35th ATA A Fluid Dynamics Conference and Exhibit ATAA Paper 2005-5022
6-9 June 2005, Toronto, Ontario, Canada

EFFECT OF NOSE BLUNTNESS ON HYPERSONIC
BOUNDARY LAYER RECEPTIVITY OVER A
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A numerical simulation study is conducted on the effect of nose bluntness on the re-
ceptivity to weak free-stream fast acoustic waves for a Mach 7.99 axisymmetric flow over
a 7° half-angle blunt cone. The flow conditions and geometry are the same as those used
in Stetson’s (1984) stability experiment. Three cases of different nose radii are considered
covering both “small” and “large” nose bluntness in the context of the transition reversal
phenomenon. A total of 15 frequencies are computed in the receptivity simulation for each
case. It is found that the basic receptivity mechanism of hypersonic flow over the blunt cone
with different nose radii is essentially the same. Specifically, the receptivity is a result of
the resonant interactions between forcing waves and boundary-layer wave modes near the
nose region, and the resonant interactions between different boundary-layer wave modes
downstream. As the nose radius increases from “small” to “large”, the current results
show no reversal in the location of instability wave induced by the receptivity process. The
location of initial excitation of the second instability mode always moves downstream as
the nose bluntness is increased. In order to understand the cause of the transition reversal
phenomenon, it is necessary to conduct further studies on the nose bluntness effects under
other factors, which include receptivity to different forcing waves, surface roughness, larger
nose bluntness, three-dimensional waves, and nonlinear interaction.

I. INTRODUCTION

The accurate prediction of laminar-turbulent transition in hypersonic boundary layers is a critical part
of the aerodynamic heating analyses on hypersonic vehicles. Despite decades of extensive research, the
prediction of hypersonic boundary-layer transition is still mostly based on empirical correlation methods or
the semi-empirical e method because a number of physical mechanisms leading to transition are currently
not well understood. The receptivity phenomenon, which is the process of environmental disturbances
initially entering the boundary layers and generating disturbance waves, is one of these important, but less
understood, mechanisms.

Stetson et al. (1984 & 1993) carried out boundary-layer stability experiments on an axisymmetric blunt
cone in a Mach 7.99 free stream. The half angle of the cone was 7°, and the free-stream Reynolds number
based on the nose radius was 33,449. The Reynolds number based on the total length of the cone is about
9 millions. Detailed fluctuation spectra of the disturbance waves developing along the body surface were
measured in the experiments. It was found that the disturbances in the boundary layer were dominated
by the second mode instability. Significant super harmonic components of the second modes were observed
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after the second mode became dominant. Compared with similar hypersonic flow over a sharp cone, the
second mode instability of the blunt cone appeared in much further downstream locations. This indicates
a stabilization of the boundary layer by slight nose bluntness. Stability experiments of hypersonic flows
over sharp or blunt cones have also been carried out by other researchers. Demetriades (1974 & 1977) did
extensive stability experiments on hypersonic boundary layers over axisymmetric cones. Recently, Maslov
and his colleagues (2001 & 2002) reported their stability experiments on supersonic and hypersonic flows
over sharp or blunt cones.

The normal-mode linear stability characteristics of the boundary-layer flow over the same blunt cone as
Stetson et al.’s experiments have been studied by a number of researchers (Malik et al. 1990, Herbert et al.
1993, Kufner et al. 1993 & 1994). Malik et al. (1990) computed the neutral stability curve and compared the
growth rates obtained by LST with the experimental results. The steady base flow solution was computed by
using the parabolized Navier-Stokes equations. They found that the nose bluntness stabilizes the boundary
layer. The growth rates predicted by the LST were compared with Stetson et al.’s experimental results at
the surface location of s = 175 nose radii (0.667m). The linear stability analyses predicted slightly lower
frequency for the dominant second mode, but much higher amplification rates than the experimental results.

Rosenboom et al. (1999) did further study on the effect of nose bluntness on the linear stability of
hypersonic flow over Stetson’s blunt cone. In their studies, the cone geometry and freestream conditions
were adapted to the Stetson’s experiments. Three cases of blunt cones of different nose radii, which cover both
“small” and “large” bluntness, were considered. The purpose was to investigate, by linear stability analysis,
the transition reversal phenomenon observed in experiments at “large” bluntness (Potter and Whitfield
1962, Ericsson 1987). The transition reversal phenomenon refers to the experimental observation that the
transition location moves downstream when the nose radius is increased. This trend is, however, reversed
when the nose radius is larger than a certain critical value. Increasing nose radius after that will lead to a
forward movement of the transition location. The downstream movement of the transition location at small
radii can be explained by the reduction of local Reynolds numbers owing to the entropy layer created by the
nose bluntness. However, there is still no satisfactory explanation for the cause of transition reversal at large
nose bluntness. By a linear stability analysis, Rosenboom et al. (1999) confirmed a monotonic downstream
movement of the second mode critical Reynolds number as nose radius increases. However, their linear
stability analysis still cannot explain the transition reversal phenomena observed in experiment at “large”
bluntness. Their results indicated that there is a need for better understanding of boundary layer receptivity
as well as nonlinear transition phenomena for engineering transition predication.

This paper presents a numerical study on the effects of nose bluntness on the receptivity to free-stream
acoustic waves for hypersonic flow by comparing the results of three nose radii. The flow conditions duplicate
the experiments of Stetson et al. (1984) and aim to investigate the effects of nose bluntness on receptivity.
The three nose radii are chosen to be the same as those used in Rosenboom et al.’s stability analysis. They
are 3.81mm (Case A), 17.78mm (Case B), and 42.67mm (Case C). As stated by Rosenboom et al., the
first nose radius belongs to category of “small” nose bluntness, while the second and third cases fall into
the region of “large” bluntness. By using the numerical simulation, the initial receptivity process can be
computed accurately in the current stury. The effects of bow shock interaction with forcing waves, the effects
of the entropy layer and non-parallel boundary layer are also taken into account in the numerical simulation.

The current work is a continuation of a previous paper (Zhong and Ma 2003) regarding a numerical
simulation study of the receptivity to weak free-stream fast acoustic waves corresponding to Stetson’s ex-
periments. In (Zhong and Ma 2003), the numerical results for the steady base flow were compared with the
experimental results of Stetson et al. (1984), and with the numerical results of Esfahanian(1991). In addi-
tion, a normal-mode linear stability analysis was used to identify the main components of boundary-layer
disturbances generated by forcing free-stream fast acoustic waves. It was found that neither the first mode
nor the second-mode instability waves are excited directly by free-stream fast acoustic waves in the early
region along the cone surface, although the Mack modes can be unstable there. Instead, the second mode
is excited downstream of the second-mode Branch I neutral stability point. The delay of the second-mode
excitation is a result of the fact that the hypersonic boundary-layer receptivity is governed by a two-step
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resonant interaction process: 1) resonant interactions between the forcing waves and a stable boundary-layer
wave mode I near the leading edge region, and 2) resonant interactions between the induced stable mode I
and the unstable second Mack mode downstream. The nose radius was fixed at 3.81mm in (Zhong and Ma
2003). The effects of nose bluntness was not studies. This paper continues this study by investigating the
nose bluntness effects.

II. GOVERNING EQUATIONS AND NUMERICAL METHODS

The governing equations for both steady and unsteady flow computations are briefly presented in this
section. Details of the governing equations and numerical methods for two and three-dimensional flows
have been described in previously papers (Zhong 1996 & 1996b). The governing equations are the unsteady
three-dimensional Navier-Stokes equations written in the following conservation-law form:

oU* + OF™; + OF*,;
ot* ox* ox*

J J

= 0 )

where U* = (p*, p*ut, p*ul, p*u3, e*), and superscript “«” represents dimensional variables. The Cartesian
coordinates, (z*, y*, z*), are represented by (z7, z3, %) in tensor notation. In the current simulation of
axisymmetric flow over a blunt cone, z* axis is along the center line of the axisymmetric cone pointing
downstream. The origin of the Cartesian coordinate system is located at the center of the spherical nose.

We nondimensionalize the flow velocities by the free-stream velocity UZ, length scales by the nose radius
rk, density by p*_, pressure by p%_, temperature by T.% , time by r /U% , etc. The dimensionless flow variables
are denoted by the same dimensional notation but without the superscript “x”.

A fifth-order shock-fitting method of Zhong (1998) is used to compute the flow field bounded by the
bow shock and wall surface, The flow variables behind the shock are determined by the Rankine-Hugoniot
relations across the shock and a characteristic compatibility equation from behind the shock. The details of
the shock fitting formulas and numerical methods can be found in (Zhong 1998).

IIT. FLOW CONDITIONS

The flow conditions for the test case studied in this paper are the same as those of Stetson et al.’s (1984)
experiments on air flow over a blunt cone. The specific flow conditions are:

Ms =799, Re,, = pt Uk rk/ux = 33,449

pt =4 x 105 Pa, T} = 750 K

v =14, Pr=0.72, R* = 286.94 Nm/kgK

Free-stream unit Reynolds number: Re} = 8.78 x 10% m™!

Blunt cone half angle: 8§ = 7°, zero flow angle of attack.

Parameters in Sutherland’s viscosity law: 17 = 288 K, T; = 110.33 K,
pr = 0.17894 x 10~ kg/ms,

where p; and T} are total pressure and total temperature respectively. The body surface is a no-slip and
adiabatic wall for the steady base flow solution.

As stated earlier in this paper, three cases of different nose radii are considered. The nose radii are the
same as those considered in Rosenboom et al. (1999), i.e.,

Case A: 7}, =3.81x 10 3m
Case B: r* = 1.778 x 10 2 m
Case C: r* =4.2672x 102 m

*
n
*
n

Meanwhile, all other parameters, such as freestream flow conditions, cone half angle, and surface boundary
conditions, are the same for these three cases.
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IV. FREE-STREAM FORCING WAVES

Free-stream acoustic disturbances are imposed in freestream to start the receptivity simulation. The
free-stream perturbations of an arbitrary flow variable can be written in the following form:

15
Goo(@,y,t) = |q'| Y Ay el e 0ton] @)
n=1

where ¢y is the phase velocity in the free stream, and ¢ represents any of the flow variables. In the equations
above, |¢'| A, is the free-stream wave amplitude of a given flow variable ¢ at the n-th frequency of

Wn = nuw (n=1,2,---,15) (3)

where w; is the minimum frequency of the wave packet. The minimum frequency w; is chosen such that
the frequencies span the dominant second-mode frequencies calculated by LST. Since the wave components
of different frequencies are linearly independent, the initial phase angles, ¢,,, of the forcing acoustic wave
at frequency w,, are chosen randomly. The forcing frequencies can also be represented by a dimensionless
frequency F,, defined by

* ok
wpV
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(4)

For fast acoustic waves in the free stream, perturbation amplitudes of nondimensional flow variables
satisfy the following dispersion relations:

|pl|oo |pl|oo/'7 = |Ul|ooMoo = eMy (5)
|s'lc = 0]ec =0 (6)

where € is a dimensionless number representing the total amplitude of the group of 15 free-stream fast
acoustic waves. In this paper, only linear receptivity is considered by using a very small value of e.

V. STEADY BASE FLOW SOLUTION

The steady base flow solution is obtained first by computing the flow without free-stream forcing waves.
In Zhong and Ma (2003), the steady base flow solutions of Case A was compared with those of Esfahanian &
Herbert (1991 & 1993) and the experimental results of Stetson et al. We will mainly present the comparison
of the effects of the nose radius on the steady base flow solutions here.

Figures 1 and 2 compare the steady pressure and temperature distributions along the cone surface among
the three cases of different nose radii. Figure 1 shows that, for all three cases, the maximum wall pressure is
reached at the stagnation point. The surface pressure drops sharply as flow expands around the nose region.
Because of the discontinuity in surface curvatures at the junction of the spherical nose and straight cone
afterward, the flow experiences an over-expansion at the junction and goes through a recompression along
the cone surface afterward. As a result, there is adverse pressure gradient along the surface locations after
the junction. Further downstream, the surface pressure approaches a constant value. The size of the region
of the pressure drop and increase is proportional to the nose radius r,,.

Figure 2 shows that the nose radius also affects the wall temperature distribution. The maximum steady
adiabatic wall temperature is reached at the stagnation point. The temperature drops gradually as s increases
along the surface. At larger r,, the wall temperature drops off at a much slower rate than that of smaller
Thn-

The distributions of Mach number at locations immediately behind the bow shock are shown in Fig. 3.
The flow is subsonic in the stagnation region. The Mach number increases to a constant as s increases. At
larger r,,, the Mach number grows at a slower rate.
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The main effect of the nose bluntness is the reduction of local Reynolds numbers in the mean flow due
the existence of the entropy layer. Figures 4 to 6 show the Mach number contours for the three cases of
different r,, with the same dimensional length in the z direction. In Case A of smallest r,, the bow shock
is very close to the cone surface. The boundary layer is very thin. On the other hand, for Case C of larger
nose bluntness, the shock standoff distance is much larger. At the same time, the boundary layer is much
thicker. This is an indication that the local Reynolds numbers of Case C are much lower than those of Case
A.

The effect of nose bluntness on the steady base flow is shown in the tangential velocity profiles across the
boundary layers at a fixed surface location of s* = 1.035m, as shown in Fig. 7. The figure shows that the
velocity of Case A has a thin boundary layer near the surface. On the other hand, Case B and C have much
thicker boundary layers. The velocities of Case C are lower than those of Case A. Figure 8 shows similar
profiles of temperatures across the boundary layer at the same s* = 1.035m location. Again, the entropy
layer for cases of larger r, results in much thicker boundary layers.

The entropy layer can be characterized by by means of a parameter, p5+. Figure 9 plots the p";ﬂ profiles
at the surface location of s* = 1.035m. Again, at this surface station, é"ases A of smallest r, sﬁ"ows very
little effect of entropy layer, while the profile of Case C is substantially different due to the influence of the
entropy layer.

dug

VI. Linear Stability Characteristics for Case A

The linear stability analysis has been done for Case A by many authors, as well as by Zhong and Ma
(2003). The linear stability properties for Case B and Case C have been reported by Rosenboom et al.
(1999). In addition, the results of a linear stability analysis can be used to identify the main components
of boundary-layer disturbances from the results of numerical simulations of receptivity. In LST, a local
Reynolds number, R, based on the length scale of the boundary-layer thickness is used:

* * L*
R % 7 (7)
Moo
where L* is the length scale of the boundary-layer thickness defined as
L* — /"L(x)s , (8)

k *
Poolloo

where s* is the natural surface coordinate defined as the curve length along the wall surface measuring from
the nose.

The LST is based on the normal mode analysis under a local parallel flow assumption. Specifically, the
linear fluctuations of flow variables are decomposed into the following normal mode form:

ql — qA(yn) ei (—wttas) , (9)

where ¢(y,,) is the complex amplitudes of the disturbances, n and s are the local natural coordinates along
the wall-normal and surface directions respectively, a = a,. + i, is the streamwise complex wave number.
The variable ¢ stands for any of the independent flow variables. In a spatial linear stability analysis, for
a given real frequency w, complex parameter o and complex function §(y) are obtained as an eigenvalue
and eigenfunction of the stability equations. The real and imaginary parts of a, a, and «;, represent the
spatial wave number and growth rate of a wave mode respectively. A linear wave mode is unstable when «;
is negative. The real part of the wave number «,. is related to phase velocity of a wave mode by

107°F
g = W _10°FR : (10)
ar ay
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where a is the nondimensional phase velocity normalized by the free-stream velocity.

Figure 10 shows the distributions of the phase velocities (Eq. (10)) of three discrete modes, mode I, mode
IT and the Mack modes (including the first and the second modes), as functions of frequencies at s = 175
(0.667m) for Case A. The phase velocities of the fast acoustic wave (1 + 1/My), entropy/vorticity wave
(1), and slow acoustic wave (1 — 1/M,) are also shown in the figure for comparison. Both mode I and
mode II originate from the fast acoustic wave with an initial phase velocity of 1 + 1/M,. Before these two
modes become distinct modes, their eigenvalues merge with the fast acoustic spectrum branch. After these
two wave modes appear as discrete modes, their phase velocities decrease gradually with increasing w. As
a result, the phase-velocity differences between mode I (or mode II) and the fast acoustic waves become
larger as w increases. On the other hand, the first mode originates from the slow acoustic wave side with an
initial phase velocity close to 1 — 1/M,. Furthermore, the phase velocity curve of the first mode shows an
opposite trend when w increases. As w increases, the phase velocity of the first mode increases and intersects
with phase velocity curve of mode I at the location with w = 0.1825. After passing the intersection point,
the first mode convert to the second mode. As it was shown in our previous study (Ma and Zhong 2003a),
the first mode and the second mode identified by Mack are in fact different sections of a single wave mode,
which is confirmed in in phase velocity curve shown in Fig. 10 and growth rate curve shown in Fig. 11.
Therefore, both the first and the second Mack mode are simply called Mack modes in order to be consistent
with Mack’s generally accepted terminology. In the vicinity of the intersection point between mode I and
the first mode, the phase velocity of the first mode drops a little, and phase velocity of the Mack modes
increases again after it clearly becomes the second mode. Similarly, Mode II eventually intersect with the
Mack mode at a high frequency.

In the receptivity study, we are more interested in the resonant interaction between mode I and the
firs mode. At the intersection point between mode I and the first mode (w = 0.1825 for s = 175), mode
I is synchronized with the Mack mode because the two modes have the same frequency, phase velocity
and wave number. Therefore, there is a resonant interaction between mode I and the Mack mode near this
intersection location. In addition, both modes have very similar profiles of perturbation eigenfunctions across
the boundary layer at this location. The only exception is that the two modes have different growth rates
(a;). Here, the growth rates of the Mack modes at the same station for Case A are compared with those of
other boundary-layer normal modes in Fig. 11. While the growth rates of the Mack modes are continuous,
there are gaps in the growth rate curves for mode I and mode II. The figure shows that both mode I and
mode II are always stable. When they initially appear at relatively low frequency, these two modes are close
to neutrally stable with zero growth rates. As w increases, their growth rates are always on the stable side
and rapidly become more stable. On the other hand, the Mack modes are unstable in multiple regions of
different frequencies. The Mack modes are slightly unstable in the range of w between 0.0485 and 0.126
(33.1kHz < f* < 86.1kHz). The Mack mode in this range is the conventional first mode identified by Mack
(1984). In the range of w between 0.171 and 0.243 (116.7kHz < f* < 165.9kH z), the unstable Mack modes
are the conventional second mode identified by Mack. In this range, the growth rates of the second mode
increases to a peak and decays afterward. The second Mack mode has the largest growth rate at w = 0.198
(f* = 135kHz),s = 175 (0.667m).

Another important characteristic of boundary-layer instability modes is the neutral stability curve for
frequencies versus Reynolds numbers. The current results on neutral stability curve for Case A are compared
with that of Malik (1990) in Fig. 12. Dimensional frequencies f* are used in the figure because the
experimental results were presented using dimensional frequencies. The dimensional frequencies can be
converted easily to dimensionless frequencies F' by using Eq. (4). The synchronization locations between
mode I and the Mack modes are also plotted in the same figure because the synchronization locations between
mode I and the Mack modes play an important role in the receptivity process (Ma & Zhong 2002, 2003a,
2003b). There are two peaks in the neutral stability curve. The first peak with lower frequencies (lower
than 100 kHz) is for the first Mack mode instability, while the second peak with higher frequencies (higher
than 100 kHz) is for the second mode instability. Based on the current results, the critical local Reynolds
number (R) for the onset of the boundary-layer instability is the second mode instability at the surface
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location of 1580, which corresponds to s = 75 (0.286m) and x = 72.5 (0.276m). This critical value is very
close to Malik’s result R = 1540 for s = 70.9 (0.270m) and xz = 68.8 (0.262m). Below this critical Reynolds
number, all boundary-layer wave modes are stable. The first unstable two-dimensional first mode appear at
R = 2270, which corresponds to the s = 154 (0.587m)surface station. Figure 12 also shows that both the
first and the second modes are stable when frequencies are higher than 180 Khz.

VII. RECEPTIVITY TO FREE-STREAM NOISE

The receptivity to free-stream fast acoustic waves for the three cases is studied by numerical simula-
tion. The free-stream forcing waves are a mixture of 15 independent planar fast acoustic waves of different
frequencies, i.e.,

o= nft (n=1,2,---,N;N = 15) (11)
where the lowest frequencies are f; = 14.92kHz (Case A), 5.799kH 2z (Case B), and 3.323kHz (Case C),
respectively. As shown in Rosenboom et al.’s LST results, the most unstable frequencies for the first and
second modes decrease when r,, increases. The frequency range used in the current simulation for the three
cases are chosen in order to cover the most unstable frequencies according to Rosenboom et al.’s LST results.

The relative wave amplitudes among different frequencies in the free stream are set to be the same. The
phase angles of the free-stream forcing waves of the 15 frequencies given by Eq. (2) are chosen randomly.
The 15 sets of wave frequencies used in the three cases of receptivity simulation are listed in Table 1. The
overall free-stream wave amplitude used in the simulation is € = 1.0 x 10~*, which is small enough that the
receptivity process falls in the linear regime.

Table 1. Forcing acoustic wave components of 15 frequencies in the free stream for Case A, B, and C.

Case A (r} =3.81mm) | Case B (r} =17.78 mm) | Case C (r} = 42.672mm)
n f* (kHz) F, n  f: (kHz) F, n  f: (kHz) F,

1 1492 9.035 1 5.799 3.512 1 3.323 2.012
2 29.84 18.07 2 11.60 7.023 2 6.646 4.024
3 4477 27.11 3 1740 10.53 3 9.969 6.036
4 59.68 36.14 4 23.20 14.05 4 13.29 8.049
5 7461 45.18 5 29.00 17.56 5 16.62 10.06
6 84.53 54.21 6 34.80 21.07 6 19.94 12.07
7 104.5 63.25 7 40.60 24.58 7 23.26 14.08
8 1194 72.28 8 46.40 28.09 8 26.58 16.10
9 1343 81.31 9 52.19 31.60 9 2991 18.11
10 149.2 90.35 10 57.99 35.12 10 33.23 20.12
11 164.1 99.39 11 63.79 38.63 11 36.55 22.13
12 179.1 108.4 12 69.59 42.14 12 39.87 24.15
13 194.0 117.5 13 75.39 45.65 13 43.20 26.16
14 208.9 126.5 14 81.19 49.16 14 46.52 28.17
15 223.8 135.5 15 86.99 52.67 15 49.85 30.18

The unsteady calculations are carried out until the solutions reach a periodic state in time. Temporal
Fourier analysis is then carried out on the local perturbations of unsteady flow variables. A Fourier transform
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for the perturbation field of an arbitrary flow variable ¢ leads to:

N
q'(:z:, y,t) — %{Z |Qn($; y)l el [—nw1t+¢n(z7y)]} , (12)
n=0

where nw; is the frequency of the n-th wave mode, ¢'(z,y,t) represents an arbitrary perturbation variable.
The Fourier transformed variables, |¢,(z,y)| and ¢,(x,y), are spatially varying real variables representing
the local perturbation amplitudes and phase angles at the wave frequency of nw.

Case A (r} =3.81 x 1073 m)

Figure 13 shows the distributions of amplitudes of the pressure perturbations, |pn(z,y)|, for the 15 forcing
frequencies along the cone surface for Case A. The dimensionless x coordinates are nondimensionalized by
the nose radius of ¥ = 3.81 x 1072 m. Each line in these figures represents one of the 15 frequencies given
by Eq. (11). These figures show that the receptivity process leads to complex induced wave structures in
the boundary layer. The wave structures are different for different frequencies. For perturbations at a fixed
frequency, the disturbance wave structures are also different at different sections of the cone surface. The
figure shows that there is strong amplitude growth near the exit of current computational domain for the
three frequencies of n = 7,8,9 although there is oscillation in amplitudes caused by modulation between
different waves.

In (Zhong and Ma 2003), the results of the LST were used to identify different dominant wave modes
induced in the boundary layer by the free-stream fast acoustic waves. For the development of wave com-
ponents at a relatively low frequency of 74.61 kHz (n = 5 and F = 45.2), the amplitudes of the induced
pressure disturbances in the boundary layer increase initially until reaching a peak located approximately at
the station of x = 109.2 (0.416m). After a decay between the stations of z = 109.2 and z = 200 (0.762m),
the disturbances at this frequency begin to grow and decay again. It was shown that mode I waves, other
than the Mack mode waves, are generated inside the boundary layer at this frequency. This is a natural
consequence of the fact that mode I waves are synchronized with the forcing fast acoustic waves in the nose
region. The wave synchronization results in resonant interaction between mode I and the forcing acoustic
waves, which leads to generation and amplification of mode I waves in the boundary layer.

On the other hand, for a higher frequency of 119.4 kHz (n = 8 and F' = 72.3), Fig. 13 shows that the
amplitudes of the induced disturbances in the boundary layer increase initially, reach a peak approximately
at the surface station of 30 nose radii (0.114m), and decay afterward. In the following region between
the surface station of 65 nose radii (0.248) to approximately 190 nose radii (0.724), the amplitudes of the
disturbance waves stay at an approximately constant level with slight fluctuations. The wave amplitudes
increase dramatically in the region downstream of the surface station at s = 192 (0.732m). It was shown
in (Zhong and Ma 2003) that mode I waves are generated by their resonant interactions with the forcing
fast acoustic waves near the nose. In the downstream region of x > 200 (0.762m), the boundary-layer
disturbances at the frequency of n = 8 are strongly amplified. The induced perturbations at this frequency
in the boundary layer are dominantly the unstable second Mack mode at this surface location. It was shown
by Zhong and Ma (2003) that the second mode is generated by its resonant interactions with the mode I
waves, which in turn are generated by the forcing fast acoustic waves in the nose region through separate
resonant interactions. The resonant interaction mechanism also explains the fact that the second Mack mode
is not generated in the boundary layer before the synchronization point between mode I and the second mode
(z =192, 0.731m), even though the second Mack mode becomes unstable at the earlier surface stations of
the 143.4 nose radii (0.546m).

Case B (r} = 1.778 x 1072 m)

Figures 14 to 17 show the distributions of amplitudes of the pressure perturbations, |p,(z,y)|, for the 15
forcing frequencies along the cone surface for Case B.
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Figures 14 and 15 show the amplitude development along the cone surface for the first group of seven
lowest frequencies, ranging from 4.80 kHz to 40.6 kHz (n = 1,---,7 in Table 1). The figures show that the
amplitude distributions are relatively smooth, which is an indication that the perturbations are dominated by
a single wave mode. The induced waves demonstrate growth in amplitudes. For example, for the frequency
of n = 3 (17.4kHz), the wave amplitudes start to grow at s* = 0.2m. The amplitudes reach a peak at
s* = 4.4m, and start to decay afterward. As the frequency increases, the length of growth region is reduced.
The growth patterns at these frequencies for Case B are same as those of n = 5 (74.61kH z) for Case A (Fig.
13). As demonstrated in (Zhong and Ma 2003), this amplitude growth is a results of the resonant interaction
between the forcing acoustic waves and the stable mode I wave. The maximum growth in amplitudes are
relatively small compared to the second Mack mode growth at higher frequencies.

Figure 16 shows the amplitude development along the cone surface for the next group of two frequencies
at n = 8,9 (Table 2). The two frequencies are 46.4 kHz and 52.2 kHz respectively. There is a strong
amplitude growth near the exit of current computational domain for these two frequencies, although there
are oscillations in amplitudes caused by modulation between different waves. Again, this wave pattern is
the same as the second mode growth pattern for Case A. As shown in (Zhong and Ma 2003), the growth of
the second mode is a result of a two step receptivity mechanisms. The forcing acoustic waves excite mode I
wave near the nose region. The induced mode I in turn excite the second Mack mode by resonant interaction
at a downstream location. For the frequency of n = 8 for Case B, the second mode begins to grow at
approximately z* = 5m, while the second mode starts to grow when z* > 4m for n = 9. On the other hand,
for n = 9 of Case A of smaller r,, the second mode starts to grow when z* = 200 % r,, = 0.762m, which
much upstream of the instability locations for Case B. Therefore, the increase of r,, leads to a significant
downstream shift of the onset location of the second mode in the receptivity process. This finding is consistent
with the LST results of Rosenboom et al. (1999).

Figure 17 shows that there are very strong oscillations in amplitude development along the cone surface
for three highest frequencies with n = 10,11, 12. There is no second mode excitation at these high frequencies.

Case C (r} =4.2672 x 1072 m)

Figures 18 to 20 show the distributions of amplitudes of the pressure perturbations, |p,(z,y)|, for the 15
forcing frequencies along the cone surface for Case C. These figures show that the amplitude growth starts
in the region near the nose. The locations of initial amplitude growth are not sensitive to the change in
frequency. The amplitude reaches a peak at a downstream location and then decays afterward.

For example, for the frequency of n = 5 (16.6kHz), the wave amplitudes start to grow at s* = 0.2m.
The amplitude growth reaches a peak at s* = 3m. As the frequency increases, the length of growth region
is reduced. Again, the growth properties at these frequencies for Case C are the same as the mode I growth
for Case A. As demonstrated in (Zhong and Ma 2003), this growth is a results of the resonant interaction
between the forcing acoustic waves and the stable mode I wave. The maximum growth in amplitudes are
small compared to the second Mack mode growth at higher frequencies. The figures also show that after the
decay of mode I waves, there are strong modulation of waves in the results. The second mode instability
cannot be observed in the results because the total length of the computational domain is not longer enough
for Case C. It is expected that the second mode instability will be excited at surface location still further
downstream, if the receptivity simulation was carried out to further downstream. Again, the increase in r,
results in significant delay in the onset of the second mode excitation in the receptivity process. No reversal
in the onset of instability induced by the receptivity process can be observed in the simulation results of the
three cases considered in this paper.

VIII. CONCLUSIONS

The effect of nose bluntness on the receptivity of Mach 7.99 flow over a 7° half-angle blunt cone, corre-
sponding to Stetson et al.’s boundary-layer stability experiments, has been studied by numerical simulation.
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Three cases of different nose radii, including both “small” and “large” bluntness, have been considered.

The steady flow solutions of the full Navier-Stokes equations show that the nose bluntness leads to a
thicker boundary layer near the nose region. In addition, the region influenced by the entropy layer becomes
longer as the noise radius increases.

The receptivity to free-stream fast acoustic waves is subsequently investigated by numerical simulation.
It is found that the basic receptivity mechanisms of the current axisymmetric hypersonic flow over a blunt
cone with three nose radii are essentially the same. Specifically, the receptivity is caused by the resonant
interaction between the forcing waves and a boundary-layer wave mode (mode I) near the leading edge, and
the resonant interaction between the induced stable boundary-layer wave mode (mode I) and the secodn
Mack mode in a downstream location. When the nose radius is increased, the location of the initial excitation
of the second instability mode always moves downstream. No instability reversal is observed as the nose
radius is increased. In order to understand the cause of transition reversal phenomenon, further studies are
necessary to investigate the nose bluntness effects under other factors, including receptivity to the different
forcing waves, surface roughness, larger nose bluntness, three-dimensional waves, and nonlinear interaction.
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Figure 4. Contours 0¥ Mach number for Case A of
i = 3.81 x 1073 m.
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Figure 18. Amplitude of pressure p)él(r{]zlrbations for
Case C (fy =nf, where ff =3.32kHz).
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Figure 20. Amplitude of pressure p)e(el(T?_lrbations for
Case C (f =nfy, where f¥ =3.32kHz).
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