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Abstract

In this paper, both the steady base flow and un-
steady forcing flows of a Mach 5.92 boundary layer on
a flat plate, corresponding to Maslov et al.’s!! leading-
edge receptivity experiments, is studied. The objective
of this study is to numerically investigate the steady
base flow and the receptivity of the hypersonic bound-
ary layer, and to evaluate the accuracy of the numer-
ical simulation by comparing the results of numerical
simulations and experiments. The steady base flow is
simulated by solving the two-dimensional Navier-Stokes
equations with a combination of a fifth-order shock-
fitting method and a second-order TVD method. The
numerical solution to the steady base flow is compared
with that of the experiment. The good agreement be-
tween the two sets of steady base flows indicates that
the numerical simulation of the fifth-order shock-fitting
method is accurate for the hypersonic low simulation.
According to the properties of the electric pulse gen-
erator used in Maslov et al.’s experiments, a model of
forcing disturbances is proposed. For unsteady simula-
tions, disturbances of six different cases are introduced
to the steady base flow by a forcing slot located on the
flat plate. The subsequent responses of the hypersonic
boundary layer are simulated by the fifth-order shock-
fitting method. The numerical results show that the
hypersonic boundary-layer flow is much more sensitive
to blowing-suction disturbances than to wall oscillations
and energy perturbations. The pressure perturbations
of wall blowing-suction is higher than that of wall os-
cillation. In turn, the pressure perturbations of wall
oscillation is higher than that of energy perturbations.
The amplitude of the pressure perturbation to energy
disturbances is proportional to the energy introduced
to the steady base flow.

Introduction

The performance and control of supersonic and
hypersonic vehicles are significantly affected by the
laminar-turbulent transition of the boundary-layer flows

*Graduate Student Researcher,Mechanical and Aerospace En-
gineering Department, Member ATAA

tProfessor, Mechanical and Aerospace Engineering Depart-
ment,Associate Fellow ATAA.

over the vehicle surfaces, due to the fact that a turbu-
lent flow generates much higher shear force and heat
flux on the wall than a laminar flow. Therefore, the
accurate prediction of the transition location is of criti-
cal importance for the drag evaluation and aerothermal
design of high-speed vehicles.

During the past decades, boundary-layer transitions
have been extensively studied, and different methods
are proposed to predict the transition location. Progress
made in transition prediction methodology was recently
reviewed by Malik?. In extremely low-disturbance en-
vironments, the most widely used transition prediction
method is the eV method, which is a semi-empirical
method based on the linear stability theory (LST). In
e method, the boundary-layer transition is assumed
to occur when the total amplification of the most un-
stable normal mode exceeds some empirical factor e?.
The total amplification is defined as the ratio of am-
plitudes at the transition point and the lower neutral
point. For supersonic and hypersonic boundary lay-
ers, the most unstable mode is generally mode S. The
e transition prediction method works well for flows in
a relatively quiet environment, where the transition is
caused by the linear growth of the most unstable mode
instead of by-pass transition. The success of the eV
method depends on the condition that the growth rates
of the most unstable mode can be accurately predicted
by LST. The correlation of series of experimental mea-
surements of transition locations over plates, wings, and
wedges shows that the typical value of N is between 8
and 11. Despite its widely application, the e method
has a drawback, because only the linear growth of the
most unstable mode is taken into account. The effects
of the experimental environment and model geometry
on the excitation of the unstable modes are not consid-
ered.

In an environment of small initial disturbances, the
transition of the boundary-layer flow over a smooth sur-
face from laminar to turbulent generally consists of the
following three stages:

e Stage 1: Receptivity process during which small en-
vironmental disturbances enter the boundary layer
and excite unstable modes;

e Stage 2: Linear development or growth of
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boundary-layer unstable modes which can be ob-
tained by solving the eigen-problem of the homo-
geneous linearized stability equations;

e Stage 3: Boundary-layer transition from laminar
to turbulent caused by three-dimensional and non-
linear effects occurring in the form of secondary
instabilities when the unstable modes reach certain
amplitudes.

According to the three-stage transition mechanism,
the study of receptivity process is important, because
it provides initial conditions of amplitude, frequency,
and phase angle for boundary-layer normal modesl.
The receptivity process of supersonic and hypersonic
boundary-layer flows is more complex than that of sub-
sonic boundary-layer flows due to the effects of shock
wave, non-parallel flow, and high temperature, etc.
In 1975, Mack!® used the compressible linear stabil-
ity theory to calculate the amplitude ratio of constant-
frequency disturbances for insulated and cooled-wall flat
plate boundary layers between Mach number 1.3 and
5.8. The amplitude ratio as a function of Reynolds
number was used to examine the consequence of us-
ing a fixed disturbance amplitude of the most unstable
frequency as a transition criterion. It was found that
the transition Reynolds number with cooling obtained
in his calculation increases much faster than that ob-
served experimentally. The results proved that the sta-
bility theory alone is inadequate to determine what will
happen to the particular disturbances in a given flow
situation, and it is necessary to consider the properties
of the external disturbances responsible for the tran-
sition. Fedorov and Khokhlov®! studied the leading-
edge receptivity of supersonic boundary-layer flows to
free-stream acoustic waves by an asymptotic method.
It was shown that the acoustic waves synchronize with
the normal modes of supersonic boundary layers and in-
duce the normal modes near the leading edge. In their
later study[6], two receptivity mechanisms to acoustic
waves at the leading edge, diffraction and diffusion, are
proposed.

Demetriades!” carried out an experimental study of
the stability of a laminar hypersonic boundary layer
in later 1950s. The stream-wise variations of natural
and artificial disturbances were measured by a hot-wire
anemometer. The artificial disturbances were generated
by mechanical devices of the siren type. It was found for
both natural and artificial disturbances that the small
fluctuations increase for certain ranges of Reynolds
number and frequency. Laufer and Vrebalovich® inves-
tigated the self-excited oscillations in a supersonic lam-
inar boundary layer over an insulated flat plate. It was
shown empirically that the stability limits expressed in
terms of the boundary-layer-thickness Reynolds number
are independent of the Mach number. It only depends
on oscillation frequencies. The results also showed that
the compressible boundary layer is more stable than

2

the incompressible one. Kendall”! experimentally stud-
ied the origin and growth of natural fluctuations in zero
pressure-gradient boundary layers of several Mach num-
bers between 1.6 and 8.5. Substantial flow fluctuations
were observed within the laminar boundary layer up-
stream of locations where instability amplification was
expected to be important. These fluctuations were
found to be correlated with the sound field for higher
supersonic speeds. The growth rates of these fluctu-
ations in the Reynolds number range upstream of the
non-linearity region are in a reasonable agreement with
the stability theories of Mack. In these experiments,
the disturbances were not well controled. Therefore,
the results could hardly be uniquely interpreted, and
they could hardly be compared with theoretical results.
Kosinov and Maslov!® induced artificial disturbances
of adjustable amplitude by an electric discharge in a
supersonic boundary layer. The Fourier components
of the wave packet were determined. The experimental
data were compared with the results of LST in a parallel
flow approximation. It was found that the artificial dis-
turbances result in intensity increase of the boundary-
layer pulsations. Maslov and Seminovl'! studied the
receptivity of a supersonic boundary layer to artificial
acoustic waves by utilizing two parallel flat plates as
shown in Fig. 1. The acoustic waves generated by an
electric discharge system on the lower plate radiated
into the external flow and penetrated into the boundary
layer of the upper plate as free-stream acoustic distur-
bances. It was found that the external acoustic waves
are converted into boundary-layer oscillations most ef-
ficiently at the leading edge, in the neighborhood of the
acoustic branch of the neutral curve, and in the vicin-
ity of the lower branch of the neutral curve. Recently,
a similar experiment was carried out for a Mach 5.92
flow by Maslov et al. to study the leading-edge recep-
tivity of the hypersonic boundary layer. It was found
that Tollmien-Schlichting waves are generated by the
acoustic waves impinging on the leading edge. They
also found that the receptivity coefficients depend on
the wave inclination angles.

With the development of advanced computers and
numerical techniques, numerical simulation of the re-
ceptivity process by directly solving full Navier-Stokes
equations has become feasible. Zhongm] studied the
acoustic receptivity of a hypersonic flow over a parabola
by solving full Navier-Stokes equations. It was con-
cluded that the generations of boundary-layer normal
modes are mainly due to the interaction of the bound-
ary layer with the transmitted acoustic waves instead of
entropy and vorticity waves. In a series of papers, Ma
and Zhong[lg’ 14, 15] studied the receptivity mechanisms
of a supersonic boundary layer to free-stream distur-
bances by a combination of numerical simulation and
linear stability theory. It was found that, in addition to
the conventional first and second Mack modes, there ex-
ist a family of stable modes in the supersonic boundary
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layer which play an important role in the excitation of
unstable Mack modes. Egorov et al.[1o] developed a nu-
merical algorithm and applied it to the numerical sim-
ulation of unsteady two-dimensional flow fields relevant
to transition at supersonic and hypersonic speeds. For
small forcing amplitudes, the second-mode growth rates
predicted by numerical simulation agree well with those
resulted from LST including non-parallel effects. The
results of their numerical simulation predict a non-linear
saturation of fundamental harmonic and rapid growth
of higher harmonics. Wang and Zhong!*™ ' studied the
receptivity of a Mach 8 flow over a sharp wedge with
a half angle of 5.3° to wall blowing-suction by numeri-
cal simulation and by LST. The effects of frequency and
location of the blowing-suction actuator on the receptiv-
ity process are investigated by considering seven cases of
different blowing-suction locations with 15 frequencies
for each case. The numerical results show that mode
S is the dominant boundary-layer normal mode excited
by wall blowing-suction disturbances. The frequency of
the blowing-suction actuator has a significant effect on
the receptivity process mainly due to the frequency de-
pendence of the synchronization point of mode F and
mode S. The numerical results also show that mode S
is strongly excited only when the blowing-suction actu-
ator is located upstream of the synchronization point.
When the blowing-suction actuator is downstream of
the synchronization point, there is very little excitation
of mode S, despite the fact that the blowing-suction
actuator is still located within the unstable region of
mode S. Theoretical analysis and comparisons with nu-
merical simulations are reported by Tumin, Wang, and
Zhong[lg’ 201 The perturbation flow field downstream of
the blowing-suction actuator is decomposed into normal
modes with the help of the biorthogonal eigenfunction
system. Filtered-out amplitudes of two discrete normal
modes of interest agree well with the linear receptivity
problem solution.

The objective of this study is to numerically investi-
gate the steady base flow and the receptivity of the hy-
personic boundary layer, and to evaluate the accuracy
of the numerical simulation by comparing the results of
numerical simulations and experiments. Such kind of
comparison and evaluation is of great importance be-
cause numerical simulation has become a most power-
ful approach in stability and transition studies of super-
sonic and hypersonic boundary-layer flows. The steady
base flow is simulated by solving the two-dimensional
Navier-Stokes equations with a combination of a fifth-
order shock-fitting method and a second-order TVD
method. According to the properties of the electric
pulse generator used in Maslov et al.’s experiments, a
model of forcing disturbances is proposed. For unsteady
simulations, disturbances of six different cases are intro-
duced to the steady base flow by a forcing slot located
on the flat plate, corresponding to the location of the
electric pulse generator in experiments. The subsequent
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responses of the hypersonic boundary layer are simu-
lated by the fifth-order shock-fitting method.

Governing equations and numerical methods

In the current numerical simulations, a Mach 5.92
flow over two parallel flat plates as shown in Fig. 2
is considered. The Mach 5.92 flow is assumed to be
thermally and calorically perfect. The governing equa-
tions for the simulation are the two-dimensional Navier-
Stokes equations in the conservative form, i.e.,

ou* 9

ot " ort
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where the superscript “x” represents the dimensional
variables. U* is a vector containing the conservative
variables of mass, momentum and energy. Fl*l and F2
are inviscid flux vectors, while Fh; and sz are viscous
flux vectors. Flux vectors can be expressed as
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with j,n € {1,2}. With the perfect gas assumption,
pressure and energy are given by

P =pRTT (4)

=p T + ()
where ¢, is the specific heat at constant volume. For
compressible Newtonian flow, the viscous stress tensor
can be writen as:

5 (“1 + uj )

L Lou o 2 ou

for i,7,n € {1,2}. In the simulation, the viscosity co-
efficient, p*, and the heat conductivity coefficient, £*,
are calculated using the Sutherland’s law together with
a constant Prandtl number, Pr.

T s T + 17

W) = () P (7)
k%z*>::ﬁi%;?55 (8)

where p* = 1.7894 x 1075 N —s/m’, T = 288.0 K,
Ty =110.33 K. ¢, is the specific heat at constant pres-
sure. In this paper, the dimensional flow variables are
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non-dimensionalized by the corresponding free-stream
parameters, i.e., density p*, temperature T*, velocities
uj and u3, and pressure p* are non-dimensionalized by
pie, T, uly, and pioui2, respectively.

The high-order shock-fitting method of Zhongm’ 22]
is used to solve the two-dimensional Navier-Stokes equa-
tions in a domain bounded by the bow shock and the
flat plate. The bow shock is treated as a boundary
of the computational domain, which makes it possible
for the governing equations to be spatially discretized
by high-order finite difference methods. A fifth-order
upwind scheme is used to discretize the inviscid flux
derivatives. Meanwhile, a sixth-order central scheme
is used to discretize the viscous flux derivatives. The
Rankine-Hugoniot relation across the shock and a char-
acteristic compatibility relation from behind the shock
are combined to solve the flow variables behind the
shock. By using the shock-fitting method, the inter-
action between the bow shock and forcing disturbances
is solved as a part of solutions with the position and
velocity of the shock front being taken as independent
flow variables. A three-stage semi-implicit Runge Kutta
method of Zhong et al.?® 24 ig used for temporal in-
tegration. In the leading edge region, there exists a
singular point at the tip of the plate, which introduces
numerical instability when the fifth-order shock-fitting
method is used to simulate the flow. Therefore, the
computational domain for the shock-fitting simulation
starts from a very short distance downstream of the
leading edge. A second-order TVD code of Zhong and
Lee®® is used to simulate the steady base flow in a
small region including the leading edge to supply in-
let conditions for the shock-fitting simulation. For un-
steady simulation, forcing disturbances are introduced
in a downstream region where the shock-fitting method
is used.

Flow conditions and forcing model

The free-stream flow conditions for currently studied
flow are the same as those used by Maslov et al. in
their experiments, i.e.,

My =5.92, T = 48.69K
pL. = T42.76Pa, Pr=0.72,
f*=50kHz, F = 3.0 x105,

Re:, = pioul,/ps, =13 x 105/m

The dimensional coordinate x* can be easily con-
verted to the dimensionless local Reynolds number by

Re, = Re}, =~ (9)
where Re?_ is the unit Reynolds number defined as
Ret = poctise/ Moo (10)

In linear stability studies of boundary-layer flows, the
Reynolds number based on the local length scale of
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boundary-layer thickness, L*, is generally used.
are expressed as

They

_ Pt LT
Mo

Poolhoo

Hence, the relation between R and local Reynolds num-
ber Re, is given by

R =+/Rey

For the simulation of steady base flow, the wall is adi-
abatic, and the physical boundary condition of velocity
on the flat plate is the non-slip condition. When forcing
disturbances of wall oscillation and wall blowing-suction
are enforced on the steady base flow, the isothermal
temperature condition, which is a standard boundary
condition for theoretical and numerical studies of high
frequency disturbances, is applied on the wall. Mean-
while, non-slip condition is applied on the wall except
the forcing region where stream-wise or wall-normal ve-
locity disturbances are introduced. On the other hand,
when forcing disturbances of energy perturbation are
enforced, the isothermal temperature condition is ap-
plied on the wall except the forcing region where tem-
perature disturbances are introduced. Meanwhile, non-
slip condition is applied on the wall. Inlet conditions
are specified, while high-order extrapolation is used for
outlet conditions because the flow is hypersonic at the
exit boundary except a small region near the flat plate.

In Maslov et al.’s!"! experiments, leading-edge recep-
tivity of the Mach 5.92 flow on a flat plate to both
two-dimensional and three-dimensional disturbances is
investigated. For numerical simulation in this paper,
we study the two-dimensional case, which is schemat-
ically shown in Fig. 2. The horizontal and vertical
distances between the leading edges of the source plate
and the test plate are 99 mm and 18.8 mm, respec-
tively. An electric pulse generator with the center lo-
cated at z* = 35 mm is used to introduce disturbances
to the steady base flow. It generates high-voltage elec-
tric pulses with duration of 2us and a frequency of 50
kHz. Experimental results show that the disturbances
are introduced by a local glow discharge through an
aperture on the source plate when the voltages on the
electrodes are low (600 V). On the other hand, when the
voltages on the electrodes are increased to 700 V, the
size of the glow discharge increases and a flat stream-
wise extended oval is also observed. Maslov et al. an-
alyzed the properties of the forcing disturbances and
concluded that the glow discharge introduces distur-
bances through a blowing-suction mechanism, while the
flat oval on the plate introduces thermal energy.

According to the properties of the electric pulse gen-
erator used in Maslov et al.’s experiments, a distur-
bance model is proposed in this paper, which consists

R (11)

(12)

(13)
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of stream-wise velocity, wall-normal mass flux, and tem-
perature perturbations. The model is mathematically
expressed as

u* QuelF(ll)u:
()" | = | QueaGla)(pu)% | SE)  (14)
T*/ QT63H<Z3)T:o

where u}) = (du*/dy*),~—o is the derivative of stream-
wise velocity on the plate of the unperturbed steady
base flow. (pu)i, and T7 are the mass flux and tem-
perature in free-stream, respectively. @Q.,Q.,, and Qr
are three constants with the value of either 1 or 0. The
group of (Qu,Q, Q) represents a case with specific
forcing disturbances. For example, (1,0, 0) is the case of
wall oscillation, (0, 1, 0) is the case of blowing-suction on
the plate, whereas (0,0,1) is the case of energy pertur-
bation on the wall. €1, €3, and €3 are small parameters
representing the dimensionless amplitudes of perturba-
tions. F(l1),G(l2), and H(l3) are the profile functions
of perturbations, where the variables 1,2, and I3 are
dimensionless coordinates defined within the forcing re-
gion (zF < z* < z}). z} and 2% are the coordinates of
the leading and trailing edges of the forcing region. In
Maslov et al’s experiments, z; and z} are equal to 33
mm and 37 mm, respectively. S(¢*) is a time-periodic
step function defined as

1.0 if mod(t*,20us) < 2us

0.0 if mod(t*,20us) > 2us (15)

S(t*) = {
where mod is a residual function. The value 20us is
the period of the forcing disturbance at a frequency of
50 kHz. Figure 3 plots the time-periodic step function
S(t*) versus time t* for five periods. It shows that the
forcing disturbances are introduced to the steady base
flow only within a short time (2us) in a period (20us),
because the electric pulse used in the experiments has
a duration of 2us.

The profile function of the stream-wise velocity per-
turbation, F(l1), can be expressed as

F(ly) = —20.2505 + 35.4375[% — 15.187512

F(l1) = F(l1)/2.45688 (16)
where the variable [; is defined as
2 x 0.620287 x (z* — xf) /(2 — xF)
I = if z* < 35mm (17)

2 x 0.620287 x (z} — z*)/(x% — xF)
if 2* > 35mm

In Eq. (16), the constant (2.45688) is the value of F(I;)
at [; = 0.620287, which is used to normalize the profile
function. Figure 4 shows the profile function F'(l;) and
the variable [; within the forcing region. It is clearly
shown that both F'(I1) and l; are symmetric within the
region 33 mm < x* < 37 mm. The negative values
of F(l1) indicate that the stream-wise velocity pertur-
bation is towards the leading edge of the flat plate. It
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also shows that the specific 5th-order-polynomial profile
function makes the perturbation at the edges (z} and
x}) smooth.

The profile function of the blowing-suction perturba-
tion, G(l2), is the same as what we have used in the
receptivity study of a Mach 8 flow over a sharp wedge
to wall blowing—suctionm’ 18], ie.,

20.2515 — 35.437514 + 15.187513
if <1

Gll2) = —20.25(2 — 12)° 4 35.4375(2 — [2)*  (18)
—15.1875(2 = 12)? if Ix>1
G(ly) = G(l3)/2.45688
with the variable [l being expressed as
=2 ) (19)
TE—

Again, the constant (2.45688) in Eq. (18) is the value
of the profile function at I = 0.620287, which is used
to normalize G(l3). Figure 5 shows the profile function
G(l2) and the variable I within the forcing region. It
is shown that G(l2) is anti-symmetric within the region
33 mm < z* < 37 mm, while [/; is linear. The specific
5th-order-polynomial profile function makes the pertur-
bation at the edges (z} and z}) smooth. Due to the
anti-symmetric property of the profile function, the net
mass flux introduced to the boundary layer is zero at
any instant.

In the current study, four different profile functions
of temperature perturbation on the wall are tested to
achieve a more reasonable model. They are defined
as Hy(l3), Ho(l3), H3(l3), and Hy4(l3), respectively. For
Hi(l3), the profile of temperature perturbation is the
opposite of the stream-wise velocity perturbation given
by Eq. (16), i.e., the temperature perturbation is posi-
tive within the forcing region.

Hy(l3) = 20.2515 — 35.437514 + 15.187513

Hi(l3) = Hy(l3)/2.45688 (20)

The constant (2.45688) is the value of H;(l3) at I3 =
0.620287, which is used to normalize the profile func-
tion. The variable [3 is defined exactly the same as I3
in Eq. (17).

For Hy(l3), the temperature perturbation is assumed
to be uniformly distributed within the forcing region.

Therefore, the profile function is expressed as
Hy(l3) =1.0 (21)

where [3 can be an arbitrarily defined dimensionless co-
ordinate. As an example, it can be defined as

* =]
I3 = L 22
3 Th— T (22)
Hj(l3) is mathematically expressed as
Hs(l3) = (1.0 — cos(wl3))/2 (23)
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In this case, [3 is defined as

o

The fourth profile function of temperature perturba-

tion, Hy(l3), is expressed as

erf(2.6/v2) — erf(ls/v?2)
erf(2.6/V2)

where erf is the error function. The dimensionless co-
ordinate (3 is defined as

2x (x* —a)/(xr —xF) if 2* < 35mm

2x (af—a*)/(zr —xf) if 2* > 35mm

(24)

Hy(ls) = (25)

2x26x (z*—af)/(xr —xF)
if 2* < 35mm
2x26x (zf—a)/(xt —xF)

if z* > 35mm

l3 =2.6—

In Egs. (25) and (23), the two constants, er f(2.6//2))
and 2, are used to normalize the profile functions. Fig-
ure 6 compares the profile functions of the four different
temperature perturbations. The figure shows that the
profile functions are all normalized with the maximum
values of 1. However, the integral energy perturbation
introduced to the steady base flow has the maximum for
Hj(l3) and the minimum for Hy(l3), because it is pro-
portional to the area surrounded by the profile function
and the z* axis.

Steady Base Flow

In Maslov et al.’s!! experiments, leading-edge recep-
tivity of the Mach 5.92 flow on a flat plate to both two-
dimensional and three-dimensional disturbances was in-
vestigated. For two-dimensional disturbances, they
firstly investigated the steady base flow over the test
plate by removing the source plate. Then the leading-
edge receptivity of the test plate was studied by intro-
ducing disturbances from the electric pulse generator on
the source plate.

Similar to the experiment procedure, the steady base
flow over the test plate is firstly simulated by the com-
bination of a fifth-order shock-fitting method and a
second-order TVD method. In the leading edge region,
there exists a singular point at the tip of the plate,
which introduces numerical instability when the fifth-
order shock-fitting method is used to simulate the flow.
Therefore, the computational domain for the fifth-order
shock-fitting method starts at z* = 0.0025 m and ends
at * = 0.879 m, corresponding to R = 180.28 and
R = 3380.38, respectively. In actual simulations, the
computational domain is divided into 19 zones with a
total of 3746 grid points in stream-wise direction. The
number of grid points in wall-normal direction is 121 be-
fore z* = 0.309 m and 176 after that location. 41 points
are used in the buffering region between two neighboring
zones, which has been proved to be sufficient to make
the solution accurate and smooth within the whole do-
main. An exponential stretching function is used in the
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wall-normal direction to cluster more points inside the
boundary layer. On the other hand, the grid points
are uniformly distributed in stream-wise direction. The
spatial convergency of the results based on this grid
structure has been evaluated by grid refinement stud-
ies to ensure the grid independence of the fifth-order
shock-fitting simulations.

For the first zone, the inlet conditions are ob-
tained from the results of the second-order TVD shock-
capturing method which is used to simulate the steady
base flow in a small region including the leading edge.
For other zones, inlet conditions are interpolated from
the results of the previous zone. The domain for the
second-order TVD method starts at z* = —0.0005 m
and ends at z* = 0.0035 m. Three sets of grid struc-
tures are used to check the grid independence of the
numerical results. Figure 7 compares the density con-
tours of numerical simulations based on the three sets
of grid structures. It shows that the dashdot contours
agree well with the dotted contours, while they have
discrepancies with the solid contours. This figure in-
dicates that the grid structure 201 x 176 is enough to
ensure the grid independence. However, the grid struc-
ture 161 x 101 is too coarse to achieve spatial converged
numerical results.

Figures 8 and 9 show the density and pressure con-
tours of the steady base flow over the test plate ob-
tained from the second-order TVD method and the
fifth-order shock-fitting method, respectively. The flow
field including the leading edge is simulated by the TVD
method, while the flow field after * = 0.0025 m is
simulated by the shock-fitting method. These figures
show that density and pressure contours have a good
agreement near the leading edge of the buffering region,
which indicates that the TVD solutions are accurate
enough to be used as inlet conditions for the fifth-order
shock-fitting simulation in the first zone. The small
discrepancies of the contours near the bow shock are
due to viscous effect. Because of the viscosity, the bow
shock has a finite thickness for TVD simulation, while
it is infinitely thin for the shock-fitting simulation. In
Fig. 9, the discrepancies of pressure contours within the
boundary layer are mainly caused by the application of
high-order extrapolations to outlet boundary, because
the local flow near the plate is subsonic. The combina-
tion of the shock-fitting method and the TVD method
has also been validated in cases of supersonic and hy-
personic steady base flows by Ma & Zhong[26] and Wang
& Zhong[lsl.

Figure 10 shows the pressure contours of the steady
base flow over the test plate simulated by the fifth-order
shock-fitting method. The upper boundary of the flow
field represents the bow shock induced by the displace-
ment thickness of the boundary layer. A part of the
pressure field from z* = 0.03 m to z* = 0.08 m is
amplified to show clearly the pressure contour within
the boundary layer. It is noticed that pressure is al-
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most a constant across the boundary layer and along
the Mach lines, which is consistent with the theories of
the boundary-layer flow and supersonic aerodynamics.
At a fixed location (constant z*), the pressure behind
the shock is higher than that on the plate due to the
existence of the bow shock.

Figure 11 shows the pressure distributions on the flat
plate and behind the bow shock versus x*. Near the
leading edge, there exist great pressure gradients, which
is induced by the interaction between the inviscid outer
flow and the viscous boundary layer. From upstream to
downstream, the inviscid/viscous interaction becomes
weaker with the bow shock moves away from the bound-
ary layer. As a result, the pressure approaches a con-
stant value further downstream with the pressure gradi-
ent decreasing. Again, Fig. 11 shows that the pressure
behind the shock is higher than that on the plate at a
fixed location (constant z*). Figure 12 shows the bow
shock position and Mach number distribution behind
the shock. The dramatic increase of Mach number near
the leading edge is also due to the interaction between
the inviscid outer flow and the viscous boundary layer.
After * > 33 mm, the intensity of the inviscid/viscous
interaction decreases quickly with the blow shock mov-
ing away from the boundary layer. The Mach number
behind the shock approaches a constant downstream.
The increase of Mach number indicates that the bow
shock becomes weaker from upstream to downstream.

In order to evaluate the accuracy of numerical simu-
lation, the steady base flow simulated by the fifth-order
shock-fitting method is compared with the experimental
results. According to Maslov et al.’s experiments, the
effect of the inviscid /viscous interaction is strong within
the region 0.2 mm < z* < 33 mm. Figures 11 and 12
show that wall pressure and Mach number behind the
shock have large gradients upstream of the location of
z* = 50 mm, which is consistent with the experiments.

Figures 13 and 14 compare the normalized Mach
number M/M,, and dimensionless stream-wise ve-
locity w*/u’, versus Blasius coordinates (n
y*/(x* /Re’)'/?) at three different locations (z* = 96
mm, 121 mm, and 138 mm). The solid lines repre-
sent the distributions of M/Ms and u*/uj, obtained
by solving the compressible boundary-layer equations.
Due to the fact that the solution of boundary-layer
equations is self-similar, the distributions of M /M, and
u*/u’, at different locations are exactly the same for the
boundary-layer solution. The symbols represent corre-
sponding experimental results of Maslov et al., while
the other three lines are corresponding numerical re-
sults simulated by the shock-fitting method. The good
agreement between the simulation results indicate that
a gradientless flow with a self-similar boundary layer
is obtained over the test plate, which is evaluated in
Maslov et al.’s paper by comparing the experimental
results. The gradientless flow is clearly shown in Figs.
11 and 12. Figures 13 and 14 show that the numeri-
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cal results agree well with the experimental results and
the boundary-layer solution near the plate. However, in
the region of n > 5, the numerical results have a better
agreement with the experimental results. The differ-
ence between the numerical results and the boundary-
layer solution is mainly caused by the existence of the
bow shock, because the effect of the shock is neglected
in the calculation of the compressible boundary-layer
equations. Therefore, the effect of the bow shock needs
to be considered for supersonic and hypersonic flows.

Figure 15 shows the distributions of dimensionless
stream-wise velocity at the three different locations. It
shows that the thickness of the boundary layer increases
with the location shifting downstream. At z* = 96 mm,
121 mm, and 138 mm, the thicknesses of the boundary
layer are approximately 18.4 mm, 20.4 mm, and 22 mm,
which agrees well with Maslov et al.’s experimental re-
sults of 18 mm, 20 mm, and 22 mm, respectively. The
analysis of Figs. 13, 14, and 15 indicate that the fifth-
order shock-fitting method is accurate to simulate the
hypersonic flow considered in the current study.

In the stability study of the hypersonic flow, the char-
acteristics of the steady base flow is of great importance.
For example, the profiles of stream-wise velocity and
temperature, and their corresponding first- and second-
order derivatives are important to the boundary-layer
normal modes obtained by solving the boundary-layer
stability equations. In the current study, the numerical
steady base flow at three different locations (z* = 96
mm, 121 mm, and 138 mm) are compared. Figure 16
shows the distributions of the dimensionless tempera-
ture versus Blasius coordinates. The first- and second-
order derivatives of stream-wise velocity and tempera-
ture are shown in Figs. 17 and 18, respectively. These
figures show that the derivatives of u* /u*,, and T*/T*
have small oscillations at the edge of the boundary layer,
which may be caused by the interaction between the in-
viscid outer flow and the viscous boundary layer. It
is noticed that the temperature distribution and the
derivatives of u*/u*, and T%/T™_ at the three differ-
ent locations have a good agreement. Again, such an
agreement indicates that a gradientless flow with a self-
similar boundary layer is obtained over the test plate.

Unsteady simulation results

In order to evaluate the forcing disturbance model of
Eq. (14) and further evaluate the accuracy of the nu-
merical simulation, forcing disturbances are introduced
to the steady base flow through a slot on the plate
with the leading and trailing edges at ] = 33 mm and
x} = 37 mm. Specifically, six cases of different forcings
are considered. In each case, disturbances at the fre-
quency of 50 kHz is introduced. The values of €1, €3 and
€3 in Eq. (14) are assigned to be 1.0 x 1077, 1.0 x 1075,
and 1.0 x 1073, respectively. The subsequent responses
of the hypersonic boundary layer are simulated by the
fiftth-order shock-fitting method. Details of the forcing
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Table 1: Types and profile functions of the forcing dis-
turbances for the six cases considered in the current
study

n | (Qu,Quv,Qr) Profile

1 (1,0,0) F(l1) as in Eq. (16)
2 0,1,0) G(l2) as in Eq. (18)
3 (0, 0, 1) Hl(l3) as in Eq (20)
4 (0,0,1) Hs(l3) as in Eq. (21)
5 (0,0,1) Hs(ls) as in BEq. (23)
6 (0,0,1) Hy(ls) as in BEq. (25)

Table 2: Dimensional and dimensionless amplitudes of
the forcing disturbances for the six cases considered in
the current study

n Amplitude Dimensionless amplitude
1 8.885 x 10~2m/s 1.073 x 1071

2 | 4.401 x 10~* kg/m?s 1.0 x 107°

3 4.869 x 102 K 1.0 x 1073

4 4.869 x 102 K 1.0 x 1073

5 4.869 x 102 K 1.0 x 1073

6 4.869 x 102 K 1.0 x 1073

disturbances for the six cases are listed in Tables 1 and
2.

Table 1 shows that case 1 is the case of wall oscilla-
tion, case 2 is the case of blowing-suction on the plate,
whereas cases 3 ~ 6 are the cases of energy perturba-
tions on the wall. In Table 2, the dimensional ampli-
tudes of the six different forcing disturbances are ob-
tained from Eq. 14. They are non-dimensionalized by
the corresponding free-stream variables: u}, = 827.974
m/s, (pu)s, = 44.01 kg/m’s, and T% = 48.69 K, re-
spectively. The amplitudes of the temperature distur-
bances of cases 3 ~ 6 are the same, because the profile
functions Hj (I3), Ha(l3), H3(l3), and Hy(l3) are all nor-
malized with the maximum values of 1, which is shown
clearly in Fig. 6.

Figure 19 shows the contours of dimensionless in-
stantaneous pressure perturbations induced by different
forcing disturbances of the six cases considered in the
current paper. Specifically, Figs. 19(a) and 19(b) show
the results of wall oscillation and wall blowing-suction,
respectively. Figures 19(c) to 19(f) show the results of
energy perturbations with the four different profile func-
tions. It is noticed that the structures of the perturba-
tion fields in Figs. 19(c) to 19(f) are similar, while they
are different from those of Figs. 19(a) and 19(b) due
to the properties of different forcing disturbances. All
the figures show that the excited pressure perturbations
are divided into two branches downstream of the forc-
ing slot. One branch propagates along the Mach lines
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outside the boundary layer (acoustic waves), while the
other branch stays within the boundary layer which is
dominated by mode S. The wave structure in the bound-
ary layer is typical of mode S wave for the hypersonic
flow.

In order to check the amplitudes of the pressure per-
turbations, fast Fourier transformation (FFT) is applied
to the dimensionless instantaneous pressure perturba-
tions. In the Fourier domain, the freqency of 50 kHz
and its higher harmonics are considered. Specifically,
the frequencies can be expressed as

fn = 50NkHz (27)
where N € {1,15}. f; is the base frequency, while the
other fourteen frequencies are higher harmonics.

Figure 20 shows the amplitude distributions along
the plate of pressure perturbations at the frequency of
50 kHz and its higher harmonics induced by different
forcing disturbances of the six cases. Specifically, Figs.
20(a) and 20(b) show the numerical results of wall os-
cillation and wall blowing-suction, respectively. Figures
20(c) to 20(f) show the results of energy perturbations
with the four different profile functions. The numbers
of 1 to 7 in the figures represent the frequencies f; to
f7. It is clearly shown in all six figures that the pres-
sure perturbations of the frequencies (f%, N € {8,15})
are comparably weak. Downstream of the forcing re-
gion, the harmonic of the frequency f¢ = 250 kHz has
the maximum perturbation amplitude. The figures also
show that the pressure perturbations of wall blowing-
suction is higher than that of wall oscillation. In turn,
the pressure perturbations of wall oscillation is higher
than that of energy perturbations.

Figures 21 and 22 compare the normalized pressure
perturbation amplitudes of the cases 1, 2, and 3 at the
frequencies of f; = 50 kHz and fZ = 250 kHz, respec-
tively. (p/*/pi)ni is the normalized pressure perturba-
tion amplitude obtained by dividing the perturbation
amplitudes with the corresponding dimensionless am-
plitudes listed in Table 2. Again, these figures show
that the pressure perturbations of wall blowing-suction
is higher than that of wall oscillation. In turn, the pres-
sure perturbations of wall oscillation is higher than that
of energy perturbations. The boundary layer is much
more sensitive to blowing-suction disturbances than to
wall oscillation and enery perturbation. These results
are consistent with those of Fedorov and Khokhlov!?”.

Figures 23 and 24 compare the dimensionless pres-
sure perturbation amplitudes of the cases 3, 4, 5, and
6 at the frequencies of f; = 50 kHz and fZ = 250 kHz,
respectively. These figures show that the perturbation
amplitudes of case 4 are higher than those of the other
cases. The perturbation amplitudes of cases 3 and 5
are approximately the same, and they are higher than
those of case 6. Recall what have been discussed for
Fig. 6, the integral energy perturbation introduced to
the steady base flow has the maximum for case 4 and
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the minimum for case 6. It can be concluded that the
amplitude of the pressure perturbation to energy per-
turbation is proportional to the energy introduced to
the steady base flow.

Summary

The objective of this study is to numerically investi-
gate the steady base flow and the receptivity of the hy-
personic boundary layer, and to evaluate the accuracy of
the numerical simulation by comparing the results of nu-
merical simulations and experiments. The steady base
flow is simulated by solving the two-dimensional Navier-
Stokes equations with a combination of a fifth-order
shock-fitting method and a second-order TVD method.
According to the properties of the electric pulse gen-
erator used in Maslov et al.’s experiments, a model of
forcing disturbances is proposed. For unsteady simula-
tions, disturbances of six different cases are introduced
to the steady base flow by a forcing slot located on the
flat plate. The subsequent responses of the hypersonic
boundary layer are simulated by the fifth-order shock-
fitting method.

The main conclusions of the current study are:

e The numerical solution to the steady base flow is
compared with that of the experiment. The good
agreement between the two sets of steady base flows
indicates that the numerical simulation of the fifth-
order shock-fitting method is accurate for the hy-
personic flow simulation.

e The hypersonic boundary-layer flow is much more
sensitive to blowing-suction disturbances than to
wall oscillations and energy perturbations. The
pressure perturbations of wall blowing-suction is
higher than that of wall oscillation. In turn, the
pressure perturbations of wall oscillation is higher
than that of energy perturbations.

e The amplitude of the pressure perturbation to en-
ergy disturbances is proportional to the energy in-
troduced to the steady base flow.

The unsteady simulations in a large domain and
the leading-edge receptivity of the hypersonic bound-
ary layer will be further studied. And more cases of the
forcing disturbances will be used to test the disturbance
model proposed in the paper.
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Figure 20: Amplitude distributions along the plate of pressure perturbations at the frequency 50 kHz and its
harmonics induced by different forcing disturbances of the six cases considered: (a) case 1; (b) case 2; (c) case 3;
(d) case 4; (e) case 5; (f) case 6.
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Figure 21: Comparison of normalized pressure pertur-
bation amplitudes of the cases 1, 2, and 3 (f; = 50
kHz).
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Figure 22: Comparison of normalized pressure pertur-
bation amplitudes of the cases 1, 2, and 3 (fF = 250
kHz).
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Figure 23: Comparison of dimensionless pressure per-
turbation amplitudes of the cases 3, 4, 5, and 6 (f; = 50
kHz).
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Figure 24: Comparison of dimensionless pressure per-
turbation amplitudes of the cases 3, 4, 5, and 6 (fF =
250 kHz).
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