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The linear stability of Mach 7.99 flow over a 7° half-angle blunt cone, which corresponds
to Stetson et al.’s (AIAA paper 84-0006) boundary-layer stability experiments, is studied
in this paper by comparing the results of numerical simulation, experiments, and linear
stability analysis (LST). The receptivity to wall blowing/suction at three different surface
locations is used to excite the second mode instability waves in the numerical simulation of
the full Navier-Stokes equations. The purpose of this study is to evaluate the long-standing
disagreement on the second-mode growth rates between Stetson’s experimental results and
those predicted by the linear stability theory (LST). The validation of the accuracy of
LST and numerical simulation is of practical significance because LST calculations are the
foundation of the e" transition prediction method. In addition, the code validation studies
are important because numerical simulation has become a powerful tool in studying high
speed boundary layer stability and transition It is found that the second-mode growth
rates and wave numbers of LST agree well with those computed by numerical simulation.
The experimental second-mode amplitude growth ratios, NV factors, and growth rates agree
reasonably well with those of the simulation in the “linear growth region” of 195 < s < 215 for
frequencies near the peak second mode instability. It is concluded that the simulation and
LST are accurate in predicting second mode growth in the current hypersonic boundary
layer flows. The receptivity simulation results also show that strong excitation of the
second mode can occur only when the blowing/suction slot is located upstream of the
synchronization location between the stable mode I and the second mode.

I. INTRODUCTION

The prediction of laminar-turbulent transition in hypersonic boundary layers is a critical part of the
aerodynamic heating analyses on hypersonic vehicles. Despite decades of extensive research, the prediction
of hypersonic boundary-layer transition is still based on mostly empirical correlation methods or the semi-
empirical e” method. Most of our current knowledge on hypersonic boundary-layer stability and transition
is based on the results of linear stability theory (LST),! which concerns with the linear growth or decay
of boundary-layer normal modes. Mack! showed that the stability characteristics of high supersonic and
hypersonic boundary layers are very different from those of subsonic boundary layers. He found that,
in addition to the first-mode instability waves, there are higher acoustic instability modes in hypersonic
boundary layers. Among the instability wave modes in hypersonic boundary layers, the second mode becomes

*Professor, Mechanical and Aerospace Engineering Department, Associate Fellow ATAA. E-mail: xiaolin@ucla.edu.
Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free
license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the
copyright owner.

1 of 18

American Institute of Aeronautics and Astronautics Paper 2004-2244

Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



the dominant instability at hypersonic Mach numbers. The second mode instability is particularly important
for practical hypersonic flight applications where the free-stream disturbances are often very weak. Under
such conditions, the by-pass transition is not likely, and the second mode instability is a dominating instability
before the transition of the boundary layers. The existence and dominance of the second mode instability in
hypersonic boundary layers has been observed in boundary-layer stability experiments for hypersonic flows
over sharp or blunt cones.?®

The LST analysis is the foundation of the e” method for boundary-layer transition prediction, which
assumes that the transition is a result of linear exponential growth of the most unstable normal mode. For
supersonic and hypersonic boundary layers, the most unstable mode is the first Mack mode at relatively low
Mach numbers and the second Mack mode at Mach numbers higher than about 4. The transition criteria
used in the e method are established based on the evaluation of a N factor which is defined as, log(ﬁ),

where A/A,.¢ is the ratio of the wave amplitudes of the most unstable mode. The value of N can be
computed by LST. Transition is assumed to take place when N is larger than a certain empirical value. The
e™ transition prediction based on the normal-mode instability analyses works well for flow in a relatively quiet
environment, where transition is not caused by transient growth or other by-pass transition mechanisms.
The success of the e™ method depends on, among other factors, the conditions that the transition is caused
by the linear growth of the most unstable mode and the growth rates of the most unstable mode can be
accurately predicted by LST. In addition, the e™ method also has a drawback that the initial generation
of the unstable modes, which is the subject of a receptivity study, is not considered. Because the wave
growth and transition in boundary layers depend on the initial amplitudes of the wave modes, €™ transition
prediction methods without the consideration of the forcing disturbances and the subsequent wave mode
generation by the receptivity processes are not satisfactory.

The experimental validation of the LST and the numerical simulation based on the full Navier-Stokes
equations results on the second mode instability for hypersonic boundary layers are the subject of this papers.
For hypersonic boundary layers, there are not many available stability experiments which can be used for
the validation purpose. NATO RTO Working Group 10 on Boundary Layer Transition” identified three best
available stability experiments for CFD code validation on hypersonic boundary layer transition. One of
these cases that has been extensively studied by LST is the Mach 7.99 blunt cone experiment by Stetson
et al.»% Stetson et al. carried out boundary-layer stability experiments on an axisymmetric blunt cone in a
Mach 7.99 free stream (Fig. 1). The half angle of the cone was 7°, the nose radius was 3.81 x 10~3m, and
the free-stream Reynolds number based on the nose radius was 33,449. The total length of the cone was
about 270 nose radii, corresponding to a Reynolds number of about 9 millions. Detailed fluctuation spectra
of the disturbance waves developing along the body surface were measured in the experiments. It was found
that the disturbances in the boundary layer were dominated by the second mode instability. Significant
super harmonic components of the second modes were observed after the second mode became dominant.
Compared with similar hypersonic flow over a sharp cone, the second mode instability of the blunt cone
appeared in much further downstream locations. This indicates a stabilization of the boundary layer by
slight nose bluntness. Stetson et al. also found evidence of entropy-layer instability in the region outside the
boundary layer in a test case of larger nose radius.

In addition to Stetson’s work, only a few stability experiments of hypersonic flows over sharp or blunt
cones have been carried out by other researchers. Kendall measured boundary layer stability for supersonic
and hypersonic flow over a flat plate for Mach numbers between 1.6 and 8.5.28 Demetriades®? did extensive
stability experiments on hypersonic boundary layers over axisymmetric cones. Chokani and his colleagues
did stability measurements on Mach 6 flow over a flared cone in a quiet tunnel. '! Recently, Maslov and
his colleagues® conducted their stability experiments on Mach 5.92 flow over sharp and blunt cones. Maslov
et al. measured the fluctuation spectra of the disturbance waves in the boundary layer.

The normal-mode linear stability characteristics of the boundary-layer flow over the blunt cone of Stetson
et al.’s experiments have been studied by a number of researchers.!>29 Malik et al.!?> computed the neutral
stability curve and compared the growth rates obtained by LST with the experimental results. The steady
base flow solution was computed by using the parabolized Navier-Stokes equations. They found that the
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nose bluntness stabilizes the boundary layer second mode. The growth rates of the first and second modes
predicted by the LST were compared with Stetson et al.’s experimental results at the surface location of
s = 175 and s = 215 nose radii. The linear stability analyses predicted slightly lower frequency for the
dominant second mode, but about 60% higher in the peak amplification rate than the experimental results.
Esfahanian and Herbert!® conducted similar base flow and LST calculations for the same flow by using a
much finer grid resolution. Their LST results at the same s = 175 surface station agree reasonably well with
those of Malik et al. In a separate study, Kufner et al.'* 15 did extensive LST calculations for the same flow
over the blunt cone. Further LST calculations for the same flow have also been carried out, using various
numerical methods, by Rosenboom et al.,'8 Zhong and Ma,'® 1 and Lyttle et al.?° Figure 2 was obtained
by Zhong and Ma'®!® compares the second mode growth rates predicted by the LST and by experiments
of Stetson et al. The figure shows that there are only small variations in the LST growth rates obtained
independently by these different group of authors. The small variations among these different sets of LST
growth rates are possibly caused by differences in their mean flow solutions and slight differences in their
freestream flow conditions. However, all LST results consistently predicted much higher growth rates than
those of the stability experiments at the 175 nose radii surface station. It was speculated that the discrepancy
is a result of the nonlinear effects in the experimental wave fields because there are significant super harmonic
components in the experimental results. On the other hand, the nonlinear effects are neglected in the linear
stability analysis.

For the purpose of CFD code validation, Schneider published additional stability experimental results
of Stetson’s 1984 experiment for the same blunt cone. He compared the amplification ratios, instead of
growth rates, of the new published Stetson’s experimental data with the LST results computed by Kufner.
The region of the comparison was chosen to be between surface stations of 215 and 195 nose radii. He
argued that this region is best for comparison with linear stability results because the second harmonics in
the experimental results are not very significant while the instability modes are clearly above the background
noise in the experimental results. He found much better agreement between the LST and the experimental
results (within 10% percent). It is believed that the poor agreement in the s = 175 surface station is caused
by fact that the instability wave signal is contaminated by the relatively high background noise.

Lyttle et al.” did further LST calculations to compare with the Stetson’s experimental results on the
linear-growth region (195 < s < 215) in the experimental results. Since the experiments did not have perfect
adiabatic wall, they also investigated the effects of wall cooling on the LST comparisons. Figure 10 of Lyttle
et. al.?% shows that the peak N factor between 215 and 195 surface stations predicted by their LST agree
reasonably well with those of the Stetson’s experiments. The amplification rates were not compared in the
“linear-growth region”. They concluded that the traditional experimental-LST disagreement in growth rates
at s = 175 may be due to insufficient amplification of the experimentally-measured disturbances. These
comparisons are promising in showing the validity of the LST calculations. But the comparisons are limited
because of the limited experimental results available. Numerical simulation of the Navier-Stokes equations
for hypersonic boundary instability, on the other hand, can fill the gap between LST and experimental
results because complex physical effects and interactions neglected by theoretical analyses are taken into
account in a numerical simulation of the full Navier-Stokes equations. In addition, numerical simulation
can provide large amount of additional flow information which are useful not only for understanding new
hypersonic boundary stability mechanisms, but also for evaluating the accuracy of LST results for hypersonic
boundary-layer stability.

Therefore, the objective of this paper is to conduct a numerical simulation study of the second mode
instability of the Mach 7.99 flow over Stetson’s blunt cone. The simulation results are compared with both
LST and experimental results. The focus is on the second mode growth and comparison. In the numerical
simulation, the second mode waves are induced by imposing a blowing/suction in a narrow surface section.
The growth rates, wave numbers, wave speeds,and N factors are compared with the LST and experimental
results. The LST calculations in this paper are carried out by using a new axisymmetric LST code developed

17,21

by Zhong and Ma " to study the linear stability properties of the axisymmetric boundary layer.
The current study follows previous studies by the author on the freestream receptivity of the same
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hypersonic flow over the blunt cone.'®1° Zhong and Ma'®!? conducted a numerical study on the receptivity

to free-stream acoustic waves for same Stetson’s hypersonic flow with the effects of nose bluntness and the
entropy layer. In the numerical simulation, both steady and unsteady flow fields between the bow shock
and the boundary layer are numerically simulated by using a high-order shock-fitting scheme,?? which has
been extensively tested for its accuracy in accounting for the effects of bow-shock/free-stream-disturbance
interactions in a transient flow computations. The effects of nose bluntness, entropy layer, shock-disturbance
interaction, non-parallel boundary layers and surface curvature on the receptivity process are accurately taken
into account by the high-order shock-fitting scheme. It was found that the steady flow solution of the full
Navier-Stokes equations agrees very well with those computed by Esfahanian and Herbert!? by using the
thin-layer Navier-Stokes equations. In addition, the solution of Zhong and Ma agrees well with Stetson et
al.’s experimental results on surface pressures, bow shock locations, and tangential velocities outside the
boundary layer. Having obtained the steady base flow solution, the receptivity to free-stream fast acoustic
waves was investigated by numerical simulation. A total of 15 frequencies have been considered in the
freestream receptivity simulation. It was found that, similar to the flat plate boundary layer cases%’m, the
basic receptivity mechanisms of the current axisymmetric hypersonic flow over a blunt cone are resonant
interactions between the forcing waves and boundary-layer wave modes, and resonant interactions among
different boundary-layer wave modes. The validation study of this paper extends the previous receptivity
studies by investigating the second mode receptivity to wall blowing/suction by numerical simulations, and
by simulation-experiment-LST comparisons on the second mode growth.

II. EQUATIONS, NUMERICAL METHODS & FLOW CONDITIONS

Steady and unsteady axisymmetric hypersonic flow over a blunt cone are simulated by a fifth-order shock-
fitting scheme in computing the full Navier-Stokes equations. Since the same governing equations, physical
models, and numerical method used are the same as those of Zhong and Mals’w, the details of the governing
equations and numerical methods are not presented here.

In this paper, the flow variables are nondimensionalized using the free-stream conditions as characteristic
variables. Specifically, we nondimensionalize the flow velocities by the free-stream velocity UZ,, length scales
by L* which is either the nose radius 7}, or boundary layer thickness scale described later in the paper, density
by p%,, pressure by p% , temperature by T2, time by L* /UZ% , wave number by 1/L*, etc. The dimensionless
flow variables are denoted by the same dimensional notation but without the superscript “x«”.

The flow conditions for the test case studied in this paper are the same as those of Stetson et al.’s
experiments on air flow over a blunt cone. The specific flow conditions are:

M =799, Re,, = pi Usrk/us, = 33,449

p} =4 % 10% Pa, T} =750 K

v=14, Pr=0.72, R* = 286.94 Nm/kgK

Free-stream unit Reynolds number: Re) = 8.78 x 10% m™!

Blunt cone half angle: § = 7°, zero flow angle of attack.

Spherical nose radius: r} = 3.81 x 1073 m

Parameters in Sutherland’s viscosity law: 1,7 = 288 K, T} = 110.33 K,
pr =0.17894 x 10~ * kg/ms.

The body surface is a no-slip and adiabatic wall for the steady base flow solution. The total length of the
cone of the experimental model is [* = 1.016 m (267 nose radii). The simulation covers the entire flow field
from the nose to about 330 nose radii downstream. The origin of the Cartesian coordinate system, (z,y, 2),
is located at the center of the nose spherical cone, where the z coordinate points from left to the right in Fig.
1 along the the center line of the axisymmetric cone. In addition to z, a natural coordinate s is also used in
the experiment to measure the dimensionless curve length of a surface location started from the stagnation
point. The non-dimensional s and z, which are normalized by the nose radius 7}, are related to each other
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by the following relation:

o { —cos(s) (s < g —-0) (1)

(s — % +0)cosf —sind (s>

In the experiments of Stetson et al., the wall surface was close to, but not exactly, adiabatic. The actual
surface temperatures were about 10% to 20% lower than those of an adiabatic wall in the same free stream.
The stability and receptivity properties of hypersonic boundary layers are strongly affected by the changes of
surface temperatures. In this paper, only the case of an adiabatic wall for the steady base flow is considered.
The case of an adiabatic wall is chosen because most previous LST studies on the same flow were based on
the assumption of the adiabatic wall.

III. GENERAL LINEAR STABILITY PROPERTIES

The numerical simulations results are compared with LST results on second mode growth rates and wave
numbers. An axisymmetric LST computer code of Zhong and Ma'? is used for analyzing the linear stability
properties of axisymmetric compressible boundary layers in this paper. In the LST, a local Reynolds number,
R, based on the length scale of boundary-layer thickness is used:

* * *
Pootso L

R (2)
Koo
where L* is the length scale of boundary-layer thickness defined as
) 55"
L = 3
PooUoo )

where s* is the natural surface coordinate defined as the curve length along the wall surface measuring from
the nose. The nondimensional frequency w and wave number « are normalized by u}, and L* :

a = o'L* 4)
w = w'L*/ul, (5)

The forcing frequency is represented by a dimensionless frequency F' defined by

ko %

wv

F = 10° . 6
The dimensionless frequency F is related to w by
w = 107°FR (7)

For a given value of F' and surface location s, w can be computed by the equation above. The real part of
wave number «, is related to phase velocity of a wave mode by

107F
g = Y _WTFE )
o ar

where a is the nondimensional phase velocity normalized by the free-stream velocity.
The flow disturbances in the axisymmetric boundary-layer flow are represented by the perturbations of
instantaneous flow variables with respect to their local base flow solution. The LST is based on the normal
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mode analysis under a local parallel flow assumption. Specifically, the linear fluctuations of flow variables
are decomposed into the following normal mode form:

ql — (j(yn) ez’ (—wt+a s) (9)

where §(yp) is the complex amplitudes of the disturbances, y,, and s are the local natural coordinates along
the wall-normal and surface directions respectively, a = a, + ia;, is the streamwise complex wave number,
and w is the circular frequency. The variable ¢ stands for any of the independent flow variables u, v, w, p,
p (or T). In a spatial linear stability analysis, for a given frequency w, complex parameter o and complex
function ¢(y) are obtained as an eigenvalue and eigenfunction of the stability equations. For a spatial stability
problem, w is a real number while « is a complex wave number. The real and imaginary parts of a, o, and
a;, represent the spatial wave number and growth rate of a wave mode respectively. A linear wave mode is
unstable when q; is negative.

The general linear stability behavior of the current hypersonic boundary layer are shown in Figs. 2 to
4, which are obtained by our previous study.!® Figure 2 compares spatial growth rates for the current
axisymmetric Mach 7.99 flow at the surface station of s = 175. The experimental results of Stetson et al.,
and several other published LST results (Malik et al.,!?> Herbert & Esfahanian'®), are plotted in the same
figure for comparison. The figure shows that the current LST results on the second-mode growth rates
(100kHz < f* < 170kHz) compare well with the other LST results. The differences between the current
LST results and those of other authors are mainly caused by different steady base flow solutions used in
different LST computations. In this figure, the growth rates of the first mode in the current calculations are
for two-dimensional disturbances only, while those of Malik et al. are the most unstable oblique first mode.

The previous LST studies on the axisymmetric hypersonic boundary layer over Stetson’s blunt cone
mainly focused on the calculations of the growth rates of the unstable first and second Mack modes. Other
boundary-layer wave modes, which are always stable, have not been studied. In Ma and Zhong’s receptivity
study of Mach 4.5 boundary-layer flow over a flat pla,tezs_%, it was found that a family of other wave modes,
which are always stable in a linear stability analysis, play an important role in the receptivity process. They
were termed mode I, II, III, etc. Figure 3 shows the distributions of the phase velocities of three discrete
modes, mode I, mode IT and the Mack modes (including the first and the second modes), as functions of
frequencies at a fixed surface station of s = 175. The phase velocities of the fast acoustic wave (1 +1/M),
entropy/vorticity wave (1), and slow acoustic wave (1 — 1/M) are also shown in the figure for comparison.
Both mode I and mode II originate from the fast acoustic wave limit with an initial phase velocity of the fast
acoustic wave at 1 +1/M,. Before these two modes become distinct it was found that, at the intersection
point between mode I and the first mode (w = 0.1825 for s = 175), mode I is synchronized with the Mack
mode because the two modes have the same frequency, phase velocity and wave number. Therefore, there
is a resonant interaction between mode I and the Mack mode near this resonant interaction location. The
unstable region of the second mode is in the range of w between 0.171 and 0.243 (116.7kHz < f* < 165.9kH z)
of the Mack modes shown in the figure. In this range, the growth rates of the second mode increases to a
peak and decays afterward. The second Mack mode has the largest growth rate at w = 0.198 (f* = 135kH z2)
at the surface station of s = 175.

Fedorov and Khokhlov2® did a theoretical analysis of the receptivity of hypersonic boundary layers to
wall disturbances. They found that a strong excitation occurs in local regions where forcing is in resonance
with boundary layer normal waves. There is an extremely high receptivity to blowing/suction in the vicinity
of the synchronization point, which is marked in Fig. 3. In order to effectively excite the second mode,
the blowing/suction location needs to be before or near the synchronization point between mode I and the
second mode. The numerical simulation can be used to study the receptivity to wall disturbances in order
to validate Fedorov’s theory.

The neutral stability curve of the Mack modes computed by the current LST code is compared with that
of Malik et al.!? in Fig. 4. Dimensional frequencies f* are used in the figure because the experimental results
were presented using dimensional frequencies. The synchronization locations between mode I and the Mack
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modes are also plotted in the same figure. There are two peaks in the neutral stability curve. The first peak
with lower frequencies (lower than 100 kHz) is for the first Mack mode instability, while the second peak
with higher frequencies (higher than 100 kHz) is for the second mode instability. Overall, this figure shows
a reasonable agreement between the present result and Malik’s result in the neutral stability curve.

IV. SIMULATION OF RECEPTIVITY TO WALL BLOWING/SUCTION

In the simulation, the second mode instability waves in the boundary layer are induced by the blowing
and suction in a narrow surface strip in the upstream region of the surface. Since the wave fields in the
experiment contain a wide range of second-mode frequencies, we introduce, by surface blowing and suction,
disturbances of a mixture of number of frequencies near the dominant second mode waves in the simulation.
The subsequent receptivity and development of the instability waves at these frequencies are computed by
the numerical simulation. The specific formulas for surface blowing and suction in a narrow upstream range
are given by the perturbations to the wall normal velocity, i.e.,

N
vp(z,t) = esinfay,(x — zo)] Z Ay, cos(nwit + ¢p) (xo <z <11) (10)

n=0

where € is a small nondimensional number representing forcing disturbance amplitudes. The specific forcing
waves introduced by blowing and suction are a mixture of N = 15 independent frequencies, i.e.,

f;: = nff (n:1727"'7N;N:15) (11)
where the lowest frequency is f; = 14.92kHz (Fy = 9.04). The remaining 14 frequencies are multiples of f}
given by Eq. (11), where the highest frequency is f;5 = 223.8kHz (F15 = 135.5).

The distribution of the relative amplitudes of the free-stream waves among different frequencies is the same
as those used in the freestream receptivity study.'®!? Since the wave components of different frequencies
are linearly independent, the initial phase angles, ¢,, at frequency w,, = nw; are chosen randomly. The 15
sets of wave frequencies, relative amplitudes A,,, and phase angles used in the current receptivity simulation
are listed in Table 1.

Since the purpose is to study the linear stability of the boundary layer, € is chosen to be small enough so
that the boundary response to the forcing disturbances is linear. In the simulation, the overall forcing wave
amplitude used in the simulation is

e = 1077 (12)

which is small enough that the receptivity process falls in the linear regime. Consequently, the wave com-
ponents of 15 frequencies are independent, and they can be decomposed one from another by a temporal
Fourier analysis. In addition, because the forcing waves are linear, the use of normal velocity perturbations
on the surface does not introduce net mass flux into the flow field by the blowing/suction slot.

Although the steady base flow has an adiabatic wall with a zero temperature gradient on the wall, it has
been generally accepted that the temperature perturbations should be set to zero because of the relatively
high frequencies of the second mode. In the current study, zero temperature perturbation condition, T' = 0,
is used for both LST and for the unsteady flow simulation of full Navier-Stokes equations.

V. RESULTS

A. Three Cases of Receptivity to Wall Blowing/Suction

In the current study, a number of independent sets of simulations have been carried out for the case of
receptivity to wall blowing and suction. Each case uses the same flow conditions and the same forcing
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Table 1. Forcing acoustic wave components of 15 frequencies in the surface blowing/suction slot.

n fr(kHz) F, A, ¢n(radian) sgyn (Syn. Pt.)
1 14.92 9.035 0.7692 2.4635(-6)  12196.8
2 2084 18.07 0.4162 0.1600 3049.2
3 4477 27.11 0.2827 2.2149 1355.2
4  59.68 36.14  0.2065 4.1903 762.3

5 T74.61 45.18 0.1707 6.0510 487.8

6 84.53 54.21 0.1406 5.2671 338.8

7 104.5 63.25 0.1132 2.1070 248.9

8 1194 72.28 9.7164(-2) 5.7511 190.6

9 1343 81.31 0.1081 5.0005 150.6
10 149.2 90.35 9.0781(-2) 5.2319 122.0
11 164.1 99.39 7.7722(-2) 2.1679 100.8
12 179.1 108.4 5.8428(-2) 5.4738 84.7

13 194.0 117.5 5.0729(-2) 0.5649 72.2

14 208.9 126.5 7.6987(-2) 5.5812 62.2

15 223.8 135.5 5.7108(-2) 4.4043 54.2

strength and frequencies, except that the location of the blowing/suction strip (zo in Eq. (10)) is different.
The purpose is to investigate the effects of blowing/suction location on the receptivity of the second mode
to wall perturbations. The width of the blowing and suction strip is set to a constant of 2.5 nose radius for
all cases. Only the results of three representative cases are presented in this paper. The three cases are:

Case 1: ¢ = 100, Exit Location of Simulation: s = 327
Case 2: zy = 150, Exit Location of Simulation: s = 327
Case 3: zy = 210, Exit Location of Simulation: s = 327

As shown in Fig. 3, the synchronization point has a nondimensional frequency of w = 0.1825, a wave speed
of a = 0.916, and the corresponding wave number of o, = 0.19924. Though Fig. 3 is for the surface station
of 175 nose radius only, Ma and Zhong%’24 showed that the nondimensional phase speed as a function of w
is independent of frequency F and surface locations s. It is expected that Fig. 3 also applies to other surface
station. The synchronization locations s, are different for different frequencies. They can be computed
based on the fact that they correspond to w = 0.1825. The values of s,y for the 15 frequencies considered
in this paper have been computed and tabulated in Table 1.

The wave patterns in the flow field can be represented by contours of real or imaginary parts of the
velocity perturbations obtained by a temporal FFT analysis of the instantaneous simulation results. Figure
5 shows the contours of the real part of the velocity perturbations in the computational flow field for the
frequency of f* = 119.4kHz (n = 8). Ounly the early part of the computation domain is shown in the
figure in order to show more clearly the detail of the wave structure. The contours show the development of
perturbations of a fixed frequency starting from the blowing-and-suction region. The outer boundary of the
computational domain is the bow shock. The wave structures induced by the forcing is a typical of those of
the second mode instability waves.

Figures 6 to 8 show the distributions of amplitudes of pressure perturbations, |p,(z,y)|, for different
forcing frequencies along the cone surface. The pressure perturbation amplitudes, |p,(z,y)|, are obtained
by a temporal FFT calculation. Each line in these figures represents one of the 15 frequencies given by Eq.
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(11), where the value of n is marked on the lines in the figures. The frequency for a value of n can be found
in Table 1. In these figures, the relative amplitudes in the blowing/suction forcing waves for each frequency
are different because they are chosen be the same as a previous study.!’

These three figures show that, for all three cases, the receptivity to surface blowing/suction leads to the
clear development of unstable second mode for the three frequencies at n = 7,8, 9, varying from 104.5 kHz
to 134.3 kHz. The strong amplitude growth is consistent with the instability of the second mode shown in
Figs. 2 and 4.

On the other hand, for the frequency of 149.2 kHz (n = 10), the second mode excitation depends on
the blowing/suction locations. For Case 1 where the blowing/suction slot is located at an early station of
s = 100, Fig. 6 shows the amplitude growth of the second mode. However, when the blowing/suction slot
moves downstream to s = 150 and s = 210 for Case 2 and Case 3 respectively, Figs. 7 and 8 show no
clear development of instability waves in the boundary layer, even though the second mode is predicted to
be unstable by LST (Figs. 2 and 4). The simulations show a very consistent relation of the second mode
excitation with the surface blowing/suction location relative to the synchronization location shown in Fig. 3.
For the frequency of 149.2 kHz, Table 1 shows that the synchronization location is sy, = 122. The results
show that the second mode waves are strongly excited when the blowing/suction location is upstream of
Ssyn-

The effect of blowing/suction locations on the receptivity of the second mode can be shown more clearly
when the results of different blowing/suction location but with the same frequency are compared. Figures 9
to 12 compare the pressure perturbation amplitudes for the three cases of different blowing/suction locations
at four frequencies. For 104.5 kHz (n = 7), the blowing and suction locations for all three cases are upstream
of its synchronization location of sy, = 249. Figure 9 shows that the second mode are strongly excited for
all three blowing/suction locations. The results also show an interesting property that the amplitudes of
the second modes developed in the boundary layer are almost independent of the blowing/suction locations,
as long as they are upstream of s,y,. Figure 10 shows similar results for the frequency of 150.6 kHz
(n = 8), where the blowing/suction locations for the first two cases, but not the third case, are upstream
of sgyn = 150.6 for this frequency. Again, the first two cases induce the second mode of about the same
strength. The second mode excitation is not sensitive to the location of blowing/suction as long as it is
upstream of sgy,. On the other hand, the second mode magnitudes are almost an order of magnitude weaker
when the blowing/suction location is downstream of s,y,. Similar results of strong correlation between the
receptivity and the blowing/suction location relative to ssyn can also be observed for the frequency of 149.2
kHz (n = 10) and 164.1 kHz (n = 10) (Figs. 11 and 12). Figure 11 shows when the blowing/suction location
moves downstream of ssy,, the second mode excitation decreases rapidly. In the case of 164.1 kHz (Fig.
12), the second mode is developed when the blowing/suction location is upstream of sy as expected. The
second mode is not excited at all when the blowing/suction location is far downstream of the synchronization
location.

B. Simulation-Experiment-LST Comparison on Second Mode Instability

The simulation results show the excitation of strong unstable second mode when the blowing/suction location
is upstream of s, for frequencies in the range of 104 kHz to 149 kHz. The second mode excitation is not
sensitive to the location of blowing/suction as long as it is upstream of sy, In this section, the wave numbers,
growth rates, wave speeds, and N factors of the second mode computed by the receptivity simulations are
compared with LST and experimental results. In principle, the eigenfunctions obtained by the receptivity
simulations can also be compared with LST and experimental results. Since the eigenfunction comparison
has been done in our previous studies,'®!? the comparison of second-mode eigenfunction between the LST
and simulations are not repeated here. It was shown in Zhong and Ma!® that there is a very good agreement
between the second mode eigenfunctions obtained by simulation and predicted by LST. Such comparison
was used to identify the computed wave modes in the simulations.

The growth rates, wave numbers, phase velocities, and N factors can be extracted from the unsteady
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simulation results of each frequency by mean of a temporal Fourier transform. First, the unsteady calculations
are carried out until the solutions reach a periodic state in time. Temporal Fourier analysis is then carried
out on the local perturbations of unsteady flow variables. A Fourier transform for the perturbation field of
an arbitrary flow variable g leads to:

N
q'(@,y,t) = R{)Y_ lgn(x,y)| &'l mrtton(z ]y (13)
n=0

where nw; is the frequency of the n-th wave mode, ¢'(z,y,t) represents an arbitrary perturbation variable.
The Fourier transformed variables, |¢,(z,y)| and ¢,(z,y), are spatially varying real variables representing
the local perturbation amplitudes and phase angles at the wave frequency of nw;. For perturbations on
the body surface, we can compute local growth rate a;, wave number «,, and N factor from the numerical
perturbation fields by,

_ 1 dign]
§ T gl ds (14)
_ d¢n
Qr = E (15)
N = log(lgn(s)|/|an(sr)] (16)

where the derivatives are taken along the natural coordinate s along the body surface, and s, is the reference
surface station to take the amplitude ratios for N factor calculations. The phase velocity a can then be
calculated by using Eq. (8).

If the flow perturbations of the simulation results in a local region of the boundary layer are dominated
by a single wave mode (second mode), the parameters, a;., a; and N, computed by Eqs. (14) to (16) are the
wave numbers, growth rates, and N factors of this mode. In this case, «;, a,., and N are smooth functions of
s. On the other hand, if the simulation results contain simultaneously multiple wave modes in a local region
of the boundary layer, the parameters computed by Eqgs. (14) and (16) do not represent the wave numbers,
growth rates, and N factors of a single wave mode. Instead, these parameters represent a modulation of
two or more wave modes. As a result, the distributions of «;, o, and N along the surface direction will be
oscillatory functions of s. In this case, further decomposition of different wave components is required in
order to obtain the growth rates and wave numbers of the individual wave modes. Therefore it is expected
that the comparison will be good when the simulation shows a dominantly strong second mode.

Figure 13 compares the second mode growth rates at the surface station of s = 175. This is the station
where most previous LST calculations were compared with experimental results (Fig. 2). In the figure, the
LST results shown were computed by Zhong and Ma in an earlier paper.!® Two sets of experimental growth
rates of Stetson are plotted. The first set (labeled as Stetson’s Experiment II in the figure) is the growth rates
published in Stetson’s original 1984 paper.? The second set (Stetson’s Experiment I) are those calculated by
the current author based on the new published experimental results (Fig. 28 of Schneider’s review paper?!).
The growth rates of the current simulation of four frequencies (n = 8,9,10,11) are plotted in the figure.
These four frequencies show second mode excitation at this location in the simulation results. This figure
shows that the growth rates of the full Navier-Stokes simulation agree very well with the LST results. On
the other hand, the newly published experimental growth rates are much closer to those of the original LST
and experimental results. The new experimental results are about 8% and 14% different from the LST and
experimental results. The good agreement in wave numbers is also observed in second mode predicted by
LST and by Navier-Stokes simulation in Fig. 14 for the 175 surface station.

Schneider suggests that the region between 195 and 215 nose radius contains experimental results which
are better for linear stability comparison because the experimental results are linear and clearly above the
background noise. Figure 15 and 16 show both growth rate and wave number comparison for the surface
station of s = 215. Again, the numerical simulation results in both growth rates and wave numbers agree

10 of 18

American Institute of Aeronautics and Astronautics Paper 2004-2244



very well with those of LST. In addition, the experimental growth rates based on the newly published
results agree reasonably well with the LST and experimental results: 3% difference in wave number and 12%
difference in growth rate for the peak growth rate. This is a reasonable agreement considering the fact that
the wall surface is not perfectly adiabatical in the experiment.

Schneider!'” 2! suggested that the N factor or the amplitude ratio are better parameters for numerical-
experimental comparisons because they are surface integration of the growth rates. Schneider used the
surface station of s = 195 as a reference station to compare the amplitude ratio or the N factor in the
linear growth region of 195 < s < 215. In this paper, similar comparison is also done between the numerical
simulation, LST, and experimental results in the linear growth region. Figure 17 compares the amplitude
ratios (e = A/A,.;) at the surface station of s = 215, while the reference station is taken to be s = 195.
The LST results of Lyttle et al.2® are plotted for comparison. The figure shows a good agreement between
the simulation and the experimental results for the amplitude ratios. The agreement is particular good for
the frequencies of 119.4 (n = 8) and 134.3 kHz (n = 9). These two frequencies are among the most unstable
second modes at this surface station. The simulation results also agree reasonably well with the LST results
of Lyttle et al.

The variations of N factor as a function of s (at a fixed frequency) are also compared between the
experimental and simulation results. Figures 18 to 21 compare the N factor as a function of s for four
frequencies in the range of unstable second mode (104.5 kHz to 149.2 kHz). The figures show that for
the two frequencies of strongest second mode instability (Fig. 19 for 119.4 kHz and Fig. 20 134.3 kHz),
the experimental N factors agree very well with the simulation results in the “linear growth region” of
195 < s < 215. As expected, the agreement is not good when s is upstream of this region because the
background noise is too strong in the experimental results, while the agreement is not good when s is
downstream of this region because the nonlinear higher harmonics becomes significant in the experimental
results. In addition, the agreement is not good for the higher frequency of 149.2 kHz because the second
mode excitation is not very strong at this frequency. The experiment data at this frequency may be affected
by nonlinear effects.

Compared to the N factors, the growth rate is a more difficult parameter for numerical-experimental
comparison because it is the derivative of the N factors. The experimental and numerical results can be
easily affected by background noise or modulation by some other weak wave modes in the boundary layer.
Figures 22 and 23 compare the growth rates as a function of s at a fixed frequency for the two frequencies
of 119.4 kHz (n = 8) and 134.3 kHz (n = 9). The simulation results near the blowing/suction slots contain
multiple modes due to initial transients. As a results the growth rates computed by the simulation before the
second modes are dominant show strong oscillation. After the second mode becomes dominant, the growth
rates represent those of the second mode. Again the figures show that the growth rates in the “linear growth
region” around s = 200 are close to those of the simulation. The experimental growth rates away from this
region do not agree with the simulation because of background noise or nonlinear effects in the experimental
results.

The growth rates of LST (Zhong and Mal?) are also compared with simulation and experimental results
in Fig. 22 for the frequency of 119.4 kHz. The figure shows that the LST predicts the same peak second
mode location while under-predicting the peak growth rate amplitude by 5.6%. The difference is likely to be
caused by the parallel flow assumption used in the LST analysis. Nevertheless, the agreement is reasonably
good, considering the different models used in the two approaches. Figure 24 compares the second-mode
wave numbers of the same frequency between LST prediction and those computed for the three cases of wall
blowing/suction simulations. Once the second modes are excited in the simulation, the wave numbers of the
simulation agree very well with those of LST. A similar comparison can also be done by comparing the wave
speed between LST and the three cases of simulation. Figure 25 show that such a wave speed comparison
for frequency of 119.4 kHz. The wave speeds of both the second mode and a stable mode I are plotted in
the figure. The figure shows that the second modes are directly excited by wall blowing/suction. Once the
second mode is excited in the simulation, the wave speeds of the simulation agree very well with those of the
second mode predicted by LST.
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VI. CONCLUSIONS

The growth rates of Mach 7.99 flow over a 7° half-angle blunt cone corresponding to Stetson et al.’s
boundary-layer stability experiments have been studied in this paper by comparing results of numerical
simulation, experiments, and LST. The receptivity to the wall blowing/suction at three locations is used
to excite the second modes in the simulation. The objective of this study is to resolve the long standing
disagreements on the second mode growth rates between the experimental measurement and LST predictions.
The validation of the accuracy of LST and numerical simulation has practical significance because LST
calculations are the foundation of the e” transition prediction method. In addition, such validation studies
are also important because though numerical simulations have become a powerful tool in studying high speed
boundary layer transition, they have not been experimentally validated. Experimental validation for such
simulations is urgently needed.

The main conclusions of the current study are:

e The growth rates and wave numbers of LST agree very well with those computed by numerical sim-
ulation. For the case of 119 kHz, the LST predicts about the same peak second mode location while
under-predicting the peak growth rate amplitude by 5.6%. The difference is likely to be caused by the
parallel flow assumption used in the LST analysis.

e The experimental amplitude ratio, N factor, and growth rates agree reasonably well with those of
the simulation in the “linear growth region” of 195 < s < 215 for the frequencies near the peak
second-mode instability. As expected, the agreement is not good outside of the linear region due to
either the background noise being too strong or because the nonlinear effects become significant in the
experimental results. Therefore, the experimental results do agree reasonably well with the simulations
and LST results when the experimental results are in the linear region.

e Overall, the simulation and LST results are accurate in predicting second mode growth in the current
hypersonic boundary layer. LST used in the ™ method should be an accurate prediction tool for the
second instability in such boundary layers.

e The receptivity of the second mode to wall blowing/suction is also studied by simulations for the
effects of different blowing/suction locations on receptivity. The results show that second modes are
strongly excited when the blowing/suction slot is upstream of the synchronization point. The induced
second mode amplitudes are almost the same for different blowing/suction locations, as long as they
are upstream of the synchronization point. On the other hand, the second mode excitation becomes
substantially weaker when the blowing/suction location is downstream of the synchronization points.
As the location moves further downstream, the second mode excitation decreases rapidly. Therefore,
the synchronization location between stable mode I and the second mode plays an important role in
the receptivity process.
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