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ABSTRACT

In this paper, the receptivity of a Mach 8 flow over
a sharp wedge with a half-angle 5.3° to wall blowing-
suction disturbances is studied by numerical simula-
tion and linear stability theory (LST). The work is mo-
tivated by Fedorov and Khokhlov’s!) theoretical and
numerical analysis of the receptivity to wall distur-
bances of a hypersonic boundary layer over a flat plate.
The steady base flow is computed by solving the two-
dimensional Navier-Stokes equations with a combina-
tion of a fifth-order shock-fitting method and a second-
order TVD method. By using the shock-fitting method,
the interaction between the blowing-suction distur-
bances and the oblique shock induced by boundary-
layer displacement thickness is taken into account. The
characteristics of boundary-layer normal modes are also
studied by LST. For unsteady flow simulation, periodic
forcing disturbances are introduced to the steady base
flow by a blowing-suction actuator on the wedge surface.
Based on the results of numerical simulations and LST
analysis, the receptivity process of the Mach 8 flow over
the sharp wedge to wall blowing-suction disturbances is
studied in detail. Specifically, the effects of frequency,
location, and lengthscale of the blowing-suction actua-
tor on the receptivity are investigated. It is found that
mode S is the dominant boundary-layer normal mode
excited by wall blowing-suction disturbances. The nu-
merical results show that mode S is strongly excited
only when the blowing-suction actuator is located up-
stream of the corresponding synchronization point be-
tween mode F and mode S. On the other hand, when
the blowing-suction actuator is downstream of the cor-
responding synchronization point, there is a significant
decrease of the amplitude of the excited mode S, despite
the fact that the blowing-suction actuator is still lo-
cated in the unstable region of mode S. The results also
show that the frequency and lengthscale of the blowing-
suction actuator have a significant effect on receptiv-
ity of the hypersonic boundary layer to wall blowing-
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suction.

INTRODUCTION

The performance and control of high-speed space
transportation vehicles are significantly affected by the
laminar-turbulent transition of supersonic and hyper-
sonic boundary layers, because a turbulent boundary
layer generates much higher shear force and heat flux
on the surface of the vehicle. Therefore, the accurate
prediction of the transition location is critically impor-
tant for the drag evaluation and aerothermal design of
high-speed space transportation vehicles.

In an environment of small initial disturbances, the
path to transition over a smooth object generally con-
sists of the following three stages:

e Stage 1: The receptivity process (termed by
Morkovinm), during which small environmental
disturbances enter the boundary layer and excite

unstable modes;

e Stage 2: Linear development or growth of
boundary-layer unstable modes obtained as the
eigen-solutions of the homogeneous linearized sta-
bility equations;

e Stage 3: Breakdown to turbulence. After the
unstable modes reach certain amplitudes, three-
dimensional and non-linear interactions occur in
the form of secondary instabilities!®, which eventu-
ally leads the boundary layer transition from lam-
inar to turbulent.

For the three-stage transition mechanism, the study
of receptivity process is important because it provides
initial conditions of amplitude, frequency, and phase
angle for boundary-layer normal modes!®. For super-
sonic and hypersonic boundary layers, the receptivity
process is complex due to the effects of shock wave,
compressibility, etc. Theoretically, the governing equa-
tions for a receptivity problem are the full Navier-Stokes
equations. In 1975, Mack(® used a linear stability the-
ory which includes the response to incoming acoustic
waves. With the extended asymptotic method, Choud-
hari and Strett[® 7 investigated the receptivity to lo-
calized flow inhomogeneities in a Mach 4.5 boundary
layer without considering the effect of the shock wave.
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Fedorov and Khokhlov!® investigated the leading-edge
receptivity of supersonic boundary layers to free-stream
acoustic waves by an asymptotic method. It was shown
that the acoustic waves synchronized with the normal
modes of supersonic boundary layers near the leading
edge. In their later study[g}, two receptivity mechanisms
to acoustic waves at the leading edge, diffraction and
diffusion, were proposed. More recently, Fedorov and
Alexander!'”’ showed that strong excitations occurred
when external waves and wall induced disturbances in
resonance with the boundary-layer normal modes. Fe-
dorov and Khokhlov!! studied the receptivity of a hy-
personic boundary layer over a flat plate to wall distur-
bances using a combination of asymptotic method and
numerical simulation. They investigated the receptiv-
ity mechanisms to different wall disturbances, i.e., wall
vibrations, periodic blowing-suctions, and temperature
disturbances. It was found that a strong excitation oc-
curred in local regions where forcing disturbances were
resonant with boundary-layer normal modes. They also
found that hypersonic boundary layers were more sen-
sitive to blowing-suction disturbances than to wall vi-
brations and temperature disturbances.

For compressible flow, difficulties arise when the re-
ceptivity of supersonic and hypersonic boundary layers
is studied experimentally with the help of artificial dis-
turbances. The primary problem is the generation of ar-
tificial disturbances, because the lower density in super-
sonic and hypersonic flows makes it difficult to generate
high amplitude disturbances. Therefore, very few ex-
perimental studies were carried out to investigate the re-
ceptivity of supersonic and hypersonic boundary layers.
Kendall*! experimentally studied the receptivity of su-
personic and hypersonic boundary layers to acoustic
waves radiated from tunnel walls. The results showed
that boundary-layer perturbations grew monotonically
immediately downstream of the leading edge. Maslov
and Seminov'? studied the receptivity of a supersonic
boundary layer to artificial acoustic waves by utilizing
two parallel flat plates. The acoustic waves generated
by an electronic discharge system on the lower plate ra-
diated into the external flow and penetrated into the
boundary layer of the upper plate as free-stream acous-
tic disturbances. It was found that the external acoustic
waves were converted into boundary-layer oscillations
most efficiently at the leading edge, in the neighbor-
hood of the acoustic branch of the neutral curve, and in
the vicinity of lower branch of the neutral curve. By us-
ing the same experimental technique, Kosinov et al.l*?)
studied the leading edge receptivity to acoustic waves.
The upper plate was placed upside down so that the
leading edge appeared as a line acoustic source to the
test boundary layer above this plate. Recently, a similar
experiment was repeated at a Mach 5.92 flow by Maslov
et al.l'" to study the leading edge receptivity of the hy-
personic boundary layer. It was found that Tollmien-
Schlichting waves are generated by the acoustic waves
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impinging on the leading edge. They also found that the
receptivity coefficients depend on the wave inclination
angles.

With the development of powerful super-computers
and advanced numerical techniques, numerical simula-
tion of the receptivity by directly solving full Navier-
Stokes equations has become feasible. Numerical sim-
ulation is easy to control the artificial disturbances by
isolating particular disturbances to study the individ-
ual effect or by introducing two or more kinds of dis-
turbances to study their combined effects and interac-
tions. Malik et al.'” studied the receptivity of a hyper-
sonic boundary layer to different external disturbances
by solving compressible linearized Navier-Stokes equa-
tions. Zhong[w] studied the acoustic receptivity of a
hypersonic flow over a parabola by solving full Navier-
Stokes equations. It was concluded that the genera-
tions of boundary-layer normal modes are mainly due
to the interaction of the boundary layer with the trans-
mitted acoustic waves instead of entropy and vortic-
ity waves. In series of papers, Ma and Zhongm’ 18, 19]
studied receptivity mechanisms of a supersonic bound-
ary layer to freestream disturbances by a combination
of numerical simulation and linear stability theory. It
was found that, in addition to the conventional first
and second Mack mode, there exist a family of sta-
ble modes in the supersonic boundary layer which play
an important role in the excitation of unstable Mack
modes. For a Mach 10 oxygen flow, receptivity prob-
lems were studied in both perfect gas and thermochem-
ically non-equilibrium gas to consider the real gas effect
on the receptivity and stability by Mal?Y. Compared
with results of perfect gas, the unstable region for non-
equilibrium flow is longer and the peak amplitude is
higher, which meant that the real gas effect destabilizes
the boundary-layer modes. Egorov et al.2!) developed
a numerical algorithm and applied it to the numerical
simulation of unsteady two-dimensional flow fields rele-
vant to transition at supersonic and hypersonic speeds.
An implicit second-order finite-volume technique is used
to solve the compressible Navier-Stokes equations. For
small forcing amplitudes, the second-mode growth rates
predicted by numerical simulation agree well with the
growth rates resulted from LST including nonparallel
effects. Numerical simulation predicts a nonlinear sat-
uration of fundamental harmonic and rapid growth of
higher harmonics.

In addition to the receptivity of flat plates, a Mach
8 flow over a sharp wedge with half-angle 5.3° has also
been studied recently. By solving linearized compress-
ible Navier-Stokes equations, Malik et al.l"% investi-
gated the responses of the hypersonic boundary layer
to three different types of external forcing: a plane
free-stream acoustic wave, a narrow acoustic beam en-
forced on the oblique shock near the leading edge, and
a blowing-suction slot on the wedge surface. They con-
cluded that these three types of forcing eventually re-
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sulted in the same boundary-layer instability. However
the receptivity mechanism of the hypersonic boundary
layer to external disturbances was not studied in detail.
Ma and Zhongm}, and Mal?) studied the receptivity
mechanisms of the hypersonic boundary layer to vari-
ous freestream disturbances, i.e., fast and slow acoustic
waves, vorticity waves, and entropy waves, by solving
the full Navier-Stokes equations. They found that there
exist a family of stable modes in the hypersonic bound-
ary layer in addition to the family of unstable modes.
These stable modes play a very important role in the
receptivity process. In a previous paperm], we studied
the receptivity of the Mach 8 flow over a sharp wedge
with half-angle 5.3° to periodic blowing-suction distur-
bances. The results showed that the unstable second
mode is excited after the synchronization of Mode I and
the first mode. The responses of the hypersonic bound-
ary layer to blowing-suction disturbances with different
frequencies are quite different. The amplitude of the
excited unstable second mode is affected by frequency,
location, and profile of the blowing-suction actuator.
But the receptivity process of the hypersonic boundary
layer to blowing-suction disturbances was not investi-
gated in detail.

Therefore in this paper, the receptivity mechanism
of the Mach 8 flow over the sharp wedge to wall
blowing-suction is further investigated. Figure 1 shows
a schematic of the receptivity of the hypersonic bound-
ary layer over the sharp wedge to wall blowing-suction.
After wall blowing-suction is enforced on the wedge
surface near the leading edge, boundary-layer normal
modes are excited. Simultaneously, the blowing-suction
disturbances propagate out of the boundary layer and
interact with the oblique shock. Compared with the
previous studym}, the simulation domain is extended
further downstream in order to obtain more information
on receptivity process. In addition, the effects of fre-
quency, location, and lengthscale of the blowing-suction
actuator on the receptivity are investigated.

Different terminology on the boundary wave modes
have been used in the literatures: Fedorov and
Khokhlov[l], Forgoston and Tuminm], and Ma and
Zhong[m. The 1st mode of Fedorov and Khokhlov has
been called Mode I by Ma and Zhong and mode F by
Forgoston and Tumin, while the 2nd mode of Fedorov
and Khokhlov has been called Mack mode by Ma and
Zhong and mode S by Forgoston and Tumin. In or-
der to be consistent with theoretical studies, the termi-
nology "mode S” and "mode F” are used for present
study. Mode S represents the Mack mode, while mode
F represents the family of stable modes (Mode I, Mode
II, etc.) found by Ma and Zhongm}. Therefore the
first Mack mode is mode S before the synchronization
point, and the second Mack mode is mode S after the
synchronization point. It is found that mode S is the
dominant boundary-layer normal mode excited by wall
blowing-suction disturbances. The numerical results
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show that mode S is strongly excited only when the
blowing-suction actuator is located upstream of the cor-
responding synchronization point between mode F and
mode S. On the other hand, when the blowing-suction
actuator is downstream of the corresponding synchro-
nization point, there is a significant decrease of the am-
plitude of the excited mode S, despite the fact that the
blowing-suction actuator is still located in the unstable
region of mode S. The results also show that frequency
and lengthscale of the blowing-suction actuator have a
significant effect on receptivity of the hypersonic bound-
ary layer to wall blowing-suction.

GOVERNING EQUATIONS AND
NUMERICAL METHODS

To simplify the problem, the Mach 8 flow is assumed
to be thermally and calorically perfect. In conservative
form, the two-dimensional Navier-Stokes equations are
written as:

ou* 9 o -,

+ 55 (F + FT) +

9 - -
—(Fy, + F5) =0
at* 8$T ( 21+ 2@)

"
ox}

1)
where the superscript “x” represents the dimensional
variables. U™ is a vector containing the conservative
variables of mass, momentum and energy. F7}; and F3;
are inviscid flux vectors, while Fy;, and Fj, are viscous
flux vectors. Flux vectors can be calculated according
to the formula
pru;
* kK *
Fro— pruiu; +p 015
i koK ok *
I pruzuy + proa;
x [ % *
ui(e* +p*)

(2)

(3)

with j € {1,2}, where k* is the heat conductivity coeffi-
cient. For perfect gas, the equation of state and energy
are given by
Kk krk * _k _krpuk p* *2 *2

pt=p"R'T*, e =p*c;T +7(u1 + ud?) (4)
where ¢} is the specific heat at constant volume. With
the assumption that the gas is Newtonian, the viscous
stress tensor can be writen as:

. . our au; 2 ,0u
Tij = H (8—’1'; aT;k) —3H 0.—7:;';5” (5)

for i € {1,2}, j € {1,2}. In numerical simulation, the
viscosity coefficient u* and the heat conductivity coeffi-
cient £* are calculated using Sutherland’s law together
with a constant Prandtl number, Pr.

. A T +T5
W) = ()Y

Ty’ T +T; (6)
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p(T)e;
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where pf = 1.7894 x 107N — Sec/m?, T* = 288.0K,
Ty = 110.33K, c;, is the specific heat at constant pres-
sure. In this paper, all the dimensional flow vari-
ables are non-dimensionalized by the corresponding
free-stream parameters.

A shock-fitting method proposed by Zhong[
used to solve the two-dimensional Navier-Stokes equa-
tions in the domain bounded by the shock and the
wedge surface. The oblique shock is treated as a bound-
ary of the computational domain, which makes it pos-
sible for the governing equations to be spatially dis-
cretized by high-order finite difference methods. A fifth-
order upwind scheme is used to discretize the invis-
cid flux derivatives. Meanwhile, a sixth-order central
scheme is used to discretize the viscous flux deriva-
tives. The Rankine-Hugoniot relation across the shock
and a characteristic compatibility relation from behind
the shock are combined to solve the flow variables be-
hind the shock. The interaction between the shock
and blowing-suction disturbances is solved as a part
of solutions. The position and velocity of the shock
front are taken as independent flow variables solved by
the high-order finite difference method. A three-stage
semi-implicit Runge Kutta method derived by Zhong
et al.?" 28 is used for temporal integration. Within a
small region near the leading edge, the fifth-order shock-
fitting method cannot solve the Navier-Stokes equa-
tions accurately because of the singularity at the leading
edge. A second-order TVD code of Zhong and Leel2”)
is introduced to solve the steady base flow around the
leading edge. The TVD solution is then used as the
inflow condition to start the solution procedure of the
fifth-order shock-fitting method. Details of numerical
methods are not presented here, because the same nu-
merical methods as those of Zhongm] are used in cur-
rent study.

Due to the symmetric geometry, only the flow field
over the upper surface of the sharp wedge is consid-
ered in the simulations. Besides the horizontal coor-
dinate x*, the dimensional distance from the leading
edge measured along the wedge surface, s*, is also used
in many plots. With the unit Reynolds number, the
dimensional coordinate s* can be easily converted to
non-dimensional local Reynolds number according to
the following formula:

k* (T*) —

25, 26] ;g

Res = Rel, s* = 8.2 x 10°s* (8)
In stability studies of boundary layers, the Reynolds
number based on the local length scale of boundary-
layer thickness, L*, is generally used:

£ *L* * *
R= Pl oy [ Fe” (9)
tu‘oo pOOuOO

Hence, the relation between R and local Reynolds num-
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ber Reg is given by

R = +/Reg

FLOW CONDITIONS AND
BLOWING-SUCTION MODEL

(10)

The freestream conditions for currently studied flow
over a sharp wedge with half-ange 5.3° are the same as
those used by Malik et al[15], Ma and Zhongm’ 20], ie.,

My, = 8.0, T% = 54.78K
pi, =389Pa, Pr=0.72,
Rex, = proul,/ps, = 8.2 x 106 /m

For viscous flow, the physical boundary conditions on
the wedge surface are non-slip velocity condition and
isothermal or adiabatic temperature condition. For the
simulation of steady base flow, adiabatic temperature
condition is used. When blowing-suction disturbances
are enforced to the steady base flow, the isothermal
temperature condition, which is a standard boundary
condition for theoretical and numerical studies for high
frequency disturbances, is used for unstready flow. For
present study, inlet conditions are specified. Details of
the inlet condition will be further discussed later. High-
order extrapolation is used for outlet conditions because
the flow is hypersonic at the exit boundary except there
is a small region near the wedge surface where flow is
subsonic.

In Fedorov and Khokhlov’s!! theoretical and numer-
ical analysis of boundary-layer receptivity to wall dis-
turbances, the wall blowing-suction disturbance has the
following traveling-wave form:

u’ 0

v 1 ) . .

W= g(z) 0 exp(iaer +if.z —iwt)  (11)
o’ 0

where u',v',w’ are velocity disturbances in stream-
wise, wall-normal, and span-wise directions respectively,
while 0’ is the temperature disturbance. «. and S,
are the components of the disturbance wave number
in stream-wise and span-wise directions. w is the cir-
cular frequency. g(x) represents the disturbance shape
of the blowing-suction actuator. Equation (11) implies
that wall blowing-suction is only related to the wall-
normal velocity disturbance. For this model, instan-
taneous mass flux is introduced to the boundary layer
even if g(x) is an anti-symmetric function, because the
density is not a constant within the blowing-suction ac-
tuator.

Another model for blowing-suction disturbances is to
use the mass flux oscillation on the wall, which has been
used by Eifgler and Bestek[30], and Egorov et al.2l. The
blowing-suction disturbance is as follows:

PwVw L =T

= Asin(27w
PocUco ( T2 —T1

qw(z,t) = )sin(wt)  (12)
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where A is the amplitude of mass flux oscillation, p,, and
v, are the density and wall-normal velocity on the wall,
Poo and Uy, are the density and stream-wise velocity in
freestream, x1, o are boundaries of the blowing-suction
actuator. For this model, the net mass flux introduced
to the boundary layer is zero at any instant.

In present study, a blowing-suction model similar to
Eq. (12) is used. With this model, the mass flux oscilla-
tion within the blowing-suction actuator on the wedge
surface can be written as:

(p*v*) = pyeB() Y sin(wyt*)

n=1

(13)

where pg is a local constant depending on the loca-
tion of the blowing-suction actuator, € is a small non-
dimensional parameter representing the amplitude of
the blowing-suction disturbance. [3(1) is the shape func-
tion defined as

B(1) = 20.2505 — 35.43751* + 15.18752
if l<=1

—20.25(2 — 1)® + 35.4375(2 — 1)*

—15.1875(2—1)% if I >=1

_ (14)

(1)

The variable [ is a non-dimensional coordinate defined
on the blowing-suction actuator,

L=2(s" = s7)/(sc = s7) (15)

where s}, s? are the boundaries of the blowing-suction
actuator. The net mass flux introduced to the bound-
ary layer by this model is zero at any instant. The
specific 5th-order-polynomial shape function makes the
mass flux oscillation smooth at the boundaries of the
blowing-suction actuator. In Eq. (13), w}; are the circu-
lar frequencies of multi-frequency blowing-suction dis-
turbances:

wh = 2] (16)
The circular frequency is non-dimensionalized according
to

wh L*
Wy = —— (17)
The frequency f is non-dimensionalized as:
2 * % * %
Fo= Tl ke (13
rUS psUS

With the definitions of Reynolds number R and the non-
dimensional frequency F),, the non-dimensional circular
frequency can also be expressed as

wy = REF, (19)
In simulations, the amplitude of blowing-suction dis-
turbance is chosen so that it is at least one order of
magnitude larger than the maximum numerical noise,
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Table 1: Frequency, circular frequency, and non-
dimensional frequency for the multi-frequency blowing-
suction disturbances

n | fi(kHz) | wi(kHz) | F, x 10°
1 14.92 93.74 9.63
2 29.84 187.48 19.26
3 44.76 281.23 28.89
4 59.68 374.97 38.52
5 74.60 468.71 48.15
6 89.52 562.45 57.78
7 104.44 656.19 67.41
8 119.36 749.94 77.04
9 134.28 843.68 86.67
10 149.20 937.42 96.30
11 164.12 1031.16 105.93
12 179.04 112491 115.56
13 193.96 1218.65 125.19
14 208.88 1312.39 134.82
15 223.80 1406.13 144.45

while it is small enough to preserve the linear properties
of the disturbances. The specific amplitude coefficient
€ used in the current study is:

e=1.0x10"° (20)

The frequency, circular frequency, and non-dimensional
frequency for blowing-suction disturbances are listed in
Table 1.

RESULTS AND DISCUSSIONS
Steady State Solution

The steady base flow is calculated by the combination
of a fifth-order shock-fitting method and a second-order
TVD method. For the fifth-order shock-fitting method,
the computational domain begins at s* = 0.00409m,
and ends at s* = 1.48784m. In terms of R, the full
domain spans from R = 183.1 to R = 3485.4. In ac-
tual simulations, the computational domain is divided
into 30 zones with a total of 5936 grid points in stream-
wise direction and 121 grid points in wall-normal direc-
tion. 41 points are used in the buffering regions between
two neighboring zones, which is proved to be sufficient
to make the solution accurate and smooth within the
whole domain. An exponential stretching function is
used in the wall-normal direction to cluster more points
inside the boundary layer. On the other hand, the grid
points are uniformly distributed in stream-wise direc-
tion. The accuracy of the results based on this grid
structure has been evaluated by grid refinement studies
to ensure the grid independence of the numerical solu-
tions.

For the first zone, the inlet conditions are ob-
tained from the results of the second-order TVD shock-
capturing method. For other zones, inlet conditions are
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interpolated from the results of previous zone. Figure 2
compares the density contours of steady flow solutions
obtained from the second-order TVD method and the
fifth-order shock-fitting method. It shows that density
contours have an excellent agreement within the buffer-
ing region, which indicates that the TVD solutions are
accurate enough to be used as inlet conditions for the
numerical simulation with the fifth-order shock-fitting
method. The combination of the shock-fitting method
and the TVD method has also been validated in cases of
supersonic and hypersonic steady flows over a flat plate
by Ma and Zhong®!.

Figure 3 shows the pressure contours of the steady
base flow solved by the fifth-order shock-fitting method.
A part of the pressure field from z* 0.05 m to
¥ = 0.15 m is amplified to show clearly the pres-
sure contour within the boundary layer. The upper
boundary of the flow field represents the oblique shock.
Apparently, pressure is almost a constant across the
boundary layer and along the Mach lines, which is con-
sistent with the boundary-layer theory and supersonic
aerodynamics. Figure 4 compares the pressure distri-
bution along the wedge surface of numerical simula-
tion result with that of the theoretical inviscid solu-
tion. Near the leading edge, there exists great pres-
sure gradient for numerical result, which is the result
of the strong interaction between the oblique shock and
the viscous boundary layer. From upstream to down-
stream, such an interaction becomes weaker and weaker
with the oblique shock moves away from the boundary
layer. Therefore the pressure gradient decreases, and
the pressure tends to a constant. However the pressure
of numerical simulation at the exit of computational do-
main is still greater than that of the theoretical inviscid
solution due to the interaction between the inviscid ex-
ternal flow and the viscous boundary layer. The shock
front position and the distribution of shock angle of nu-
merical result are compared with those of the theoretical
inviscid solution respectively in Fig. 5. The differences
between the numerical result and the inviscid solution
indicate that the shock front of numerical simulation
result is not a straight line with the shock angle de-
creasing from 14.793° near the leading edge to 11.307°
at the exit of the computational domain. Figure 6 com-
pares the distribution of Mach number behind the shock
of numerical result with that of the theoretical inviscid
solution. It shows that Mach number of numerical sim-
ulation result increases from 5.911 near leading edge
to 6.746 at the exit of the computational domain. For
inviscid Mach 8 flow over the sharp wedge, the theoreti-
cal shock angle and Mach number behind the shock are
11.102° and 6.798 respectively. Therefore, the shock
angle and Mach number behind the shock of numeri-
cal simulation result approach corresponding values of
the inviscid theoretical solution downstream where the
oblique shock moves far away from the boundary layer
and the interaction between the oblique shock and the
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viscous boundary layer becomes negligible. However,
the shock angle and Mach number behind the shock of
numerical simulation result cannot be equal to corre-
sponding values of the inviscid theoretical solution be-
cause of the interaction between the inviscid external
flow and the viscous boundary layer.

Normal

Characteristics of Boundary-Layer

Modes

The characteristics of boundary-layer normal modes
of the Mach 8 flow over the sharp wedge with half-angle
5.3° is studied by the linear stability theory (LST).
In the LST analysis, the steady base flow can be ei-
ther from numerical simulation or from the self-similar
boundary-layer solution. Although the numerical simu-
lation result is more accurate and efficient for LST anal-
ysis at one location, it is inconvenient for LST analysis
at series of locations. Because the numerical result is
not self-similar, it must be totally updated when the
LST analysis is applied to a different location. There-
fore the self-similar boundary-layer solution is used to
investigate the general characteristics of the boundary-
layer normal modes.

For the LST analysis, the characteristics of steady
base flow is of great importance. Figure 7 compares
the stream-wise velocity and its first-order derivative
of numerical simulation with those of the self-similar
boundary-layer solution at s* = 0.62784 m, correspond-
ing to R = 2264.13. While the second-order deriva-
tive of stream-wise velocity at the same location of nu-
merical simulation result is compared with that of the
self-similar boundary-layer solution in Fig. 8. Figure
9 compares the temperature and its first-order deriva-
tive of numerical simulation result with those of the
self-similar boundary-layer solution at s* = 0.62784 m.
All these figures show that the results of the self-similar
boundary-layer solution and the numerical simulation
agree well except the small difference in the second-
order derivative of stream-wise velocity. It was found
in Ma and Zhongm] that the linear stability character-
istics based on self-similar boundary-layer solution are
close to those based on numerical simulation result, al-
though shock/boundary layer interaction and flow com-
pressibility are neglected in the self-simliar boundary-
layer solution.

Eigenvalue spectra of boundary-layer normal modes
for the disturbance with the non-dimensional frequency
Fs = 57.78 x 1075 (fz = 89.52 kHz) at the location
R = 1980.44 (s* = 0.48036 m) are plotted in Fig. 10,
where «, and a; are the real and imaginary parts of the
wave number. It shows that there exist three continu-
ous modes corresponding to the fast acoustic mode, the
vorticity or entropy mode, and the slow acoustic mode.
The figure also shows that there exist discrete modes
corresponding to boundary-layer normal modes. Two
discrete modes are outlighted by circles in the figure.
Investigation of the corresponding eigenfunctions indi-
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cates: oneis mode S, and the other is mode F. Mode F is
a stable mode called Mode I by Ma and Zhong [17, 18],
Mode F starts from the continuous modes on the left
side of the figure and passes the continuous modes in
the middle as w increases.

Figure 11 compares the non-dimensional phase ve-
locities of boundary-layer normal modes at three fre-
quencies Fy = 48.15 x 1076 (f# = 74.60 kHz), Fs
57.78 x 1076 (f¥ = 89.52 kHz), and Fy = 67.41 x 10~¢
(f# = 104.44 kHz) as a function of the non-dimensional
circular frequency, w. The three dashed lines repre-
sent the non-dimensional phase velocities of fast acous-
tic mode (a/Usx = 1+ ML), vorticity or entropy mode
(a/Us = 1), and slow acoustic mode (a/Us = 1—M_')
respectively. The excellent agreement of the phase ve-
locities of different frequencies indicate that the phase
velocity is a function of w. In Fig. 11, mode F origi-
nates from the fast acoustic mode and passes the vor-
ticity or entropy mode as shown in Fig. 10, while mode
S originates from the slow acoustic mode. The figure
also shows that mode S synchronizes with mode F at
ws = 0.11443, (a/Us)s = 0.93349. At the synchroniza-
tion point, the non-dimensional phase velocities of mode
S and mode F are the same, and their eigenfunctions
have very similar profile as shown in Fig. 12. The posi-
tion of the synchronization point has a constant value of
ws (= 0.11443). However in s* coordinate, the positions
of the synchronization point are different for different
frequencies, which can be calculated using

s — (ws/Fn)?

" Res
with s*

(21)

sn
*ns the position of the synchronization point in
R coordinate, R, can be calculated according to Egs.
(10) and (8).

Comparisons of the non-dimensional wave number a,.
and growth rate a; for mode F and mode S at the same
three frequencies are shown in Figs. 13 and 14 respec-
tively. Figure 13 shows that the non-dimensional wave
numbers of boundary-layer modes does not depend on
dimensional frequency. In stead, it is a function of w
only. In Fig. 14, the vertical dashed line represents the
position of the synchronization point, while the horizon-
tal dashdot line stands for the neutral modes (a; = 0).
It shows the growth rates of both mode S and mode F
are almost independent of dimensional frequency. Mode
S is unstable from w; = 0.04 to wy; = 0.23, while mode
F is always stable. The Branch II neutral point of mode
S, wrr, is approximately independent of the dimensional
frequency. In s* coordinate, the positions of the Branch
IT neutral point change with different frequencies, which
can be calculated using

o wn/F)?
IIn Reoc
Table 2 provides coordinates of the synchronization

point (s},, Rsn) and the Branch II neutral point (s7;,,)
for the multi-frequency blowing-suction disturbances.

(22)
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Table 2: Coordinates of the synchronization point and
the Branch II neutral point for blowing-suction distur-
bances

n S:n (Hl) RSn S?In (Hl)
1 | 16.9885 | 11882.658 | 68.38297
2 4.2471 5941.329 | 17.09574
3 1.8876 3960.886 | 7.59811
4 1.0618 2970.664 4.27394
) 0.6795 2376.532 | 2.73532
6 0.4719 1980.443 1.89953
7 | 0.3467 1697.523 | 1.39557
8 | 0.2654 1485.332 | 1.06848
9 | 0.2097 1320.295 | 0.84423
10 | 0.1699 1188.266 | 0.68383
11| 0.1404 1080.242 | 0.56515
12 | 0.1180 990.222 0.47488
13 | 0.1005 914.051 0.40463
14 | 0.0867 848.761 0.34889
15 | 0.0735 792.177 0.30392

Receptivity to the Blowing-Suction Actuator at
A Single Frequency

According to our previous study[%], the receptivity of
the hypersonic boundary layer to wall blowing-suction
is affected by frequency, location, and shape function of
the blowing-suction actuator. We first study the recep-
tivity process for the case of a blowing-suction actuator
with a single frequency. The blowing-suction distur-
bance with the single frequency fZ = 74.60 kHz (F5 =
48.15 x 1079) is introduced with the blowing-suction
actuator on the wedge surface from s} = 0.10184 m to
sy = 0.11384 m (corresponding to R from 911.88 to
964.10) to investigate the receptivity process. For this
specific case, the blowing-suction disturbance is in the
following form:

(p™v")" = poeB(l) sin(wzt®) (23)
where pf is the multiplication of steady base flow den-
sity and wall-normal velocity after the shock at s} lo-
cation. The effect of different blowing-suction models
is first evaluated. The first model is given by Eq. (23).
The second model is to set wall-normal velocity distur-
bance, v*/, only, i.e.,

v = vgeB(l) sin(wit®) (24)
where v is the wall-normal velocity after the shock at s;
location. In Eq. (23), the constant pj is chosen so that
the wall-normal velocity disturbances induced by the
two blowing-suction models have the same scale. The
wall-normal velocity disturbance introduces instanta-
neous mass flux to the boundary layer, which is shown in
Fig. 15 for one period of the base frequency f; = 14.92
kHz. It shows that the instantaneous mass flux is pe-
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riodic and the dimensional amplitude of the flux oscil-
lation is very small. During one period of the base fre-
quency, the net mass flux introduced to the boundary
layer is nearly zero because of the sine-like profile.

Figure 16 compares non-dimensional amplitudes of
the pressure perturbation along the wedge surface for
the two blowing-suction models given by Egs. (23) and
(24). The good agreement between the amplitudes in-
dicates that the effect of the small instantaneous mass
flux oscillation on receptivity is negligible, and the two
blowing-suction models are equivalent under the given
conditions. In order to show clearly the small struc-
tures, comparison of amplitudes of the upstream pres-
sure perturbation along the wedge surface for the two
blowing-suction models is redrawn in Fig. 17. Again,
there is a good agreement between the amplitudes of
pressure perturbation. Furthermore, there are strong
modulations just downstream of the blowing-suction ac-
tuator. After s* = 0.6 m, the amplitude of pressure
perturbation increases monotonically. Figure 18 shows
the distribution of non-dimensional instantaneous pres-
sure perturbation along the wedge surface. The am-
plification of the pressure perturbation from upstream
to downstream indicates an unstable mode is excited
inside the boundary layer.

To check the properties of the unstable mode, fast
Fourier transformation (FFT) is applied to the non-
dimensional instantaneous pressure perturbation along
the wedge surface, which leads to

P(s%,1) = Zlpy, (%) ! 10n ()7t (25)

where p’(s*,t) represents the non-dimensional instan-
taneous pressure perturbation along the wedge surface.
|pl,(s*)| and ¢!, (s*) are real variables representing the
perturbation amplitude and phase angle respectively,
from which a local wave number «,, and a local growth
rate a;y, of the perturbation with the frequency f, can
be calculated by

_ d¢f, _ 1 dip|
Cdst | ds*

Qe Qijn = (26)

Figures 19, 20, and 21 compares the wave number
a,, the growth rate a;, and the non-dimensional phase
velocity a/uq for the unstable mode obtained by the
numerical simulation with the corresponding values of
mode F and mode S computed by LST. These figures are
for the frequency fZ. It is shown that the wave number,
growth rate, and the non-dimensional phase velocity of
the unstable mode fit well with the properties of mode S
after w = 0.095 (s* = 0.477 m), which indicates that the
unstable mode excited by the blowing-suction actuator
is mode S. In Fig. 20, it is also noticed that mode S
obtained by numerical simulation becomes stable much
earlier than LST result. In other words, the Branch II
neutral point of mode S moves upstream compared with
the LST result.

Figures 25 and 26 compare the eigenfunctions of
mode F and mode S with the instantaneous pressure

8

perturbation (frequency fZ) from numerical simulation
at eight different locations. Figure 25 shows that the
pressure perturbation of the simulation solution is much
closer to the eigenfunction of mode S, which indicates
that mode S is the dominant mode inside the local
boundary layer. The existence of mode F is possible,
but it will decay downstream because mode F is in-
herent stable. Figure 26 shows that there are good
agreements between the eigenfunction of mode S and
the instantaneous pressure perturbation from numeri-
cal simulation. These agreements also indicate that the
unstable mode excited by the blowing-suction actuator
is mode S. Therefore mode S is the dominant boundary-
layer mode excited by the blowing-suction actuator.

Effect of Frequency of the Blowing-Suction Ac-
tuator

In preceding section, the receptivity of the hypersonic
boundary layer to the blowing-suction actuator with the
single frequency of fZ = 74.60 kHz (F5 = 48.15 x 1079)
was studied. The results show that mode S is the
dominant boundary-layer normal mode excited by the
blowing-suction actuator. The effect of disturbance fre-
quency on the receptivity to wall blowing-suction is
studied by introducing multi-frequency blowing-suction
disturbances to the boundary layer. Blowing-suction
disturbances with fifteen frequencies (f; listed in Table
1 with n from 1 to 15) are imposed with a blowing-
suction actuator on the wedge surface from s
0.05184 m to s} = 0.06384 m (corresponding to R from
650.59 to 721.98). The blowing-suction disturbances
are related to the mass flux oscillations according to
Eq. (13), and the shape function of the blowing-suction
actuator is given by Eq. (14).

Figure 22 shows the distribution of instantaneous
pressure perturbation along the wedge surface. Due to
the modulation between the multiple frequencies, the
instantaneous pressure perturbation has multiple peaks
from upstream to downstream. The amplification of
the perturbation from upstream to downstream indi-
cates the existence of the unstable mode S. In order to
investigate the effect of disturbance frequency on the re-
ceptivity, fast Fourier transformation (FFT) is applied
to decompose the instantaneous pressure perturbation.
Figure 27 compares pressure perturbation amplitudes
along the wedge surface with different frequencies. Al-
though the initial amplitudes of blowing-suction distur-
bances with different frequencies are the same, the be-
haviors of pressure perturbations are quite different. As
shown in Fig. 27 (a), the perturbations with frequencies
fr, f5, and f5 modulate after the blowing-suction ac-
tuator and grow slowly from upstream to downstream,
which implies that mode S is excited. In Figs. 27 (b)
and 27 (c¢), the perturbations with frequencies f (n
from 4 to 11) grow fast after the blowing-suction actua-
tor, which indicates that mode S is excited by blowing-
suction disurbances with these frequencies and becomes
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more unstable after the synchronization point. Pressure
perturbations with higher frequencies shown in Fig. 27
(d) increase in a very small region after the blowing-
suction actuator. The visible oscillations in perturba-
tion amplitudes downstream with s* > 0.2 m are re-
sulted from the effect of harmonics.

For each frequency in Figs. 27 (b) to (d), the synchro-
nization point can be obtained from Table 2. Figure 27
show that the perturbation amplitudes start to grow
substantially only in the region after the synchroniza-
tion point for each frequency. However the perturba-
tions with frequencies f (n > 4) decrease far before
reaching to the corresponding Branch II neutral point.
Comparison of numerical simulation growth rates and
LST growth rates with the frequencies fZ, fg, and f7
is shown in Fig. 23. The numerical simulation growth
rates have a good agreement with the LST results from
w = 0.11 tow = 0.13. On the other hand, the difference
in Branch II neutral points of numerical simulation and
LST may be caused by the approximations in LST, be-
cause the effects of the nonparallel boundary-layer flow,
the pressure gradient, and the oblique shock are left out
in LST. To show the positions on wedge surface where
mode S becomes unstable for different frequencie, Fig-
ure 24 plots «; as a function of s* for the same set of
frequencies as that in Fig. 23. With increasing fre-
quency, the synchronization point moves upstream, i.e.,
mode S becomes unstable earlier.

Comparisons of DNS wave numbers of perturbations
with frequencies f¥ (n > 3) with the LST wave number
are shown in Fig. 28. The good agreement of numerical
wave numbers and the LST result downstream shows
that mode S is excited by wall blowing-suction with
these frequencies. Figure 28 also shows that the syn-
chronization point is a function of w. In s* coordinate,
the position where mode S becomes unstable moves up-
stream with increasing frequency, which is clearly shown
in Figs. 27 (b), 27 (c), and 27 (d). The perturbations
with frequencies f;; (n from 1 to 3 ) start to increase
slowly at a position upstream to the corresponding syn-
chronization point, because mode S is slightly unstable
before the synchronization point. The synchronization
point for perturbations with these three frequencies is
further downstream to the computational domain cur-
rently considered.

Effect of Location of the Blowing-Suction Actu-
ator

In order to investigate the effect of location of the
blowing-suction actuator on receptivity, a series of inde-
pendent simulations have been carried out for blowing-
suction actuators at different locations on the wedge
surface. In each case, wall blowing-suction with fifteen
frequencies (f; listed in Table 1 with n from 1 to 15)
is superimposed on the wedge surface. For all simula-
tions, the blowing-suction disturbances are related to
the mass flux oscillation according to Eq. (13). The
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Table 3: Constant p;; and locations of blowing-suction
actuator for the seven cases by which the effect of loca-
tion of blowing-suction actuator on receptivity is inves-
tigated

case 04 sf(m) | s (m) | sf(m) R
1 0.2141 | 0.05184 | 0.06384 | 0.05784 | 687.2
2 0.1252 | 0.10184 | 0.11384 | 0.10784 | 938.4
3 0.0961 | 0.15184 | 0.16384 | 0.15784 | 1135.2
4 0.0807 | 0.20184 | 0.21384 | 0.20784 | 1302.7
5 0.0708 | 0.25184 | 0.26384 | 0.25784 | 1450.9
6 0.0637 | 0.30184 | 0.31384 | 0.30784 | 1585.4
7 0.0545 | 0.40184 | 0.41384 | 0.40784 | 1824.8

shape function of the blowing-suction actuator is given
by Eq. (14). However, the constant pj in Eq. (13) and
the location of the blowing-suction actuator (s} and s
in Eq. (15)) are different for the independent cases. In
present study, location of the blowing-suction actuator
is defined as

sl

with s}, location of the blowing-suction actuator in R
coordinate, Rg., can be calculated according to Egs.
(10) and (8). Specifically, pg; constant and locations of
the blowing-suction actuator of the seven cases inves-
tigated in this paper are listed in Table 3, where pf is
the multiplication of steady base flow density and wall-
normal velocity after the shock at s} location with the
dimension kg/(m?s).

As shown in Fig. 11, the synchronization point of
mode F and mode S has a non-dimensional circular fre-
quency of wy = 0.11443 and a non-dimensional phase
velocity of (a/Us)s = 0.93349. Although the synchro-
nization point in w coordinate does not depend on the
dimensional frequency, its location in s* and R coor-
dinates is different for different dimensional frequency.
The synchronization points in s* and R coordinates for
the 15 frequencies investigated in present study are cal-
culated with Egs. (21) and (10), which are tabulated in
Table 2 as s}, and Rgy,.

Table 2 shows that the synchronization point moves
upstream with the frequency of disturbance increasing.
Therefore, the blowing-suction actuator may be located
either before or after the synchronization point when
it moves downstream from case 1 to case 7. Table 4
lists location of the blowing-suction actuator with re-
spect to the synchronization point for the seven cases.
"sy < sk, represents that the blowing-suction actua-
tor is located upstream of the corresponding synchro-
nization point, while ”s} < s},” represents that the
blowing-suction actuator is downstream of the corre-
sponding synchronization point.

For example, for the frequency f& = 74.60 kHz, lo-
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Table 4: Location of the blowing-suction actuator with
respect to the synchronization point for the seven cases
by which the effect of location of the blowing-suction
actuator on receptivity is investigated

case | frequency: s} < s%,
1 n from 1 to 15

n from 1 to 12

n from 1 to 10
nfrom1to9

n from 1 to 8

n from 1to 7

n from 1 to 6

frequency: s} > s,
none
n from 13 to 15
n from 11 to 15
n from 10 to 15
n from 9 to 15
n from 8 to 15
n from 7 to 15

N OOt W N

cations of the blowing-suction actuator in all cases are
upstream to the corresponding synchronization point.
While for the frequency fi; = 149.20 kHz, ocations of
the blowing-suction actuator in cases from 1 to 3 are
upstream to the corresponding synchronization point,
while locations of the blowing-suction actuator in other
cases are downstream of the corresponding synchroniza-
tion point.

To show the effect of location of the blowing-suction
actuator on receptivity, the perturbations of the same
frequency for the seven cases are plotted together. Fig-
ures 29, 30, and 31 compare the pressure perturbation
amplitudes with a same frequency for the seven cases
of different blowing-suction locations on the wedge sur-
face. In these figures, the numbers within the small
rectangular represent the different cases. For the fre-
quency f; = 59.68 kHz, the blowing-suction actuator in
all seven cases is located upstream of the correspond-
ing synchronization point at s;, = 1.0618 m. Figure
29 (a) shows that mode S is strongly excited for all
seven cases. Furthermore, the amplitudes of pressure
perturbations developed in the boundary layer decrease
dramatically when the blowing-suction actuator moves
from upstream to downstream. Figures 29 (b) and 29
(c) show similar results for the frequencies fF = 74.60
kHz and f§ = 89.52 kHz respectively. When the fre-
quency is f7 104.44 kHz, location of the blowing-
suction actuator is upstream of the corresponding syn-
chronization point at s¥; = 0.3467 m in cases from 1
to 6, however it is downstream of the corresponding
synchronization point in case 7. Figure 29 (d) shows
that mode S is apparently excited for cases from 1 to
6. When the blowing-suction actuator is located down-
stream of the corresponding synchronization point in
case 7, there is a significant decrease of the amplitude
of the excited mode S, despite the fact that the blowing-
suction actuator is still located in the unstable region
of mode S. For the frequency fg = 119.36 kHz, Fig-
ure 30 (a) shows that mode S is strongly excited for
cases from 1 to 5, while there is a significant decrease
of the amplitude of the excited mode S for case 6 and
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case 7. Because locations of blowing-suction actuator
in cases from 1 to 5 are upstream of the corresponding
synchronization point at si3 = 0.2654 m, however the
blowing-suction actuator is located downstream of the
corresponding synchronization point in case 6 and case
7. Again, the blowing-suction actuator is still located
in the unstable region of mode S. When the frequency
changes to f§ = 134.28 kHz, the blowing-suction ac-
tuators are located upstream of the corresponding syn-
chronization point at s%q = 0.2097 m in cases from 1 to
4, however locations of the blowing-suction actuator in
cases from 5 to 7 are downstream of the corresponding
synchronization point. Figure 30 (b) shows that mode
S is strongly excited for cases from 1 to 4, while the ex-
cited mode S decrease dramatically for cases from 5 to 7.
For the frequencies f;; with n from 10 to 15, similar con-
clusion can be drawn. In Fig. 31, the visible modulation
and growth of pressure perturbations downstream with
s* > 0.2 m are resulted from harmonics.

For quantitative analysis, the response coefficients
of pressure perturbations with a same frequency for
the seven cases are compared in Fig. 32. In the fig-
ure, (p//Poc)ma represents the maximum amplitude of
pressure perturbation along the wedge surface excited
by the blowing-suction actuator, while (p//poo)in rep-
resents the initial amplitude of pressure perturbation
along the wedge surface introduced by the blowing-
suction actuator. The ratio of (p//Poo )mz and (p!/Poc )in
is defined as the response coefficient. The horizontal
coordinate, Rs. — Ry, is the signed distance between
the blowing-suction actuator and the synchronization
point. The negative horizontal coordinate means that
the blowing-suction actuator is upstream of the syn-
chronization point, while the positive horizontal coordi-
nate means that the blowing-suction actuator is located
downstream of the synchronization point. The verti-
cal dashdot line represents a special case in which the
blowing-suction actuator and the synchroniztion point
are overlaped. Fig. 32 (a) shows clearly that response
coefficient for the same frequency decreases dramati-
cally with the blowing-suction actuator approaching the
synchronization point. The high response coefficients
indicate that mode S is strongly excited, because lo-
cations of the blowing-suction actuator in all cases are
upstream of the corresponding synchronization points
for frequencies fy, f&, and f;. For frequencies f
with n from 7 to 9, Fig. 32 (b) shows that response
coefficient for the same frequency generally decreases
with Rs. — Rgy, increasing except for the jump near
Rs. — Ry, = —200. It is found that the response co-
efficients are much smaller when R,. — Ry, is positive.
This indicates that the excited mode S is much weaker
when the blowing-suction actuator is downstream of the
synchronization point, despite the fact that the blowing-
suction actuator is still located in the unstable region of
mode S. Figures 32 (¢) and 32 (d) also show that the re-
sponse coefficients for negative Ry, — Ry, is higher than
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those for positive Rs. — Rsy, when the frequency is fixed,
because mode S is strongly excited in the cases with neg-
ative Rg. — Rs, which is clearly shown in Figs. 29 (d),
30 and 31. Different from Fig. 32 (a), the response co-
efficients in Figs. 32 (c¢) and 32 (d) for Rs. — Rsp > 300
increase slowly with R, — R, increasing.

To summarize, the simulation results indicate that
the synchronization point plays an important role in
the excitation of mode S by the blowing-suction actu-
ator. Mode S is strongly excited when the blowing-
suction actuator is located upstream of the correspond-
ing synchronization point. On the other hand, when
the blowing-suction actuator is downstream of the cor-
responding synchronization point, there is a significant
decrease of the amplitude of the excited mode S. This
decrease happens even when the blowing-suction actu-
ator is still inside the unstable region of mode S. Again,
this suggest that the synchronization point is critical
to the receptivity process. The relationship between
the location of blowing-suction actuator and the syn-
chronization point indicates: in order to control or de-
lay the laminar-turbulent transition more efficiently, the
blowing-suction actuator should be located upstream of
the synchronization point of mode S and mode F.

Effect of Lengthscale of the Blowing-Suction Ac-
tuator

In this section, the effect of lengthscale of the blowing-
suction actuator on receptivity is studied. A series of in-
dependent simulations are carried out for the receptivity
investigation of the hypersonic boundary layer to multi-
frequency disturbances enforced by blowing-suction ac-
tuators with different lengthcales at the same location
(corresponding to case 7 in Table 3). Wall blowing-
suction with fifteen frequencies (f listed in Table 1
with n from 1 to 15) is superimposed with the blowing-
suction actuator. Similarly, the blowing-suction distur-
bances are related to the mass flux oscillation according
to Eq. (13), and the shape function of the blowing-
suction actuator is given by Eq. (14). However the
lengthscale of the blowing-suction actuator is different
for independent cases. Specifically, lengthscales of the
blowing-suction actuator of the eight cases are investi-
gated in this paper. Table 5 lists the lengthscale of the
blowing-suction actuator, which is non-dimensinalized
by that of case 2.

Figure 33 compares pressure perturbation amplitudes
along the wedge surface with different frequencies for
case 2. It is clearly shown in the figure that the behav-
iors of pressure perturbations with different frequencies
are quite different although the initial amplitudes are
the same. As shown in Fig. 33 (a), amplitudes of pres-
sure perturbations with frequencies f{, f5, and f3 mod-
ulation after the blowing-suction actuator and grow up
slowly from upstream to downstream. In Fig. 33 (b) the
perturbations with frequencies f;: (n from 4 to 6) grow
fast after the blowing-suction actuator, which indicates
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Table 5: Lengthscales of the blowing-suction actuator
for the eight cases by which the effect of lengthscale of
blowing-suction actuator on receptivity is investigated

case | s; (m) | s& (m) | st —sf (m) | lengthscale
1 0.40359 | 0.41184 0.00825 0.6875
2 0.40184 | 0.41384 0.01200 1.0000
3 0.40059 | 0.41484 0.01425 1.1875
4 0.39984 | 0.41559 0.01575 1.3125
5 0.39934 | 0.41609 0.01675 1.3958
6 0.39809 | 0.41734 0.01925 1.6042
7 0.39584 | 0.41984 0.02400 2.0000
8 0.39084 | 0.42459 0.03375 2.8125

that mode S is strongly excited by blowing-suction dis-
urbances with these frequencies. However the pressure
perturbation with the frequency f7 is much weaker. As
discussed in preceding section, the blowing-suction ac-
tuator is downstream of the synchronization point for
the frequency f7. Therefore, the excited mode S is much
weaker. Similarly, pressure perturbations with higher
frequencies as shown in Figs. 33 (c) and 33 (d) only
have small amplitudes.

To investigate the effect of lengthscale of the blowing-
suction actuator on receptivity, the perturbations with
the same frequency for the eight cases are plotted to-
gether. Figures 34 compares pressure perturbation am-
plitudes with the same frequency f; and fi for the
eight cases that wall disturbances are introduced by
the blowing-suction actuators with different lengthscale
at the same location on the wedge surface. For the
frequency f; = 59.68 kHz, Figure 34 (a) shows that
mode S is strongly excited for all eight cases, because
blowing-suction actuators in all the cases are located
upstream of the corresponding synchronization point
at si, = 1.0618m. It is also shown that the ampli-
tude of pressure perturbation generally increases with
the lengthscale of the blowing-suction actuator increas-
ing. In order to show the differences between cases 2 to
6 more clearly, two sections of Fig. 34 (a) are magni-
fied as Figs. 34 (b) and 34 (c). Figure 34 (b) shows
that the amplitude of pressure perturbation just af-
ter the blowing-suction actuator does increase with the
lengthscale of the blowing-suction actuator increasing.
After modulation, the amplitude of pressure perturba-
tion does not necessarily increase with the lengthscale
of the blowing-suction actuator increasing as shown in
Fig. 34 (¢). For example, the amplitude of pressure
perturbation in case 5 is smaller than that in case 3
or 4 although the lengthscale of the blowing-suction
actuator in case 5 is larger than that in case 3 or 4.
In Figure 34 (d), similarly conclusions can be reached.
Mode S is strongly excited for all eight cases, because
blowing-suction actuators for all the cases are located
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upstream of the corresponding synchronization point at
5% = 0.4719m. However the amplitude of pressure per-
turbation does not necessarily increase with the length-
scale of the blowing-suction actuator increasing. For ex-
ample, the amplitude of pressure perturbation in case
6 is the smallest although the lengthscale of blowing-
suction actuator in case 6 is larger than that in case 1
to 5.

CONCLUSIONS

The receptivity of a Mach 8 flow over a sharp wedge
with half-angle 5.3° to wall blowing-suction has been
studied by numerical simulation as well as linear stabil-
ity theory. The steady base flow is computed by solv-
ing the two-dimensional Navier-Stokes equations with
a combination of a fifth-order shock-fitting method and
a second-order TVD method. For unsteady flow sim-
ulations, periodic blowing-suction disturbances are su-
perimposed to the steady base flow with the blowing-
suction actuator on the wedge surface. Two differ-
ent blowing-suction models are evaluated in this pa-
per. It is found that the effect of the small instan-
taneous mass flux on receptivity is negligible, and the
two blowing-suction models have same results for small-
scale blowing-suction disturbances. Based on the re-
sults of numerical simulation and LST analysis, the re-
ceptivity process of the hypersonic boundary layer to
a blowing-suction actuator is studied in detail. The
effects of frequency, location, and lengthscale of the
blowing-suction actuator on the receptivity are inves-
tigated.

The main conclusions of the current study are:

e Mode S is the dominant boundary-layer normal
mode excited by the blowing-suction actuator. The
receptivity of the hypersonic boundary layer to wall
blowing-suction with different frequencies is quite
different because the synchronization point in s*
coordinate depends on the dimensional frequency.
With the dimensional frequency of disturbances in-
creasing, the corresponding synchronization point
moves upstream.

e The results show that the synchronization point
plays an important role in the excitation of mode
S by the blowing-suction actuator. Mode S is
strongly excited when the blowing-suction actua-
tor is located upstream of the corresponding syn-
chronization point. On the other hand, when the
blowing-suction actuator is downstream of the cor-
responding synchronization point, there is a signifi-
cant decrease of the amplitude of the excited mode
S. This decrease happens even when the blowing-
suction actuator is still inside the unstable region
of mode S.

e The lengthscale of blowing-suction actuator has a
significant effect on receptivity of the hypersonic
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boundary layer to wall blowing-suction. However
the amplitude of pressure perturbation does not
necessarily increase with the lengthscale of the
blowing-suction actuator increasing.

e The relationship between the location of the
blowing-suction actuator and the synchronization
point indicates: in order to control or delay the
laminar-turbulent transition with wall blowing-
suction, the blowing-suction actuator should be
located upstream of the synchronization point of
mode S and mode F.
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Figure 1: A schematic of the receptivity of a hypersonic
boundary layer over a sharp wedge to wall blowing-
suction.
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Figure 13: Comparison of wave numbers of boundary-
layer modes with different frequencies (In the present
paper, Mode I is termed as mode F, while first Mack
mode and second Mack mode are termed as mode S).
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Figure 27: Comparisons of perturbation amplitudes along the wedge surface with different frequencies for the case
that fifteen-frequency blowing-suction disturbances are enforced on the wedge surface from s; = 0.05184 m to
55 =0.06384 m.
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Figure 28: Comparisons of numerical wave numbers and the LST wave number of perturbations with frequency f;:
(n from 4 to 15) for the case that fifteen-frequency blowing-suction disturbances are enforced on the wedge surface
from s} = 0.05184 m to s} = 0.06384 m.
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Figure 29: Comparisons of perturbation amplitudes with a same frequeny for cases that blowing-suction distur-
bances are enforced on the wedge surface at different locations: (a) fi = 59.68 kHz; (b) f& = 74.60 kHz; (c)
f& =89.52 kHz; (d) f¥ = 104.44 kHz.
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Figure 32: Comparisons of response coefficients of pressure perturbations with a same frequency for cases that the
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Figure 33: Comparisons of perturbation amplitudes along the wedge surface with different frequencies for the
case that the fifteen-frequency blowing-suction actuator are located on the wedge surface from s; = 0.40184 m to
55 =0.41384 m.
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Figure 34: Comparisons of perturbation amplitudes with a same frequeny for cases that blowing-suction distur-
bances are introduced by blowing-suction actuators with different lengthscales at the same location on the wedge
surface: (a) fi = 59.68 kHz; (b) fi = 59.68 kHz (upstream magnification); (c¢) fi = 59.68 kHz (downstream
magnification); (d) f& = 89.52 kHz.
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