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ABSTRACT 

Laminar-turbulent transition in boundary layers de- 
pends on the receptivity process, which is the pro- 
cess of environmental disturbances initially entering the 
boundary layers and generating disturbance waves. The 
receptivity of hypersonic boundary layers to freestream 
disturbances is altered considerably by the presence of 
bow shocks in hypersonic flow fields and by the entropy 
layers created by the blunt noses. This paper is part I1 
of a previous paper (AIAA paper 2002-2849) on the nu- 
merical simulation study of the receptivity to freestream 
acoustic disturbance waves for Mach 7.99 axisymmetric 
flow over a 7' half-angle blunt cone. The main focus 
of this study is on the excitation of  the second Mack 
mode waves in the receptivity process in the presense 
of freestream acoustic waves for the case of T' = 0 
wall boundary condition. The numerical solutions are 
compared with experimental results of Stetson et al. 
(1984) and with those obtained from a linear stability 
analysis. Both steady and unsteady flow solutions of 
the receptivity problem are obtained by computing the 
full Navier-Stokes equations using a high-order accurate 
shock-fitting finite difference scheme, which can accu- 
rately account for the effects of bow-shock/freestream- 
sound interactions on the receptivity process. In ad- 
dition, a normal-mode linear stability analysis is also 
used to  study the stability and receptivity properties of 
the boundary layer affected by the entropy layer. The 
most important finding of this study is that the syn- 
chronization location between mode I and the second 
mode plays an important role in the receptivity of the 
second Mack mode in the boundary layer. In the cur- 
rent flow over a blunt cone, the synchronization location 
is located downstream of the branch I neutral stability 
location of  the second mode. As a result, there are no 
noticeable second mode components in the region be- 
fore the synchronization location even though the sec- 
ond mode is linearly unstable there. Therefore mode I 
plays the most important role in the receptivity process, 
and leads to  the delay of the excitation of the second 
mode in the current flow over a blunt cone. 
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INTRODUCTION 

The prediction of laminar-turbulent transition in hy- 
personic boundary layers is a critical part of the aero- 
dynamic design and control of hypersonic vehicles. De- 
spite extensive studies over several decades, the mecha- 
nisms of hypersonic boundary layer stability and tran- 
sition are still not well understood. Mack ['I was the 
first t o  find that there are higher acoustic instability 
modes in addition to  the first-mode instability waves 
in high-Mach-number boundary layers. Among them, 
the second Mack mode becomes the dominant instabil- 
ity for hypersonic boundary layers at Mach numbers 
larger than about 4. The existence and dominance of 
the second Mack mode has been observed by experi- 
mental studies [2131, especially in hypersonic boundary 
layers over axisymmetric cones [3-71. 

carried out boundary layer stability 
experiments for an axisymmetric blunt cone at  Mach 
7.99. The half angle of the cone is 7' and the freestream 
Reynolds number based on the nose radius is about 
33,449. The total length of the cone is about 270 nose 
radii, corresponding to a Reynolds number of about 9 
million. The experiments measured detailed frequency 
spectra of the disturbance waves along the body sur- 
face. The instability waves were found to be dominated 
by second Mack mode instability. There are also signif- 
icant harmonic components of the second modes. They 
also found evidence of entropy layer instability in the 
region outside of the boundary layers for the case of 
a blunt cone with large nose radius. Stability experi- 
ments of hypersonic flow over similar geometries have 
also been done by other authors. Demetriades [4151 did 
extensive stability experiments on hypersonic bound- 
ary layers over axisymmetric cones. Maslov and his 
colleagues L 6 1 7 ]  reported their recent stability experi- 
ments on high speed flow. Because the issue of hy- 
personic boundary layer stability involves many com- 
plex mechanisms, i t  is necessary to conduct validation 
studies by comparing numerical simulation results with 
those of stability experiments. The CFD code valida- 
tion on hypersonic boundary layer transition is one of 
the subjects of the NATO RTO Working Group 10 [9]. 
The Mach 7.99, 7' blunt cone of Stetson's experiment 
is identified by the NATO Working Group as one of the 
few best available stability experiments for CFD code 
validation. 

In the previous paper [lo], we studied the receptivity 
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to freestream acoustic waves of the 7' half-angle blunt 
cone in Mach 7.99 flow, corresponding to  the stability 
experiment by Stetson et al. [81. The numerical simula- 
tion of the full nonlinear Navier-Stokes equations were 
able to take in to  account the nonlinear wave interac- 
tions, the bow shock and entropy layer effects, the wall 
curvature effects, and the non-parallel mean flow ef- 
fects on the stability of the boundary layer. The steady 
flow solutions of the previous paper [lo] agreed very well 
wit,h those computed by Esfahanian and Herbert [11] 

and compared well with experimental results on sur- 
face pressures and tangential velocities out side of the 
boundary layer. The receptivity of the Stetson's Mach 
7.99 flow over the blunt cone to freestream fast acoustic 
waves was simulated by solving the full Navier-Stokes 
equations. The simulation results showed a complex de- 
velopment of wave modes induced by freestream acous- 
tic waves. The main finding from the simulations was 
that the unstable second mode does not develop in the 
region where linear stability analysis (LST) predicts 
dominant unstable second modes. Instead, the second 
modes are excited at a later location than predicted by 
the LST analysis because the excitation of the second 
mode is governed by a different receptivity process. It 
was found that the synchronization location between 
mode I and the second mode plays an important role in 
the receptivity of the second Mack mode in the bound- 
ary layer. In the Mach 7.99 flow over a blunt cone, the 
synchronization location is located downstream of the 
branch I neutral stability location of the second mode. 
As a result, there are no noticeable second mode compo- 
nents in the region before the synchronization location 
even though the second mode is linearly unstable there. 
Therefore mode I and its resonant interaction with the 
second Mack mode plays a very important role in the 
receptivity process, and leads to the lack of excitation 
of the second mode in hypersonic flow over a blunt cone. 

This paper is part I1 of the study presented in [lo] 
on the numerical simulation of the receptivity of Stet- 
son's 7' blunt cone in Mach 7.99 flow for two purposes: 
1) to  compare numerical results with the experimental 
results, and 2) more importantly, to  study the detailed 
receptivity and stability mechanism by numerical sim- 
ulations. In [lo], the steady base flow was obtained 
by imposing an adiabatic wall boundary condition. Al- 
though the mean flow has an adiabatic wall with a zero 
temperature gradient on the wall, it has been generally 
accepted that  the temperature perturbations should be 
set to  zero because of the relatively high frequencies 
of the second mode. In our simulations, however, a 
wide range of frequencies are simultaneously imposed 
in the freestream. It is likely that the actual tempera- 
ture perturbations may be somewhere between the two 
extremes of i?T'/i?y,, = 0 and T' = 0. Therefore, we 
simulate both cases of different temperature perturba- 
tions conditions on the wall with the same mean flow. 
The results of the test case of dT ' /dy ,  = 0 boundary 

condition were mainly presented in [ lo] .  The purpose 
of this paper is to present the second part of the results 
on the receptivity for the case of using zero tempera- 
ture perturbation (7" = 0) boundary condition. The 
combined results of the current paper and the previous 
paper [lo] are expected to show a better picture of the 
receptivity process in hypersonic boundary layers over 
a blunt cone. 

In the following sections, the governing equations and 
the receptivity simulations are briefly described. More 
details, along with the review of related works, can be 
found in part I of this work in [IO]. 

GOVERNING EQUATIONS A N D  
NUMERICAL METHODS 

The stability and receptivity of axisymmetric laminar 
hypersonic flow over a blunt cone at zero angle of attack 
is computed using a three-dimensional grid. The gov- 
erning equations are the unsteady full three-dimensional 
Navier-Stokes equations written for the computation in 
the conservation-law form: 

dU* d F * j  dF*,j -+-+- = o  
at* ax; ax; 

where superscript "*" represents dimensional variables, 
and 

U' = { p * ,  p'u;, p *u ; ,  p*u; ,  e*) .  

The gas is assumed to be thermally and calorically per- 
fect. The viscosity and heat conductivity coefficients 
are calculated using Sutherland's law together with a 
constant Prandtl number, Pr .  The equations are trans- 
formed into body-fitted curvilinear computational coor- 
dinates in a computational domain bounded by the bow 
shock and the body surface. The location and the move- 
ment of the bow shock is an unknown to  be solved for 
along with the flow variables by a shock-fitting method 
described in [la]. The unsteady bow shock shape and 
shock oscillations are solved as part of the computa- 
tional solution. The numerical methods for spatial dis- 
cretization of the 3-D full Navier-Stokes equations are a 
fifth-order shock-fitting scheme in streamwise and wall- 
normal directions, and a Fourier collocation method in 
the periodic spanwise flow direction for the case of a 
wedge geometry or in the azimuthal direction for the 
case of a cone geometry. The spatially discretized equa- 
tions are advanced in time using Runge-Kutta schemes 
of up to third order. 

Because the flow field behind the bow shock is not 
uniform, the flow variables are nondimensionalized us- 
ing the freestream conditions as characteristic variables. 
Specifically, we nondimensionalize the velocities with re- 
spect to the freestream velocity U&, length scales with 
respect to  the nose radius r* ,  density with respect to  
p&, pressure with respect to p&,  temperature with re- 
spect to T& , time with respect to r*/U&, vorticity with 
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respect to  U & / r * ,  entropy with respect to c;, wave 
number by l / r * ,  etc. The dimensionless flow variables 
are denoted by the same dimensional notation but with- 
out the superscript “*”. 

FLOW CONDITIONS 

The flow conditions are the same as Stetson’s exper- 
iments on a blunt cone, i.e., 

M ,  = 7.99 
pt’ = 4 x lo6 Pa 
y = 1.4 
Re, = p&U&rA/pk  = 33,449 

T: = 750 li’ 
Pr = 0.72 

The viscosity is computed using the Sutherland’s law 
for air. The cone is a 0 = 7’ half angle blunt cone with 
a spherical nose of radius: r i  = 3.81 x 10-3rn. The total 
length of the cone is L* = 1.016m. The corresponding 
Reynolds number at  this length is R e L  = 8.92 x lo6.  
The body surface is assumed to  be a non-slip wall. In 
the current simulations, the wall surface is assumed to 
be an  adiabatic wall for steady base flow. As discussed 
in the introduction, a zero perturbation boundary con- 
dition is imposed on the wall in the unsteady flow com- 
putations. 

FORCING WAVE IN RECEPTIVITY 
SIMULATIONS 

The receptivity of an axisymmetric Mach 7.99 bound- 
ary layer to  freestream waves for hypersonic flows past 
a 7’ half angle blunt cone a t  zero angle of attack is con- 
sidered. Following [lo], initial weak forcing waves are 
introduced in the freestream to excite the instability 
waves in the boundary layer. Specifically, we simulate 
the receptivity process by imposing freestream acoustic 
disturbances according the freestream fluctuation spec- 
tra of the experiments of Stetson et al. shown in Fig. 
1. 

In the current study, freestream forcing disturbances 
are assumed to  be weak planar fast acoustic waves with 
wave fronts normal to  the center line of the body. The 
subsequent receptivity and development of the instabil- 
ity waves at  these frequencies and their harmonics due 
to nonlinear interactions are computed by the numeri- 
cal simulation. Specifically, we impose simultaneously 
N = 15 independent 2-D planar fast acoustic waves of 
different frequencies in the freestream. The amplitudes 
for each wave frequency is proportional to the wind tun- 
nel spectra shown in Fig. 1. The perturbation of an 
arbitrary flow variable can be written in the following 
form: 

N 

qoo(2 ,  y, t)’ lq‘l A ,  eiIn w l ( * - t ) + $ n ]  ( 3 )  
n = l  

where (q’lA, represents the wave amplitude of the 
freestream perturbation of any flow variables at  a fre- 

quency 

w, = n w1 ( n =  1 , 2 , ’ . . , N )  (4) 

where tu1 is the minimumfrequency of the waves. The 
rela.tive amplitude of each w, frequency is specified by 
A,, , which satisfies, 

N 

(5) 
n 

In Eq. ( 3 ) ,  c, is the wave speed in the freestream be- 
fore reaching the shock. The initial phase angle, &, of 
the forcing acoustic wave at frequency w, is determined 
randomly. The absolute amplitude of the wave group is 
determined by setting the values of lq’1. For fast acous- 
tic waves in the freestream, perturbation amplitudes of 
nondimensional flow variables satisfy the following dis- 
persion relations: 

where c is a small dimensionless number representing 
the relative amplitude of the group of freestream acous- 
t.ic waves. The forcing disturbances contain N wave 
frequencies which are multiples of w1, which are chosen 
such that the frequencies cover the dominant second- 
mode frequencies observed in the experiment. 

The flow is characterized by a freestream Mach 
number M ,  = G, and a Reynolds number defined 

The forcing frequency of the by Re, = 
freestream acoustic wave is represented by a dimension- 
less frequency F defined by 

a:, 

. p k U L d *  
P:, 

(6) 
W * V *  

F = lo6  - = lo6 w / R e ,  Ug 
where F represents the wave frequency with respect to a 
viscous flow scale. We can also define a Strouhal number 
S using the nose radius by 

w*r* s = -  
U& 

where r* is the nose radius. The Strouhal number repre- 
sents the relative nose bluntness in the receptivity prob- 
lem. 

The numerical simulation for an unsteady hypersonic 
layer stability problem is carried out in two steps. First, 
a steady flow field is computed by advancing the un- 
steady flow solutions to  convergence with no distur- 
bances imposed. Second, unsteady viscous flows are 
computed by imposing freestream waves given by Eq. 
( 3 ) .  
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STEADY BASE FLOW SOLUTIONS 

The steady base flow solutions of the Navier-Stokes 
equations for the axisymmetric Mach 7.99 flow over the 
blunt cone are obtained first by advancing the solutions 
to a steady state without forcing waves. The simula- 
tion is carried out by using a multi-zone approach using 
35 zones with a total of 4200 by 121  grid points for 
the axisymmetric flow field from the leading edge to 
the 250 nose radius surface station. The corresponding 
Reynolds number a t  the 190 nose radius surface sta- 
tion is 6.36 x lo6.  Most of the steady solutions have 
been presented in the previous paper [lo], where the 
numerical solutions were compared with Stetson’s ex- 
perimental results and the numerical solutions of thin- 
layer Navier-Stokes equations obtained by Esfahanian 
and Herbert [11,13]. A few additional steady flow results 
are presented in this paper. 

Figure 2 shows the Mach number contours of the cur- 
rent steady state solution at about half of the computa- 
tional domain near the leading edge region. In the sim- 
illation, the bow shock shape is not known in advance 
and is obtained as the solution for the freestream com- 
putational boundary. The results show that the Mach 
numbers immediately behind the bow shock approach a 
constant value of slightly less than 7 behind the shock 
at  downstream locations. The locations of bow shock 
of the experimental measurements by Stetson et al. are 
marked as circular symbols in the same figure. The 
shapes of the two bow shocks agree very well. 

The distribution of Mach numbers, pressures and 
temperatures immediately behind the bow shock are 
plotted in Figs. 3 to 5 as a function of the dimen- 
sionless 2 coordinates. In this paper, the origin of the 
2 coordinates is located at the center of the nose circu- 
lar surface. A natural coordinate s can also be used to 
measure the curve length of a point on the surface start- 
ing from the stagnation point. The non-dimensional s 
and 2, normalized by the nose radius, is related to each 
other by the following relation: 

(8) 
- cos (s) (s 5 5 - e) x =  { 
( S  - 5 + e)  cos(8) - sin(0) (s > $ - 0) 

where 6 is the half angle of the cone. These figures 
show that there is a overshoot of Mach numbers and 
pressures near the nose region (x < 70) caused by the 
discontinuity of surface curvatures at the junction of 
the spherical cone and the straight cone afterward. The 
flow experiences an overexpansion at the junction and 
goes through a recompression along the cone surface 
afterward. As a result, there is a slight adverse pres- 
sure gradient at downstream surface locations. At lo- 
cations further downstream, the flow behind the shock 
approaches a constant flow of Mach number slightly less 
than 7. 

The entropy layer was examined in [lo] by study- 
ing the effect of the entropy layer on the parameter 

p ( d u t / d y , ) ,  the peaks of which are the generalized in- 
flection points. Lees and Lin showed that  the exis- 
tence of a generalized inflection point is a necessary con- 
dition for inviscid instability in a compressible bound- 
ary layer. Stetson et a].[’] found that the peaks of 
p ( d u t / d y , )  associated with the generalized inflection 
points are difficult to  detect from their experimental 
results. They argued that the peaks of the temperature 
gradients across the boundary layer, d M / d y n ,  have sim- 
ilar locations as the generalized inflection points, but 
the peaks of d M / d y ,  are much easier to  detect from 
the experimental results. Therefore, they suggested the 
use of d M / d y ,  in place of p ( d u t / d y , )  for measuring the 
generalized inflection points. 

Figures 6 to  9 plot both p ( d u t / d y , )  and d M / d y n  side 
by side at four surface locations ranging from s = 7.87 
near the leading edge to  s = 46.96 downstream. The 
figures show very similar features between the two pro- 
files and the locations of the peaks of the two profiles 
are very close. Again, in the region near the leading 
edge, there is an entropy layer outside of the bound- 
ary layer. This entropy layer is represented in a peak 
located initially behind the bow shock and outside of 
the boundary layer. In Fig. 6 ,  the peak associated 
with the entropy is located approximately at yn = 1. 
As the location moves downstream, this peak gradu- 
ally moves towards the wall, and eventually merge with 
the boundary layer on the wall. In the region near the 
leading edge, Figs. 6 and 7 show two distinct regions 
in both the p$ and d M / d y ,  profiles with two sepa- 
rate peaks: one inside the boundary layer and another 
outside the boundary layer. The latter peak is created 
by the entropy layer. Since the generalized inflection 
point is located at d ( p d u / d y , ) / d y  = 0, the additional 
peak outside of the boundary layer may be responsible 
for inviscid instability waves in the entropy layers. As 
s increases to 32.87 in Fig. 8, the two peaks gradually 
merge. Further downstream at  s = 46.96 in Fig. 9, the 
peak outside of the boundary layer is absorbed by the 
boundary layer. After the merger, there is only one 
peak in the profile. Eventually, a t  further downstream 
the profiles become essentially the same as those of a 
sharp cone without the entropy layer effects. 

RECEPTIVITY TO FREESTREAM 
ACOUSTIC WAVES WITH T’ = 0 

BOUNDARY CONDITION 

Having obtained the steady solution, the receptivity 
of Stetson’s Mach 7.99 flow over the 7’ half-angle blunt 
cone to freestream acoustic waves is simulated by solv- 
ing the full Navier-Stokes equations. The forcing waves 
are freestream planar fast acoustic waves with 15 fre- 
quencies. The unsteady flow solutions are obtained by 
imposing acoustic disturbances on the steady flow solu- 
tions in the freestream. The subsequent interaction of 
the disturbances with the shock and the receptivity of 

4 

American Institute of Aeronautics and Astronautics 



Table 1: Acoustic wave components in the freestream. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

n f; (kI-Iz) Fn An f& ( rad ian)  
14.92 9.035 0.7692 2.4635(-6) 
29.84 
44.77 
59.68 
74.61 
84.53 
104.5 
119.4 
134.3 
149.2 
164.1 
179.1 
194.0 
208.9 
223.8 

18.07 
27.11 
36.14 
45.18 
54.21 
63.25 
72.28 
81.31 
90.35 
99.39 
108.4 
117.5 
126.5 
135.5 

0.4162 
0.2827 
0.2065 
0.1707 
0.1406 
0.1132 
9.7164(-2) 
0.1081 

7.7722(-2) 
9.0781 (-2) 

5.8428(-2) 
5.0729(-2) 
7.6987(-2) 
5.7 108 (-2) 

0.1600 
2.2149 
4.1903 
6.0510 
5.2671 
2.1070 
5.7511 
5.0005 
5.2319 
2.1679 
5.4738 
0.5649 
5.5812 
4.4043 

the boundary layer over the parabola are computed by 
using the full Navier-Stokes equations. 

In the current test case, the freestream acoustic waves 
contain 15 frequencies with the lowest frequency of 
f; = 14.92kHz corresponding to  dimensionless fre- 
quency of Fl = 9.04, and the highest frequency of f ; 5  = 
223.8kHt corresponding to dimensionless frequency of 

= 135.5. The wave amplitudes in the freestream 
are set according t o  the experimental freestream wave 
spectra reported by Stetson as shown in Fig. 1. The 
phase angles of the waves in Eq. (3) are chosen ran- 
domly. Specifically, the wave frequencies, amplitudes, 
and phase angles used in the current receptivity simu- 
lation are given in Table 1. The amplitude spectrum 
of the acoustic waves of 15 frequencies imposed in the 
freestream is shown in Fig. 10 The overall wave ampli- 
tude is c = 6.2578 x with 15 frequencies ( N  = 15). 

The unsteady calculations are carried out until the so- 
lutions reach a periodic state in time. Temporal Fourier 
analysis is carried out on local perturbations of un- 
steady flow variables after a time periodic state has been 
reached. The Fourier transform for the real disturbance 
functions lead to: 

N 

1 (9) i [-nu1 t t 4 n  (Z,Y)l  q1(z, Y, 4 = Iqn(z, Y)I e 
fL=O 

where nwl is the frequency of the n-th wave mode, 
q l (z ,  y, t )  represents any perturbation variables, and 
(qn(z ,  y)I and &(z, y) are real variables representing the 
local perturbation amplitude and phase angle of the n- 
t h  wave mode. These variables indicate the amplitude 
of local disturbances and the local phase angle with re- 
spect to  the forcing waves in the freestream. For per- 
turbations in the boundary layer near the body surface, 
we can define a local growth rate a, and a local wave 

number ai of the perturbation fields by, 

where the derivatives are taken along a grid line parallel 
to the body surface. 

Characteristics of Induced Waves 

Figures 11 to  15 show the development of wave ampli- 
tudes of pressure perturbations for 15 forcing frequen- 
cies on the cone surface as functions of x. The lines 
represent 15 different frequencies of f = n f i ,  where 
.f; = 14.922kHz and n = 1 , 2 , .  . . ,15. The relative am- 
plitudes in t he  freestream of waves for each frequency is 
set to be proportional to those of the Stetson's experi- 
ments as shown in Fig. 10. 

These figures show that the receptivity process leads 
to a complex wave structure for disturbance waves at 
the forcing frequencies. As shown in later sections of 
this paper, the basic receptivity mechanism is the same 
as that of a hypersonic boundary layer over flat plate 
which were studied numerically by M a  and Zhong [15j 

and theoretically by Fedorov [16]. For the induced waves 
of a given frequency, the characteristics of the induced 
waves undergo graduate changes from dominantly mode 
I waves near the leading edge to mode I1 waves. The sec- 
ond Mack mode waves can only be induced in the cur- 
rent receptivity process through resonance interaction 
with mode I wave induced by the forcing waves. The 
forcing acoustic waves do not directly interact with the 
second Mack mode. The main features of the induced 
waves shown in these figures are briefly described here 
for the purpose of demonstrating the main features of 
the induced waves in the boundary layer. 

Figure 11 shows the amplitude development along the 
cone surface of the first six lower frequency waves ( n  = 
1 , .  . . ,6)  ranging from 14.9 kHz to 84.5 kHz. It will 
be shown later that the induced wave growth in the 
boundary layer at  these frequencies are not the Mack 
modes. They are the stable mode I waves which are 
induced by the forcing acoustic waves through resonant 
interactions. 

In the case of n = 5, mode I waves reach a maximum 
value for x NN 117, and decay afterward. The higher the 
frequency, the earlier the peaks of mode I waves will 
be reached. This figure also shows wave modulation for 
the cases of n = 3 and n = 4, consisting of components 
of mode I waves and the forcing acoustic waves. 

Figure 12 shows the amplitude development along the 
cone surface of the next three frequencies ( n  = 7,8,9) 
ranging from 104.5 kHz to  134.3 kHz. Again, the waves 
developing near the leading edge are dominantly mode 
I waves in the region of x < 75. After the decay of the 

The waves developing near the leadin 
edge in this figure are dominantly mode I waves P 5f 
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mode I waves and an extended region of low wave am- 
plitudes, the second Mack mode waves start to  grow at  
a later surface location of s = 180. The second Mack 
mode waves do not appear in the early surface loca- 
tions even though the second mode is linearly unstable 
there according to the linear stability analysis. For the 
frequency of n = 9, the LST analysis has shown that 
the second mode is unstable starting from the branch 
I neutral stability point located at  s = 119. The delay 
in the development of the second Mack mode is con- 
sistent with Stetson's stability experiments, which also 
showed that the disturbances waves are not dominated 
by the  second mode until they reach the region much 
downstream at  212 surface station. As shown in later 
sections, the generation of the second mode Mack waves 
is determined by the resonant interaction between mode 
I waves and the second Mack mode, which is not related 
to the branch I neutral stability of the second mode. 

Figures 13 to 15 show the amplitude development 
along the cone surface of the higher frequency waves 
( n  = 1 0 , .  . . ,15) ranging from 149.2 kHz to 223.8 kHz. 
Again, the waves developing near the leading edge are 
dominantly mode I waves [151 in the region of d: < 75. 
After the decay of the mode I waves, there are no visi- 
ble second mode waves components because the second 
Mack mode is either stable or is very weakly unstable. 
Instead, the amplitude growth after the decay of mode 
I waves are dominantly mode I1 waves induced directly 
by the forcing acoustic waves through resonant inter- 
actions. Figure 13 also shows wave modulation for the 
cases of n = 10 and n = 11, consisting of components of 
mode I1 waves and the forcing acoustic waves. The wave 
components of R = 16 are also in Fig. 15. Wave modes 
of frequencies higher than the forcing waves are gener- 
ated by nonlinear interactions among the wave modes. 
They are very weak in the current simulations because 
the receptivity is in the linear regime. 

The development of wave amplitudes along the cone 
surface of all frequencies can be shown more clearly by 
the frequency spectra of surface presure perturbations, 
as shown in Fig. 16 for a number of surface stations 
ranging from 1.6 to  270 nose radius. The figure shows 
the spectrum of mainly three dominant wave modes in- 
duced in the boundary layer: mode I, the second Mack 
mode, and mode 11. At early stations, the wave modes 
are mainly mode I waves. At locations further down- 
stream along the cone surface, the frequency of domi- 
nant mode I waves decreases, while mode I1 and second 
mode appears. The second Mack mode of frequencies 
around 130KHz does not appear until the waves reach 
200 nose radius. The specific regions of the dominant 
wave modes are marked in Fig. 18. At surface loca- 
tion of 11 nose radius, all wave modes induced in the 
boundary layer are mainly mode I waves, which are lin- 
early stable and eventually decay. At a later station of 
s = 52, the waves of lower frequencies are still domi- 
nated by mode I waves, but mode I1 start t o  develop 

at higher frequency waves. At the downstream loca- 
tion s = 174, the mode I wave region continues to de- 
crease. The second mode starts to  develop in the fre- 
quency around 1501i'Hz. There are also mode I1 waves 
at higher frequencies. At a further downstream loca- 
tion at  s = 274, unsteady second Mack mode starts 
to develop in the frequency around 13OKHz. As the 
boundary layer becomes thicker at  further downstream 
locations the dominant frequencies of the second mode 
decreases. There are also mode I and I1 waves at lower 
and higher frequencies, respectively. 

Figures 17 and 18 show the contours of real part of 
temperature perturbations in the whole flow field for the 
frequency o f f *  = 119.4kHz ( n  = 8). The figures show 
the  development of induced waves at a fixed frequency 
in the entire flow field, from the leading edge to  down- 
stream. In the region of d: < 20, the figure shows that 
the forcing waves from the freestream passes through 
the bow shock and enter the boundary layer to  gener- 
ate mode I waves in the boundary layer. The subse- 
quent region of 20 < x < 60 is the develop and decay of 
mode I wave in the boundary layer. In the next region 
of 60 < 2 < 200, the wave modes are a mix of forcing 
waves and mode I waves. The second Mach mode at  
this frequency starts to  develop further downstream at 
3: > 220 as shown in Fig. 18. 

Figure 20 shows the contours of real part of tempera- 
ture perturbations in a localized region of the flow field 
for three different modes: mode I at f* = 119.4kHz 
(n = 8), mode I1 at  f* = 179.1kHz (n = 12) ,  and 
the second Mack mode at f *  = 119.4kHz (n = 8). 
The figure shows that mode I and I1 have distinctively 
different structure from the second Mack mode. The 
second mode has a typical "rope wave" structure with 
strong perturbation at  the edge of the boundary layer, 
while mode I and I1 have stronger wave amplitudes in 
the boundary layer. 

To summarize, the results show a complex develop- 
ment of wave modes induced by freestream acoustic 
waves. The second mode does not develop in the re- 
gion where LST predicts unstable second modes to be 
dominant. The second modes are excited at  a later lo- 
cation than predicted by the LST analysis. This delay 
may be caused by the entropy layer effects in the mean 
flow. The understanding of such receptivity processes 
may explain the fact that the nose bluntness stablizes 
hypersonic boundary layer flows. Therefore i t  is neces- 
sary to  identify the wave modes in the boundary layer 
in the receptivity process and to  identify the cause of 
the delay in the development of the second mode waves. 
The detailed LST analysis results are presented in the 
following sections. 

Boundary-Layer Wave Mode Characteristics 

The instability of hypersonic boundary layer flow over 
the Stetson's 7" half-angle blunt cone has been studied 
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extensively [11)17-191 by using the normal-mode linear 
stability theory. However, previous LST studies have 
been mainly focused on the instability of the most un- 
stable first and second-mode waves. In our previous re- 
ceptivity study of Mach 4.5 boundary layer flow [”], it 
was found that  a family of other wave modes, which are 
stable in a linear stability analysis, play an important 
role in the receptivity process. They are termed mode 
I,  11, 111, etc. in [15]. The stable wave modes gener- 
ated by the forcing waves through resonant interactions 
can interact with the instability waves once they are 
generated. In order to  understand the receptivity prc- 
cess, it is necessary to understand the characteristics of 
these stable wave modes in addition to the Mack modes. 
However, the characteristics of these stable wave modes 
in hypersonic flows with nose bluntness have not been 
well studied. Therefore, we will use the LST approach 
to study the wave mode properties of mode I ,  mode 11, 
etc. besides the first and second Mack modes. In ad- 
dition, the LST analysis is used to  identify and analyze 
the boundary layer eigenmodes generated by forcing dis- 
turbances in the numerical simulations. Therefore, the 
characteristics of normal modes of the axisymmetric hy- 
personic boundary layer are studied by the linear sta- 
bility theory in this paper. 

In the studies of boundary-layer stability, the follow- 
ing Reynolds number, R, based on the length scale of 
boundary-layer thickness is often used: 

where length scale of boundary-layer thickness is de- 
fined as 

where S* is the curvature length along the wall surface 
measured from the leading edge. Hence, the relation 
between R and local Reynolds number Re, is 

R =  6. 
A LST computer code based on multi-domain spec- 

tral method of Malik [201 was developed and validated 
by comparison with other published LST results, which 
were presented in our previous study [lo]. 

Ma and Zhong [151 studied, using the linear stability 
theory, for boundary-layer wave mode characteristics of 
supersonic flow over a flat plate. It was found that 
the distribution of phase velocities of boundary-layer 
wave modes is a function of the product of the local 
Reynolds number (R)  and frequency ( F ) .  Almost the 
same distributions of phase velocities us R * F for dif- 
ferent boundary-layer wave modes are obtained when F 
is changed while R is fixed, or when R is changed while 
F is fixed. A similar LST study is carried out in the 

current study for axisymmetric hypersonic boundary- 
layer flow over the blunt cone. It is found that mode 
I and mode I1 are in fact “multiple-viscous solutions” 
by Mack [’11 and by Eibler and Bestek [”I. The non- 
dimensional phase velocity of each normal mode can be 
calculated a.s 

W 
a = - .  

ar 

Figure 21 shows phase velocities of three discrete 
modes, i.e., mode I ,  mode I1 and the Mack modes, 
as functions of frequencies at the surface station of 
s = 175. The phase velocities of the fast acoustic 
wave (1 + l /Mm) ,  entropy/vorticity wave ( I ) ,  and slow 
acoustic wave (1 - l /Mm) are also shown in the fig- 
ure for comparison. Both mode I and mode I1 origi- 
nate with an initial phase velocity of the fast acoustic 
wave (1 + l /Mw) .  Before these two modes become dis- 
tinct modes, their eigenvalues merge with the continu- 
ous spectra. After these two wave modes appear, their 
phase velocities decrease gradually with increasing w .  
It’s obvious that it is discontinuous for the distributions 
of phase velocities us w for both mode I and mode TI. In 
the frequency spectra shown in Fig. 4 in [lo], the trajec- 
tory of mode I passes across continuous spectra in the 
middle. In fact, mode I merges with this continuous 
spectra. Later, another eigenvalue from this continu- 
ous spectra becomes discrete mode I. Therefore, there 
is a gap in the phase velocity curve of mode I .  With 
increasing w ,  the phase velocity of mode I continues to 
decrease and passes across the phase velocity curve of 
Mack modes. At the intersection point (w = 0.1825), 
mode I is synchronized with the second Mack mode, 
where both modes have very similar profiles of eigen- 
functions. A very similar phenomena happens to mode 
I1 at a larger w ,  which is also shown in Fig. 21. 

The growth rates (a , )  of different normal modes are 
plotted in Fig. 22. While the growth rates of Mack 
modes are continuous, there are two gaps in the growth 
rate curves for mode I and mode 11. It shows that both 
mode I and mode I1 are stable modes. Mack modes are 
slightly unstable in the range of w between 0.0485 and 
0.117. The Mack mode in this range is the conventional 
first mode. In the range of w between 0.171 and 0.243, 
the unstable Mack modes are the conventional second 
mode. In this range, the growth rates of the second 
mode change dramatically. As shown in Fig. 21 and 
22, the first mode and the second mode are in fact dif- 
ferent sections of a single mode. Here, both the first 
and the second mode are simply called Mack modes for 
convenience of discussion. 

Figure 23 compares spatial growth rates for at sur- 
face station s = 175. The T‘ = 0 boundary condition 
for wall temperature perturbations is used in the cur- 
rent study. The experimental results of Stetson and 
other LST results are also plotted in the same figure for 
comparison. The figure shows that  our results associ- 
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ated with an isothermal wall boundary condition com- 
pare well with other LST results that use the same wall 
boundary conditions. The differences between the cur- 
rent LST results and those of other authors are mainly 
due to different mean flow solutions used by different 
LST computations. Again, the linear stability theory 
predicts much higher growth rates than the  experiments 
do. Figure 23 also shows that at the surface location of 
175 nose radii, the second mode instability range is in 
the range between 100 kHz and 170 kHz. The first mode 
unstable frequency range is lower than 100 kHz. 

Another important characteristic of boundary-layer 
unstable mode is distribution of neutral curve. Fig- 
ure 24 compares the neutral curve of Mack modes with 
Malik's [I7] results. Overall, there is good agreement 
between the present result and Malik's result. The dif- 
ference between them is due to different mean flows 
used in LST analyses. The critical local Reynolds num- 
ber (R )  for boundary-layer instability is about 1580 
(s = 75, z = 72.5) based on current result, which is very 
close to  Malik's result R = 1540(s = 7 0 . 9 , ~  = 68.8). 
Below this critical Reynolds number, all boundary-layer 
modes are stable. Figure 24 also shows that both the 
first mode and the second mode are stable for high fre- 
quencies above f* = 18Kh.z. 

Although mode I is stable, it was found that the 
stable mode I waves play an important role in the re- 
ceptivity process because they interact with both the 
forcin acoustic waves and the unstable Mack-mode 
wave3l5]. Through the interactions, the stable mode I 
waves transfer wave energy from the forcing fast acous- 
tic waves to the second Mack-mode waves. 

It should be pointed out that the discontinuous na- 
ture of mode I and mode I1 shown in Fig. 21  is unique to 
the current Mach 7.99 flow over a blunt cone. No such 
phenomena have been observed in our previous studies 
of supersonic boundary layer over a flat plate [I5]. We 
have also been computing similar stability characteris- 
tics of planar 2-D Mach 8 flow over a 5.3" half angle 
sharp wedge (no nose bluntness). Figure 35 of [15] 
shows the distribution of phase velocities of normal 
modes with different frequencies for Mach 8 flow over 
the sharp wedge with the same freestream flow condi- 
tions. The figure shows that  as w increases, there is no 
discontinuity in the phase velocity of mode I and mode 
I1 when they intersect with the Mack modes. Therefore, 
it is conjectured that the nose bluntness introduced new 
characteristics in the wave phase speeds. As shown by 
Ma and Zhong [15], the excitation of the second mode is 
a result of the resonant interactions between the mode 
I and the freestream forcing waves. The induced mode 
I then interacts with the second mode when they reach 
the same wave speed and frequency. The discontinuity 
in the phase velocity in the mode I may lead to  no direct 
interaction of mode I and the second mode. If it is true, 
there is no excitation of the  second mode for the  case 
of blunt cone even when the second mode is predicted 

by LST to be unstable. 

ComDarison with LST and Wave Mode Identification 

In this section, the linear stability theory is used to 
identify different wave modes induced by fast acoustic 
waves. Phase velocities and structures of boundary- 
layer disturbances from computation of numerical sim- 
ulations are compared with corresponding values from 
eigenvalues and eigenfunctions of the linear stability 
theory at  the same frequency. Here, three typical fre- 
quencies with n = 5 ,8  and 15 are chosen for the com- 
parison. The evolution of pressure perturbations on the 
wall due to freestream disturbances at these three fre- 
quencies are redrawn in Fig. 25. At each frequency, 
the phase velocities of different wave modes are tracked 
from upstream to downstream by the linear stability 
theory. The wave structures of mode I, the second Mack 
mode and mode I1 from numerical simulations are com- 
pared with those from the linear stability theory a t  their 
respective locations. 

The phase velocities of the induced boundary-layer 
disturbances from numerical simulations are calculated 
based on pressure perturbations on the wall surface by 
using temporal Fourier analysis according to  the follow- 
ing formula: 

d4n a,  = - 
ds 

where bn is phase angle at n-th frequency from tempo- 
ral Fourier analysis, and the derivatives are taken along 
a grid line parallel to the body surface. The value calcu- 
lated by using Eqs. (16) correspond to streamwise wave 
number (cy,.) of a single wave if the numerical solutions 
are dominated by a single discrete wave mode in a lo- 
cal region. If the numerical solutions contain a mixture 
of two or more wave modes, the values of streamwise 
wave number demonstrate the result of modulation of 
these mixed wave modes. At each frequency, the in- 
duced boundary-layer disturbances can be identified by 
comparing wavenumber and wave structures from sim- 
ulations with eigenvalues and eigenfunctions obtained 
from the LST. Here, typical frequencies with n = 5,8  
and 15 are chosen for the comparison of both eigenvalues 
and eigenfunctions. For other frequencies, the results of 
comparison between DNS and LST are very similar to 
the results with these three typical frequencies. There- 
fore, only streamwise wave numbers are compared with 
LST results at locations with 2 = 10,50,172 and 272 
respectively. 

Figure 26 shows the distribution of the streamwise 
wavenumbers of the induced boundary-layer distur- 
bances at  frequency with n = 5 (f* = 74.61kHz) from 
the simulation. A similar plot for the distribution of 
the phase velocities of boundary-layer disturbances at 
the same frequency is shown in Fig. 27. The real part 
of the eigenvalues and the phase velocities of the Mack 
modes and modes I from the linear stability theory are 
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also plotted in these two figures for comparison with 
the numerical solutions. These figures show that there 
is excellent agreement in the streamwise wa.venumber 
between the induced boundary-layer disturbances and 
mode I waves, which indicates that mode I waves, other 
than Mack mode waves are generated inside the bound- 
ary layer for this frequency. 

To confirm the conclusion that mode I waves are gen- 
erated in this region, profiles of induced disturbances in 
the numerical simulation at x = 109.2 are compared 
with mode I waves and the first-mode waves from the 
LST, which is shown in Fig. 28 and 29 for pressure and 
temperature perturbations. Here, boundary-layer dis- 
turbances are normalized by non-dimensional pressure 
perturbations on the wall at the location of comparison. 
They show that  the structure of induced disturbances 
from the numerical simulations matches the structure of 
mode I wave from the LST very well inside the bound- 
ary layer (the thickness of boundary layer is about 12L, 
except that there is visible difference in wave structure 
outside the boundary layer due to effect of forcing acous- 
tic waves. Such agreement in wave structure between 
simulation results and mode I waves from the LST also 
exists in the comparison of other variables, which are 
not shown here to avoid redundancy. Meanwhile there is 
much difference in comparison with the first Mack mode 
waves. Therefore, the boundary-layer disturbances at 
this station are recognized as mode I waves other than 
the first-mode waves. 

Figure 28 and 29 also shows that there is much differ- 
ence in the wave structure between mode I waves and 
the first mode waves. While there is only one peak in 
real part of pressure perturbations in mode I waves, 
there are two peaks for the first-mode waves. Further- 
more, there are very strong oscillations in profile of tem- 
perature disturbances for the first-mode waves near the 
edge of boundary layer, while such phenomenon does 
not exist in the profile of mode I waves. These charac- 
teristics of wave structure of different normal modes can 
be used to  identify induced boundary-layer disturbances 
by forcing waves. I t  should be noted that mode I waves 
can only be distinguished from the first-mode waves be- 
fore these two waves get synchronized with each other, 
where they have almost the same wave structure. 

After identification of induced boundary-layer distur- 
bances at frequency with n = 5 by comparison with the 
results of the LST, the growth and decay of induced 
boundary-layer disturbances shown in Fig. 25 can also 
be explained by using the LST. From the LST, mode 
I waves are always stable, which is shown in Fig. 30 
for distribution of growth rates of boundary-layer nor- 
mal modes. However, the induced mode I waves at fre- 
quency with n = 5 shown in Fig. 25 are amplified before 
they reach peak value of amplitude located a t  z = 109.2, 
which is in contradiction with the growth rates of mode 
I waves from the LST shown in Fig. 30. 

The growth of stable mode I wave in the receptiv- 

ity process can be explained from the distribution of 
streamwise wave number of mode I waves shown in 
Fig. 26 and phase velocity curve shown in Fig. 27. 
It  shows that the wavenumber and phase velocity of 
mode I waves are almost same to those of fast acous- 
tic waves near the leading edge. Due to synchroniza- 
tion between mode I waves and fast acoustic waves near 
t,he leading edge, mode I waves are generated by means 
of a resonant interaction between mode I waves inside 
the boundary layer and fast acoustic waves outside the 
boundary layer in the region upstream where wavenum- 
ber and phase velocity of mode I waves are close to those 
of fast acoustic waves. Though mode I is predicted to 
be always stable by the linear stability theory, mode 
I waves are strongly amplified before they reach the 
peak amplitude due to  the resonant interaction with fast 
acoustic waves. The phase velocities of mode I waves 
decrease during the propagation downstream. When 
phase velocities of mode I waves decrease to  a certain 
value and there is no more resonant interaction between 
mode I waves and acoustic waves, mode I waves decay 
due to their inherent stable properties after they reach 
the peak amplitude a t  z = 109.2. With the decay of 
mode I waves, modulation between mode I waves with 
acoustic waves and other waves leads to the secondary 
growth and decay of mode I waves with the peak am- 
plitude located at x = 233 (Fig. 25). Such modulation 
also results in the oscillation of phase velocities further 
downstream, which is shown in Fig. 27. 

Among different frequencies, as shown in Fig. 25, the 
induced boundary-layer disturbances are most strongly 
amplified a t  frequency with n = 8 near the exit of the 
computational domain. LST is used to identify the 
dominant normal mode included in boundary-layer dis- 
turbances at different locations. At first, the distribu- 
tion of streamwise wavenumber and phase velocity of 
induced boundary-layer disturbances a t  frequency with 
n = 8 (f* = 119.4kHz) is compared with that  of LST 
of different normal modes a t  the same frequency, which 
is presented in Figs. 31 and 32. Similar to  the results 
shown in Fig. 21, there is a gap in the streamwise 
wavenumber and phase velocity curve of mode I waves 
from the LST. It shows that streamwise wavenumber 
of the induced waves are very close to those of mode 
I waves in the region x < 66, which indicates that the 
induced boundary-layer disturbances contain dominant 
mode I waves in this region. This is also confirmed by 
comparing wave structure with eigenfunctions of mode 
I waves from the LST, which is not presented here be- 
cause it is very similar to the results shown in Fig. 
28 and 29. In addition, the location of peak mode I 
waves at frequency with n = 8 in term of w is at 0.083 
(z = 37.1), which is close to the peak mode I wave lo- 
cation with w = 0.087 (. = 109.2) for frequency with 
n = 5. This indicates some similarity in wave pattern 
of growth and decay of mode I waves at different fre- 
quencies when the distribution is scaled by w .  Again, 
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the resonant interaction between mode I waves inside 
the boundary layer and fast acoustic waves outside the 
boundary layer results in the amplification of the in- 
duced boundary-layer disturbances in the region with 
x < 37.1. 

Meanwhile, the modulation between mode I waves 
and other waves, such as fast acoustic waves, and sta- 
ble properties of mode I waves from the LST can ex- 
plain the growth and decay of boundary-layer distur- 
bances during their propagation downstream in the re- 
gion between 37.1 < x < 190 (Fig. 25). The wave 
modulation also leads to strong oscillation in boundary- 
layer disturbances in the same region shown in Figs. 31 
and 32. At the beginning, this kind of oscillations is 
around the streamwise wavenumber of mode I, when 
the component of mode I waves included in boundary- 
layer disturbances is relatively strong. In the region 
downstream (z > 66), the modulation is around the 
phase velocity of fast acoustic waves, which indicates 
the relative dominance of fast acoustic waves included 
in boundary-layer disturbances. In the region down- 
stream after x > 200, the boundary-layer disturbances 
at frequency with n = 8 are strongly amplified as shown 
in Fig. 25. From distribution of streamwise wavenum- 
ber and phase velocity curves shown in in Figs. 31 and 
32, the wavenumbers and phase velocities of the induced 
boundary-layer disturbances match those of the Mack 
modes in the region after x > 250, which shows that 
Mack mode waves are dominant there. 

The identification of induced Mack-mode waves is 
confirmed by comparing the disturbance structures with 
the eigenfunctions of the second Mack mode from the 
LST at  the station with x = 271. which is shown in 
Fig. 33 for pressure perturbations and 34 for tempera- 
ture perturbations, respectively. Again, there is a good 
agreement in wave structures between the numerical 
simulation results and those from LST. The slight dif- 
ferences in the comparison is because there are other 
wave components, such as fast acoustic waves, included 
in the boundary-layer disturbances besides the second- 
mode waves from the numerical simulation. 

After identification of the induced second Mack-mode 
waves inside the boundary layer, it is not difficult to un- 
derstand the strong amplification of induced boundary- 
disturbances due to the instability of the second mode 
waves after they are generated by the resonant interac- 
tion with mode I. The growth rates of boundary-layer 
normal modes a t  frequency with n = 8 from the LST 
are shown in Fig. 35. At this frequency, the second- 
mode Branch I neutral point is located at  z = 143.4. 
The second Mack-mode waves become unstable in the 
region after x > 143.4. In addition, the growth rates of 
the second-mode waves reach peak value ai = -0.0051 
at  2 = 234. In other words, the second mode is most 
unstable and should be strongly amplified at  this lo- 
cation. However, there are no amplified second-mode 
waves at  frequency with n = 8 shown in Fig. 25 be- 

tween 143.4 < x < 192 On the contrary, the amplitude 
of boundary-layer disturbances slightly decays in this 
region. Therefore, there is still a question about how 
and where the second-mode waves are generated. As 
shown in Figs. 31 and 32, there is much difference in 
wavenumber curves between Mack-mode waves and fast 
a.coustic waves. Thus, there is no direct interaction be- 
tween Mack-mode waves and the forcing fast acoustic 
waves. Instead, there is a bridge, i.e., mode I waves, 
between Mack modes and fast acoustic waves. During 
propagation downstream, mode I waves generated by 
fast acoustic waves reach the synchronization point be- 
tween mode I waves and Mack-mode waves located at  
z = 192,w = 0.185. Here, the location of synchroniza- 
tion point in term of w is very close to that shown in 
Fig. 21 with w = 0.1825 a t  the station s / r  = 175 (or 
x = 172) where local Reynolds number R is fixed while 
frequency is changing. At  the synchronization point, 
both mode I and Mack mode have very similar pro- 
files of eigenfunctions. As a result, mode I waves con- 
vert to Mack-mode waves because Mack-mode waves 
are much more unstable than mode I waves from the 
LST, which is shown in Fig. 35. Because the second 
Mack-mode waves are generated by mode I waves at  
the synchronization point, there are no amplification of 
second-mode waves in the region before this point, even 
though the second Mack mode unstable region begins 
much earlier. After the generation of the second-mode 
waves, the boundary-layer disturbances are significantly 
amplified resulting from the unstable property of the 
second mode in the  downstream region with x > 192, 
which is obviously shown in Fig. 25. 

At frequency with n = 15, the LST results of growth 
rates in Fig. 36 show that all normal modes are sta- 
ble. The stable property of the second mode at  this 
frequency is also shown in Fig. 24. The streamwise 
wavenumbers of induced boundary-layer disturbances 
at frequency with n = 15 from the simulation are com- 
pared with the real part of eigenvalues of Mack modes, 
modes I and mode I1 from the LST, which is plotted in 
Fig. 37. Similarly, Fig. 38 compares the phase velocities 
at  the same frequency from the simulation with those of 
the Mack modes, modes I and mode I1 from the linear 
stability theory. Once again, it  shows that mode I waves 
are generated and amplified due to the resonant inter- 
action between mode I waves and fast acoustic waves 
in the region upstream (x < 9.5), where the structure 
of boundary-layer disturbances from the simulation can 
match those of mode I waves from the LST. Because the 
second mode is stable, there is no amplified second mode 
at  frequency with n = 15 shown in Fig. 25. However, 
there is another wave mode which is gradually amplified 
during propagation downstream after z > 50. Figure 37 
shows that this wave mode is mode 11. Although mode 
I1 waves are predicted to be stable by the LST, they 
are strongly amplified due to the resonant interaction 
between mode I1 waves and fast acoustic waves because 
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their streamwise wavenumber and phase velocities are 
very close to each other. 

The wave structures of induced boundary-layer dis- 
turbances at  2 = 177.3 ( R  = 2455) from numerical 
simulation are compared with eigenfunctions of mode 
I1 waves from the LST at  the same location, which is 
presented in Fig. 39 and 40. There is very good agree- 
ment in the comparison except visible difference outside 
the boundary layer due to  acoustic waves in the simula- 
tion. Similar to  mode I waves, although mode I1 waves 
are linearly stable from the LST shown in Fig. 36, there 
is resonant interaction between mode I1 waves and fast 
acoustic waves because their phase velocities are very 
close to each other as shown in Fig. 38, which leads to 
the amplification of mode I1 waves. 

Having identified the dominant wave mode compo- 
nents included in the induced boundary-layer distur- 
bances at the three typical frequencies, streamwise wave 
numbers are compared with real part of eigenvalues of 
different boundary-layer normal modes from the LST at 
the surface locations of 2 = 10,50,172 and 272. Such 
comparisons can also be used to  identify the dominant 
wave modes for all different frequencies at these differ- 
ent  locations. Figures 41 to  44 compare the wavenum- 
bers of induced boundary-layer disturbances at different 
frequencies with LST results at  these four surface loca- 
tions. 

At the station near the leading edge with 2 = 10, Fig. 
41 shows that streamwise wavenumbers of the induced 
boundary-layer disturbances at  different frequencies can 
match that of mode I waves from the LST results, which 
means the spectra shown in Fig. 19 are mode I waves 
for all different frequencies. There is better agreement 
in streamwise wavenumber between the simulation and 
the LST for low frequencies with n 5 11 compared with 
high frequencies because the dominance of mode I waves 
included in boundary-layer disturbances at low frequen- 
cies. The visible difference in wavenumber curve at  high 
frequencies with n _> 12 is due to  modulation of mode I 
waves and other wave component inside the boundary 
layer. 

Figure 42 compares wavenumbers of induced 
boundary-layer disturbances at different frequencies 
with LST results at I = 52. It shows that mode I1 
waves are generated at high frequencies with n = 14,15, 
while mode I waves are dominant components for lower 
frequencies with n 5 13. The deviation of wavenumber 
at  frequency with n = 11 is due to modulation of mode 
I waves with other modes, which is also shown in Fig. 
13 where total boundary-layer disturbances at n = 11 
decay to  a minimum value at z = 52. 

At z = 172, figure 43 shows that there are more mode 
I1 waves generated at high frequencies with n 2 12, 
while mode I waves are main components in low fre- 
quency band with n 5 8. In middle frequency band 
with 9 5 n 5 11, the second Mack-mode waves are 
generated by mode I waves. In fact, boundary-layer 

disturbances at  frequency with n = 9 at  this location is 
in the transition region from mode I waves to the second 
Mack-mode waves. 

Figure 44 presents comparison of wavenumbers at  I = 
272. At this location, there are obvious second-mode 
waves shown in the middle frequency band between 7 5 
n 5 10. At frequency lower than n = 7, mode I waves 
are dominant, while mode I1 waves are dominant at  high 
frequencies with n 2 11. 

To summarize the LST analysis of the simulation 
results, it is clear that the synchronization location 
between mode I and the second mode play the most 
important role in the receptivity of the second Mack 
mode in the boundary layer. In the current flow over 
a blunt cone, the synchronization location is located 
downstream of the branch I neut,ral stability location of 
the second mode. As a result, there are no noticeable 
second mode components in the region before the syn- 
chronization location even though the second mode is 
linearly unstable there. In addition, due to  the resonant 
interaction with the forcing acoustic waves, there is am- 
plification of mode I waves in the region upstream and 
amplification of mode I1 wave in the region downstream 
for different frequencies where all normal mode may be 
predicted to be stable. The delay in the excitation of 
the second mode in the current receptivity process leads 
to a delay of the second mode excitation in hypersonic 
boundary layers over a blunt cone. 

Response coefficients 

Figures 11, 12, 13, 14 and 15 show that the wave 
frequency has a strong effect on the boundary-layer re- 
ceptivity. Because amplitudes of forcing fast acoustic 
waves in freestream are different at different frequencies, 
the frequency effect on the receptivity is combined with 
the effect of forcing-wave amplitudes in the freestream. 
To obtain the frequency effect on the receptivity, the 
induced boundary-layer disturbances characterized by 
pressure perturbations on the wall are normalized by 
amplitudes of pressure perturbations at  the same fre- 
quency in freestream, which are redrawn in Figs. 45, 
46 47 and 48. Overall, amplitudes of pressure per- 
turbations in the computational domain induced by 
freestream fast acoustic waves are less than 4 when 
they are normalized by amplitudes of freestream forc- 
ing acoustic waves. Maximum receptivity is obtained at 
frequency with n = 8 due to the growth of second-mode 
waves. 

In the study of receptivity, a receptivity coefficient, 
which is defined as the ratio of amplitude of the in- 
duced second-mode wave at the Branch I neutral point 
that of the forcing freestream disturbance waves, is usu- 
ally used to  quantitatively describe the strength of the 
receptivity [231. However, for hypersonic boundary re- 
ceptivity, i t  is found that there are no second-mode 
waves generated by freestream fast acoustic waves at 
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Branch I neutral point because the second-mode waves 
are converted from mode I waves at the synchronization 
point between mode I and the second mode, which is 
located downstream of Branch I neutral stability point. 
Therefore, a response coefficient is defined in this paper 
to quantitatively study the acoustic receptivity of the 
boundary layer. Specifically, the response coefficient of 
the boundary layer to forcing disturbances for a given 
mode is defined as 

where (p’Imode is the maximum amplitude of pressure 
perturbations for the given wave mode. The response 
coefficients are used to  measure the maximum responses 
of the relevant wave modes to forcing disturbances. For 
the second Mack mode, this maximum value is located 
at the Branch I1 neutral point. Since the response coef- 
ficients are not the same as the commonly used Branch I 
receptivity coefficient used in the literature ( [as]), they 
are termed the response coefficients in this paper. 

In the upstream region near the leading edge, the 
disturbance waves are dominated by mode I waves for 
different frequencies. Receptivity coefficients of mode 
I waves are obtained for frequencies with n 5 10. 
The location of peak mode I waves moves upstream 
with increasing frequencies. For higher frequencies with 
n 2 11 , the locations of peak mode I waves are so close 
to the junction of the sphere nose and cone afterward 
that growth of mode I waves is contaminated by effect 
of discontinuity in surface curvature at the junction. 
Therefore, the response coefficients defined in Eqn. 17 
is not available for high frequencies with n 2 11. From 
Fig. 48, mode I1 waves reach local peak values for 
frequencies with n = 13,14, 15. Meanwhile, there are 
no second-mode response coefficients available based on 
Eqn. 17 for all different frequencies. At low frequencies 
with n 5 6, the second-mode waves will appear in the 
region downstream of current computational domain. 
Between frequency band with 7 5 n _< 9, Branch I1 
neutral points are located outside the current computa- 
tional domain. For frequencies with n = 10 or n = 11, 
the induced second-mode waves are strongly modulated 
by other wave components inside the boundary layer. 
As a result, the peak second-mode waves are difficult to  
determine from the simulation results. Therefore, only 
response coefficients of mode I waves and mode I1 waves 
are discussed here. 

Figure 49 shows the response coefficients of mode I 
waves and mode I1 waves at different frequencies. Over- 
all, the response coefficients of mode I and mode I1 
waves are in order of 1 for different frequencies. From 
our previous study on receptivity of flat-plate boundary 
layer to  freestream fast acoustic waves [151, the response 
coefficients of mode I and mode I1 waves decrease with 
increasing frequencies. This trend is also true for mode 
I response coefficients at frequencies with n 5 7. How- 

ever, figure 49 shows that that the response coefficients 
of mode I waves or mode I1 waves increases with in- 
creasing frequencies after n > 5.  This may be due to 
the effect from discontinuity at  the junction in surface 
curvature. 

S U M M A R Y  A N D  C O N C L U S I O N S  

In this paper, we have studied the receptivity of Mach 
7.99 flow over a 7’ half-angle blunt cone, corresponding 
to  Stetson’s stability experiments. Both the steady base 
flow solutions and three cases of unsteady flow solutions 
have been obtained and studied. The results of the test 
case of aT‘/ay, = 0 boundary condition was mainly 
presented in [lo]. This paper presents the second part of 
the results on the receptivity for the case of using a zero 
temperature perturbation (T’ = 0) boundary condition. 
Overall, the receptivity processes of the two cases have 
the same features. The main conclusions are: 

The current steady flow solutions agree very 
well with those computed by Esfahanian and 
Herbert [11] and compare well with experimental 
results on the bow-shock shape, surface pressures 
and tangential velocities out side of the boundary 
layer. The mean flow solutions also demonstrate 
the effects of the entropy layer on the steady flow 
field. 

The receptivity of the Stetson’s Mach 7.99 flow over 
the blunt cone to freestream fast acoustic waves is 
simulated by solving the full Navier-Stokes equa- 
tions. The simulation results show a complex de- 
velopment of wave modes induced by freestream 
acoustic waves. The second mode does not develop 
in the region where LST predicts dominant unsta- 
ble second modes. The second modes are excited 
at  a later location than predicted by the LST anal- 
ysis. This delay is unique for the current flow over 
a blunt cone. 

The results of LST calculations are used t o  identify 
the wave modes in the boundary layer in the recep- 
tivity process and to  study the cause of the delay 
of the development of the second mode waves. The 
wave structures obtained from the simulations are 
compared with those obtained from the LST for 
mode I, mode 11, and the second Mack mode. Very 
good agreement was obtained. The wave modes in- 
duced by the freestream acoustic waves are mode 
I near the nose, as i t  propagate downstream, sec- 
ond mode or mode I1 are excited due to  the mech- 
anism of resonant interactions between different 
wave modes. 

The LST analysis shows that  the synchronization 
location between mode I and the second mode plays 
an important role in the receptivity of the second 
Mack mode in the boundary layer. In the current 
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flow over a blunt cone, the synchronization loca- 
tion is located downstream of the branch I neutral 
stability location of the second mode. As a result, 
there are no noticeable second mode components in 
the region before the synchronization location even 
though the second mode is linearly unstable there. 
Therefore mode I plays the most important role in 
the receptivity process, and leads to the delay of 
the excitation of the second mode in the current 
flow over a blunt cone. 

5. In addition, the current flow over a blunt cone also 
has a discontinuous phase velocity as the waves 
propagate downstream. Such discontinuities in the 
phase velocity curves may also contribute to the 
lack of second mode excitation. 
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Figure 1: Freestream disturbance spectra in Stetson et 
al.’s experiments (1984). 
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X 

Figure 2: Mach number contours for steady Mach 7.99 
flow over a 7’ half-angle blunt cone. The experimental 
bow shock shape (Stetson et al., 1984) is compared with 
the current numerical solutions. 
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Figure 3: The distribution of Mach numbers immedi- 
ately behind the bow shock. 
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Figure 5: The distribution of temperature immediately 
behind the bow shock. 

Figure 8: The profiles of p$ and E along the wall- 
normal direction at the surface location of s = 32.87 
nose radii. 

Figure 6: The profiles of p$ and E along the wall- 
normal direction at the surface location of s = 7.87 nose 
radii. 

Figure 9: The profiles of pp and dY? along the wall- 
normal direction at the surfkce location of s = 46.96 
nose radii. 

15 

American Institute of Aeronautics and Astronautics 



0 v .  

P 
L .  .- - 
E004 a .  

Figure 10: The  frequency spectrum of the pressure per- 
turbations imposed in the freestream in the numerical 
simulations. 

Figure 13: Amplitudes of pressure perturbations on the 
cone surface VS. 2. The lines represent 2 different fre- 
quencies of TI = 1 0 , l l .  

Po04 

.- -* - 
- E" 

'0 25 50 75 1W 125 150 175 200 225 250 
X 

n 
001 

X Figure 11 : Amplitudes of pressure perturbations on 
the cone surface vs. I .  The lines represent 6 different 
frequencies of f,, = n f i ,  where f; = 14.922kHz and 
n =  1 , 2 , . . . , 6  . 

Figure 14: Amplitudes of pressure perturbations on the 
cone surface vs. I .  The lines represent 2 different fre- 
quencies of n = 12,13. 
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Figure 16: The frequency spectrum of the pressure perturbations on the cone surface at  a number of surface 
locations. 
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Figure 17: Contours of real part of temperature perturbations in the flow field for the frequency off '  = 1 1 9 . 4 k H ~  
( n  = 8). 

17 

American Institute of Aeronautics and Astronautics 



.sUo!p30[ 
ax?jins 30 iaqwnu a ye asa31ns auos ayl uo s u o y e q i n p d  arnssaid ayl 30 wnqsads 6x.1anbaq aq;C :61 arn%J 

e4 = s 11 = s  

X 
5LZ OLZ 592 092 052 ovz OCZ 

*E 

9E 

8F 

ov 

zv < < 

vv 

9P 

8V 

05 



25 0 000743261 
17 0.000102142 
9 -0 000538977 

26 

25 

24 

23 

22 

35.5 3l 35 

). 
34.5 

34 

33.5 

33 

u 
R W )  

25 0.00255349 
17 0.00041 1857 
9 -0.00172978 
1 -0.00387141 

259 260 261 262 263 
32.5b' ' ' I I ' ' ' ' ' ' ' ' ' I  ' ' ' I '  ' ' ' 

36 - 

> -  

259 260 261 262 263 264 
X 

Figure 20: Contours of real part of temperature perturbations in a localized region of the flow field for three 
different modes: top figure, mode I at f' = 119.4kHz ( n  = 8); mid figure, mode I1 at f' = 179.lkHz ( n  = 12); 
bottom figure, second Mack mode at f" = 119.4k.H~ (n  = 8). 
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Figure 21: Phase velocities of three discrete modes, i.e., 
mode I, mode I1 and the Mack modes, changing with 
frequencies at  the station s = 175. 
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Figure 22: Growth rates of three discrete modes, i.e., 
mode I, mode I1 and the Mack modes, changing with 
frequencies at the station s = 175. 
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Figure 23: Comparison of disturbance growth rates pre- 
dicted by LST and experiments at  s = 175 (x = 172). 

0'- 
-Fiat mode O'.. 

Figure 24: Comparison of the neutral curve of Mack 
modes with Malik's (1990) results. 

Figure 25: The evolution of pressure perturbations on 
the wall due to  freestream disturbances at three fre- 
quencies. 

Figure 26: The distribution of the streamwise wavenum- 
ber of induced boundary-layer disturbances at fre- 
quency with n = 5 (f' = 74.61kHz) from the simu- 
lation. 
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Figure 27: Comparison of phase velocity of induced 
boundary-layer disturbances at frequency with n = 5 
(f* = 74.61kHz) from the simulation with that of 
boundary-layer normal modes from the LST. 
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Figure 28: Profiles of induced disturbances in the nu- 
merical simulation at  z = 109.2 compared with mode I 
waves and the first-mode waves from the LST. 
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Figure 29: Profiles of induced disturbances in the nu- 
merical simulation at x = 109.2 compared with mode I 
waves and the first-mode waves from the LST. 
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Figure 30: Distribution of growth rates of boundary- 
layer normal modes at  frequency with n = 5. 
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Figure 31: The distribution of the streamwise wavenum- 
ber of induced boundary-layer disturbances at  fre- 
quency with R = 8 (f* = 119.4kHz) from the simu- 
lation. 

Figure 32: Comparison of phase velocity of induced 
boundary-layer disturbances at  frequency with n = 8 
(f' = 119.4kHz) from the simulation with that  of 
boundary-layer normal modes from the LST. 
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Figure 33: Profiles of induced disturbances in the nu- 
merical simulation at  x = 271 compared with the second 
Mack mode waves from the LST (n = 8). 
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Figure 34: Profiles of induced disturbances in the nu- 
merical simulation at x = 271 compared with the second 
Mack mode waves from the LST (n = 8). 
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Figure 36: Distribution of growth rates of boundary- 
layer norma.1 modes at frequency with n = 15. 

a' 

0. 

0 I S T  (mo& I (I)) 
n. - . - . - . - LST (mh I@))  

LST ( M r k  m & s )  
A L S T ( m d e I 0  - SMulsfo"  (0 = 15) 

n. 

Figure 37: The distribution of the streamwise wavenum- 
ber of induced boundary-layer disturbances at fre- 
quency with n = 15 (f' = 223.8kHz) from the sim- 
ulation. 
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Figure 35: Distribution of growth rates of boundary- 
layer normal modes at frequency with n = $. 

Figure 38: Comparison of phase velocity of induced 
boundary-layer disturbances at frequency with n = 15 
(ft = 223 .8kHz)  from the simulation with that of 
boundary-layer normal modes from the LST. 
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Figure 39: Profiles of induced disturbances in the nu- 
merical simulation at a: = 177.3 compared with the 
second-mode waves from the LST (n = 15). 

izn 
T' 

40 

n 

-40 

-8n 

I'll ' ' ' i l l '  " ' $11 ' ' ' ' Bl - n o  , , , ~ 

Y " / L  

' t  a- 

O!I ' ' ' so I ' ' ' 100 ' ' ' ' 150 I ' ' ' 2M1 ' ' ' ' ' 
f" ( K i i J  

Figure 42: Comparison of wavenumbers of induced 
boundary-layer disturbances at different frequencies 
with LST results a t  a: = 52. 
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Figure 40: Profiles of induced disturbances in the nu- 
merical simulation at a: = 177.3 compared with the 
second-mode waves from the LST (n = 15). 

Figure 43: Comparison of wavenumbers of induced 
boundary-layer disturbances at different frequencies 
with LST results a t  a: = 175. 

Figure 41: Comparison of wavenumbers of induced Figure 44: Comparison of wavenumbers of induced 
boundary-layer disturbances a t  different frequencies boundary-layer disturbances at different frequencies 
with LST results at a: = 10. with LST results at x = 272. 
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Figure 45: Pressure perturbations on the wall normal- 
ized by amplitudes of pressure perturbations at  the 
same frequency in freestream. 
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Figure 48: Pressure perturbations on the wall normal- 
ized by amplitudes of pressure perturbations at the 
same frequency in freestream. 

Figure 46: Pressure perturbations on the wall normal- 
ized by amplitudes of pressure perturbations at the 
same frequency in freestream. 

, , , ,  , , , ,  , , , ,  a , , ,  , I I  I 

on s . n h  I.nk+os I.S&OS 2.nAos z.s&ns 
f" (kHz)  

Figure 49: The response coefficients of mode I waves 
and mode I1 waves at  different frequencies. 

Figure 47: Pressure perturbations on the wall normal- 
ized by amplitudes of pressure perturbations at  the 
same frequency in freestream. 
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