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ABSTRACT

In this paper, we study the receptivity mechanism
of a hypersonic boundary layer over a sharp wedge to
wall blowing/suction disturbances by using both lin-
ear stability theory(LST) and direct numerical simu-
lation(DNS). The work is firstly motivated by Fedorov
and Khokhlov’s!! theoretical analysis of the receptiv-
ity to wall disturbances of hypersonic boundary layer
over a flat plate. The receptivity of a Mach 8.0 flow
over a sharp wedge with half-angle 5.3° to periodic
blowing/suction disturbances is studied in this paper.
The steady base flow is achieved by the combination of
TVD and fifth-order shock-fitting method, and its accu-
racy had been valified in Ma and Zhong’sm paper. The
boundary layer wave mode characteristics of the Mach
8.0 flow over the sharp wedge with half-angle 5.3° is
studied by LST. Periodic blowing/suction disturbances
are then superimposed to the steady base flow in certain
regions on the wedge surface to investigate the receptiv-
ity of the boundary layer. Four cases of blowing/suction
disturbances are studied in current paper. The results
show that the unstable second mode is excited after the
synchronization of Mode I and the Mack mode, and the
receptivities to blowing/suction disturbances with dif-
ferent frequencies are quite different. The excitation of
the unstable second mode is determined by the relation
between the blowing/suction region and the synchro-
nization point of the Mack mode and Mode I. The am-
plitude of the unstable second mode is affected by the
profile and region of the blowing/suction disturbance.

INTRODUCTION

The study of laminar-turbulent transition in super-
sonic and hypersonic boundary layers is very important
to the property and safety of supersonic and hypersonic
space vehicles. For quiet flow, the semi-empirical e’
method is the most widely used method to predict the
transition from laminar flow to turbulent flow. This
method assumes that the laminar-turbulent transition
occurs in the boundary layer when the most unstable
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wave mode in the boundary grows up to eV times as
large as its amplitude at the lower branch of the neutral
stability curve. The main drawback of the e method
is that it neglects the effects of environmental distur-
bances on the boundary layer transition. In the flow
with small initial disturbances, the laminar-turbulnet
transition procedure can conceptually be divided into
three sub-processes: 1) the receptivity process which
converts the small initial disturbances into unstable
waves in the boundary layer, such as the Tollmien-
Schlichting (T-S) waves for incompressible flow and the
Mack mode wave for compressible flow. 2) the linear
growth process of the boundary layer unstable waves
which are the eigen-solutions of the linearized distur-
bance equations. 3) the nonlinear growth process and
breakdown to turbulent. If the initial disturbances in
the flow are large enough, the flow can transite to the
turbulent state without the appearance of the second
sub-process. This is called the bypass transition. The
receptivity process is very important because it provides
the initial conditions of amplitude, frequency, and phase
angle for the unstable waves in the boundary layers[3].
The main objective of a receptivity study is to investi-
gate the properties and mechanisms of initial generation
of unstable boundary-layer wave modes by forcing dis-
turbances.

The unstable wave modes in supersonic and hyper-
sonic boundary layers have been studied and identified
by Mack ! using the linear stability theory. Mack found
that there are a family of unstable modes in a super-
sonic boundary layer of relatively high Mach number.
Among them, the first mode is the compressible coun-
terpart of T-S waves in incompressible boundary layers,
and the second mode becomes the dominant instability
in hypersonic boundary layers at Mach numbers larger
than 4.0. In this paper, the receptivity of a Mach 8.0
flow over a sharp wedge with half-angle 5.3° to periodic
blowing/suction disturbances is studied. Therefore, the
receptivities of the second modes to forcing disturbances
are the main goal of current study.

The receptivity mechanisms of a Mach 8.0 flow over
a sharp wedge to freestream disturbances, i.e., fast
and slow acoustic waves, vorticity wave and entrophy
wave are extensively studied by Ma and Zhong[Q’ 56,7
They found that there exist a family of stable modes
in the supersonic boundary layer in addition to the
family of unstable modes. These modes play a very
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important role in the receptivity process of the un-
stable Mack modes, especially the second mode which
becomes the dominant instability in flows with Mach
numbers larger than 4.0. In this paper, we consider
another important type of receptivity associated with
wall blowing/suction disturbances. Recently, studies
have been carried out about the receptivity of super-
sonic and hypersonic boundary layers to wall distur-
bances. EiBler and Bestek® studied the receptivities
of supersonic boundary layers over the flat plate to wall
blowing/suction disturbances with small and moderate
amplitudes using direct numerical simulation based on
the compressible 3-D Navier-Stokes equations. In their
paper, blowing/suction disturbances were introduced
into the boundary layer within a narrow disturbance
strip on the wall. With finite 2-D disturbances, they
found the occurence of fundamental resonance, where
the multiple-viscous-solution discribed by Mack® ¥ is
synchronized with the second-mode wave. Fedorov and
Khokhlov M conducted theoretical analysis of the re-
ceptivity of the hypersonic boundary-layer to wall dis-
turbances using asymptotic method and numerical sim-
ulation. They investigated the receptivities to differ-
ent wall disturbances, i.e. vibrations, periodic blow-
ing/suctions, and temperature disturbances, and found
that a strong excitation occurred in local regions where
forcing disturbances were resonant with boundary layer
normal waves. They also found that hypersonic bound-
ary layers were very sensitive to the vertical velocity dis-
turbances which were in resonance with the boundary-
layer modes. Unfortunately, the boundary-layer re-
ceptivity mechanisms to blowing/suction disturbances
are still not so clear, which requires further parametric
studies.

GOVERNING EQUATIONS AND
NUMERICAL METHODS

The governing equations and the numerical methods
are briefly described in this section. In order to simplify
the problem, we assume here that the gas is thermally
and calorically perfect. In conservative form, the two-
dimensional Navier-Stokes equations are written as:
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= 1
for i, j=1, 2. In the numerical simulations, the viscos-
ity coefficients p* and heat conductivity coefficients K*

are calculated using Sutherland’s law together with a
constant Prandtl number, Pr.
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where pf = 1.7894 x 105N — Sec/m?/ 1 = 288.0K,
T¥ = 110.33K. In this paper, all the dimensional flow
variables are nondimensionalized by the corresponding
freestream parameters.

A fifth-order shock-fitting method of Zhong[lo] is used
to solve the two-dimensional Navier-Stokes equations in
the flow field bounded by the oblique shock and the
wedge surface. The shock-fitting method treats the
oblique shock as a moving boundary. The flow variables
behind the shock are determined by Rankine-Hugoniot
relations across the shock and a characteristic compat-
ibility relation from behind the shock. The transient
movement of the shock and its interaction with the dis-
turbances originated from blowing/suction regions on
the wedge surface are solved as a part of the solutions.
The use of shock-fitting method make it possible to use
high-order finite difference scheme for spatial discretiza-
tion. Fifth-order upwind scheme and sixth-order central
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scheme are applied for the spatial discretizations of con-
vective terms and viscous terms respectively. The spa-
tial discretizations of the governing equations lead to
a system of first-order ordinary differential equations.
Explicit Runge-Kutta method is then used for tempo-
ral discretization.

The problem still left is that the fifth-order shock-
fitting method can not solve the Navier-Stokes equa-
tions accurately within the leading edge region of the
sharp wedge because of the singularity at the leading
point. This problem is overcomed by introducing a
second-order TVD code developed by Zhong and Leel'!.
The steady base flow within the leading edge region of
the sharp wedge with half-angle 5.3° is solved by using
the TVD code with very fine grids, and it is then used
as the inflow conditions to start the solution procedure
by the fifth-order shock-fitting method.

FLOW CONDITIONS AND
BLOWING/SUCTION DISTURBANCES

The receptivity of a Mach 8.0 boundary-layer flow
over a sharp wedge with half-angle 5.3° has been studied
recently (127 And the receptivity mechanisms of the
boundary-layer to freestream disturbances, i.e. fast and
slow acoustic waves, vorticity waves and entropy waves,
have been investigated extensively. But the boundary-
layer receptivity mechanisms to blowing/suction distur-
bances have not been studied, which requires further
parametric studies. The flow conditions in this paper
are the same as those in Ma and Zhong’s paper 7 on
the receptivity of a Mach 8.0 flow over a sharp wedge
to freestream disturbances, i.e. ,

My = 8.0, T = 5478 K
pi, = 389Pa, Pr=0.72,
Re:, = pr UL Jus, = 8.2 x 105 /m .

In many figures of this paper, the results are plotted
as a function of dimensional coordinate s* along the
wedge surface which is the dimensional coordinate in
meter measured along the wedge surface from the lead-
ing edge. For the current simulations, the dimensional
s* coordinate in the figures can be easily converted to
nondimensional local Reynolds number according to the
following formula:

Res = Rel, s* = 8.2 x 105s* (11)
Because the steady flow and geometry are symmetric,
only the upper half part of the flow field is considered in
this paper. The computational domain of the simula-
tions using the fifth-order shock-fitting method begins
at s* = 0.00409m and ends at s* = 1.33784m, cor-
responding to the local Reynolds number Reg ranging
from 3.3538 x 10* to 1.097 x 107. In the studies of
boundary-layer stability, the following Reynolds num-
ber, R, based on the local length scale of boundary-layer

3

thickness are often used:
sl

158

R : (12)

where the local length scale of boundary-layer thickness

L* is defined as
PR
P3oUse

Hence, the relation between R and local Reynolds num-
ber Re; is

(13)

R =+/Res .

In terms of R, the full computational domain of the cur-
rent simulations spans from R = 183.1 to R = 3312.1.
In the actual simulations, the computational domain
is divided into 27 sub-zones with a total of 5336 grid
points in the streamwise direction. 121 grid points are
used in the normal direction. And 41 points are used
in the overlap regions between two neighboring zones
which are sufficient to make the solution accurate and
smooth for the whole region. Grid stretching function
is used in normal direction to cluster more points inside
the boundary layer near the wall. While the grid points
are distributed uniformly in the streamwise direction.
The numerical accuracy of the results based on this grid
structure has been evaluated by grid refinement studies
to ensure grid independence of the numerical solutions.

After the steady base flow is achieved, the blow-
ing/suction disturbances with multiple frequecies are
then superimposed at certain region on the wedge
surface. With the shock-fitting method, the effects
of the interactions between the oblique shock and
blow /suction disturbances are accurately taken into ac-
count. We assume that blowing/suction disturbances
only relate to the perturbations of normal velocity, and
no disturbances of streamwise velocity, pressure and
temperature are superimposed on the wall. So the dis-
turbances of nondimensional flow variables in the blow-
ing/suction regions on the wedge surface can be written
in the following form:

(14)

u’ 0

v’ S enB(s*)Sin(wit*)

p/ O ’ (15)
T’ 0

where €, is a small nondimensional parameter repre-
senting the amplitude of normal velocity disturbance
with frequency f;. The amplitudes of blowing/suction
disturbances are carefully chosen so that the nondimen-
sional amplitudes of the perturbations are at least one
order of magnitude larger than the nondimensional am-
plitude of the maximum numerical noise, while they
are small enough to preserve the linearity of bound-
ary layer wave modes. To make the results of different
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frequencies comparable, we choose the same amplitude
for all the disturbances. [3(s*) is a function defined on
the blowing/suction region which represents the pro-
file of the normal velocity disturbances. With different
B(s*) functions, we can superimpose different kinds of
blow/suction disturbances. As before, s* is the coordi-
nate along the wedge surface. w}; is the circle frequency
of normal velocity disturbance with frequency f.

wr =2mfr, (16)

fr=1.492 x 10*n(Hz), (17)
The frequency is characterized by a nondimensional fre-
quency F' defined by

w* s

* %2 7
Pocloo

F =

(18)

The nondimensional circular frequency is then defined
as

w=RF, (19)

STEADY BASE FLOW SOLUTIONS

The steady base flow is calculated by a fifth-order
shock-fitting method, which takes into account the ef-
fects of oblique shock, shock/boundary-layer interaction
and flow compressibility. For the first zone, the in-
flow conditions are obtained from the results of TVD
method, which had been validated in cases of super-
sonic and hypersonic steady flows over flate plates in
Ma and Zhong’s paper!®. Figure 1 compares the steady
density contours obtained from the TVD method with
those from the fifth-order shock-fitting method. We find
that there is excellent agreement between the contours
within the overlap region. This implies that it is accu-
rate enough to use TVD solutions as inflow conditions
for the high-order shock-fitting calculation.

Figure 2 shows the pressure contours of the steady
base flow calculated by fifth-order shock-fitting method.
The upper boundary of the flow field represents the
oblique shock. Compared with the case of the Mach
4.5 flow over a flat plate[e],the oblique shock is pushed
closer to the wall surface because of the higher Mach
number. In the flow field, pressure is almost constant
across the boundary layer and along the Mach lines,
which is consistent with the boundary-layer theory and
supersonic aerodynamics. Figure 3 compares the distri-
bution of pressure along the wedge surface with that of
the theoretical inviscid solution. Near the leading edge,
the strong interaction between inviscid external flow
and viscous boundary-layer results in the great pres-
sure gradient. With this kind of interaction becoming
weaker and weaker downstream, the pressure becomes
a constant, but its value still greater than that of the
theoretical inviscid oblique shock solution. This is the
contribution of viscous effects.

4

The shock front postion and the distribution of shock
angle along the wedge surface are shown in Figure 4.
This figure tells that the shock front is not a straight
line with the shock angle decreasing from 14.793° near
the leading edge to 11.314° at the exit of the computa-
tional dormain. Figure 5 gives the distribution of the
Mach number behind the shock. It shows that Mach
number increases from 5.911 near leading edge to 6.743
at the exit of the computational dormain. For inviscid
hypersonic flow over a wedge with half angle 5.3°, the
theoretical shock angle is 11.102°, and the theoretical
Mach number behind the shock is 6.798. So the results
of shock angle and Mach number behind the oblique
shock from the simulation appproach the inviscid theo-
retical solutions in the region downstream where shock
moves far away from the boundary layer and the inter-
action between inviscid external flow and the viscous
boundary layer becomes negligible.

BOUNDARY-LAYER WAVE MODES
CHARACTERISTICS

After the steady base flow is achieved, the charac-
teristics of boundary-layer normal wave modes of the
Mach 8.0 flow over the sharp wedge is studied by the
linear stability theory. However the numerical solutions
are inconvenient for LST analysis, because the flow field
information must be totally changed if we change the
LST analysis to a different location. In this paper, the
self-similar boundary-layer solutions are used instead
to investigate the characteristics of the boundary-layer
wave modes. Figure 6 compares the streamwise veloc-
ity and it first-order derivative between the numerical
solution and the self-similar solution. Figure 7 com-
pares the second-order derivative of streamwise veloc-
ity between the numerical solution and the self-similar
solution. And Figure 8 compares the temperature and
it first-order derivative between the numerical solution
and the self-similar solution. For all comparisons, there
is little difference between the self-similar boundary-
layer solution and the steady base flow solved by nu-
merical simulations. Our calculations have proved that
the linear stability characteristics based on self-similar
boundary-layer solution are very close to those based on
numerical solutions, although shock/boundary-layer in-
teraction and flow compressibility effects are neglected
in the self-simliar boundary-layer solution.

The grobal and local multi-domain spectral methods
proposed by Malik™ are employed in this paper to
solve the linear stability equations. The global method
is used to solve all approximate eigenvalues. While the
local method is a shooting method which is capable
of shooting the more accurate eigenvalue of a specific
mode. The combination of the global and local methods
makes it possible to get the accurate eigenvalues. The
engenvalue «, nondimensionalized by the local bound-
ary layer thickness, is usually a complex number, and
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it can be expressed as

a=ap +io, (20)
where —q; is the local growth rate, «, is the local
wave number which can be used to define the non-
dimensional local phase velocity:

(21)

a=—,
o

Both the wave number and the phase velocity can be
used to characterize the normal modes inside the bound-
ary layer.

When one accurate eigenvalue is got, we can track
this eigenvalue to get the spectra of the normal mode.
The whole procedure to track a specific mode can be
divided into three steps: 1) getting all eigenvalues by
global method and identifying the eigenvalue of the
specific mode by investigating the corresponding eigen-
vector, 2) taking the approximate eigenvalue got from
global method as the initial guess value and shooting
the more accurate eigenvalue of the specific mode using
local method, 3) tracking the mode. The final step can
be different with different problems. If we want to track
the spectra of one mode with fixed frequency, we can
use the accurate eigenvalue as the initial guess value to
shoot the eigenvalue for neighboring locations by chang-
ing the location upstream or downstream slowly. If we
want to track the spectra of one mode at the fixed lo-
cation, we can use the accurate eigenvalue as the initial
guess value to shoot the eigenvalue for the disturbance
with neighboring frequency by increasing or decreasing
the frequency little by little. And if we want to track
the neutral curve of one mode, we use the neutral point
as the initial guess value to shoot the neighboring neu-
tral point by changing the location and the frequency
slowly and simultaneously.

For current LST analysis, the adiabatic tempera-
ture condition is used on the wedge surface. Figure
9 shows all the eigenvalues of boundary layer normal
modes for the disturbance with the nondimensional fre-
quency F = 5.778 x 10° at the location R = 1980.44
(s* = 0.48036m). Dispite the continuous modes, there
are two discrete modes marked by circles. Investiga-
tions of the corresponding eigenvectors prove that one
is the second mode (Mack mode), the orther is a stable
mode called Mode I in Ma and Zhong’s papers® °. It
also shows that Mode I starts from continuous modes on
the left side of the Figure and passes continuous modes
in the middle with increasing w. Figure 10 compares
the spectra of the non-dimensional phase velocities of
normal modes inside the boundary layer with different
frequencies. It shows that the spectra of phase velocities
are almost frequency independent. From upstream to
downstream, the Mack mode synchronizes with Mode
I at w = 0.11443,a/use = 0.93349 because the non-
dimensional phase velocities of Mode I and the Mack

5

mode are the same at this point, and their eigenfunc-
tions have very similar profiles as shown in Figure 11.
Before the synchronization with Mode I, the Mack mode
is called the first mode. When it synchronizes with
Mode I, the first mode changes to the second mode.
At further downstream, there exist Mode II, Mode III,
Mode IV, etc, and the Mack mode will synchronize with
these modes consequently and change itself after the
synchronizations. The synchronization point of Mode
I and Mack mode is quite important, because the un-
stable second mode is excited after the synchronization
at this point. Comparison of the nondimensional wave
numbers and growth rates with different frequencies are
given in Figure 12 and Figure 13. The non-dimensional
wave numbers are almost the same, and the growth
rates with different frequencies are similar. It also shows
that the second mode is the most unstable mode, Mode
I and Mode II are both stable. The neutral curve of
Mack mode for the Mach 8.0 flow over the sharp wedge
with half angle 5.3° had got in Ma and Zhong’sm paper.
Figure 14 shows the neutral curve of the Mack mode for
the Mach 8.0 flow over the sharp wedge. It shows that
the critical local Reynolds number R for boundary-layer
instability is 210. In order to show the properties of the
second-mode Branch II neutral points at different fre-
quencies, the neutral curve of Mack mode is redrawn
in terms of w via R in Figure 15. When R increases
from 1000 to 2287 (s* from 0.12247m to 0.63784m),
the second mode Branch II neutral point in terms of w
increases from 0.158 to 0.167. By extrapolation, this
result can be used to predict the location of the second-
mode Branch II neutral point for R > 1000.

RECEPTIVITY TO BLOWING/SUCTION
DISTURBANCES

In this paper, multi-frequency blowing/suction dis-
turbances are introduced to the steady base flow by
superimposing normal velocity oscillations at certain
region on the wedge surface. The receptivities of the
hypersonic boundary layer to multi-frequency blow-
ing/suction disturbacnes are investigated by the direct
numerical simulation. After the blowing/suction dis-
turbances are superimposed on the wedge surface, the
fifth-order shock-fitting method is used to simulate the
unsteady flow until the flow field reaches a periodic
state. The computational dormain of unsteady flow
are the same as that of steady base flow simulations,
but the isothermal temperature condition is applied on
the wedge surface. This is a physical assumption to un-
steady flow simulation, because the frequencies of blow-
ing/suction disturbances are usually so high that the
temperature on the wedge surface is almost unchanged
during the disturbance period.

Four cases of blowing/suction disturbances are inves-
tigated in this paper:

case 1: blowing/suction disturbances with ten fre-
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quencies (F, with n from 6 to 15) are introduced in the
region on the wedge surface from s} = 0.20184m to s} =
0.21384m (corresponding to R from 1283.75 to 1321.36).
The sine-like profile function of the blowing/suction dis-
turbances is 3, (I) = 20.251° — 35.43751* + 15.18751? if
Il <=0.5and 8,(l) = —3,(1.0-1) if | >= 0.5, where [ is
a non-dimensional coordinate defined within the blow-
ing/suction region: [ = (s* — s7)/(sk — s7).

case 2: blowing/suction disturbances with ten fre-
quencies (F,, with n from 6 to 15) are introduced in
the region on the wedge surface from s* = 0.20184m
to s* = 0.21384m(corresponding to R from 1283.75 to
1321.36). The rectangular-like profile function of the
blowing/suction disturbances is 3,(s*) = 1.0.

case 3: blowing/suction disturbances with fifteen fre-
quencies (F,, with n from 1 to 15) are introduced in
regions on the wedge surface centered at s* = 0.4m.
The length scale of the blowing/suction region for dis-
turbance with frequency F), is equal to the disturbance
wavelength. So for disturbances with different frequen-
cies, the scales of blowing/suction regions are different.
And they can be calculated by the equation:

N AU

n f;; ,

(22)

where a is the non-dimensional local phase velocity. The
sine-like profile function of the blowing/suction distur-
bances is defined simliar to case 1.

case 4: blowing/suction disturbances with fifteen fre-
quencies (F,, with n from 1 to 15) are introduced in
regions on the wedge surface centered at s* = 0.4m.
The length scales of the blowing/suction regions for the
multi-frequency disturbances are the same as those in
case 3. And The rectangular-like profile function of the
blowing/suction disturbances is the same as case 2.

The frequency, non-dimensional frequency and wave-
length of multi-frequency blowing/suction disturbances
are listed in Table 1.

Result discussion for case 1

Figure 16 shows the distribution of instantaneous
pressure disturbance along the wedge surface. In the
disturbance field, there are multiple peaks of amplitude.
The modulations of the muliple frequencies result in the
oscillations of the instantaneous pressure disturbance.
The amplification of the amplitude peak indicates the
generation of unstable mode. In order to investigate the
effect of frequency, fast Fourier transformation (FFT) is
applied to the instantaneous disturbance field. Figure
17 and Figure 18 compare the amplitudes of pressure
perturbations along the wedge surface with different
frequecies. The initial amplitudes of blowing/suction
disturbances are the same for different frequencies. The
perturbations with frequencies Fg,F7,Fg and Fy grow up
after the blowing/suction region then decrease further
downstream. This indicates that unstable modes with

6

Table 1: The frequency, non-dimensional frequency and
wavelength of multi-frequency blowing/suction distur-
bances

n | fi(kHz) | F, x 10° | A% x 10°
1 [ 14.92 9.63 7.39352
2 | 29.84 19.26 3.669676
3 | 44.76 28.89 2.46451
4 | 59.68 38.52 1.84838
5 | 74,60 48.15 1.47870
6 | 89,52 57.78 1.23225
7 | 104.44 | 67.41 1.05622
8 | 119.36 | 77.04 0.92419
9 | 13428 | 86.67 0.82150
10 | 14920 | 96.30 0.73935
11| 164.12 | 105.93 | 0.67214
12 | 179.04 | 11556 | 0.61613
13 | 193.96 | 125.19 | 0.56873
14 | 20888 | 134.82 | 0.52811
15 | 223.80 | 144.45 | 0.49290

corresponding frequencies are excited by these blow-
ing/suction disurbances. While the perturbations with
other frequencies decrease monotonically because they
can not excite the unstable mode.

To inverstigate the properties of the unstable mode,
Fourier transformation is applied to the real perturba-
tion, which leads to:

N
p*/(l‘, Y, t) = Z |p*ln (]j, y)|e7‘ [¢;(m,y)fw;t*} ,

n=1

(23)

where w is circle frequency of the perturbation with the
frequency F,, p*/(x,y,t) represents the instantaneous
pressure disturbance, |p*/,(z,y)| and ¢!, (z,y) are real
variables representing the perturbation amplitude and
phase angle. These variables indicate a local wave num-
ber a,., and a local growth rate «;,, of the perturbation
with the frequency F),, which can be calculated by,

d¢l,
m 5 24
@ ds* (24)
1 dlp*1,|
n = — 25
Qip |p,.< I | ds* ’ ( )

The wave number, growth rate and non-dimensional
phase velocity of the unstable mode are inverstigated
for the blowing/suction disturbances with frequencies
F6 and F7.

Figure 19 compares the wave number «, solved by
DNS and that of the unstable second mode got by LST
with the frequency Fg. Figure 20 compares the growth
rate «; solved by DNS and that of the unstable second
mode got by LST with the frequency Fs. And Figure
21 compares the non-dimensional phase velocity a/uee
solved by DNS and that of the unstable second mode
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got by LST with the frequency Fs. The agreements
in these figures indicate that the unstable mode is the
second mode. Figure 22 compares the the eigenfunc-
tion of the second mode and the instantaneous pres-
sure perturbation(frequency Fg) from DNS at the po-
sition s* = 0.47784m (R = 1975.23). In this case, the
non-dimensional displacement thickness of the bound-
ary layer is 16.45. Within the boundary layer, the pres-
sure perturbation with frequency Fg fits well with the
eigenfunction of second mode, indicating also that the
unstable mode is the second mode.

Figure 23 compares the wave number a, solved by
DNS and that of the unstable second mode got by LST
with the frequency F7. Figure 24 compares the growth
rate a; solved by DNS and that of the unstable second
mode got by LST with the frequency F7. And Figure
25 compares the non-dimensional phase velocity a/uqo
solved by DNS and that of the unstable second mode
got by LST with the frequency F;. The agreements
in these figures indicate that the unstable mode is the
second mode. Figure 26 compares the the eigenfunc-
tion of the second mode with the instantaneous pres-
sure perturbation(frequency F7) from DNS at the po-
sition s* = 0.37784m (R = 1756.43). In this case, the
non-dimensional displacement thickness of the bound-
ary layer is 16.45. Within the boundary layer, the pres-
sure perturbation with frequency F7 fits well with the
eigenfunction of second mode, indicating also that the
unstable mode is the second mode.

Figure 10 shows that the Mack mode and Mode I
synchronizes at the point wg = 0.11443,as = 0.93349.
After the synchronization, the stable Mode I excites the
unstable second mode. The unstable properties of the
second mode make the perturbations growing up. In s*
coordinates, the positions of the synchronization point
are different for the blowing/suction disturbances with
different frequencies. They can be calculated using

2
i (26)
Res

Figure 13 shows that the position of Branch II neutral
point of second mode is at w;r = 0.22755,c;;7 = 0.0.
And the coordinates wyy is independent of the frequen-
cies of blowing/suction disturbances. After this point,
the second mode becomes stable. In s* coordinates,
the positions of the Branch II neutral point are differ-
ent for the blowing/suction disturbances with different
frequencies. They can be calculated using

(wi1/Fn)®
= ———"— 27
SIIn Rew ' (27)
Table 2 provides non-dimensional frequency, s* coor-
dinates of the synchronization points and the Branch II
neutral points for the multi-frequency disturbances.
Compared Figure 17 and Figure 18 with table 2, we

notice that the perturbations with frequencies F,, ( n
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Table 2: Non-dimensional frequency, s* coordinates of
the synchronization point and the Branch II neutral
point for multi-frequency disturbances

n | F, x10° | s%, (m) | s}, (m)
1 ] 9.63 16.9885 | 68.38297
2 | 19.26 4.2471 17.09574
3 | 28.89 1.8876 7.59811
4 | 38.52 1.0618 4.27394
5 | 48.15 0.6795 | 2.73532
6 | 57.78 0.4719 | 1.89953
7 | 67.41 0.3467 | 1.39557
8 | 77.04 0.2653 | 1.06848
9 | 86.67 0.2097 | 0.84423
10 | 96.30 0.1699 0.68383
11 | 105.93 0.1404 0.56515
12 | 115.56 0.1180 0.47488
13 | 125.19 0.1005 0.40463
14 | 134.82 0.0867 0.34889
15 | 144.45 0.0493 0.30392

from 6 to 9 ) start to grow up at the positions very
close to the s%, in table 2. This means that the second
mode is excited by the synchronization of Mode I and
the Mack mode. But the perturbations with frequencies
F, ( n from 6 to 9 ) decrease far before the sj;, in
table 2. This means that the LST result can not predict
the Branch II neutral points accurately. The amplitude
peaks are quiet different, and it seems here that the
amplitude peak increases with the distance between the
synchronization point and the blowing/suction region
increasing. For the perturbations with frequencies Fi,
( n> 9 ), the synchronization points of Mode I and
the Mack mode are at the upstream of blowing/suction
regions. So no synchronizations between Mode I and the
Mack mode happen, and no second modes are excited.

Result discussion for case 2

Figure 27 gives the distribution of instantaneous pres-
sure disturbance along the wedge surface. In the dis-
turbance field, there is the same number of amplitude
peaks as that in Figure 16 although the profile of blow-
ing/suction disturbances is changed. This means that
the characteristics of pressure disturbance distribution
are the result of frequency modulations. The amplitude
peak increases at first and then decreases. This means
that the unstable second mode is excited at first and
it becomes stable later. In order to investigate the ef-
fect of frequency, fast Fourier transformation (FFT) is
also applied to the instantaneous disturbance field. Fig-
ure 28 and Figure 29 compare the amplitudes of pres-
sure perturbations along the wedge surface with differ-
ent frequecies. The initial amplitude of blowing/suction
disturbances are the same for different frequencies and
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the same as in case 1. The perturbations with frequen-
cies Fg,F7,Fg and Fy grow up after the blowing/suction
region then decrease downstream. This indicates that
second modes with corresponding frequencies are ex-
cited by these blowing/suction disurbances. The ampli-
tude peaks are also quiet different, but the amplitude
peak does not increase with the distance between the
synchronization point and the blowing/suction region
increasing as in case 1.While the perturbations with
other frequencies decrease monotonically because they
can not excite the unstable second mode.

Compared Figure 28 and Figure 29 with table 2, we
find that the perturbations with frequencies F;, ( n from
6 to 9 ) start to grow up at the positions very close to
the s%,, in table 2. This indicates that the second mode
is excited by the synchronization of Mode I and the
Mack mode. But the perturbations with frequencies
F, ( n from 6 to 9 ) decrease far before the sj;, in
table 2. This indicates that the LST result can not
predict the Branch II neutral points accurately. For
the perturbations with frequencies F,, ( n> 9 ), the
synchronization points of Mode I and the Mack mode
are at the upstream of blowing/suction regions. So no
synchronizations between Mode I and the Mack mode
happen, and no second modes are excited.

Compared Figure 28 and Figure 29 with Figure 17
and Figure 18, we find that the amplitude peaks of
pressure perturbations for blowing/suction disturbances
case 2 are much weaker than those for blowing/suction
disturbances case 1. This means that the amplitude
peaks of pressure perturbations are sensitive to the dif-
ferent profiles of blowing/suction disturbances.

Result discussion for case 3

Figure 30 gives the distribution of instantaneous pres-
sure disturbance along the wedge surface. In the dis-
turbance field, there are multiple peaks of amplitude.
The modulations of the muliple frequencies result in the
oscillations of the instantaneous pressure disturbance.
The amplification of the amplitude peak indicates the
generation of unstable second mode. In order to inves-
tigate the effect of frequency, fast Fourier transforma-
tion (FFT) is applied to the instantaneous disturbance
field. Figure 31, Figure 32 and Figure 33 compare the
amplitudes of pressure perturbations along the wedge
surface with different frequecies. The initial amplitudes
of blowing/suction disturbances are the same for differ-
ent frequencies. The perturbations with frequencies Fy,
F5, and Fg grow up after the blowing/suction region.
This indicates that second modes with corresponding
frequencies are excited by these blowing/suction dis-
urbances. The amplitude peaks are quiet different for
different, frequencies, but the amplitude peak does not
increase with the distance between the synchronization
point and the blowing/suction region increasing as in
case 1. The perturbations with frequencies I}, Fy, and
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F35 oscillate after the blowing/suction region and grow
up very slowly. While the perturbations with other fre-
quencies decrease monotonically because they can not
excite the unstable second mode.

Compared Figure 31, Figure 32 and Figure 33 with
table 2, we notice that the perturbations with frequen-
cies F,, ( n from 4 to 6 ) start to grow up at the po-
sitions very close to the s3, in table 2. This indicates
that the second mode is excited by the synchronization
of Mode I and the Mack mode. But the perturbation
with frqeuency Fg decreases far before the s7;, in table
2. This indicates that the LST result can not predict
the Branch II neutral points accurately. The pertur-
bations with frequencies F;, ( n from 1 to 3 ) start to
grow up very slowly at the positions far upstream to the
sk, in table 2. This indicates that the oscillations don’t
result from the second mode. They maybe come from
the frequency modulations. For the perturbations with
frequencies F,, ( n> 6 ), the synchronization points of
Mode I and the Mack mode are at the upstream of blow-
ing/suction regions. So no synchronizations between
Mode I and the Mack mode happen, and no second
modes are excited.

Result discussion for case 4

Figure 34 gives the distribution of instantaneous pres-
sure disturbance along the wedge surface. In the dis-
turbance field, there is the same number of amplitude
peaks as that in Figure 30 although the profile of blow-
ing/suction disturbances is changed. This means that
the characteristics of pressure disturbance distribution
are the result of frequency modulations. The amplifi-
cation of the amplitude peak indicates the generation
of unstable second mode. In order to investigate the
effect of frequency, fast Fourier transformation (FFT)
is applied to the instantaneous disturbance field. Fig-
ure 35, Figure 36 and Figure 37 compare the ampli-
tudes of pressure perturbations along the wedge sur-
face with different frequecies. The initial amplitudes
of blowing/suction disturbances are the same for differ-
ent frequencies and the same as in case 3. The per-
turbations with frequencies Fy, F5, and Fg grow up
after the blowing/suction region. This indicates that
second modes with corresponding frequencies are ex-
cited by these blowing/suction disurbances. The am-
plitude peaks are quiet different for different frequen-
cies, but the amplitude peak does not increase with
the distance between the synchronization point and the
blowing/suction region increasing as in case 1. The per-
turbations with frequencies Fy, F5, and F3 oscillate af-
ter the blowing/suction region and grow up very slowly.
While the perturbations with other frequencies decrease
monotonically because they can not excite the unstable
second mode.

Compared Figure 35, Figure 36 and Figure 37 with
table 2, we find that the perturbations with frequencies
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F, ( n from 4 to 6 ) start to grow up at the positions
very close to the s}, in table 2. This indicates that the
second mode is excited by the synchronization of Mode
I and the Mack mode. But the perturbation with fre-
quency Fg decreases far before the sj;, in table 2. This
indicates that the LST result can not predict the Branch
II neutral points accurately. The perturbations with
frequencies F,, ( n from 1 to 3 ) start to grow up very
slowly at the positions far upstream to the s, in table
2. This indicates that the oscillations don’t result from
the second mode. They maybe come from the frequency
modulations. For the perturbations with frequencies F,
( n> 6 ), the synchronization points of Mode I and the
Mack mode are at the upstream of blowing/suction re-
gions. So no synchronizations between Mode I and the
Mack mode happen, and no second modes are excited.

Compared Figure 35, and Figure 36 and Figure 37
with Figure 31, Figure 32 and Figure 33, we find that
the amplitude peaks of pressure perturbations for blow-
ing/suction disturbances case 4 are much weaker than
those for blowing/suction disturbances case 3. This
means that the amplitude peaks of pressure pertur-
bations are sensitive to the different profiles of blow-
ing/suction disturbances.

CONCLUSION

The receptivity of a hypersonic boundary layer to pe-
riodic blowing/suction disturbances for a two dimen-
sional Mach 8.0 flow over a sharp wedge with half an-
gle 5.3° has been studied by both linear stability the-
ory and direct numerical simulation. The main objec-
tive of the study on the receptivity of the hypersonic
boundary-layer flow is to investigate the generation and
growth of boundary-layer normal modes, especially the
unstable second Mack mode excited by blowing/suction
disturbances. The steady base flow is achieved, and
the characteristics of normal boundary wave modes are
analysized using LST. Blowing/suction disturbances are
introduced by superimposing the normal velocity dis-
turbances with different frequencies in certain regions
on the wedge surface. Four different cases of multi-
frequency blowing/suction disturbances are superim-
posed to the steady base flow to investigate the recep-
tivity mechanism .

All the results show that receptivities to blow-
ing/suction disturbances with different frequencies are
quite different. The unstable second mode is excited by
the synchronization of Mode I and the Mack mode. The
positions of the synchronization point are quite different
for the blowing/suction disturbances with different fre-
quencies. The excitation of the unstable second mode is
determined by the relation between the blowing/suction
region and the synchronization point of the Mack mode
and Mode 1. If the blowing/suction region is upstream
to the synchronization point, unstable second mode is
excited. Otherwise, no second mode is excited.
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The postions where the second modes are excited by
blowing/suction disturbances with different frequencies
can be accurately predicted by LST. While the second
mode becomes stable much earlier than the positions
of the Branch II neutral point predicted by LST, this
means that LST can not predict the Branch II neutral
point second mode accurately.

The amplitude peaks of the pressure perturbations
are affected by the regions and profiles of blow-
ing/suction disturbances. Further studies are needed
to investigate the growth of the unstable second mode
and the oscillations of the pressure perturbations with
lower frequencies in the blowing/suction disturbances
case 3 and case 4.
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Figure 1: Contours of density near the leading edge for
steady base flow(Y.Ma and X.Zhong™).
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Figure 2: Contours of pressure for steady base

flow(Mas = 8.0).
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Figure 3: Distributions of pressure along the wall sur-
face for steady base flow over the wedge.
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Figure 16: Distribution of instantaneous pressure dis-
turbance along the wedge surface (case 1).
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Figure 20: Comparison of the growth rate solved by

Figure 17: Comparison of pressure perturbations along DNS and that of the second mode got by LST ( F —
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Figure 21: Comparison of the phase velocity solved by
DNS and that of the second mode got by LST ( F =
5.778 x 1075

Figure 18: Comparison of pressure perturbations along
the wedge surface with different frequencies (case 1).
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Figure 22: Comparison of the pressure perturbation
(F =5.778 x 107°) and the second mode eigenfunction
at R =1975.23

0.25 a, from DNS

——————— a, from LST
0.2

0.15

0.1

0.05

LN I A I [ O L ) B
\

0 1 1 1
0.1 0.15 0.2
)

Figure 23: Comparison of the wave numbers solved by
DNS and that of the second mode got by LST ( F =
6.741 x 1075 ).
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Figure 24: Comparison of the growth rate solved by
DNS and that of the second mode got by LST ( F =
6.741 x 1075 ).
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Figure 25: Comparison of the phase velocity solved by
DNS and that of the second mode got by LST ( F =
6.741 x 1075).
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Figure 26: Comparison of the pressure perturbation
(F = 6.741 x 1075) and the second mode eigenfunction
at R = 1756.43.
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Figure 27: Distribution of instantaneous pressure dis-
turbance along the wedge surface (case 2).

American Institute of Aeronautics and Astronautics



ATAA-2004-0254 15

pp, p'p,
2.0000E-6 -
6.0000E-6 i i
=9
=10
5.0000E-6 1.5000E-6

4.0000E-6

1.0000E-6
3.0000E-6

2.0000E-6
5.0000E-7
1.0000E-6

0.0000EQ 0.0000E0 "J\ | s
0.2 0.4 0.6 0.8 1.0 s 04 05 06 07 08 09 1.0 11 1.2
Figure 28: Comparison of pressure perturbations along Figure 31: Comparison of pressure perturbations along
the wedge surface with different frequencies (case 2). the wedge surface with different frequencies (case 3).
oo Plp,
m n=11 n=a -
250007 (1l —oo-- ne12 5.0000E-6 |- _____ . -
S =13 e n=6
" ———— n=14 ———— n=7
| ———— n=15 ———— n=8 .
2.0000E-7 |- . 4.0000E-5 //
1.5000E-7 3.0000E-5 ///
1.0000E-7 2.0000E-5
5.0000E-8 1.0000E-5
0.0000E0 ‘ ‘ ‘ SESRks “ ‘ ‘ 0.0000E0 Pesezf o — = ; e
s 0.4 05 0.6 0.7 0.8 0.9 1.0 11 1.2
0.2 0.4 0.6 0.8 10 12

Figure 29: Comparison of pressure perturbations along Figure 32: Comparison of pressure perturbations along
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Figure 30: Distribution of instantaneous pressure dis- Figure 33: Comparison of pressure perturbations along
turbance along the wedge surface (case 3). the wedge surface with different frequencies (case 3).
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Figure 34: Distribution of instantaneous pressure dis-
turbance along the wedge surface (case 4).
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Figure 37: Comparison of pressure perturbations along
the wedge surface with different frequencies (case 4).
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