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Abstract

The direct numerical simulation of receptivity, instability and transition of hypersonic boundary layers requires

high-order accurate schemes because lower-order schemes do not have an adequate accuracy level to compute the large

range of time and length scales in such flow fields. The main limiting factor in the application of high-order schemes to

practical boundary-layer flow problems is the numerical instability of high-order boundary closure schemes on the wall.

This paper presents a family of high-order non-uniform grid finite difference schemes with stable boundary closures for

the direct numerical simulation of hypersonic boundary-layer transition. By using an appropriate grid stretching, and

clustering grid points near the boundary, high-order schemes with stable boundary closures can be obtained. The order

of the schemes ranges from first-order at the lowest, to the global spectral collocation method at the highest. The

accuracy and stability of the new high-order numerical schemes is tested by numerical simulations of the linear wave

equation and two-dimensional incompressible flat plate boundary layer flows. The high-order non-uniform-grid

schemes (up to the 11th-order) are subsequently applied for the simulation of the receptivity of a hypersonic boundary

layer to free stream disturbances over a blunt leading edge. The steady and unsteady results show that the new high-

order schemes are stable and are able to produce high accuracy for computations of the nonlinear two-dimensional

Navier–Stokes equations for the wall bounded supersonic flow.
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1. Introduction

The prediction of laminar-turbulent transition in hypersonic boundary layers is a critical part of the

aerodynamic design and control of hypersonic vehicles [1]. The transition process is a result of the nonlinear
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response of laminar boundary layers to forcing disturbances [2–5], which can originate from many different

sources including free stream disturbances, surface roughness and vibrations [6]. In an environment with

weak initial disturbances, the path to transition consists of three stages: (1) receptivity, (2) linear eigenmode

growth or transient growth, and (3) nonlinear breakdown to turbulence. The first stage is the receptivity

process [7], which converts the environmental disturbances into initial instability waves in the boundary

layers. The second stage is the subsequent linear development and growth of boundary-layer instability

waves. The third stage is the breakdown of linear instability waves, and the transition to turbulence after

the linear instability waves reach certain magnitudes. All these aspects of stability and transition in hy-
personic flows are current areas of active research [8–13]. One of the important aspects of supersonic and

hypersonic boundary layer transition is the receptivity of hypersonic boundary layers. The study of the

receptivity process provides important initial conditions for the instability waves in the boundary layer.

Fig. 1 shows a schematic of wave interactions in the leading edge region of a hypersonic flow in the presence

of free stream disturbances. The receptivity phenomena are altered considerably by the bow shock in front

of the body. The interaction of free stream waves with the shock affects the receptivity process of the

boundary layer behind the shock.

Due to the complexity of transient hypersonic flow fields involved in the receptivity process, an effective
approach for studying hypersonic boundary layer receptivity, stability and transition is to numerically solve

the time-dependent three-dimensional Navier–Stokes equations for the temporally or spatially evolving

instability waves. It is necessary to use high-order numerical methods for the simulation in order to resolve

the wide range of length and time scales of the complex wave fields in hypersonic boundary layers. Hence,

in this regard high-order finite-difference schemes have recently received much attention for the direct

numerical simulations of transitional and turbulent flows [14–18]. Finite-difference schemes include both

traditional explicit schemes and compact [14] schemes. In [19], Zhong presented and validated a new fifth-

order upwind finite difference shock fitting method for the direct numerical simulation of hypersonic flows
with a strong bow shock and with stiff source terms. The use of the shock-fitting method makes it possible

to accurately compute the physical bow-shock interactions, and the development of instability waves in the

boundary layers. The fifth-order shock-fitting schemes were derived on a uniform grid. For a curvilinear

stretched grid, typically used in simulations of viscous flow in a boundary layer, the physical coordinates
Fig. 1. A schematic of the wave field of the interaction between a bow shock and free-stream disturbances in the leading edge

receptivity process.
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with a non-uniform grid are first transformed to a uniform grid in the computational coordinates. The

high-order schemes are subsequently applied to the transformed equations in a uniform grid. The fifth-

order shock-fitting scheme was subsequently used for numerical studies of the receptivity of two-dimen-

sional Mach 15 flows over a blunt leading edge [20].

However, most finite difference schemes used in direct numerical simulation are either central difference

schemes [14,15] with filtering or upwind high-order schemes [19,21–23]. One of the main difficulties in

applying high-order schemes to practical viscous flow simulations is the numerical instability of boundary

closure schemes used on solid wall boundary layer. As a result, in most direct numerical simulations of
supersonic and hypersonic boundary-layer flows, the orders of accuracy of numerical methods are often

limited due to the numerical instability of the boundary closure schemes. Most high-order explicit and

compact finite schemes are derived on a uniformly spaced grid. The schemes are applied to a non-uniform

grid by a coordinate transform from the non-uniform physical coordinates to uniform computational

coordinate. The finite difference schemes are applied in the uniform computational coordinates through this

transformation. The main limiting factor in the application of high-order schemes is the numerical insta-

bility of high-order boundary closure schemes [15,24,25]. For example, difference schemes of fourth-order

or higher are unstable when they are coupled with high-order boundary schemes using one-sided finite-
difference approximations [15,24]. Kreiss and Scherer originally developed a procedure to ensure the

stability of numerical closures [26]. Based on this theory, Strand [27] developed finite difference approxi-

mations for �d/dx� which satisfy the summation by parts rule. They derived stable difference operators upto

fifth-order accurate at the boundary and sixth-order accurate in the interior. In addition, they determined

the parameters such that the bandwith of the operators was minimized. Carpenter et al. [24] showed that for

a sixth-order inner compact scheme, only a third-order boundary scheme can be used without introducing

instability. This results in globally fourth-order accurate schemes even though the inner scheme is sixth-

order accurate. If the order of the schemes is increased further, it is necessary to use much lower order
boundary closure scheme in order to maintain numerical stability. As a consequence, the orders of accuracy

of numerical methods used in most practical direct numerical simulation studies of compressible and in-

compressible flows are often limited by the numerical instability of the boundary closure schemes. The

overall accuracies of the schemes are at most one order higher than the order of the boundary scheme, no

matter how high the order of the interior scheme.

As summarized above, the orders of accuracy of numerical methods used in most current practical direct

numerical simulation studies of compressible flows are limited by the numerical instability of the boundary

closure schemes. This paper presents a family of simple high-order non-uniform finite-difference schemes
with stable boundary closures for the direct numerical simulations of hypersonic boundary layer flows. The

main motivation is the application of the high-order schemes to the direct numerical simulations of the

receptivity, stability, and transition of hypersonic boundary layers. Using the new schemes the instability of

the boundary closures can be overcome for arbitrarily high-order finite difference schemes in the interior

and at the boundaries. The schemes are derived directly on a non-uniform stretched grid without coor-

dinate transformation to a uniform grid. The coefficients of the high-order schemes are determined based

on polynomial interpolation in the non-uniform grid computational domain. The amount of grid stretching

is determined to maintain the stability of the overall schemes. Explicit formulas are presented for com-
puting the coefficients for arbitrary order explicit and compact schemes on a general non-uniform grid. As a

result, the high-order schemes can be easily used in applications by computing the derivative coefficients

using these explicit formulas.

The new high-order (up to 16th-order) schemes are first tested in computing a linear wave equation with

time oscillatory boundary conditions. The scheme was further tested by computing two-dimensional in-

compressible boundary layer flows over a flat plate based on the full nonlinear Navier–Stokes equations.

The high-order finite difference schemes with stable boundary closures are then applied to the direct nu-

merical simulation studies of the receptivity of Mach 15 boundary layers over a blunt leading edge.
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2. Governing equations

The governing equations for the direct numerical simulations of hypersonic viscous flows are the

unsteady two or three-dimensional Navier–Stokes equations written in the following conservation-law

form:

oU �

ot�
þ
oF �

j

ox�j
þ
oF �

vj

ox�j
¼ 0; ð1Þ

where superscript ‘‘�’’ represents dimensional variables, and t� and x�j are independent variables of

Cartesian coordinates and time, respectively. The vector of the conservative flow variables is

U � ¼ fq�; q�u�1; q
�u�2; q

�u�3; e
�g: ð2Þ

The gas is assumed to be thermally and calorically perfect. The equations of states are
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�
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where the gas constant R� and the specific heats c�p and c�v are assumed to be constants with a given ratio of

specific heats c. The flux vectors in Eq. (1) are
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where the viscous stress tensor and heat flux vector are
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where l� is the viscosity coefficient determined by the Sutherland�s law,

l� ¼ l�
r

T �

T �
r

� �3=2 T �
r þ T �

s

T � þ T �
s

; ð9Þ

and j� is the heat conductivity coefficient determined by assuming a constant Prandtl number Pr.
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2.1. Boundary conditions

In the leading edge receptivity problem, both steady and unsteady flow solutions of the Navier–Stokes

equations are computed by numerical simulations. For a steady flow simulation, flow variables at the

supersonic free stream in front of the bow shock are constant. On the other hand, free stream flow variables

for an unsteady flow simulation are time varying acoustic wave fields. The body surface is assumed to be a

non-slip isothermal wall with a given temperature T �
w. The pressure at the wall is determined using a

characteristic based boundary condition. The bow shock is assumed to be an infinitely thin moving dis-

continuity surface, where flow variables across the shock are governed by the Rankine–Hugoniot condi-

tions. Using the Rankine–Hugoniot relations jump conditions for flow variables are derived as functions of
the free stream flow variables and the local shock normal velocity. The local shock normal velocity is

determined by a characteristic compatability equation immediately behind the shock. The detail of the

shock fitting formulas can be found in Zhong [19].
3. Coordinate mapping in shock fitting simulations

In the following sections details of the numerical methods are presented. The schemes presented are for
two dimensional equations. They can be easily extended for three dimensional flows. In the numerical

simulation for the hypersonic flow over a blunt leading edge, the simulations are carried out using a high-

order non-uniform grid scheme with a shock fitting treatment for the bow shock. The location and the

unsteady movement of the bow shock is an unknown to be solved with the flow variables using the shock-

fitting method. The computational domain for a shock-fitting method used in computing steady and un-

steady 2-D viscous hypersonic flow over blunt bodies is shown in Fig. 2. Body fitted grids are used in the

computations where the oscillating bow shock is treated as an outer computational boundary. Before

discretizing the governing equation by a finite difference method, the governing Eq. (1) in the Cartesian
coordinates in the body-fitted physical domain are transformed to the rectangular computational domain,

bounded by the bow shock and the body surface, by a coordinate transformation. The governing equations
Fig. 2. Computational grid for hypersonic flow over a blunt leading edge where the bow shock shape is obtained as the numerical

solution for the upper grid line boundary.
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are solved in a general curvilinear coordinates (n, g, s) along body fitted grid lines. During the computa-

tions, the grid surface of g ¼ constant is unsteady due to the shock movement, but the grid surfaces of

n ¼ constant are fixed during the calculations.

The specific coordinate transformation for the computational domain shown in Fig. 2 is described as

follows. For viscous flow simulations, the physical computational domain between the bow shock and the

body is mapped to a square in two steps: (1) (x, y, t) to (X , Y , s), and (2) (X , Y , s) to (n, g, s), following
Kopriva [28].

In the first step of the transformation, the physical space is mapped to a square in the intermediate
coordinate space ðX ; Y Þ by the following relation:

X ¼ 2sðx;yÞ
S � 1;

Y ¼ 2hðx;yÞ
Hðx;y;tÞ � 1;

(
ð10Þ

where s is the local surface curve length, S is total surface curve length in the computational domain, h is the
local normal distance of point ðx; yÞ to the body surface, and H is the local shock height. For unsteady flow,
Hðx; y; tÞ, which is a function of time because of the shock motion, is solved as a dependent variable as

shown in Fig. 2. The transformation given by Eq. (10) maps the physical domain to a square domain in

ðX ; Y Þ space in ½�1; 1� � ½�1; 1�.
In the second step of the transformation, the ðX ; Y Þ space is mapped to a square in ðn; gÞ space in order

to introduce more grid points near the wall to better resolve the boundary layer structure for a viscous flow

simulation. In this paper, a hyperbolic tangent stretching is used in the wall-normal direction as follows:

X ¼ n;

Y ¼ 2
½1�tanhðrÞ�gþ1

2

1�tanhðrgþ1
2
Þ
� 1;

(
ð11Þ

where r is the stretching parameter. The value of r is chosen to be 0.75 for the simulations presented in this

paper. This combined transformation maps the physical domain in ðx; yÞ between the bow shock and the

body into a square domain in ðn; gÞ 2 ½�1; 1� � ½�1; 1� by the following general relations:

n ¼ nðx; yÞ;
g ¼ gðx; y; tÞ;
s ¼ t;

8<: ð12Þ

where g is a function of t as a result of the unsteady motion of the bow shock induced by free stream

disturbances.
The governing Eq. (1) are transformed into the computational domain (n, g, s) as follows:

1

J
oU
os

þ oE0

on
þ oF 0

og
þ oE0

v

on
þ oF 0

v

og
þ U

oð1=JÞ
os

¼ W
J
; ð13Þ

where

E0 ¼ F1nx þ F2ny
J

; ð14Þ
F 0 ¼
F1gx þ F2gy þ Ugt

J
; ð15Þ
E0
v ¼

Fv1nx þ Fv2ny
J

; ð16Þ
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F 0
v ¼

Fv1gx þ Fv2gy
J

; ð17Þ
J ¼ xnyg � xgyn; ð18Þ

where J is the Jacobian of the coordinate transformation, and nx, ny , gx, gy , and gt are the grid

transformation metrics, which can be computed once the shape of the computational domain is known.

The grid metrics can be computed using a simple chain rule using the ðn; g; sÞ to ðX ; Y ; sÞ, and ðX ; Y ; sÞ
to ðx; y; tÞ transformations. The derivatives in the ðn; gÞ space can be calculated using the stretched grid

finite difference formulas presented in Eqs. (30) and (41). It should be noted that the grids in the

computational domain will not be uniform, but in fact are stretched (for stability purposes) according

to Eq. (26).
The height of the bow shock Hðx; y; tÞ and the time rate of the change of the shock height Hsðx; y; tÞ are

governed by shock fitting formulas presented in [19]. The equations for the acceleration and the velocity of

the bow shock can be written in the following forms:

oHs

os
¼ f Us; oUs=os; U1; oU1=os; H ; Hsð Þ; ð19Þ
oH
os

¼ Hs; ð20Þ

where subscript s represents flow variables located immediately behind the shock, and subscript 1 rep-

resents flow variables located immediately on the free stream side of the shock. The above formulas can be

derived by combining the Rankine–Hugoniot shock relations and a characteristic compatibility relation

behind the shock. The detailed formula for the function f in the equations above can be found in [19].

These two equations are additional governing equations for the shock normal velocity and the shock shape.

The spatial derivatives in the transformed governing Eq. (13) for the interior flow variables U and the

governing Eqs. (19) and (20) for the bow shock are discretized using the non-uniform grid high-order
schemes together with stable boundary closures described in this paper. The inviscid flux terms are dis-

cretized using an upwind scheme. For the inviscid flux vectors, the flux Jacobians contain both positive and

negative eigenvalues, a simple local Lax–Friedrichs scheme is used to split the inviscid flux vectors into

positive and negative wave fields. For example, the flux term F 0 in Eq. (13) can be split into two terms of

pure positive and negative eigenvalues as follows:

F 0 ¼ F 0
þ þ F 0

�; ð21Þ

where F 0
þ ¼ ð1=2ÞðF 0 þ kUÞ and F 0

� ¼ ð1=2ÞðF 0 � kUÞ and k is chosen to be larger than the local maximum

eigenvalue of F 0

k ¼ jrgj
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�cÞ2 þ u02

q�
þ c
�
; ð22Þ

where c is the local speed of sound, and

u0 ¼
gxuþ gyvþ gt

jrgj : ð23Þ

The parameter � is a small positive constant added to adjust the smoothness of the splitting. The fluxes F 0
þ

and F 0
� contain only positive and negative eigenvalues, respectively. Therefore, in the spatial discretization

of Eq. (13), the derivative of the flux F is split into two terms
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oF 0

og
¼ oF 0

þ
og

þ oF 0
�

og
; ð24Þ

where the first term on the right-hand side is discretized by the upwind scheme and the second term by the

downwind scheme. The stencil for the upwind or downwind schemes is chosen by biasing the stencil by one
point in the appropriate direction. The details of the discretization are given in the next section.

The spatially discretized equations form a system of first-order ordinary differential equations, which are

integrated in time using an explicit third-order Runge–Kutta scheme. The shock variables H and Hs are

integrated in time simultaneously with the interior flow variables U . During the time integration of the flow

variables, the grid locations and the transformation metrics are function of Hðx; y; tÞ and Hsðx; y; tÞ. As a

result, at the end of the computations of each stage of the time step, the grids and transformation metrics

are recalculated according to the new values of Hðx; y; tÞ and Hsðx; y; tÞ.
4. High-order non-uniform grid schemes with boundary closure

The spatial derivatives, such as oE0=on and oF 0=og, in the governing Eq. (13) in ðn; gÞ space for the

interior flow variables U are discretized by a non-uniform grid high-order schemes together with boundary

closure schemes in the square computational domain in ðn; gÞ space in ½�1; 1� � ½�1; 1�. The derivatives are
calculated based on a non-uniform grid in the ðn; gÞ computational domain. In this paper, the non-uniform

grid used for the calculating the derivatives is given by the following stretching function [29]:

ni ¼
sin�1ð�a cosðpi=NÞÞ

sin�1 a
; ð25Þ
gj ¼
sin�1ð�a cosðpj=MÞÞ

sin�1 a
; ð26Þ

where the parameter a is a positive parameter, which is used to change the stretching of the grid points, i
and j are grid index numbers, N and M are the total number of grid points in i and j directions. The high-
order non-uniform grid scheme applies a finite difference approximation directly to the grid points in the

ðn; gÞ space to get the derivatives required in the computational space of the governing Eqs. (19) and (20).

In this section the numerical method is detailed and analyzed by application to the discretization of

ou=ox and o2u=ox2 in a one-dimensional domain of ½�1; 1�. The application to the two-dimensional square

domain in the ðn; gÞ space is straightforward. A high-order finite difference scheme is based on a polynomial
interpolation of increasing degrees to approximate the derivatives of a function. A compact scheme can be

derived by a Hermite polynomial interpolation using both the function values and their derivatives. It is

well known (the Runge phenomena) that a high-order polynomial interpolation based on a uniform grid

distribution may develop oscillations near the boundary of the interpolation domain. Higher order poly-

nomials lead to larger oscillations at the boundary. Because finite difference schemes are based on poly-

nomial interpolation, it is not surprising that a high-order finite difference scheme based on uniform grids

may develop instability due to the boundary closure schemes. On the other hand, a spectral collocation

method using the Chebyshev polynomials is identical to a global high-order finite difference scheme using
all grid points directly derived on non-uniform grid points located at the zeros or maximas of the

Chebyshev polynomials. The Chebyshev grid spacing is as follows:

y ¼ cosðpi=NÞ; ð27Þ

where i is grid index, N is total number of grid points, and y is the physical coordinate. Therefore, a

Chebyshev spectral collocation method using 101 grid points is a 100th-order finite difference scheme
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using a grid stretching given by Eq. (27). Such a finite difference scheme is based on a polynomial in-

terpolation on a non-uniform grid distribution without coordinate transformation. Such interpolation is

stable both in the interior and in the boundary points because of the condensation of grid points at the

boundary. As a result, a 100th-order or higher finite difference scheme based on Chebyshev grid spacing

is numerically stable because of the grid stretching at the boundary in the polynomial interpolations. On

the other hand, although they are much superior in numerical accuracy, the spectral methods have the

drawback that they are computationally expensive because they are global schemes based on all grid

points. Such global accuracy may not be necessary in terms of accuracy in many simulations. In ad-
dition, the grid spacing given by Eq. (27) leads to a highly stretched grid at the wall when a large

number of grid points are used. The minimum grid spacing at the wall is Oð1=N 2Þ. Such fine grid

spacing leads to a very restrictive stability requirement on the time step in the temporal integration of

the equations [30].

Therefore, for the direct numerical simulations of hypersonic wall-bounded flows, an intermediate ap-

proach is used to discretize the spatial derivatives using fixed high-order (up to 10–15th-order) local

schemes. Grid stretching is used to ensure the stability of boundary closure schemes. At the same time,

because the order of the schemes is fixed, the grid stretching at the wall does not need to be as condensed as
the full stencil spectral stretching given by Eq. (27). The minimum grid spacing at the wall can be deter-

mined so that the high-order schemes are stable with boundary closure. In this paper we show that the

minimum grid spacing required for a stable scheme can be of Oð1=NÞ, as opposed to the spacing of Oð1=N 2Þ
required for full stencil spectral methods. As a result we can have a very high order numerical scheme and

maintain a reasonable spacing near the boundaries.

Coefficients for explicit and compact nonuniform grid schemes

The application of high-order schemes on non-uniform grids does not introduce additional com-
putational difficulty in terms of numerical scheme complexity and cost. The coefficients of the high-

order schemes at each grid point are different because of grid stretching, but they can be computed and

saved in memory once and for all at the beginning of a calculation. The conventional methods for

deriving the coefficients for the finite difference (especially the compact) schemes is to use the method of

undetermined coefficients with Taylor expansions. The coefficients are computed by solving a linear

equation for the coefficients. Such methods are not convenient for deriving the coefficients with non-

uniform grids because every case may have a different grid spacing. In addition, the matrix in solving

the coefficients has high condition numbers, which can lead to large round off errors in solving the
linear equations for the coefficients of the high-order schemes. Therefore, we present explicit formulas

for computing the coefficients of the explicit and compact higher order schemes for an arbitrary non-

uniform grid distribution.

The derivation for the coefficients for the explicit high order schemes on non-uniform grids is

straightforward. They are listed here for completeness. The coefficients are derived from a Lagrange

polynomial interpolation. For the case of n grid stencil with arbitrary distribution of grid points with

coordinates xi, the n� 1 degree interpolation polynomial is:

PnðxÞ ¼
Xn
j¼1

ljðxÞuj; ð28Þ

where uj are the variable values at the node points, and

ljðxÞ ¼
Yn

l¼1;l 6¼j

ðx� xlÞ
Yn

l¼1;l 6¼j

ðxj

,
� xlÞ: ð29Þ
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The derivative at a grid point xi can be calculated by differentiating the above polynomial as:

u0i ¼
Xn
j¼1

bi;juj; ð30Þ

where the coefficients bi;j in the derivatives are different for different grid points with index i, and are given by

bi;j ¼ l0jðxiÞ: ð31Þ

Hence, once the xi locations of the stencil are given, the coefficients for the finite difference formulas for a

high-order scheme in a non-uniform grid can be calculated explicitly using the above formulas. The co-

efficients for the boundary closure scheme are derived using the same formula and by specifying one-sided

grid stencils. The derivatives at all grid points, including the interior and boundary points, can be combined

into the following vector formula:

u0 ¼ Au; ð32Þ

where u is a vector of variables and A is a banded coefficients matrix, which can be computed once and for

all at the beginning of a calculation.

The explicit formulas for computing the coefficients of a compact scheme in arbitrary non-uniform grids

are derived in this paper by generalizing the Hermite interpolation polynomial. Consider a generalized

Hermite polynomial interpolation to compute u00 by interpolation through two groups of grid points: (1)

interpolates through both ui and u0i for n grid points located at xi for ði ¼ 1; . . . ; nÞ, and (2) interpolates
through only ui for additional mþ 1 grid points located at xj for ðj ¼ 0;�1; . . . ;�mÞ. The locations of these
node points do not have to be arranged in a particular order, as long as they are distinct points.

The generalized Hermite interpolation polynomial is:

�HHðxÞ ¼ HnðxÞ þ
X�m

j¼0

/jðxÞdj: ð33Þ

HnðxÞ is the Hermite interpolant for the first group of n grid points without x0:

HnðxÞ ¼
Xn
i¼1

uihiðxÞ þ
Xn
i¼1

u0i ehihiðxÞ; ð34Þ

where

hiðxÞ ¼ 1
�

� 2l0iðxiÞðx� xiÞ
�
l2i ðxÞ; ð35Þ
ehihiðxÞ ¼ ðx� xiÞl2i ðxÞ: ð36Þ

The function /jðxÞ is defined as:

/jðxÞ ¼ ðnjðxÞÞ2ljðxÞ; ð37Þ

where

njðxÞ ¼
Yn
l¼1

x� xl
xj � xl

: ð38Þ

The values of dj are determined so that the polynomial interpolates through the second group of mþ 1 grid

points (including x0). There are mþ 1 conditions for solving for dj:
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�HHðxjÞ ¼ uj; j ¼ 0;�1; . . . ;�m: ð39Þ

The dj values are substituted back into the original interpolation polynomial. The formula for the compact

derivatives can be derived by evaluating

u00 ¼ �HH 0
nðx0Þ: ð40Þ

This formula leads to the compact coefficients as follows:Xn
i¼0

biu0i ¼
Xn
i¼0

aiui þ
X�m

j¼0

cjuj; ð41Þ

where the coefficients ai, bi, and cj are determined by

b0 ¼ 1; ð42Þ
bi ¼ � ehihi 0ðx0Þ
"

�
X�m

j¼0

ehihiðxjÞ/0
jðx0Þ

#
; ð43Þ
ai ¼ þ h0iðx0Þ
"

�
X�m

j¼0

hiðxjÞ/0
jðx0Þ

#
; ð44Þ
cj ¼ /0
jðx0Þ: ð45Þ

It is easy to test that the formulas above lead to the same compact scheme formulas on a uniform grid. For

example, a sixth-order compact scheme can be derived using the above formulas with a 5-3 stencil as

follows:

1

3
u0i�1 þ u0i þ

1

3
u0iþ1 ¼

1

180h
5 uiþ2ð þ 140 uiþ1 � 140 ui�1 � 5 ui�2Þ; ð46Þ

which is the standard sixth-order compact scheme on a uniform grid [14].

Hence, given the grid distribution, the compact scheme coefficients can be calculated explicitly without

using the Taylor expansion for uniform or non-uniform grids. The coefficients at the boundary closure

scheme are derived using the same formula by specifying one-sided grid stencils. Similarly, the derivatives at

all grid points, including the interior and boundary points, can be combined into the following vector

formula:

Pu0 ¼ Qu; ð47Þ

where P and Q are banded coefficients matrices, which can be computed once and for all at the beginning of

a calculation. In the stability analysis, the compact scheme can also be written into explicit form as

u0 ¼ Au; ð48Þ

where A ¼ P�1Q.

Examples of these coefficients� matrix for high-order compact schemes on non-uniform grids are shown

in Appendix A. Once the coefficients are computed, the higher-order explicit or compact schemes can be
used to discretize a first-order derivative in numerical simulation by using the formulas given by Eqs. (32) or

(47). The matrix multiplication is only partially carried because P and Q are banded matrices. Similar
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methods can be used to derive explicit formulas for compact schemes to calculate second derivatives on

non-uniform grids. They are not presented here.

4.1. Grid spacing

The stability of high-order schemes is dependent on the grid clustering near the boundaries. Spectral

collocation methods utilizing the Chebyshev spacing are stable for arbitrary order schemes with boundary

closure. The Chebyshev grid spacing is given by Eq. (27). However, this spacing is very restrictive on the

time step (Oð1=N 2Þ) in a temporal integration of a PDE. In this paper we are using a less restrictive spacing

with high-order finite difference schemes in order to maintain stability and high spatial accuracy and an

Oð1=NÞ in minimum grid spacing and time step. No attempt is made to search for the optimal grid spacing

in terms of stability and accuracy. The stretching used in the paper can vary the grid clustering near the
boundaries and hence can be used to prove that stable high-order schemes can be constructed by sufficiently

increasing grid clustering near the boundaries.

In this paper, the grid spacing in the numerical simulations is controlled using the stretching function

proposed by Kosloff and Tal-Ezer [29] for a spectral method, i.e.,

x ¼ sin�1ð�a cosðpi=NÞÞ
sin�1 a

; ð49Þ

where the parameter a is used to change the stretching of the grid points from one limit of a Chebyshev grid

at a ! 0 and the other limit of an uniform grid at a ¼ 1. Hence, the stretching can be controlled to find the

optimum a for which the high order scheme is stable.

4.2. Asymptotic stability analysis

The asymptotic stability of the high-order explicit and compact schemes with boundary closures is

analyzed by computing the eigenvalues of the matrices obtained by spatial discretization of the following
wave equation:

ou
ot

þ c
ou
ox

¼ 0 ð50Þ

in a fixed computational domain ð�1; 1Þ. The non-periodic boundary condition is specified at x ¼ �1 to a

fixed value uðx ¼ 1; tÞ ¼ f ðtÞ. After a computational grid has been assigned to the domain, the spatial

derivatives of all grid points, including the interior and boundary points, are discretized by a explicit or
compact finite difference algorithms given by Eqs. (32) or (47). Substituting the approximation above into

the wave equation (50) with the non-periodic boundary condition at x ¼ �1 leads to

du

dt
¼ cMuþ gðtÞ: ð51Þ

The asymptotic stability condition for the semi-discrete equations is that all eigenvalues of matrix M
contains no positive real parts.

The asymptotic stability, which requires that the eigenvalues of the spatial discretization matrices

contain no positive real parts, is necessary for the stability of long-time integration of the equation. This is a

necessary condition for the stability of the schemes when the matrices do not have full sets of eigenvalues

and eigenfunctions. Numerical computations show that the matrices for high-order upwind schemes with

boundary conditions have full eigenvalues. For such normal matrices, the eigenvalue analysis is accurate in

assessing the stability of high-order finite-difference schemes.
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In this paper we define the order of a scheme on non-uniform grids to be the same as the degree of

polynomial used for interpolation. Fig. 3 (top) shows the spectrum for a sixth-order scheme on a uniform

grid of 101 points. The grid stencil in the interior is to use seven points to evaluate the derivative at the

center node point, and use a one-sided seven point stencil for the boundary closure scheme. The figure
Fig. 3. Eigenvalue spectrum of the spatial discretization matrix for the sixth-order scheme on (top) a uniform grid of 101 points

(center) a stretched grid of 101 points with a ¼ 0:9997, and (bottom) a stretched grid of 101 points with a ¼ 0:9995.
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shows that there are two eigenvalues in the unstable region of the spectrum. Therefore a sixth-order scheme

with a sixth-order boundary closure scheme will not be stable because a uniform grid is used.

In order to stabilize the sixth-order scheme, a stretched grid given by Eq. (26) is used for the seven point

stencil scheme in the physical domain. It is found that the stability of the scheme improves as the grid

becomes more and more stretched towards the boundary by decreasing the value of a. Fig. 3 (center) and

Fig. 3 (bottom) show the spectrum for the sixth-order scheme on a stretched grid with a ¼ 0:9997 and

a ¼ 0:9995, respectively. The two unstable eigenvalues become less unstable for a ¼ 0:9997 and are com-

pletely stable for a ¼ 0:9995. Hence, computing the derivatives directly on a stretched grid results in a stable
boundary closure.

It is also found that as the order increases, the amount of grid stretching needs to be increased in order to

stabilize the schemes with boundary closure. Therefore, it is necessary to determine the grid stretching
Fig. 4. Top: Variation of grid stretching parameter a required for stable boundary closure, with the total points used, for various

schemes. Bottom: Variation of minimum Dx required for stable boundary closure with the total points used, for various schemes.
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needed for stable algorithms as a function of the order of the finite difference algorithm and the number of

total grid points in the domain. The stability results for the fourth-, sixth-, eighth, 10th-, and 12th-order

schemes are presented in Fig. 4. The limits of the grid stretching parameter a and the corresponding

minimum Dxmin required for a stable closure is plotted versus the total number of points, for all schemes.

The Dxmin is normalized by averaged grid spacing Dxuniform ¼ 2=N . The results show that higher-order

schemes required smaller Dxmin in order to maintain stable boundary closure. As N increases, the value of

Dxmin=Dxuniform approaches a constant value, which means that the required minimum grid spacing is of the

order of 1=N . Hence, the grid spacing requirements for stabilizing the new high order schemes are less
restrictive than spectral methods (where the Dxmin is of order 1=N 2).

The variation of minimum required grid spacing Dxmin for stability with the order of accuracy (stencil

width) is shown in Fig. 5. The figure shows that for 6th to 20th-order schemes, Dxmin is approximately of

O(1=ðNMÞ) for a finite difference scheme using a local stencil width of M (M � 1th-order scheme). This is

much less restrictive than the O(1=N 2) spacing in the case of the spectral collocation method based on

Chebyshev polynomial. However, it should be noted that unstretching of the order similar to our method

can be achieved in spectral element methods where the stencil does not involve the whole domain.

As stated earlier, the instability of the boundary closure scheme is a result of oscillation of polynomial
interpolation at the boundary on a uniform grid. It is can also be demonstrated by the distribution in the

interpolation error formula given by Eq. (52), where the error is proportional to the following function:

gðxÞ ¼ ðx� x0Þðx� x1Þ � � � ðx� xnÞ: ð52Þ

The error in approximating the derivative at a grid points xi is given by g0ðx0Þ.
Fig. 6 shows the distribution of the error function given by Eq. (52) (normalized by the maximum

uniform grid truncation error) for a sixth-order scheme on a Chebyshev spacing and two intermediate

stretching cases. The truncation error is oscillatory near the boundary for the intermediate stretching cases.

This is clearly seen in Fig. 6 (bottom figure) which is a zoomed version of Fig. 6 (top figure). When the
stretching is moved closer to the uniform case the oscillations are larger in magnitude and can result in an

unstable scheme. Hence, for a stable closure the truncation error near the boundaries must be kept low.
Fig. 5. Variation of minimum Dx required for stable boundary closure with the stencil width, for various schemes.



Fig. 6. Distribution of the truncation error (normalized by the maximum uniform grid truncation error) for a sixth-order scheme for

101 points. The error distribution near the boundary is zoomed and shown in the bottom figure.
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The stability analysis was repeated for compact schemes with similar results. We tested four cases of

compact schemes with a 5–3 (seventh-order), 7–3 (ninth-order), 7–5 (11th-order), and 9–3 (12th-order) grid

stencil. An example of the derivative matrix of the 7–3 compact scheme with 15 grid points is shown in

Appendix A for a stretching grid with a ¼ 0:8. The variation of minimum required grid spacing Dxmin for

stability with the high-order compact schemes is shown in Fig. 7. The figure shows that for up to 11th-

order, the compact schemes can be stabilized by requiring Dxmin to be smaller than a certain number,

however, the 12th-order compact scheme cannot be stabilized when the grids are stretched. The reason is
currently not clear. Further studies are needed to understand the reason why compact schemes of very high

order are not stable with high order boundary closure schemes. Hence, in this paper only moderately high

order compact schemes (up to 11th-order) are presented. On the other hand, there is no stability problem

for arbitrarily high-order explicit finite difference schemes, as long as the grid stretching is below the limits

shown in Fig. 4.



Fig. 7. Variation of minimum Dx required for stable boundary closure with the stencil width, for various compact schemes.
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4.3. Stability of multi-dimensional high-order schemes

The stability analysis detailed in the previous subsection applies for a 1-D derivative operator only. The

application to multidimensional problems requires the simultaneous application of high-order schemes to

calculate spatial derivatives in several directions. The combined derivatives for 2-D and 3-D operators are

much more complex than the 1-D case. In this section we show that the stability properties of the 1-D case

are preserved for 2-D and 3-D cases if the matrix A has a complete set of eigenvectors. We address this issue

by analyzing the scheme for a 2-D convective problem and choosing the following problem without loss of

generality:

ou
ot

¼ ou
ox

þ ou
oy

; ð53Þ

where x, and y represent the coordinates of the two dimensions. The equation is discretized on a rectangular

domain with N grid points in the x direction and M grid points in the y direction. The derivatives for a
group of u�s along a horizontal grid line in the x direction can be calculated as follows:

o

ox

u1j
u2j
..
.

uNj

0BBB@
1CCCA ¼ AN�N

u1j
u2j
..
.

uNj

0BBB@
1CCCA ð54Þ

for j ¼ 1; 2; . . . ;M where A is the derivative matrix for the x direction. Similarly the y derivatives for a group
of u�s along a vertical grid line are as follows:
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o

oy

ui1
ui2
..
.

uiM

0BBB@
1CCCA ¼ BM�M

ui1
ui2
..
.

uiM

0BBB@
1CCCA ð55Þ

for i ¼ 1; 2; . . . ;N where B is the derivative matrix for the y direction. For a 1-D case considering A and B
separately, we can determine the stability of the schemes by checking the eigenvalues ai (for A) and bj (for

B), respectively. For a 2-D case the unknown variables are usually represented by a single vector of length

N �M . However, for the convenience of the following proof the the unknown variables located at all the

grid points are represented by a matrix function as follows:

X ¼

u11 u12 . . . u1M

u21 . .
.

u2M
..
.

uij ..
.

. .
.

uN1 . . . uNM

0BBBBBBB@

1CCCCCCCA
: ð56Þ

The spatial discretization of Eq. (53) leads to a system of ordinary differential equations

oX
ot

¼ A � X þ X � BT: ð57Þ

In Eq. (57) we can assume X ¼ eXX ekk t to get an eigenvalue problem for 2-D equations:

kk eXXN�M ¼ AN�N
eXX þ eXXBT

M�M : ð58Þ

In this section we will prove the following theorem:

Theorem. If A is diagonalizable and has eigenvalues ai ði ¼ 1; 2; . . . ;NÞ, and B is diagonalizable and has ei-
genvalues bj ðj ¼ 1; 2; . . . ;MÞ, then the 2-D eigenvalue problem given by Eq. (58) will have eigenvalues kk
ðk ¼ 1; 2; . . . ;NMÞ as follows:

kk ¼ ai þ bj
i ¼ 1; . . . ;N ;
j ¼ 1; . . . ;M :

� �
ð59Þ
Proof. The derivative matrix A can be written as:

A ¼ PKAP�1ðN � N matrixÞ; ð60Þ

where

½KA� ¼

a1 . . . 0

. .
.

..

.
ai ..

.

. .
.

0 . . . aN

0BBBBBB@

1CCCCCCA ð61Þ
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and similarly B can be written as:

B ¼ QKBQ�1ðM �M matrixÞ: ð62Þ

Using the unknown variable matrix (Eq. (56)) we can write:

oX
ox

¼ ½AU1AU2 � � �AUM � ¼ AX ; ð63Þ

where

Uj ¼

u1j
u2j
..
.

uNj

0BBB@
1CCCA: ð64Þ

Similarly

oX
oy

¼

V1BT

V2BT

..

.

VNBT

0BBB@
1CCCA: ð65Þ

The analysis for the proof is as follows:

A ¼ PKAP�1: ð66Þ

Hence, the eigenvalue problem can be written for each scalar eigenvalue kk as:

kkP�1 eXX ¼ KAP�1 eXX þ P�1 eXXBT: ð67Þ

Define

eYY ¼ P�1 eXX ¼

lA1 eXX
lA2 eXX
..
.

lAN eXX

0BBB@
1CCCA ¼

y1
y2
..
.

yN

0BBB@
1CCCA: ð68Þ

Hence, the eigenvalue problem for each scalar eigenvalue kk can be rewritten as follows:

kk eYY ¼ KA
eYY þ eYY BT; ð69Þ
ðkkI � KAÞeYY ¼ eYY BT; ð70Þ
kk � a1 . . . 0

. .
.

..

.
kk � ai ..

.

. .
.

0 . . . kk � aN

0BBBBBB@

1CCCCCCA
y1
..
.

yN

0B@
1CA ¼

y1
..
.

yN

0B@
1CABT; ð71Þ
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ðkk � a1Þy1
..
.

ðkk � aNÞyN

0B@
1CA ¼

y1BT

..

.

yNBT

0B@
1CA; ð72Þ
ðkk � aiÞyi ¼ yi � BT ði ¼ 1; . . . ;NÞ; ð73Þ
ðkk � aiÞyTi ¼ ByTi : ð74Þ

Hence, ðkk � aiÞ is an eigenvalue of B, giving:

kk ¼ ai þ bj
i ¼ 1; . . . ;N ;
j ¼ 1; . . . ;M :

� �
ð75Þ

Hence, if the one-dimensional schemes (associated with the matrices A and B) are stable then from the

above relation we can conclude that the 2-D schemes are also stable. This analysis can easily be extended to

the 3-D case and is not presented here.

In the above subsections we have shown that by using an appropriate stretching of the grids, with grids

clustered near the boundaries, it is possible to derive asymptotically stable schemes on non-uniform grids.

We have also presented methods to explicitly derive the coefficients for the numerical schemes. In addition,
we have proved that the asymptotic stability properties of the 1-D case are preserved for the 2-D and 3-D

cases if the derivative matrices have complete sets of eigenvectors. In the following section, the high-order

non-uniform grid schemes are numerically tested by considering a one-dimensional wave equation problem

and 2-D incompressible flow simulations.
5. Numerical results

The high order explicit and compact schemes are first tested by solving the one-dimensional linear

wave equation. The purpose of this test is to confirm the numerical stability of the high-order schemes

and to quantitatively evaluate the accuracy of the high-order schemes. It is shown that high-order

schemes (tested up to 17th-order) offer very good accuracy, which is important for flow simulations

with a wide range of length scales, such as the direct numerical simulation of transitional and turbulent

flows.

The new non-uniform grid high-order schemes are derived based on analysis on linear model equations

only. Hence, the new scheme is applied to 2-D incompressible flow problems to determine whether the good
performance and stability of the high-order schemes shown in the model equations can be maintained when

the high-order schemes are applied to nonlinear Navier–Stokes equations. The results from the test cases

are presented in the following subsections. Once, the schemes were tested, they were applied to the direct

numerical simulations of 3-D compressible full Navier–Stokes equations. For simplicity, only the explicit

schemes were used for the Navier–Stokes computations. However, we expect the stability of high-order

stretched grid compact schemes to hold for such computations as well.

5.1. Wave equation computations

The model equation used for the one-dimensional wave equation computations is given by Eq. (50). The

non-periodic boundary condition is set at the left boundary as

uð�1; tÞ ¼ sinðxptÞ tP 0: ð76Þ
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The wave equation is solved in a fixed computational domain ð�1; 1Þ. The parameters of the calculations

are: c ¼ 1, x ¼ 1. The computations are performed using the second-, fourth-, sixth-, eighth-, 10th-, and

12th-order explicit schemes. All the computations are performed on the same stretched grid with the

stretching parameter a ¼ 0:91, which leads to a stable scheme for all the above orders of accuracy. The

boundary closure scheme used is of the same order as the interior so that there is no loss of accuracy due to

the boundary schemes. The value of the the grid stretching parameter, a ¼ 0:91, is chosen such that the

stability condition for all the above high order schemes is satisfied. The calculations are done using 21, 41,

51, and 101 grids. The time stepping scheme used in the computations is a fourth-order Runge–Kutta
scheme. The time step is chosen and tested to be small enough such that the temporal errors are always

smaller than spatial errors in order to test the numerical accuracy of the spatial high-order schemes.

As expected, the computations of all orders are numerically stable with even high-order boundary

closure schemes. Fig. 8 shows a typical result on the comparison for 16th-order scheme on a stretched grid

with the stretching parameter a ¼ 0:91. The boundary closure is now stable and there is excellent agreement

between the numerical and exact solutions. The error distribution for the 10th-order scheme is shown in

Fig. 9. The average error for all the schemes and grid sizes are shown in Fig. 10. The results show the

advantage of using higher order schemes. The errors of the results using 21 grid points reduced substantially
when the order of the schemes increases. The error of a second-order scheme is 3� 10�2 using 21 points.

The error reduced to 6� 10�10 for the 12th-order scheme. The stretching allows high order accuracy and

stability to be maintained at the boundary. The resolution of numerical scheme was further tested using a

case with multiple frequencies. This is done by modifying the boundary condition as follows:

uð�1; tÞ ¼
XN
i¼1

sinðxipt þ /iÞ tP 0; ð77Þ

where the phase of each mode /i was chosen randomly. Fig. 11 shows the excellent agreement of the

numerical solution, computed using a 12th-order scheme, with the exact solution.

The resolution ability of the schemes is further studied by computing the dispersive errors using a
Fourier analysis when they are applied to Eq. (50). The trial solution is
Fig. 8. Comparison of numerical solution, using a 16th-order explicit scheme on a stretched grid (a ¼ 0:91), with the exact solution at

t ¼ 2:2 s.



Fig. 9. Error distribution for numerical solution, using a 10th-order explicit scheme on a stretched grid (a ¼ 0:91), at t ¼ 1 s.

Fig. 10. Average error (L-1 norm) for explicit high order scheme solutions of the wave equation.
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u ¼ uðtÞeixx=h; ð78Þ

where h is the largest grid spacing for the particular grid chosen. The exact derivative of the trial solution is

ou
ox

¼ ix
h
u: ð79Þ



Fig. 11. Comparison of numerical solution, computed using a 12th-order scheme, and the exact solution for the multiple wavenumber

and random phase test case for the wave equation.
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Applying the trial function to a finite difference scheme given by Eq. (30) leads to

ou
ox

¼ ix1

h
u; ð80Þ

where

x1 ¼ �i
Xn
k¼1

bi;k eiðxðkÞ�xðiÞÞx=h: ð81Þ

The dimensionless dispersive errors are calculated as follows:

Dispersive Errors ¼ Reðx1 � xÞ: ð82Þ

It should be noted that the dispersive errors will be different at various points of the grid (unlike the uniform

grid case). In this paper we present the maximum dispersion errors. The dispersion plot of x1 vs x for the
first derivative is shown in Fig. 12. The figure shows that as the stencil width is increased the resolution of the

scheme improves and the dispersion errors are reduced. Hence, by choosing a higher order scheme, made

possible because of the stability of the high order boundary closure on non-uniform grids, we can resolve a

large range of scales. The dissipation errors can be calculated in a similar manner. However, the dissipation

errors are a few orders of magnitudes smaller than the dispersive errors and are not presented here.

On the other hand, the computations using sixth-order or higher schemes are not stable if the grid is

uniform. Fig. 13 shows a typical result of the comparison of the numerical solution with the exact solution

for a sixth-order interior and boundary scheme on a uniform grid at t ¼ 2:2 s. The instability at the
boundary can be seen. This instability will develop rapidly and lead to a diverged numerical solution at later

time steps. Another test case considered solutions on a stretched grid and used a high-order scheme derived



Fig. 12. Comparison of modified wavenumber for the first derivative, for various non-uniform grid schemes.

Fig. 13. Comparison of numerical solution , using a sixth-order explicit scheme on an uniform grid, with the exact solution at t ¼ 2:2 s.
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on a uniform computational coordinates through a coordinate transformation This case also leads to

numerical instability at the boundary and is unstable. Fig. 14 shows the comparison of numerical solution

(at t ¼ 0:01 s) using the stretched grid computed by a sixth-order explicit scheme on a uniform grid through



Fig. 14. Comparison of numerical solution (at t ¼ 0:01 s) using a stretched grid and is computed by a sixth-order explicit scheme on a

uniform grid through coordinate transformation.
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coordinate transformation. The computations develop numerical instability at the boundary and will di-

verge at a later time. Hence, using a high order numerical scheme derived on a uniform grid, with or

without a grid transformation, leads to an unstable solution. However, as demonstrated earlier, the ap-

plication of the scheme directly on an appropriately stretched grid leads to stable solution even with high

order boundary closure schemes.

5.2. Two dimensional incompressible viscous flows

The results from the previous subsection show that the new non-uniform grid high order schemes are

stable with high order boundary closure for linear wave equations. However, the Navier–Stokes equations

have nonlinear terms which may lead to instability when discretized by the new schemes. Hence, in this

subsection we use the scheme to solve incompressible Navier–Stokes equations, and evaluate if the new
scheme continues to be stable and accurate for nonlinear problems. A simple flat plate geometry is used in

the simulations. Steady Blasius boundary layer test cases are considered to evaluate the stability and res-

olution of the new schemes.

5.2.1. Governing equations

The governing equations are the incompressible Navier–Stokes equations in the vorticity transport form

[31] which is a standard form used in direct numerical simulations of incompressible flows:

oxz

ot
þ o

ox
ðuxzÞ þ

o

oy
ðvxzÞ ¼ Dxz; ð83Þ

where the D operator is defined as:

D ¼ 1

Re
o2

ox2
þ o2

oy2
: ð84Þ
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The flow variables are nondimensionalized as follows:

x ¼ x�

L
; y ¼

ffiffiffiffiffiffi
Re

p y�

L
; z ¼ z�

L
; u ¼ u�

U1
; v ¼

ffiffiffiffiffiffi
Re

p v�

U1
; ð85Þ

where the ��s represent the dimensional variables and Re ¼ U1L=m. The velocity components can be cal-

culated from the following equations:

Dv ¼ � oxz

ox
; ð86Þ
o2u
ox2

¼ � o2v
oxoy

: ð87Þ

The Blasius boundary layer solution is prescribed at the inlet. No slip conditions are used on the wall. The

vorticity at the wall is computed from the following equation:

oxz

ox
¼ �Dv: ð88Þ

At the free stream xz is set to zero. The streamwise velocity is fixed and the wall normal velocity is

computed from the continuity equation. The exit flow properties are calculated using the governing

equations and setting the ð1=ReÞðo2=ox2Þ terms to zero.
5.2.2. Non-uniform grid high-order finite difference method

The equations are discretized on a stretched grid in both directions using Eq. (26), with the derivative

coefficients computed directly for the non-uniform grid. In this test case the physical domain is rectangular

and no transformations are required to solve the equations. The convective terms are discretized using a
high order upwind finite difference scheme. The upwinding is done using a biased stencil (shifted by one

point) with the same order as the overall scheme. The order can be set to an arbitrarily high number less

than the number of grid points. The second derivatives in the viscous terms are discretized directly on the

stretched grid using high order finite differences. In addition, the formulas for normal velocity derivatives

on the wall include the first derivative at the wall (i.e., a compact scheme is used at the wall) to ensure that

the continuity equation is satisfied. The solution is advanced in time using a fourth-order Runge–Kutta

method.

5.2.3. Flat plate boundary layer test case

The high order incompressible explicit Navier–Stokes code was tested by computing a flat plate

boundary layer test case. The numerical solution is compared with the self-similar Blasius boundary layer
solution. The flow variables are nondimensionalized as follows:

x ¼ x�

L
; y ¼

ffiffiffiffiffiffi
Re

p y�

L
; z ¼ z�

L
;

u ¼ u�

U1
; v ¼

ffiffiffiffiffiffi
Re

p v�

U1
; w ¼ w�

U1
: ð89Þ

In this test case the Reynolds number is 105 and the characteristic length is 0:05 m. The domain ranges
x0 ¼ 0:37 to xN ¼ 0:5 in the x-direction and the maximum in the wall normal direction is yN ¼ 18:84. A
101� 101 grid, with the grid stretching parameter a ¼ 0:98, is used for the calculations. The computations

are carried out using third, seventh, ninth, and 15th-order schemes. Fig. 15 shows the variation of the wall
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normal velocity in the wall normal direction at x ¼ 0:469 for the 15th-order case, and compares it to the

exact solution obtained from the Blasius boundary layer equations. The solution is in very good agreement

with the Blasius solution. The vorticity contours for the 15th-order case are shown in Fig. 16. The contours

show that the solution is smooth and stable for a 15th-order scheme with 15th-order boundary closure.

Such a scheme is unstable on a uniform grid and will show large oscillations in the contours. The relative

errors for the schemes of various order are shown in Fig. 17. While calculating the errors, the solution using
Fig. 15. Comparison of the wall normal velocity numerical solution with the Blasius solution, at x=L ¼ 0:469. The numerical solution

is calculated using the 15th-order scheme.

Fig. 16. Spanwise vorticity contours for the incompressible flat plate boundary layer case. The numerical solution is calculated using

the 15th-order scheme.



Fig. 17. Comparison of the wall vorticity distribution errors computed using the third, seventh, and ninth-order schemes.
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the 15th-order scheme is chosen as the exact solution. As expected, the accuracy of the solution improves as

the order of the schemes is increased from third to 15th-order.
As shown in the above subsections the new non-uniform grid schemes are stable and accurate for

simulations of the wave equation, and the incompressible Navier–Stokes equations. The solutions obtained

are in excellent agreement with the exact solutions in both cases. Hence, the new schemes are applicable to

both linear and nonlinear problems, with arbitrarily high orders of accuracy with high order boundary

closure schemes. In the next section, the schemes are applied for the direct numerical simulation of the

receptivity processes in hypersonic boundary layer transition.
6. Receptivity of Mach 15 flow over a parabola

In this section, we apply the new high-order non-uniform grid schemes to compute the receptivity

process of hypersonic boundary layer flows over a parabolic blunt leading edge. The receptivity mechanism

provides important initial conditions of amplitude, frequency, and phase of instability waves in the

boundary layers. The same test case was considered by Zhong [32] using a fifth-order shock fitting scheme.

The receptivity problem is an ideal case to test the new schemes because it involves both steady and un-

steady flow simulation in a viscous hypersonic flow field. The unsteady flow field contains complex in-
teraction of a number of waves of different length scales. It is expected that high-order schemes will be

particularly useful in capturing the different length scales effectively.

Specifically, the receptivity of a two-dimensional boundary layer to free stream acoustic waves for hy-

personic flows past a parabolic leading edge at zero angle of attack are considered. The parabolic body

surface is determined by:

x� ¼ b�y�
2 � d�; ð90Þ

where b� and d� are constants, and d� is used as the reference length in this paper. The nose radius of curvature

is r� ¼ 1=ð2b�Þ. Free stream disturbances are superimposed on a steady mean flow before reaching the bow
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shock to investigate the process of free streamwaves entering the boundary layer and inducing boundary-layer

waves. The free stream disturbances are assumed to beweakmonochromatic planar acoustic waves with wave

fronts normal to the center line of the body. The wave fields are represented by the perturbations of instan-

taneous flow variables with respect to their local steady based flow variables at the same location. The flow is

characterized by a free stream Mach numberM1 ¼ u�1=a
�
1, and a Reynolds number defined by

Re1 ¼ q�
1U

�
1d

�

l�
1

: ð91Þ

The forcing frequency of the free stream acoustic wave is represented a dimensionless frequency F defined by

F ¼ 106
x�m�

U �2
1

¼ 106 x=Re1; ð92Þ

where F represents the wave frequency with respect to viscous flow scales. We can also define a Strouhal

number S uisng the nose radius by

S ¼ x�r�

U �
1

; ð93Þ

where r� is the nose radius. The Strouhal number represents the relative nose bluntness in the receptivity

problem.

The flow conditions of the current computational case are as follows. M1 ¼ 15, T �
1 ¼ 192:989 K,

p�1 ¼ 10:3 Pa, c ¼ 1:4, Pr ¼ 0:72, R� ¼ 286:94 Nm=kg K, Re1 ¼ 6026:6, T �
w ¼ 1000 K, r� ¼ 0:0125 m,

d� ¼ 0:1 m, and � ¼ 5� 10�4–10�1. The nondimensional frequency is k1 ¼ 15, and F ¼ 2655, S ¼ 2. Two

sets of grids are used to compute both steady and unsteady flow solutions of the full Navier–Stokes
equations: a coarse 31� 51 grid and a finer 51� 91 grid. The computational grid of 31� 51 is shown in

Fig. 2. For each grid, the flow solutions are simulated using a non-uniform grid scheme of different orders.

Specifically, the orders are first-, third-, fifth-, seventh-, ninth-, and 11th-order. The grid stretching pa-

rameter a in Eq. (26) is 0.6, which has been found to be stable for the various order schemes computed.

Because the flow field behind the bow shock is not uniform, the flow variables are nondimensionalized

using the free stream conditions as characteristic variables. Specifically, we nondimensionalize the velocities

with respect to the free stream velocity U �
1, length scales with respect to a reference length d�, density with

respect to q�
1, pressure with respect to p�1, temperature with respect to T �

1, time with respect to d�=U �
1,

vorticity with respect to U �
1=d

�, entropy with respect to c�p, wave number by 1=d�, etc. The dimensionless

flow variables are denoted by the same dimensional notation but without the superscript ‘‘�’’.

6.1. Steady base flow solutions

The steady base flow solutions of the Navier–Stokes equations for the Mach 15 flow over the blunt

leading edge are obtained first by advancing the solutions to a steady state without free stream pertur-

bations. The physical characteristics of the solutions of this flow problem have been discussed in detail in

[19]. The main focus of this paper is to evaluate the numerical stability and accuracy of high-order non-

uniform grid schemes at different orders and different grid resolutions.

Fig. 18 shows the Mach number contours and velocity vectors for steady base flow solutions using the

11th-order non-uniform grid scheme. The results computed by the 11th-order scheme are very smooth for
this relatively coarse grid. Non-uniform grid schemes of the first-, third-, fifth-, ninth-, and 11th-order were

used to solve the base flow using the same 31� 51 grid to evaluate the numerical accuracy. Since there is no

analytical solution available, we evaluate the numerical accuracy by comparing the present solutions with

those of an 11th-order scheme using a finer 51� 91 grid. Fig. 19 shows such accuracy evaluation for the



Fig. 18. Mach number contours and velocity vectors for steady base flow solutions using the 11th-order non-uniform grid scheme

(31� 51 grid).
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surface distribution of vorticity using non-uniform grid schemes of different orders. The lower figure shows
the comparison near the minimum vorticity point. Again the figure shows the improvement of numerical

accuracy as the order of the method increases. The 11th-order scheme using the coarse grid is very close to

the results of fine grid of the same order. Similar trends in the numerical accuracy of the results are also

shown in the surface heating rates distribution (Fig. 20).

Fig. 21 show a quantitative assessment of the numerical accuracy of the schemes of different orders by

plotting the relative errors of heating rates at the stagnation point. For a fixed grid resolution, the nu-

merical accuracy of the schemes improves as the order of the schemes increases. The improvement is

dramatic when the order is low. As the order increases, the improvement in accuracy becomes smaller. At
very high-order, there is very little improvement in accuracy by increasing the order further, because it has

reached the limit of the grid resolution. When a finer grid is used, the high-order schemes lead to further

improvement of accuracy. Therefore, the accuracy of high-order schemes can be improved substantially by

increasing the order of the schemes, but for a given grid resolution there is a limiting order of the schemes,

beyond which the accuracy of the solutions can not be improved further unless the grid is further refined.



Fig. 19. Flow vorticity distribution along parabola surface for steady base flow solutions using non-uniform grid schemes of the

following orders: first, third, fifth, ninth, 11th-order schemes using 31� 51 grid and a case of 11th-order using a finer grid of 51� 91.

Lower figure shows the comparison near the minimum vorticity point.
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For the current 2-D Navier–Stokes equations over a blunt body, the limiting order for the 31� 51 grid is

about fifth-order, while the limit for the finer 51� 91 grid is ninth-order.

Overall, the steady-flow results show that the high-order non-uniform grid schemes are stable for very

high-order (tested up to 11th-order) schemes. Such high order solutions are not possible using a conven-

tional uniform grid scheme because of numerical instability. The high-order non-uniform grid schemes can
produce highly accurate numerical solutions.

6.2. Unsteady flow solutions

Having obtained the steady solution, the receptivity of the hypersonic boundary-layer in the Mach 15

flow over the parabola is studied by numerical simulation using the high-order schemes. The high-order

non-uniform grid schemes are used to compute the unsteady solutions induced by free stream acoustic



Fig. 20. Nondimensional heating rates distributions along parabola surface for steady base flow solutions using non-uniform grid

schemes of different orders and different grids.

Fig. 21. Relative heating rate errors at the stagnation point for steady base flow solutions using non-uniform grid schemes of different

orders and different grids.
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waves. For weak disturbance waves in the free stream before reaching the bow shock, the perturbation of

an arbitrary flow variable can be written in the following form:

q1ðx; y; tÞ0 ¼ jq01jeik1ðx�c1tÞ; ð94Þ

where q1ðx; y; tÞ represents the perturbation of any flow variables, jq01j is the wave amplitude constant, k1
is the wave number, and c1 is the wave speed in the free stream before reaching the shock. For fast acoustic
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waves the perturbation amplitudes of the nondimensional flow variables satisfy the following dispersion

relations:

Fast Acoustic Wavesðc�1 ¼ u�1 þ a�1Þ :jq0j1 ¼ jp0j1=c ¼ ju0j1M1 ¼ �M1; js0j1 ¼ jv0j1 ¼ 0;

where � is a small number, and �M1 represents the relative amplitude of a free stream wave. The free stream

wave number k1 is related to the circular frequency x by x ¼ k1c1. The forcing frequency of the free

stream acoustic wave is represented by a dimensionless frequency F defined by

F ¼ 106
x�m�

U �2
1

¼ 106x=Re1; ð95Þ

where F represents the wave frequency with respect to a viscous flow scale.

The forcing waves induce boundary layer waves inside the boundary layers. The unsteady calculations

are carried out until the solutions reach a periodic state in time. Temporal Fourier analysis is carried out on
Fig. 22. Instantaneous temperature and pressure perturbation contours for the case of free stream acoustic wave of F ¼ 2655 and wave

amplitude of 0.001. The solution is obtained by the ninth-order schemes using 51� 91 grid.
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local perturbations of unsteady flow variables after a time periodic state has been reached. The Fourier

transform for the real disturbance functions lead to:

q0ðx; y; tÞ ¼ R
XN
n¼0

jqnðx; yÞjei½�nx0tþ/nðx;yÞ�

( )
; ð96Þ

where nx0 is the frequency of the nth wave mode, q0ðx; y; tÞ represents any perturbation variables. The
boundary layer waves contain the fundamental wave mode, which has the same frequency F as the forcing

acoustic waves. At the same time, due to the nonlinear interaction, the wave field also contains higher

harmonics of the fundamental frequency, nF , where n ¼ 0 represents mean distortion, n ¼ 1 represents the

fundamental mode, n ¼ 2 represents the second harmonics of two times the fundamental frequency, etc.

The higher harmonics have smaller wave lengths and orders of magnitude smaller amplitudes. For example,

the wavelength of n ¼ 2 mode is about half of that of the n ¼ 1 fundamental mode.

The results presented here are those for the case of free stream frequency of F ¼ 2655 and nondimen-

sional free stream forcing wave amplitude of � ¼ 0:001. The unsteady solutions are computed by the new
Fig. 23. Fourier amplitudes of pressure perturbation and their real part along parabola surface. The solution is obtained by the

seventh-order schemes using 51� 91 grid. In the figure, n ¼ 0; 1; 2; 3, corresponds to mean flow distortion, fundamental mode, second

harmonic, and third harmonic.
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non-uniform grid schemes of different orders. Fig. 22 shows the instantaneous pressure and temperature

perturbation contours. The solution is obtained by the ninth-order scheme using a 51� 91 grid. The results

show a very smooth wave solution. In response to the perturbations of the forcing waves in the free stream,

the unsteady flow field produces boundary layer wave modes of fundamental frequencies and their har-

monics. In the present case, the higher harmonics are several orders of magnitudes weaker than the fun-

damental modes. Fig. 23 shows the Fourier harmonics of the induced wave. It shows the Fourier

amplitudes of pressure perturbation and their real parts along the parabola surface. The solution is ob-

tained by the seventh-order schemes using a 51� 91 grid. In the figure, n ¼ 0; 1; 2; 3, corresponds to mean
flow distortion, fundamental mode, second harmonic, and third harmonic. The figures show that the high-

order schemes are able to capture these modes with a relatively coarse grid. Notice that there are about 27,

18, and 9 grid points per period for the first (n ¼ 1), the second (n ¼ 2), and third harmonic (n ¼ 3), re-

spectively. The amplitudes of these three harmonics are in the order of 101, 10�1, and 10�3 for the first,

second, and third harmonics. The figures show that the seventh-order scheme captures all these modes well.

The results of wave harmonics obtained by different order schemes of the same grid are compared in

Figs. 24–26. The results shows that the fundamental mode is captured very well by the schemes of fifth,

seventh, and ninth-order, but not well resolved by the third-order scheme. Fig. 25 shows that for the third
harmonic (n ¼ 3) the third-order scheme has significant errors compared to the fifth-, seventh-, and ninth-

order schemes. All the schemes show insufficient resolution near the start of the domain. However, the

fifth, seventh, and ninth-order schemes resolve the mode well in the interior of the domain, whereas the

third-order scheme is not able to resolve the third harmonic. Similarly, the fifth-order scheme under

predicts the mean flow distortion (n ¼ 0 mode) caused by nonlinear wave interaction. Therefore, the

ninth-order scheme produces more accurate results than the fifth-order scheme for the transient flow field

when the length scale is small for the high harmonics and the mean flow distortion due to nonlinear

interactions.
Similar to the steady solution case, it is necessary to have sufficient grid resolution for the flow length

scale in order to have good accuracy. The corresponding unsteady flow have also been computed by using a
Fig. 24. Fundamental mode ðn ¼ 1Þ pressure perturbation amplitudes along parabola surface. The solution is obtained by the third,

fifth, seventh, and ninth-order schemes using 51� 91 grid.



Fig. 25. Third harmonic (n ¼ 3) pressure perturbation amplitudes along parabola surface. The solution is obtained by the third-, fifth-,

seventh-, and ninth-order schemes using 51� 91 grid.

Fig. 26. Mean flow distortion ðn ¼ 0Þ for pressure perturbation amplitudes along parabola surface. The solution is obtained by the

third, fifth, seventh, and ninth-order schemes using 51� 91 grid.

454 X. Zhong, M. Tatineni / Journal of Computational Physics 190 (2003) 419–458
relatively coarse 31� 51 grid. Fig. 27 shows the Fourier amplitudes of pressure perturbation along the

parabola surface for the same case. The solution is obtained by the ninth-order scheme using a 31� 51 grid.

The results show that the high-order schemes capture the fundamental mode very well, but cannot capture

the higher harmonics accurately because of the coarser grid.
Overall, the results show that with new method high order (upto 11th-order shown) computations can be

carried out without any numerical problems. The scheme is completely flexible from the point of view of



Fig. 27. Fourier amplitudes pressure perturbation along parabola surface. The solution is obtained by the ninth-order schemes using

the coarser 31� 51 grid.
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stencil width and order of accuracy. Hence, based on the resolution requirements of the problem the most

efficient stencil width can be chosen. In this paper we have shown only simple single domain computations.
However, conceptually no problems are anticipated in extending the schemes to multi-domain problems

following the approach of Kopriva [33] for multi-domain spectral methods.
7. Conclusion

A set of high-order schemes (upto 15th-order) with stable boundary closures, of the same order as the

interior, has been derived. The schemes are asymptotically stable for linear equations. The new schemes

are tested for nonlinear equations using numerical simulations of incompressible and compressible Na-

vier–Stokes test cases. The high-order non-uniform grid schemes have been applied to 2-D hypersonic

flow simulations using the nonlinear Navier–Stokes equations. Stable numerical solutions have been

obtained for the receptivity of Mach 15 flow over a parabola. The accuracy of both steady and unsteady
solutions obtained by using different orders of the schemes and different grid resolutions have been

evaluated. The results show the new non-uniform grid schemes are stable and are able to produce highly

accurate results.
Appendix A
The spatial discretization using an explicit scheme can be written in the matrix form given by Eq. (32).
An example of derivative A in Eq. (32) for a 15 point domain (with a ¼ 0:91) and a sixth-order scheme

using seven grid stencil in both interior and in boundary points is given in the matrix below. The

numbers below are truncated to three significants as a demonstration, the actual significant digits of

the coefficients are longer with about 15 digits for double precision calculations and can be longer if

necessary.
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A¼

�36:368 45:503 �12:961 5:316 �1:887 0:448 �0:051 � � � � � � � 0

�10:592 4:043 8:758 �3:011 1:008 �0:233 0:026 �
3:042 �8:831 1:570 5:340 �1:379 0:288 �0:030 �
�1:988 4:836 �8:508 2:824 3:309 �0:524 0:050 �

� �0:291 1:566 �5:532 1:062 3:812 �0:689 0:071 �
� �0:152 1:099 �4:731 0:462 4:008 �0:769 0:083 �
� �0:116 0:943 �4:403 0:183 4:121 �0:819 0:092 �
� �0:101 0:869 �4:233 0:000 4:233 �0:869 0:101 �
� �0:092 0:819 �4:121�0:183 4:403 �0:943 0:116 �
� �0:083 0:769 �4:008�0:462 4:731 �1:099 0:152 �
� �0:071 0:689 �3:812�1:062 5:532 �1:566 0:291 �
� �0:050 0:524 �3:309�2:824 8:508 �4:836 1:988
� 0:030 �0:288 1:379 �5:340�1:570 8:831 �3:042
� �0:026 0:233 �1:008 3:011 �8:758 �4:043 10:592
0 � � � � � � � 0:051 �0:448 1:887 �5:316 12:961 �45:503 36:368

26666666666666666666666664

37777777777777777777777775

:

ðA:1Þ

The spatial discretization using a compact scheme can be written in matrix form given by Eq. (47). An

example of the coefficient matrices P and Q for a 7–3 compact scheme for a 15 point domain (with a ¼ 0:8)
is given below:

P ¼

1:000 0:223 �0:066 � � � � � � � � � � � 0

0:046 1:000 0:343 �
� 0:615 1:000 0:340 �
� 0:791 1:000 0:251 �
� 0:519 1:000 0:306 �
� 0:439 1:000 0:339 �
� 0:402 1:000 0:361 �
� 0:380 1:000 0:380 �
� 0:361 1:000 0:402 �
� 0:339 1:000 0:439 �
� 0:306 1:000 0:519 �
� 0:251 1:000 0:791 �
� 0:340 1:000 0:615 �
� 0:343 1:000 0:046
0 � � � � � � � � � � � �0:066 0:223 1:000

26666666666666666666666664

37777777777777777777777775

;

ðA:2Þ

Q¼

�44:750 49:766 �5:503 0:524 �0:040 0:004 �0:0002 � � � � � � � 0

�16:392 8:256 7:948 0:203 �0:016 0:001 �0:0001 �
�6:887 �2:559 3:923 5:335 0:199 �0:012 0:0005 �
1:469 �4:748�4:831 4:308 3:705 0:100 �0:003 �
� 0:104 �0:949�4:972 1:804 3:857 0:162 �0:006 �
� 0:034 �0:491�4:483 0:837 3:906 0:206 �0:008 �
� 0:019 �0:349�4:196 0:341 3:952 0:243 �0:010 �
� 0:013 �0:284 �4:037 0:000 4:037 0:284 �0:013 �
� 0:010 �0:243 �3:952 �0:341 4:196 0:349 �0:019 �
� 0:008 �0:206 �3:906 �0:837 4:483 0:491 �0:034 �
� 0:006 �0:162 �3:857�1:804 4:972 0:949 �0:104 �
� 0:003 �0:100�3:705�4:308 4:831 4:748 �1:469
� �0:0005 0:012 �0:199�5:335�3:923 2:559 6:887

26666666666666666666666664

37777777777777777777777775

:

� 0:0001 �0:001 0:016 �0:203�7:948 �8:256 16:392
0 � � � � � � � 0:0002 �0:004 0:040 �0:524 5:503 �49:766 44:750
ðA:3Þ
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