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Abstract

Longitudinal counter rotating streamwise vortices ap-
pear in boundary layer flow along a concave surface
which are Gortler vortices, and they can play a key
role in the instability and transition of boundary layers
along a concave surface. In hypersonic boundary lay-
ers along the concave surface, multiple instability waves
may co-exist e.g. first mode, higher harmonic bound-
ary layer modes (second, third mode etc.) and Gortler
mode. Forcing disturbances initially enter the bound-
ary layers and generate instability waves which is called
receptivity. In receptivity to free-stream disturbances,
perturbations in free stream enter boundary layers and
excite instability waves in boundary layers. It helps
to study the naturally generated instability modes in
boundary layers. In this paper, we present results of
leading edge receptivity of Gortler vortices in a Mach
15 flow over a blunt wedge. Forcing disturbances are
standing or traveling vorticity waves imposed in the free
stream. Receptivity results of free stream standing vor-
ticity waves show that the disturbances can be excited
near the leading edge and in concave region. The grow-
ing disturbances near the leading edge are associated
with the early transient growth due to the coupling of
non-orthogonal eigenvectors. Growing disturbances in
concave region is due to the Gortler instability. The vor-
ticity waves with frequency do not excite the Gortler
vortices along a concave surface inside boundary lay-
ers. The main conclusion of this receptivity study is
that the Gortler vortices are mainly induced by free-
stream standing vorticity waves. The traveling vorticity
waves 1s difficult to penetrate into the boundary layers,
while standing vorticity waves can excite growing dis-
turbances inside boundary layers near the leading edge
which excite the Gortler modes in concave region.

1 Introduction

In hypersonic boundary layers, there exist higher har-
monic boundary layer modes (second, third mode etc.)
as well as the first mode. If the flow is associated
with the concave surfaces, Gortler mode also exists.
It is important to study the roles of these instability
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modes in transition of boundary layers. Nayfeh [3], in
his multiple-scale analysis for two dimensional bound-
ary layers, showed that Gortler vortices can interact
with the oblique Tollmien-Schlichting (TS) waves whose
spanwise wavelength is the twice of the vortices. He
found that Gortler vortices strongly destabilize the TS
waves. Malik [ obtained the results which are not
agreed with Nayfeh. He found the inconsistent length
scale 1n Nayfeh’s formula and showed in his tempo-
ral and parallel analysis that the oblique TS waves
whose wavelength is the half of the vortices are desta-
bilized by the nonlinear interaction. Nayfeh and Al-
Maaitah *] corrected the formula and presented the new
results which are the same to Malik 4. They used
both Floquet theory and the method of multiple-scale
and showed both methods give a good agreement. Ma-
lik and Hussaini (%! considered nonlinear interaction be-
tween two dimensional TS waves and Gortler vortices.
In the analysis, incompressible Navier-Stokes equations
are solved using a Fourier-Chebyshev spectral method.
It is shown that the TS waves can be excited by Gortler
vortices, and due to the nonlinear effects, Gortler vor-
tices induce the oblique wave whose wavelength is the
equal to the vortices.

We had studied linear and non-linear Gortler instabil-
ities and 1ts interactions with other instability waves in
hypersonic boundary layers by imposing the Gortler and
other instability modes obtained from LST at the inlet
of the computational domain [7=9], By adding the modes
obtained from LST at the inlet, we could observe de-
velopments of Gortler and other instability modes and
their interactions at hypersonic speed. It was found that
in a Mach 15 flow over a blunt wedge, unstable first and
second Gortler modes exist in concave region (71, The
stable second mode was found and its interactions with
Gortler mode has also been investigated 8], The results
showed that their interactions are weak although inflec-
tion profiles by nonlinear Gortler vortices have destabi-
lizing effects on the second mode. In the previous stud-
ies, Gortler modes were the most dangerous instability
waves in a Mach 15 flow over a blunt wedge. How-
ever, such studies could not explain the procedure of
naturally developed Gortler vortices and other instabil-
ity waves. In receptivity, external forcing disturbances
enter boundary layers and excite instability waves. It
helps to understand naturally developed flow instabili-
ties in boundary layers. In receptivity to free stream dis-
turbances, free stream forcing waves enter the boundary
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layers and excite the most dominant instability waves
inside boundary layers.

There are many difficulties in the experimental stud-
ies of high speed receptivity phenomena. For example,
it 1s difficult to generate controllable disturbances with
a well defined and independently variable frequency.
Therefore, Direct Numerical Simulation becomes an
useful tool in order to investigate supersonic and hy-
personic receptivity process. Lin et al (1] solved com-
pressible linearized Navier-Stokes equations and studied
the receptivity of hypersonic boundary layer to different
external disturbances. Zhong (1) studied the acoustic
receptivity of hypersonic flow over blunt wedge by solv-
ing the full Navier-Stokes equations. It was shown that
the interaction of free stream acoustic wave with bow
shock generate instability waves behind the shock.

There have not been many studies in receptivity of
Gortler instability. Hall [12] studied free-stream recep-
tivity of Gortler vortices in incompressible boundary
layers. He allowed the vortex to be generated by free-
stream disturbances imposing at the leading edge and
showed that Gortler vortices can be generated by re-
ceptivity of free-stream disturbances. Denier et al (3]
addressed receptivity issue by considering the vortex
motion induced by wall roughness and showed that wall
roughness induces the Gortler vortices.

There are four kinds of weak perturbation waves in
a uniform flow in the free stream: fast acoustic waves,
slow acoustic waves, entropy waves, and vorticity waves.
Acoustic waves enters boundary layers and excite T-
S waves, therefore, in fast acoustic wave studies [14],
pure Gortler mode could not be obtained. In addition,
Gortler vorticies are standing waves which are indepen-
dent of time. Standing forcing waves can be generated
by free stream vorticity or entropy waves. In this pa-
per, receptivity to free stream vorticity waves are in-
vestigated by solving the full Navier-Stokes equations
using a high order shock fitting scheme.

2 FORMULATION

A. Direct Numerical Simulation

Receptivity to free stream disturbances is numeri-
cally simulated using a fifth order upwind shock fit-
ting scheme. The governing equations and numerical
schemes are briefly summarized here. Details of the
numerical method and code validation can be found
in [15].

In the numerical simulation, the three-dimensional
Navier-Stokes equations are written in conservative-law
form as follows:
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p* 1s the viscousity coefficient and calculated using the

Sutherland’s law, and &* is the heat conductivity coeffi-
cient computed by assuming a constant Prandt]l number
Pr. The gas is assumed to be thermally and calorically
perfect gas.

The general curvilinear three-dimensional coordi-
nates (£, n, {, 7) are used along the body fitted grid
lines. The shock fitting method treats the bow shock as
a computational boundary at 7 = 9,4,. The flow vari-
ables behind the shock are determined by the Rankine-
Hugoniot relation across the shock and a characteris-
tic compatibility equation from behind the shock. The
transformation relations for the current grid systems are
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where & = 0 and (¢ = 0 because the & and ¢ grid
lines are fixed when the shock boundary moves. In the
numerical simulations, the governing equations (1) are
transformed into the computational domain (&, 5, ¢, 7).
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The governing equation (9) is discretized in the com-
putational domain (&, 5, ¢, 7). High order finite dif-
ference methods are used for spatial discretization of
the equation. Inviscid and viscous flux terms are dis-
cretized using different methods: fifth order upwind ex-
plicit schemes for the inviscid flux terms and sixth order
central difference schemes for the viscous terms. The
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time advancement of the governing equations is solved
by Runge-Kutta schemes.
B. Free stream forcing disturbances

Forcing disturbances are imposed by receptivity to
free-stream disturbance waves. The wave fields are rep-
resented by perturbations of instantaneous flow vari-
ables with respect to the local steady base flow variables
at the same location. There are four kinds of weak per-
turbation waves in a uniform flow in the free stream:
fast acoustic waves, slow acoustic waves, entropy waves,
and vorticity waves. The perturbation of an arbitrary
flow variables can be written in the following form:

Qoo = |goole’(=x7e0) (10)
where ¢/ represents the perturbation of any flow vari-
able, |goo| is the wave amplitude, ko, is the wavenum-
ber, and w 1s the wave frequency in the free stream
before reaching the shock. Perturbation amplitudes of
non-dimensional flow variables satisfy the following dis-
persion relations:

streamwise vorticity waves (w = Uy - koo ):

[V ok /ky = |w'leck/k: = ccoo ,
[Wlee = |P'lec = [5]ec =0 ;
entropy waves (w = Ug - koo):
Pl = S loo = €Co
I Is'|
|UI|oo = |’()l|Oo = |w/|oo = |pl|oo =0 ;

fast acoustic waves (w = U - koo + cock):

|P/|oo = |p/|00/'7 = |U/|ook/kx = |wl|ook/kz = €Coo
|5/|oo = |v/|oo =0

slow acoustic waves (w = Uq - koo — oo k):

|P/|oo = |pl|oo/7 = |U/|ook/kx = |wl|ook/kz = €€
|5/|oo = |v/|oo =0;

where € is a number which controls a disturbance am-
plitude, and eco, represents the relative amplitude of a
free-stream wave. The parameter k., is the free-stream
wavenumber vector.

Acoustic waves enter boundary layers and mainly ex-
cite T-S waves; therefore, Gortler vortices are hardly
generated by acoustic waves. [14] Gértler vortices are
standing waves, and such vortices can be generated
by the forcing waves with zero frequency. Free-stream
acoustic waves cannot impose standing disturbances in
boundary layers; therefore, acoustic waves cannot excite
the pure Gortler mode in hypersonic boundary layers.
Gortler vortices can be excited by free-stream vorticity
waves, and we imposed streamwise free-stream vorticity
waves to the 2-D base flow solution. In this paper, re-
ceptivity to standing and traveling free stream vorticity
waves are investigated.

3

3 Results

The specific test case 1s a Mach 15 flow over a blunt
wedge with a concave surface. The flow conditions in
free stream are

T = 101.059K

P% =10.3Pa

T: = 1000K

Reoo = pUs /0% =

(11)
150753.175/m

The body surface is assumed to be a non-slip wall with
an isothermal wall temperature 7T,;. Two-dimensional
steady base flow along the blunt body with concave
surface 1s first obtained by two-dimensional simulation.
Three-dimensional simulation is carried out for recep-
tivity to free stream. Figure 1 shows a schematic of
computational domain of two-dimensional base flow and
free stream receptivity of Gortler instability simulation.

3.1 Two-Dimensional Base Flow

LST analysis on the previous 2-D base flow [7=9]

showed that the only Gortler mode is unstable, and
other modes such as Mack’s modes are stable in our
computational domain, and the new sets of 2-D steady
base flow with ten times higher Reynolds number is
computed to check if the other instability modes can
be found in high Reynolds number flows. In the simu-
lation, we have enlarged the body size ten times with
the same flow conditions in free stream. Seven computa-
tional zones are used in the new two-dimensional steady
flow calculations which are resolved by a total of 2253
x 241 grids. First three zones are parabolic blunt body
given by x = by? — d where b and d are the given con-
stants 4.0 and 1.0 respectively. The concave surface is
extended in the following zones. The concave body sur-
face is defined by two piecewise-polynomial equations:
y=a1x3+asz’+asz+aq and y = by2?+byz+bs where
the coefficients are determined to maintain the contin-
uous conditions for the zeroth, first, and second order
derivatives of the surface functions in order to get con-
tinuous radius curvature which is a function of the first
and second order derivatives. Resulting local Reynolds
number is up to 6 x 10%. Local Reynolds number is cal-
culated using the flow properties behind the bow shock
as Re, = p*U*z* [u*, where p*, U*, and p* are density,
velocity, and viscosity respectively, and z* is the hori-
zontal distance from the blunt nose. Reynolds number
of the resulting 2-D base flow is ten times larger than
the previous (=], Magnitude of Gortler number is the
almost same becasue radius of curvature is five times
larger than previous.

Figure 2 shows the numerical solutions of the new
two-dimensional steady flow. Pressure i1s nondimen-
sionalized using free stream flow variable: PZ . Ref-
erence length is the horizontal distance from the blunt
nose to the starting point of the concave surface. Ba-
sic structure of the pressure is similar to the previous
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low Reynolds number case [7], but Reynolds number is
ten times larger. The figure shows the adverse pressure
gradient in concave region.

Having obtained the new 2-D base flow, spatial lin-
ear stability analysis for the computed two-dimensional
steady base flow 1s applied at X = 3.0 to find instability
waves. In the LST analysis, spanwise wave number g
is given, and complex a and corresponding eigenfunc-
tions are computed for various frequencies. The detailed
method and its validation of LST analysis can be found
in Ref. [7]. At zero wave frequency (w), we found un-
stable Gortler modes in concave region. We have also
investigated other instability modes at various frequen-
cies in concave region. Figure 3 shows the growth rates
(a;) for various wave modes with respect to wave fre-
quencies. Growth rates and frequencies are nondimen-
sionalized by streamwise velocity behind the shock and
streamwise distance. At this location, there is unstable
frequency range for Model (30 < w < 70), but other
modes are still stable. Unstable Gortler mode is also
shown in the figure. It shows that Gortler mode is still
the most dangerous mode in concave region for a high
Reynolds number flow.

3.2 Receptivity to Standing Vorticity Waves

Receptivity to free-stream vorticity waves with zero
wave frequency is first investigated since streamwise
vorticity with zero frequency is a characteristic of
Gortler vortices. Spanwise wavenumber, wave angle
and nonlinear effects of the standing vorticity waves are
studied by solving the full Navier-Stokes equations.

First, spanwise wavenumber effects of the free-
stream receptivity on Gortler vortices are investigated.
We have simulated four cases with different span-
wise wavenumber of standing vorticity waves (§ =
0.05,0.1,0.15,0,2). Spanwise wave number, 3, is nor-
malized by the characteristic boundary layers thickness
at X = 3.0. Wave angle, 8, with respect to the spanwise
direction is 30°. Normal and spanwise components of a
wavenumber vector are as follows:

ky = ksin(8) , k, = kcos(f) (12)

In the free stream, nonzero disturbance variables are
normal and spanwise velocity disturbances (v’ and w'),
and nonzero wavenumbers are normal and spanwise
components (k, and k). Amplitudes of other distur-
bance variables and streamwise wavenumber are zero.
Zero streamwise wavenumber gives zero wave frequency.
Resulting free-stream forcing waves are streamwise vor-
ticities with zero frequency which can generate Gortler
vortices along the concave surface inside hypersonic
boundary layers. Amplitudes of free-stream distur-
bances are 10™%co where co is a speed of sound in free
stream. Weak disturbance amplitudes ensure that the
generated instability waves are linear, and four Fourier
collocation points in spanwise direction are used to com-
pute one spanwise wave length of the disturbances.

4

Figure 4 shows streamwise velocity perturbation con-
tours of the first computational zone at § = 0.1. The
flow is simulated until it reaches a steady state condi-
tion since the imposed vorticity waves are steady. Free-
stream standing vorticity waves pass the bow shock,
penetrate into boundary layers, and excite the unsta-
ble wave modes inside the layers. According to LST
analysis, this early region is stable, but the simulation
results show that the standing vorticity waves gener-
ate the instability waves near the leading edge inside
boundary layers. Other simulations with different span-
wise wave number show the same mechanism of grow-
ing disturbances near the leading edge. The growing
disturbances near the leading edge may be associated
with the early transient growth which is due to the cou-
pling of non-orthogonal eigenvectors. Hanifi et al [ and
Reshotko () showed such transient growth in compress-
ible boundary layer flow. They found that the optimal
disturbances are stationary with zero frequency and a
particular spanwise wave number. The imposed vortic-
ity waves in our simulations have zero frequency and
non-zero spanwise wave number which are the optimal
disturbances. Theoretical studies on the early transient
growth (1,2 showed that the growth mechanism results
from fluid particles moved away from or toward the wall
which is so called lift-up effect. Lift-up effect can also
be found in Gortler instability. In Ref. [8], we have
showed that Gortler vortices pump vertically the low-
speed fluid away from the wall and push the high speed
fluid toward the wall which is the lift-up effect.

We have simulated the receptivity to standing vortic-
ity waves until those propagate at the end of the com-
putational domain and reach steady state conditions for
seven computational zones for four wavenumber cases
of the standing vorticity waves. Figure 5 shows sur-
face shape of the blunt body and streamwise distribu-
tions of streamwise velocity and temperature perturba-
tions inside boundary layers for the standing vorticity
waves with # = 0.1. Four curves represent four Fourier
collocation points. The figure shows that the distur-
bances increase near the leading edge but decay before
they reach the concave surface region. Figure 5 also
shows growing disturbances in concave region. Con-
cave surface starts at X = 1.0 as shown in Fig. 5,
and after the body shape becomes concave, the am-
plitudes of disturbances are amplified as the flow moves
downstream. Growing disturbances in concave region
are associated with the Gortler instability. The dis-
tribution curves indicate that disturbances keep grow-
ing as long as the body surface is concave. Gortler
number increases downstream due to the increase of lo-
cal Reynolds number; therefore, Gortler mode becomes
more unstable as X increases.

Fourier analysis in spanwise direction is carried out on
the numerical solutions of the standing vorticity waves.
Fourier transform of a disturbance variable is expressed
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to:

N
q’(:b,y, Z) — Z |q;l| et [nBz+én]

n=0

(13)

where § i1s the spanwise wavenumber of disturbance,
and ¢'(z,y,?) represents any perturbation variables.
lg, (2, y)| and ¢, (z,y) are the local perturbation am-
plitudes and phase angles respectively. The integer n
represents the wave modes of the perturbation fields.
n = 1 represents a fundamental mode. Figure 6 shows
amplitude contours of velocity disturbances (|A] =
VI0ub 2+ vL |2 + |wh[?) at B = 0.1 obtained by Fourier
analysis for the total computational zones. Amplitudes
are normalized by free-stream forcing disturbance am-
plitudes. The figure shows the development of vortic-
ity layer inside boundary layers induced by free stream
standing vorticity waves. It also shows that disturbance
amplitude keep increasing in concave region since the
maximum amplitude occurs at the end of the computa-
tional domain. Growing disturbance amplitude in con-
cave region is due to the Gortler instability.

In LST analysis on the 2-D base flow, we found unsta-
ble Gorlter modes with a specific spanwise wave num-
ber. The LST results are compared with those from
Fourier analysis of DNS results. Figure 7 shows growth
rate distributions obtained from LST with respect to X
for the four different spanwise wave numbers. It shows
that at 8 = 0.1, the Gortler mode has the maximum
growth rate which implies that the Gortler mode at
G = 0.1 is the most unstable in our flow conditions.
The figure also shows that Gortler modes become more
unstable as the flow moves downstream since Gortler
number increases. Eigenfunctions of DNS results ob-
tained from Fourier analysis are compared with those
from LST to verify if the generated instability waves by
the free-stream standing vorticity waves are Gortler vor-
tices. Figure 8 shows the comparisons of eigenfunctions
from LST with those induced by the standing vorticity
waves with 8 = 0.1 located at X = 3.0. Streamwise
and normal velocity and temperature disturbances are
compared in the figure. Eigenfunctions are normalized
by pressure perturbation at the surface. It shows that
the structures inside boundary layers are comparable
which represents that the stationary free-stream vor-
ticity waves can excite Gortler mode inside boundary
layers in concave region. From this result, we conclude
that the growing mechanism in concave region shown in
Fig. 5 is associated with the Gortler instability.

Fourier analysis is conducted for all four different
spanwise wavenumber cases. Figure 9 shows stream-
wise velocity disturbance amplitude contours in convex
region including a blunt nose at four different span-
wise wavenumbers. The amplitudes are normalized by
the one for free-stream forcing disturbance. All four
contours show that disturbances are amplified near the
leading edge. Growingdisturbances are well represented

5

by intensity for all four cases which implies that the in-
stability waves are generated by the standing vorticity
However, the locations of the maximum am-
plitude are different depending on the value of span-
wise wavenumber. As [ increases, its location moves
closer to the leading edge. At g = 0.05, the maxi-
mum location occurs at X & 1.0 while at 7 = 0.2,
it appears much closer to the leading edge located at
X =~ 0.4. The figure also shows that after the amplitude
reaches the maximum, it starts decaying. If the maxi-
mum location occurs earlier, disturbances decay faster.
It is well represented in the figure. At the end of the
contours, disturbances at # = 0.2 contain the weakest
energy since its maximum location occurs the earliest
among the four cases. Figure 10 shows contours of the
disturbance amplitudes in concave region at four differ-
ent spanwise wave numbers. All four cases show the
growing disturbances in concave region. The maximum
disturbance occurs at the end of computational domain
which represents that disturbances keep increasing as
the flow moves along the concave surface. The growing
mechanism in concave region is due to the Gortler in-
stability, and since Gortler number increases as the flow
moves downstream, disturbances keep increasing.

waves.

Figure 11 shows the streamwise distributions of
the maximum velocity disturbance amplitude (|A| =
VIuL 12+ [vL 2 + |wh]?) inside the boundary layers ob-
tained by Fourier analysis of DNS results. It clearly
shows that standing vorticity waves excite instability
waves near the leading edge which decay after they
reach the maximum amplitudes, and before they reach
the concave surface region. The growing disturbances
near the leading edge are due to the early transient
growth, and those in concave region (X > 1.0) is due
to the Gortler instability. Figure 11 shows that the
vorticity wave at § = 0.2 induces the largest ampli-
tude disturbances by the early transition but the weak-
est growing process in concave region. It also shows
that the smallest amplitude disturbances by the transi-
tion at # = 0.05 can excite the most amplifying Gortler
mode since the largest disturbance amplitude reach at
the end of the computational domain. It may be ex-
plained by the linear stability analysis and relationship
between early transition and concave surface. Figure 7
shows that the Gortler mode at # = 0.1 has the largest
growth rate, while the one at # = 0.2 has the smallest.
A growth rate can be calculated by the slope of distur-
bance amplitude curve. Figure 11 shows that the most
stiff curve occurs at # = 0.1 while the least is at 7 = 0.2
which is consistent with the LST results. However, at
G = 0.05, amplitude of the Gortler mode excited by the
vorticity waves is larger than the one at the § = 0.1.
The reason is currently not clear, but it may be ex-
plained by the relationship between the early transient
growth and a concave surface. Figure 11 shows that as
spanwise wavenumber increases, the maximum ampli-
tude of disturbances by the early transition increases,
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and its location is more closer to the leading edge as we
discussed in Fig. 9. At X = 1.0, disturbance amplitude
at # = 0.2 is the smallest which represents that decay-
ing procedure starts at earlier location as # increases.
At f = 0.05, the maximum amplitude induced by the
early transition is the smallest, but i1ts location is closer
to the concave surface located at X = 1.0. Before the
decaying procedure of the early transient is initiated,
the concave surface develops; therefore, at 3 = 0.05,
more disturbance energy can be excited by Gortler in-
stability, and the largest amplitude’s waves are gener-
ated.

Figure 11 shows that the slope at f = 0.05 is, how-
ever, smaller than the one at 8 = 0.1 as predicted by
LST analysis. In the linear region, Gortler mode at
8 = 0.1 will overtake the one with 8 = 0.05 as the flow
moves downstream. The early transient studies (1,2]
showed that the optimal disturbance can excite 2 — 3
order larger disturbance inside boundary layers. If the
amplitude reaches the limit in which the waves have
the enough energy to become nonlinear, the case at
8 = 0.05 could break down to turbulence earlier than
the one at g = 0.1.

The growing mechanism of the early transient growth
is due to the lift-up effect, and such effect is also ob-
served in the Gortler instability. We have studied re-
lationships between two different growing mechanisms
and found that those are closely related. Figure 12 and
13 show streamwise velocity and temperature pertur-
bation contours in two different regions which are con-
vex and concave region. Disturbances in convex region
are due to the early transition, and those in the con-
cave are due to the Gortler instability. Inside bound-
ary layers, basic structures of the perturbations in con-
vex and concave region are the same. It implies that
instability waves induced by the early transition and
the Gortler instability may be the same. Figure 14
shows the streamwise vorticity contours at four differ-
ent streamwise locations. Dashed lines in the figure
represent negative values. The figure indicates that
the instability waves inside boundary layers are counter
rotating vortices in both convex and concave regions
since the streamwise vorticity is anti-symmetric in span-
wise direction. Streamwise vorticity contours also show
that both growing mechanisms are closely related since
their structures inside boundary layers are comparable.
Figure 15 and 16 are the wall normal distributions
of streamwise velocity and temperature perturbation
amplitudes obtained from Fourier analysis. The mode
structures inside boundary layers are the same in con-
vex and concave regions. From our numerical results,
we conclude that the growing mechanism due to the
early transient growth is consistent with the one in the
Gortler instability.

Effects of wave angle, 6, are also investigated. At
f = 0°, nonzero wave number and free-stream distur-
bance variable are k, and normal velocity, and those

6

at § = 90° are ky, and spanwise velocity. In the
simulations, four different wave angles are considered
(6§ = 0°,30°,60°85°). According to LST analysis,
Gortler mode is the most unstable at k&, = 0.1, and k,
is fixed to 0.1 for all cases. As the angle increases, nor-
mal component wave number, ky, increases. The ampli-
tudes of free-stream disturbances are fixed as 10~ %*¢o,
so that developments of waves are linear. Figure 17
shows contours of streamwise velocity disturbance am-
plitude in convex region including a blunt nose at four
different forcing wave angles. The contours show that
as the angle increases, the early transition is initiated
at later location. At 8 = 0°, the first peak occurs at
r =~ 0.25 while at § = 60°, it is at * =~ 1.0. The
figure shows that disturbances decay after they reach
the peak. However, at # = 85°, before the amplitude
reaches the first peak, a body surface become concave,
therefore, the contours do not show the the region of
decaying disturbances which represents that the maxi-
mum location occurs at much later location. Figure 18
shows contours of streamwise velocity disturbance am-
plitude in concave region at four different forcing wave
angles. As the spanwise wave number studies, all four
cases show the similar results. Although the strength
of the disturbances in boundary layers are different de-
pending on the value of wave angle, the generated waves
are amplified as long as the surface i1s concave for all
four different wave angle studies due to the Gotler in-
stability. A radius of curvature does not change much,
but local Reynolds number increases as the flow moves
downstream. As aresult, Gortler number increases with
respect to X, and Gortler modes become more unsta-
ble as X increases. It is true in all different wave angle
studies.

Figure 19 shows the streamwise distributions of
the maximum velocity disturbance amplitude (|A| =
VIuL 2+ [vL 2 + |wh|?) for the different wave angles.
All the cases show the growing mechanisms induced by
the early transition and the Gortler instability. The
figure shows that at # = 0°, a growing procedure due
to the early transition is initiated faster than the other
cases since the amplitude reaches the peak at the ear-
liest streamwise location. As the angle increases, it be-
comes slower since its location moves more downstream.
At 6 = 30°, a disturbance amplitude grows slower than
the one at § = 0° but faster than the one at § = 60° at
the beginning of the growing procedure. However, af-
ter a short distance from the leading edge, disturbances
at & = 60° overtake those at § = 30°, and as the flow
moves further, the disturbances grow more than those
at § = 0°. It implies that there is an optimal wave
angle in which disturbances are the most unstable in
the early transient growth. In our flow condition with
k; = 0.1, # = 60° is the most dangerous wave angle.
The weakest growing procedure occurs at § = 85° in
wave angle studies. The amplitude curves shows that
the early transient growth at § = 85° is initiated after
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some distance away from the leading edge. It may be
due to two-dimensional wave direction. According to
theory, the optimal disturbances of the early transient
growth are stationary with a particular spanwise wave
number which represents spanwise direction propaga-
tions of disturbances are significant. At # = 90°, span-
wise wavenumber cannot be imposed since k = k. At
f = 85° , the direction of the free-stream forcing waves
is almost two-dimensional since k, is much bigger than
k.. However, the forcing waves still have a component of
spanwise wave number, and the early transient growth
is observed at this angle.

Figure 19 also shows that disturbances grow in con-
cave region (X > 1.0) due to the Gortler instability. At
the all wave angles, disturbances are excited as the flow
moves downstream by concave effects. The figure shows
that at # = 60°, the disturbances are the most ampli-
fied, and as the angle decreases, growing procedure be-
comes weaker. The reason is not clear, but it may be
due to the location of the concave surface. At 8 = 60°,
the first peak point of the disturbance amplitude oc-
curs at X = 0.7, but the one at § = 0° does at X = 0.2.
It represents that the decaying procedure at 8§ = 60°
occurs at later location which is closer to the concave
surface. Therefore, more energy of the disturbances can
be excited by concave surface. As a result, the most un-
stable Gortler mode is excited by free-stream standing
streamwise vorticity waves at # = 60° in our flow con-
ditions. The disturbances at # = 85° shows the weakest
growing by early transition, and those contain the least
disturbance energy at the location of concave surface;
therefore, the generated Gorlter mode at 6 = 85° is the
weakest.

For weak free-stream forcing waves, generated insta-
bility waves inside boundary layers are expected to be
linear. In previous simulations of receptivity to the
standing vorticity waves, ¢ is 10™* in which we assumed
that the forcing waves are weak. Figure 20 shows dis-
tributions of maximum disturbance amplitude for fun-
damental mode (n = 1) and mean flow correction mode
(n = 0) obtained by Fourier analysis of DNS results at
8 = 0.1 and § = 30°. The fundamental amplitude is
four order higher than the mean mode which represents
that at ¢ = 107, all higher harmonic modes are negli-
gible, and the generated instability modes are linear.

As ¢ increases, the receptivity results deviate from the
linear curves due to the interaction between the wave
harmonics, and the nonlinear effects become significant.
For the nonlinear receptivity studies, standing vortic-
ity waves with two different forcing wave amplitudes
(e =1071,5 x 1073) are simulated. Eight Fourier col-
location points in spanwise direction are used in non-
linear receptivity simulations in order to resolve two
more higher harmonic modes as well as the fundamen-
tal and mean modes. Figure 21 shows distributions of
disturbance amplitudes obtained by Fourier analysis at
two different ¢. Mean flow correction (n = 0) and sec-
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ond harmonic (n = 2) modes show the same order of
disturbance amplitude for both ¢. Third harmonic con-
tains lower disturbance energy than the second as ex-
pected. As e increases, amplitudes of higher harmonic
modes and the mean mode become closer to the fun-
damental mode, and the third mode is closer to the
second which represents that nonlinear effects become
more significant. Amplitudes of the fundamental modes
(n = 1) do not change much, but when we closely ex-
amine the curves, as € increases, the energy of the fun-
damental mode decreases which implies that the fun-
damental energy is transferred to the higher harmonic
and the mean modes. Although the numerical results
show that the higher harmonics increase as € increase,
the fundamental mode is the most important mode for
both e. At ¢ = 0.1, the fundamental mode contains one
order higher energy than the second harmonic mode.
As a result, the strong nonlinear effects discussed in
Ref. [8] are not observed. However, the results show
that as the forcing amplitude increases, nonlinear effects
become more significant. Figure 22 shows contours for
the streamwise mean velocity, which is the sum of two-
dimensional base flow and the generated disturbances,
at the end of computational domain. At ¢ = 0.1, two-
dimensional base flow is distorted while at ¢ = 5 x 1073,
the mean structure is two-dimensional which indicates
that as a forcing amplitude increases, the base flow can
be distorted as shown in Ref. [8].

3.3  Receptivity to Traveling Vorticity Waves

Having studied receptivity of free-stream standing
vorticity waves, traveling vorticity waves with nonzero
frequencies are investigated. Streamwise wavenumber,
ke, 1s not zero which induces nonzero wave frequency
in the free stream. Three different wave frequencies
(w = 10,25, 50) are concerned in our simulations. Fre-
quencies are nondimensionalized by streamwise velocity
behind the shock and streamwise distance at X = 3.0.
Spanwise wavenumber and wave angle are 0.1 and 30°
respectively. In all cases, amplitudes of free-stream dis-
turbance are 107 *¢c., where ¢o is a speed of sound in
free stream. The simulation results show that the effects
of the early transient growth for the traveling stream-
wise vorticity waves are weaker than those for the stand-
ing waves. The results also show that Gortler mode is
hardly excited by the traveling waves.

Fourier analysis is carried out on the numerical re-
sults of receptivity to traveling vorticity waves. Fourier
transform of a disturbance variable is expressed to:

M N
ql(l‘, v, Z,t) — Z Z q;rm(m’ y)ei [mwt+nfz+dmn] (14)

m=0n=0

where  and w is the spanwise wave number and fre-
quency of the disturbances, and ¢'(z,y, z, ) represents
any perturbation variables. q,,,(z,y) and ¢,y are the
local perturbation amplitudes and phase angles. The
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integer m and n represent the wave mode of the pertur-
bation fields. In our numerical results, the fundamental
wave mode is (m,n) = (1,1).

Figure 23 is streamwise distributions of the maxi-
mum disturbance amplitudes of the fundamental mode
(m =1 and n = 1 in Eq.(14)) inside boundary layers
for three different free-stream wave frequencies. Those
for the standing vorticity waves with the same span-
wise wavenumber and wave angle are also plotted in
the figure for the comparison. All three traveling vor-
ticity waves also show the growing disturbances near
the leading edge due to the early transient growth, but
their effects are much weaker than those for the stand-
ing waves. The figure shows that as the frequency de-
creases, such effects become stronger. According to the
theoretical studies of the early transient growth [1,2],
the optimal disturbances are stationary with zero fre-
quency which is coincident with our numerical results.

Figure 24 shows instantaneous cross sectional con-
tours of streamwise velocity perturbations for the trav-
eling and standing vorticity waves of the first computa-
tional zone. Contours for the traveling vorticity waves
at w = 10 and w = 25 after the numerical results reach
a periodic condition and those for the standing waves
are shown in the figure. At w = 25, most disturbances
behind the shock are outside the boundary layers. At
w = 10, some disturbances penetrate into boundary lay-
ers, but main structure of the disturbances are outside
boundary layers. However, for the standing vorticity
waves (w = 0), most disturbances penetrate into the
layers and excite the growing vorticity layers. From
these results, we conclude that the traveling vorticity
waves are hard to penetrate into boundary layers; there-
fore, the effects of the early transient growth are weak
compared with the standing waves.

We have investigated that free-stream receptivity to
traveling vorticity waves also excite disturbances inside
boundary layers by the early transient growth; how-
ever, Fig. 23 shows that there is no growing mechanism
of Gortler instability. It shows that disturbance am-
plitudes are not affected by a concave surface in the
traveling vorticity wave studies.

Figure 25 shows comparison of the maximum dis-
turbance amplitudes of the zeroth mode (m = 0 and
n = 1) for the traveling vorticity waves with those
for the standing waves. m = 0 and n = 1 represents
the fundamental mode for the standing vorticity waves
which are the Gortler modes. Amplitude of the zeroth
mode of the traveling waves is four order smaller than
the one of the standing waves. The free-stream forcing
disturbances are weak so that the disturbances are in
the linear region; therefore the zeroth mode for trav-
eling waves is the numerical noise. The figure shows
that such random noise grows in concave region which
implies that standing disturbances can be excited by a
concave surface. From this result, we conclude that the
concave surface effects are strong on the standing waves.
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The traveling vorticity wave studies show that Gortler
modes are hardly excited by the traveling waves since
Gortler vortices are standing waves.

4 Summary and Future Works

Leading edge receptivity of Gortler vortices in hyper-
sonic boundary layers has been studied using numeri-
cal simulations. Free-stream forcing waves were stand-
ing and traveling streamwise vorticity waves. The free-
stream vorticity waves were imposed at leading edge
and throughout all computational domain. The waves
interacted with a bow shock, entered the boundary lay-
ers and excited the instability waves inside boundary
layers. The receptivity results of the standing vortic-
ity waves showed that the forcing waves excite the in-
stability waves inside boundary layers near the leading
edge and in concave region. It was found that grow-
ing disturbances near the leading edge are associated
with the early transient growth due to the coupling
of non-orthogonal eigenvectors. Theoretical studies [1,2]
showed the optimal disturbances of the transient growth
are stationary with zero frequency and a particular
spanwise wave number which can be generated by the
free-stream standing streamwise vorticity waves. Insta-
bility waves were also found in concave region due to the
Gortler instability. The eigenfunctions of perturbations
obtained by Fourier analysis of the DNS results were
compared with those obtained by LST. They agreed
well inside boundary layers which implies that the gen-
erated instability waves in concave region are Gortler
vortices. The relationships of these two growing mech-
anisms were investigated by comparing the numerical
results near the leading edge and in concave region. All
the results were coincident which represent both mech-
anisms are closely related.

Receptivity results of the traveling vorticity waves
showed that wave frequency reduces effects of the early
transient growth since as the frequency increased, max-
imum disturbance amplitude due to the early transient
growth decreased. The results also showed that Gortler
voritices could not be generated by the traveling vortic-
ity waves. The main conclusion of this receptivity study
is that the Gortler vortices are mainly induced by free-
stream standing vortices. The traveling free-stream vor-
tices induce very weak Gortler vortices in the boundary
layer. The traveling vorticity waves is difficult to pene-
trate into the boundary layers since most disturbances
are outside the boundary layers, while standing vorticity
waves can excite growing disturbances inside boundary
layers near the leading edge which excite the Gortler
modes in concave region. We also conclude that the
early transient growth is closely related to the Gortler
instability.

Results of receptivity to traveling vorticity waves
showed that the mean flow correction modes are excited
by Gortler instability. Nonlinear effects of traveling vor-
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ticity waves will be studied in which the mean mode
becomes significant. Steady forcing free-stream distur-
bances can also be generated by entropy waves. The
effects of entropy waves on the early transient growth
and Gortler instability will be investigated by solving
the full Navier-Stokes equations.
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Bow Shock

Gortler Vortices

Figure 1: A schematic of computational domain of two-
dimensional base flow and free stream receptivity of
Gortler instability simulation.
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Figure 2: Pressure contours of 2-D numerical solution
for high Reynolds number at Mo, = 15.
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Figure 3: The growth rates (a;) for various wave modes
with respect to wave frequencies at the end of the com-
putational domain.
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turbance amplitudes inside boundary layers for four dif-
ferent spanwise wave numbers. Figure 13: Temperature disturbance contours at four
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Figure 15: Wall normal distributions of streamwise ve-
locity disturbance amplitude at four different stream-
wise locations obtained from Fourier analysis.
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Figure 22: Contours for the streamwise mean velocity
(2-D base flow 4+ Gorlter mode) for two different forcing
amplitudes at the end of computational domain.
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amplitudes of mean flow correction mode of traveling
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Figure 24: instantaneous cross sectional contours of

streamwise velocity perturbations for the traveling and
standing vorticity waves.
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