perturbation at k = 1 is higher than that at k = 3.  
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Figure 24. Perturbation contours of stream-wise 
velocity in a plane located 2 mm downstream of the 

roughness element (case 2). 
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Figure 25. Perturbation contours of wall-normal 
velocity in a plane located 2 mm downstream of the 

roughness element (case 2). 

Figures 24, 25, and 26 show the perturbation contours of stream-wise, wall-normal, and span-wise velocities in a 
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Figure 27. Perturbation contours of temperature in a 
plane located 2 mm downstream of the stationary 

roughness element (case 2). 
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Figure 26. Perturbation contours of span-wise 
velocity in a plane located 2 mm downstream of the 

roughness element (case 2). 



 

plane 2 mm downstream of the roughness element. Figure 27 shows the perturbation contours of temperature in the 
plane at the same location. In order to check the effect of wall temperature condition on receptivity, the same levels 
as those used in Figs. 20-23 are used. Figure 24 shows that the stream-wise velocity perturbation results in a positive 
span-wise vorticity. Figure 25 shows that the wall-normal velocity perturbation is positive near the wall, while it is 
negative near the Mach lines. There exits a surface of zero wall-normal velocity perturbation. Figure 26 shows that 
the span-wise velocity perturbation results in counter rotating steam-wise vortices. Figure 27 indicates that the flow 
is heated near the wall and cooled near the Mach lines by introducing roughness element on the flat plate. 
 
 Compared the numerical results of receptivity process for adiabatic and isothermal walls as shown in Figs. 23 

and 27, it is noticed that roughness element on 
adiabatic flat plate is more efficient in heating the flow 
near the wall. It can be qualitatively concluded that the 
velocity perturbations of case 2 is smaller than those of 
case 1 by comparing Figs. 24-26 with Figs. 20-22, 
which indicates that roughness element on adiabatic 
wall is also more efficient in generating stream-wise 
vortices. In order to show the stream-wise vortices and 
the effect of wall temperature condition more clearly, 
Fig. 28 compares velocity vectors in the plane 2 mm 
downstream of the roughness element for the two cases 
of adiabatic and isothermal flat plate. The figure shows 
that the stream-wise vorticity at the plane of k = 2 is 
positive while it is negative at the plane of k = 4. The 
result is consistent with the Figs. 22 and 26. It is also 
noticed that the velocity vectors for the case of 
isothermal flat plate bend to the flat plate much more 
than those for the case of adiabatic flat plate, which 
indicates that roughness element on adiabatic wall is 
more efficient in stream-wise vorticity generation.  
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k = 4

isothermal

adiabatic

X

Y

Z

k = 2

adiabatic
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Figure 28. Comparison of velocity vectors in the plane 

2 mm downstream of the roughness element for the 
two cases of adiabatic and isothermal flat plate. 

 
 
 
 

VI. Summary 
 
Receptivity processes of a Mach 5.92 boundary-layer flow on a flat plate, corresponding to Maslov et al.’s [2] 

leading-edge receptivity experiments, to small-scale stationary roughness elements are studied. Due to the fact that 
the base flow profiles are independent of the span-wise coordinate, the steady base flow is simulated by solving two-
dimensional compressible Navier-Stokes equations with a combination of a fifth-order shock-fitting finite difference 
method and a second-order TVD scheme. For receptivity simulations, small-scale roughness elements are introduced 
to the flat plate. The subsequent responses of the hypersonic boundary layer are simulated by solving three-
dimensional Navier-Stokes equations with the fifth-order shock-fitting finite difference method. Effect of thermal 
boundary conditions on the receptivity process is considered by comparing the results of receptivity simulations on 
adiabatic and isothermal flat plates. The preliminary numerical results show that pressure perturbations are excited 
inside the boundary layer downstream of the roughness element. In addition, pressure perturbations have relatively 
large amplitudes near the Mach lines generated by the roughness element. Pressure perturbations can be enhanced 
by concave roughness element. Counter rotating stream-wise vortices are generated by both cases. However, it is 
found that roughness element on adiabatic wall is more efficient in flow heating and stream-wise vorticity 
generation. Further studies are currently under way to investigate the receptivity of the hypersonic boundary layer to 
various wall perturbations, such as non-stationary roughness elements, periodic blowing-suction disturbances.  
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