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Abstract

The receptivity process of hypersonic boundary layer
flows over blunt leading edges has been paid more at-
tentions in recent years. After free stream disturbances
pass through and interact with the bow shock, three
kinds of transmitted waves will be generated and in-
teract with the boundary layer on the body during
propagation to downstream. This generated complex
wave field behind the bow shock will lead linear eigen-
mode growth or transient growth of perturbations inside
boundary layer. Due to the progress of computer tech-
niques, direct numerical simulation (DNS) has recently
become a powerful tool to study the stability and tran-
sition of compressible boundary layers. In this paper,
parametric simulations of receptivity to freestream dis-
turbances including fast acoustic waves, vorticity waves
and entropy waves for Mach 15 flow over 3-D blunt lead-
ing edges have been carried out by using high-order fi-
nite difference method on parallel computers. The re-
sults show that initial transient growth of instability
waves generated and developed inside the hypersonic
boundary layer near the leading edge can be observed in
the receptivity of freestream standing vorticity waves or
entropy waves, but not acoustic waves or other traveling
waves. It is also shown that this initial transient growth
near the leading edge can be possibly explained by the
“transient growth” theory. Additionally, spanwise wave
number effects, y — z angle ¢ effects, nonlinearity ef-
fects, wall temperature effects on the instability growth
are studied in the receptivity of streamwise vorticity
waves. Effects of inhomogeneous boundary conditions
or low-amplitude random distributed roughness on the
surface are investigated in this paper, too.

1 Introduction

The prediction of laminar-turbulent transition in hy-
personic boundary layers is a critical part of the aero-
dynamic design and control of hypersonic vehicles. The
transition process is a result of nonlinear response
of laminar boundary layers to forcing disturbances [1],
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which can originate from many different sources in-
cluding free stream disturbances, surface roughness and
vibrations 1. In an environment with weak initial
disturbances, the path to transition consists of three
stages: 1) receptivity, 2) linear eigenmode growth or
transient growth, and 3) nonlinear breakdown to tur-

bulence.

The first stage is the receptivity process B which
converts the environmental disturbances into initial
instability waves in the boundary layers. Theo-
retical results on incompressible boundary layer re-
ceptivity are mainly obtained based on the asymp-
totic theory (451 The asymptotic analysis explains
how the long wavelength free stream acoustic distur-
bances enter the boundary layer and generate short-
wavelength Tollmien-Schlichting (T-S) waves in incom-
pressible boundary layers. The receptivity mechanism
provides important initial conditions of amplitude, fre-
quency, and phase of instability waves inside the bound-
ary layers. Direct numerical simulation (DNS), which
numerically solves the full Navier-Stokes equations as
an initial-boundary problem, has become an impor-
tant tool in receptivity and transition studies recently.
The direct numerical simulation of the receptivity of
incompressible boundary layers has been performed by
Murdock [6]; Lin, Reed, and Saric [7]; Buter and Reed [8];
and Collis and Lele ],

The stability and transition of supersonic and hy-
personic boundary layers was reviewed by Mack [10],
Morkovin [H], Arnal [12], and Reed and Saric ['3]. For
hypersonic boundary-layer flows over blunt bodies, the
receptivity phenomena are much more complex and are
currently not well understood 11,14] Figure 1 shows a
schematic of wave interactions in the leading edge re-
gion of a hypersonic flow in the presence of free stream
disturbances. The receptivity phenomena are altered
considerably by the bow shock in front of the body.
The interaction of free stream waves with the shock af-
fects the receptivity process of the boundary layer be-
hind the shock. Kovasznay (5] showed that weak dis-
turbance waves in compressible flow can be decomposed
into three independent modes: acoustic, entropy, and
vorticity modes. The acoustic wave is propagated with
the speed of sound relative to the moving fluid, while
the entropy and vorticity waves convect with the mov-
ing fluid velocity.

The second stage is the subsequent linear de-
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velopment and growth of boundary-layer instability
Relevant instability waves for hypersonic
boundary layers include the first mode and higher
mode instability [10], the Gortler instability over con-
cave surfaces ['°] attachment line instability in leading
edges, and cross flow instability in three-dimensional
boundary layers (131 Most of our knowledge on the sta-
bility properties of hypersonic boundary layers is ob-
tained by the analysis of local parallel linear stability
theory (LST) [10,1718] " Y65 and Lin ') showed that
the existence of a generalized inflection point is a neces-
sary condition for inviscid instability of a compressible
boundary layer. Mack (19 found that there are higher
acoustic instability modes in addition to the first-mode
instability waves in supersonic and hypersonic bound-
ary layers. Among them, the second mode becomes the
dominant instability for hypersonic boundary layers at
Mach numbers larger than about 4. The existence and
dominance of the second mode have been validated by

experimental stability studies (12,20]

waves.

Another possible second stage of the transition pro-
cess 1s “transient growth” mechanism, which was first
identified by Ellingsen and Palm (21] and Landahl [??]]
and since its discovery, a number of investigators
have contributed to its basic theoretical understanding
[23,24] " The basic idea is that transient growth arises
from a coupling of oblique T-S and Squire modes that
exists because the linearized Navier-Stokes equations
are not self adjoint and therefore have nonorthogonal
eigenmodes. Thus, even when all the eigenmodes are
damped, some transient period of algebraic growth oc-
curs prior to the eventual exponential decay of the dis-
turbances. Recently, theoretical work in this area by
Andersson et al. [25], Lunchini [26], Butler and Farrell
(27 and Tumin and Reshotko ?® has addressed spatial
transient growth in 2-D boundary layers. Andersson
et al. and Luchini consider the growth of stationary
disturbances in non-parallel Blasius boundary layers at
finite and infinite Reynolds numbers, respectively. Tu-
min and Reshotko consider the more general case of
arbitrarily oriented disturbances at nonzero frequencies
but are restricted to parallel-flow boundary layers. In
all cases, the optimal disturbances is shown to be a
streamwise-oriented vortex that produces a longitudinal
streak downstream. Tumin and Reshotko also verified
that zero frequency disturbances undergo more growth
than unsteady disturbances. Consideration of “tran-
sient growth” has lead to an enlargement and clarifica-
tion of the paths to transition by Morkovin, Reshotko,
and Herbert [2], Figure 2 shows the receptivity mech-
anism summarized by Morkovin, Reshotko, and Her-
bert. Upon on their clarification, there are five possi-
ble paths to transition. Among those paths, transient
growth may provide a higher amplitude to the eigen-
mode growth upon crossing into an exponentially un-
stable region. If the transition growth is large enough,
it could directly excite secondary instabilities and mode
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interactions. Therefore, transient growth is considered
as a candidate mechanism for many examples of bypass
transition.

Recently, there has been renewed interest in the
surface roughness problem, too. Often, in configura-
tions with moderate to large-amplitude surface rough-
ness, transition occurs in the Reynolds number re-
gion subcritical to the exponential growth of Tollmien-
Schlichting (T-S) waves. The mechanism that produces
this subcritical, roughness-induced transition has not
been conclusively identified and has therefore been la-
beled as an instance of “bypass transition”. Berry et
al. % have done a experimental study of roughness
effects on the Orbiter at NASA Langley Research Cen-
ter in hopes of developing a better predictor of tran-
sition behavior since the Orbiter occasionally experi-
ences boundary layer transition earlier than nominal
due to surface roughnesses that result from the rela-
tively fragile nature of the thermal protection system
ceramic tiles. Reshotko [*4 also analytically studied
the problem of the “blunt body paradox”, which refers
to the early transition on spherical forebodies observed
at supersonic and hypersonic freestream flows. Even
the surface 1s smooth, this transition still occurs in the
subsonic portion of the flow behind the bow shock, a
region of highly favorable pressure gradient that is sta-
ble to T-S waves. Surface cooling leads to even ear-
lier transition. The tentative suggestions are gener-
ally roughness related since stagnation point boundary
layers are very thin under such flow conditions. Re-
cently, White and Reshotko B did a new experimen-
tal work that provides the first experimental investiga-
tion of the link between roughness and transient growth
on a flat plate. In their work, the nominal freestream
speed of the experiments is 8m/s. Four kinds of surface
roughnesses, low-amplitude roughness, isolated rough-
ness element, roughness array, and moderate-amplitude
roughness are used in their experiments. Their re-
sults indicate that under certain circumstances, the be-
havior of roughness-induced disturbances is consistent
with transient-growth theory. Acutually, via “transient
growth” mechanism, the disturbances that grow to the
largest amplitudes are stationary(i.e. zero frequency)
streamwise vortices, exactly those known to be pro-
duced by distributed surface roughness. This implies
that “transient growth” may be the mechanism that
leads to subcritical roughness-induced transition in hy-
personic boundary layers.

In this paper, we extend our previous work to do
parametric simulations of receptivity to freestream dis-
turbances including fast acoustic waves, vorticity waves
and entropy waves for Mach 15 flow over 3-D blunt lead-
ing edges. Initial transient growth of instability waves
near the leading edge has been simulated using high-
order finite difference method on parallel computers.
“Transient growth” mechanism is used to explain and
verify the results from the simulations. Additionally,
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effects of spanwise wave number (3, effects of y — z an-
gle ¢, nonlinearity effects, wall temperature effects on
the instability growth are studied in the receptivity to
freestream standing vorticity waves. Effects of inhomo-
geneous boundary conditions or low-amplitude random
distributed roughness on the surface are investigated in
this paper, too.

2 Numerical Methods

The governing equations are the unsteady three-

dimensional Navier-Stokes equations written in a
conservation-law form
F; F,
3_U 3_] O, =0 (1)
8t 8l‘j a:t?j
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U = {P7 pUL, pU2, pU3, 6} (2)
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The details for the expressions above can be found
in [32]. The viscosity and heat conductivity coefficients
are computed by the Sutherland law and the assump-
tion of a constant Prandtl number. Perfect gas assump-
tion 1s used in all flows considered in this paper, though
the method presented here can be easily extended to
nonequilibrium real-gas hypersonic flows.

For numerical simulations of flow fields over a curved
body surface, structured body fitted grids are used to
transform the governing equations (1) in the Cartesian
coordinates into a set of curvilinear three-dimensional
coordinates (¢, 1, ¢, 7) along the body fitted grid lines.
The transformation relations for the two set of coordi-

nates are
£:£((I’yﬁzﬁt)) II:E((&’UJCJ T))
n=n(z,y z1 y=yn (T
(=loyat) T Y y=yencn ©
T=1 t=r1
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The governing equations (1) are transformed as follows

10U n oOF' n oOF! n oG’
J or 0& dan ¢
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U= =0 10
T Yoy Tac TV ar (10)
where
5o F1£x+F2£y;'F3£z + U&, (11)
oo Fine + F277y;' Fan, +Uny (12)
Fi(; + F F3(,
o = 1€ + 2Cy;’ 3¢ + UG (13)
Elu — Fvlg:c + Fv2£y + F’U3€Z (14)
J
FIU — Fu177x+Fu277y+Fu3772 (15)
J
GIU — Fule + FujCy + F’USCZ (16)

where J is the Jacobian of the coordinate transforma-
tion, and &, &y, &, Mo, Ny, 7ss Tes Cos Cy» and C, are
the grid transformation matrices. In the equations, the
transformed inviscid fluxes E’, F’, and G’ are standard
flux terms with known eigenvalues and eigenvectors.
The transport flux terms E, F), and G contain both
first-order and second-order spatial derivatives of veloc-
ity and temperature. These derivatives in the Cartesian
coordinates (z,y, z) are transformed into the computa-
tional coordinates (£, 7, ) using a chain rule for spatial
discretization.

In this paper, high-order semi-implicit method (331 jg
implemented to solve 3-D Navier-Stokes equations on
parallel computers. A fifth-order upwind scheme [34] is
used to discretize the inviscid flux derivatives and high-
order central difference schemes are used to discretize
the viscous flux terms in the equations. A simple local
Lax-Friedrichs scheme is used to split the inviscid flux
vectors into positive and negative wave fields. Divide
and conquer (DAC) method is used to solved the big
banded matrices of semi-implicit algorithms on parallel
computers. Details of the method can be found in Ref.

[33].

3 Results

The perturbations of an arbitrary flow variables be-
fore reaching the bow shock can be written in the fol-
lowing form:

Vo = 14| e (i7)
where |¢’| represents one of the flow variables, |u'|, |v/],
|w'], [p'|, and |p’|, keo is the wavenumber, and w is the
wave frequency in the freestream before reaching the
shock. If w is equal to zero, the freestream disturbances
are standing waves. Three kinds of weak perturbation
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waves enforced in the freestream are studied in this the-
sis. They are fast acoustic waves, vorticity waves and
entropy waves. The freestream perturbation amplitudes
satisfy the following dispersion relations:

Fast Acoustic Waves(cl, = ul, + a’, ):
'] = ccos W]es =0,
|p/|00 :7M0051 |pl|oo =Myc,
[w' |00 = €sinep

where ¢ represents the magnitude of freestream wave
amplitude. The angle ¢ is the angle of freestream wave
with respect to the z axis in the z-z plane, i.e., ¢ = 0°
corresponds to 2-D planar fast acoustic waves.
Vorticity Waves(¢, = ul,):

|uloo =0,

lp'lee =0,

|t/ |oo = €cos @,
[p'lc =0,
[w' |00 = €sing

where the angle ¢ is the angle of freestream wave with
respect to the z axis in the y-z plane for vorticity waves.

Entropy Waves(¢, = ul,):

[v|oo =0, |t |0 = 0,
IP'|ec =0, [P0 = pocc,
] = 0

The parameter k is the dimensionless freestream wave
number which is related to the dimensionless circular
frequency w by:

w =k (cosy+ M) (18)

We also define a receptivity parameter as a ratio of max-
imum disturbance amplitudes inside boundary layer to
the free-stream forcing wave amplitude, i.e.,

ql maxr
A = [Lme (19)

where |¢’|maz 18 the Fourier amplitude for a flow variable
q at the location of the maximum instability amplitudes
inside the boundary layer and C 1s the freestream
sound speed. Generally, streamwise velocity u’ is used
for ¢’ in this paper. The dimensionless frequency F is

defined as:

wrr*

*2
Uoo

I = (20)
The flow is characterized by a free stream Mach number
My = Z%", and a Reynolds number defined by
* T g
Ree, = ==t (21)
Heo

The wall temperature is characterized by its ratio to the
free-stream stagnation temperature, i.e.

Tw T

— = o (22)
To s, (1423 M)

where T and TZ are the wall temperature and the
free-stream temperature respectively.

In general, a numerical simulation study for a hyper-
sonic layer receptivity problem is carried out in three
steps. First, a steady flow field is computed by advanc-
ing the flow solutions to convergence with no distur-
bances imposed in the free stream. Second, unsteady
viscous flows are computed by imposing 3-D fast acous-
tic single-frequency waves, vorticity waves, or entropy
waves on the steady flow variables at the free stream
side of the bow shock. The unsteady simulation is non-
linear by computing the transient flow solutions of the
Navier-Stokes equations without any linearization in the
equations and in the shock jump conditions. The wave
interaction with the shock and the development of in-
stability wave in the boundary layer are simultaneously
resolved by the simulation. For traveling waves, the
unsteady calculations are carried out for about 20 to
40 temporal periods until the solutions reach a periodic
state in time. For standing waves, the unsteady cal-
culations are carried out until it reaches steady state.
Third, a fast Fourier transform (FFT) is performed on
the perturbation variables to obtain the Fourier am-
plitudes and phase angles of the perturbations of the
unsteady flow variables throughout the flow field. For
traveling waves, the unsteady computations are car-
ried out for one additional period in time to record the
perturbations with respect to the steady flow field ob-
tained previously. For standing waves, FFT analysis is
only performed spatially. The shock/disturbance inter-
actions and generation of T-S waves in the boundary
layer are solved using the nonlinear Rankine-Hugoniot
relations at the shock and the full Navier-Stokes equa-
tions in the flow fields.

3.1 Steady Mean Flow

The body surface of a 3-D parabolic leading edge is
given by

QZ‘* — b*y*? _ d* (23)

where b* is a given constant and d* taken as the ref-

erence length. The body surface is assumed to be a

non-slip wall with an isothermal wall temperature 7).
The specific flow conditions are

My =15 e=1x10"*
T = 192.989 K pi, = 10.3 Pa
Ty = 1000 K vy=14

R* = 286.94 Nm/kgK Pr=20.72

T* = 288 K T* = 11033 K
p* =0.17894 x 10~ *kg/ms .
b* =4m™! d*=10m

Nose Radius of Curvature = 7* = 0.125 m
Reoo = pi UL d* [ur, = 60265.5

There is no flow in spanwise direction.
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Figure 3 shows the steady solution of streamwise ve-
locity contours by a set of 281 x 121 x 4 computational
grids obtained by using 4 processors simultaneously and
pressure distributions along wall-normal direction re-
spectively. Edges in figure are the boundaries of sub-
domains. The 7 indices of the grid lines in the figures
are between 1 and 151, where ¢ = 1 1s located at the
stagnation line. The z; coordinates of the grid-line in-
tersecting points on the body surface are listed in Table
1. In this table, x; has been nondimensionalized by
reference length d*.

Table 1: Horizontal Coordinates of GGrid Points on Sur-
face.

Index 1 Ts
1 -1.000000
40 -0.97172
70 -0.90741
110 -0.74739
140 -0.55316
160 -0.37954

The figure shows that the steady flow over the
parabola for both cases develops a favorable pressure
gradient which is stable to T-S waves along the body
surface. The magnitudes of the negative pressure gra-
dients on the body surface decrease as the flow moves
downstream. Due to the effects of nose bluntness, the
pressure has a slight variation across the boundary layer
in the region near the leading edge. The pressure distri-
bution across the boundary layer approaches a constant
as the flow develops further downstream.

3.2 Receptivity to Fast Acoustic Waves

The generation of boundary-layer T-S and inviscid in-
stability waves by freestream fast acoustic disturbances
for hypersonic flow over 3-D parabolic leading edge has
been firstly simulated. A number of computational
cases are studied on the effects of frequency, and the ef-
fects of the freestream disturbance wave angle, 1, on the
hypersonic receptivity process. In this paper, results of
fixed wavenumber k of fast acoustic disturbances (Case
K,) are presented while the wave angle ¥ changes from
0° to 15°, 30°, 45°, 607, and 75°. Parameters of different
computational cases can be found in Table 2.

Figure 4 shows the instantaneous perturbation veloc-
ity, ', and Figure 5 shows the Fourier amplitude |u'|
contours for the single ¢ = 45° oblique wave case at
F = 1815.75 after the flow field has reached a periodic
state. The instantaneous contours and the Fourier am-
plitude contours show that the waves inside the bound-
ary layer near the surface are dominantly boundary
layer instability waves, while the waves immediately be-
hind the bow shock are mainly external forcing waves.

5

Table 2: Disturbance Parameters for Case K,

Case #  Wave Number & F
Kgl 141.4213 2503
Ky2 141.4213 2423.1
K3 141.4213 2188.67
Kg4 141.4213 1815.75
Kb 141.4213 1329.75
K,6 141.4213 763.791

There is an instability growth near the leading edge in-
side the boundary layer near the wall surface, followed
by a rapid decay. These instability waves generated
inside the boundary layer are actually the first mode
instability waves as discussed in Ref. [35]. However,
no second mode instability waves observed in Ref. [35]
which has smaller amplitude than the first mode in-
stability waves can be observed in this computational
domain. Figure 6 shows the distributions of and |u/|
along z axis at different wall-normal location and com-
parison of the receptivity parameter |’ |mas/€Coo of the
first mode for different wave angle ¢. Along with j in-
creasing, the values of |u/| at each wall-normal location
are firstly increased within the boundary layer near the
surface, then gradually decreased outside the boundary
layer. The maximum |u’| occurs in the first mode region
inside the boundary layer. So in this case, the receptiv-
ity parameter is defined as a ratio of maximum distur-
bance amplitudes |u’| in the first mode regions to the
amplitude of free-stream forcing wave, |t/|maz/(€Coo).
The largest receptivity parameter of the first mode hap-
pens around wave angle ¢ = 45°. However, the order of
magnitude of the maximum amplitude of the receptivity
parameter i1s around 1.0 for the receptivity to fast acous-
tic waves. It shows that the growth inside the boundary
layer of the receptivity to fast acoustic waves is compa-
rable to the amplitude of freestream disturbances.

3.3 Receptivity to Vorticity Waves

We then perform simulations of receptivities to
streamwise vorticity waves and traveling vorticity waves
in Mach 15 flow over a parabola blunt body respectively.
Spanwise wave number effects, y — z angle ¢ effects,
nonlinearity effects, wall temperature effects and sur-
face roughness effects are parametricly studied in the
following.

3.3.1 Receptivity to Streamwise Vorticity Waves

According to Ref. [28], a streamwise-oriented vortex
and zero frequency disturbances can generate stronger
growth of disturbances in the boundary layer than other
unsteady disturbances. In order to verify the conclu-
sions from transient growth theory and obtain stronger
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growth inside boundary layer near the leading edge, we
are studying the cases of receptivity to streamwise vor-
ticity waves in Mach 15 boundary layer over a blunt
leading edge firstly.

For streamwise vorticity waves, in the freestream,
nonzero disturbances are normal and spanwise veloc-
ity disturbances(v’ and w') as well as the wavenumbers
in wall-normal direction (k,) and in spanwise direction
(k2). Amplitudes of other disturbances are zero. Nondi-
mensional spanwise wavenumber [ is defined as follow-

ing.
T

B =k NI
where z; is reference length set to 0.685735m and Re;
is the Reynolds number base on z;, which is 48447.2643
in our flow conditions. We are performing paramet-
ric studies on the cases with different nondimensional
spanwise wavenumber 3.

(24)

Wayve Structures

Figure 7 shows the 3-D instantaneous streamwise ve-
locity contours at spanwise wavenumber # = 0.18 and
¢ = 1 x 10=*%. The figure shows that after freestream
streamwise vorticity waves entering the computational
domain, one kind of disturbance gradually grows to fur-
ther downstream inside the boundary layer near the
leading edge. The amplitude of the growing distur-
bances is much larger than the entering freestream dis-
turbances outside the boundary layer. Figure 8 shows
the two-dimensional instantaneous u’ and Fourier am-
plitude |u’| contours at one cross section in spanwise
direction of the flow field. From both figures, we can
clearly observe the strong growth of the disturbances
inside the boundary layer. It also shows that the waves
inside the boundary layer near the surface are domi-
nantly boundary layer instability waves, while the waves
immediately behind the bow shock are mainly external
forcing waves.

Figure 9 shows the streamwise vorticity, w;, contours
at different streamwise locations: ¢ = 70, ¢ = 110,
and ¢ = 140, where the corresponding coordinates in
streamwise direction can be found in Table 1. Here,
the streamwise vorticity is the gradients of normal and
spanwise velocity. Along with the changing of loca-
tions in downstreams, pairs of counter-rotating vortices
are observed in flow field. The pair of vortices after
the shock is the disturbances enforced into the flow
field. There are two more pairs of counter-rotating vor-
tices generated inside the boundary layer after the flow
field has reached a periodic state. This indicates that
the disturbances generated inside the boundary layer is
a Gortler-like disturbances '®). Fourier amplitude |u/|
distributions in wall normal direction across the bound-
ary layer are shown in Figure 10 at the different stream-
wise locations ¢ = 80, 120, and 150. There are two
parts of initial growth inside boundary layer for this
case. This can be clearly observed especially at lower

6

spanwise wavenumbers 3. For the cases with large span-
wise wavenumbers 3, the region of the first part of the
growth are very small. In Figure 10, the shape of |u/|
for # = 0.01 and the shapes of |u’| for § = 0.08 and
0.18 are quite different at location ¢ = 80, which is the
region of first part of the growth for f# = 0.01 and the
region of the second part of the growth for # = 0.08 and
0.18. And the amplitude of the growth for # = 0.01 is
larger than that for # = 0.08 and smaller than that
for § = 0.18. However, at the locations downstream,
the shape of |u’| for # = 0.01 gradually changes to the
similar structure as the shapes for § = 0.08 and 0.18.
Meanwhile, the amplitude of the growth for 8 = 0.01
becomes much smaller at location ¢ = 80 and the am-
plitude of the growth for 7 = 0.08 becomes about the
same as # = 0.18 case. At locations ¢ = 120, and 150,
the second growth is the dominant growth inside the
boundary layer.

Since the parallel assumption is not valid near the
leading-edge, we have to perform necessary linear sta-
bility (LST) analysis at the later zone to try to discover
what specific unstable mode or modes cause such large
amplifications and whether this growth is due to the
combination effect of all stable modes. In the normal
mode analysis for the linear disturbances, the fluctua-
tions of flow quantities are assumed to be represented
by harmonic waves of the following form:

a(y), 5(v). p(w), T(v), i(v)]

ei(oc:v+ﬁz—wt)

[u/’ v’,p', Tl, w/]T —
(25)

where a and @ are the wavenumbers in x and z direc-
tions respectively, and w is the frequency of the distur-
bance waves. In our studies of receptivity to streamwise
vorticity waves, w is zero. These parameters are in gen-
eral complex numbers. The complex amplitude (eigen)
function of a typical flow variable is 4(y). In order to
compare with the DNS results, spatially stability prob-
lem is solved. In a spatial stability problem, real-valued
(§ are assumed. While « is the complex eigenvalue to
be solved for. The real part of a, «,, represents the
spatial frequency of the disturbance modes, while the
imaginary part, a;, represents the spatial amplification
rate of the disturbances. When —a; is greater, equal
to, or smaller than zero, a disturbance mode is unsta-
ble with finite amplification, neutrally stable, or stable
with finite damping, respectively. Figure 11 shows the
eigen value trees from LST analysis for different 3 at lo-
cation ¢ = 50 in zone2 by using two sets of grids, 50 grid
points and 100 grid points. Since w is zero for stand-
ing waves, the eigen value trees are symmetric about
zero. If there is any specific mode causing the large
growth inside boundary layer, we should identify it for
LST analysis. And this mode if exists is expected to
be an unstable mode whose imaginary part, a; should
be negative. In this case, we can not find any unstable
mode. However, there are a lot of stable modes ex-
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ists. After taking closer views on the eigen value trees
in Figure 11, we also found several modes at a, = 0
location. Even they are all very stable modes, we want
to check the eigen functions of these modes and try to
compare them with DNS results. We picked up three of
these modes in Figure 11 and graphed the correspond-
ing eigen functions in Figure 12. Figure 12 shows the
normalized eigen functions of u,, v, and w; of these
picked three modes. They are normalized by eigen func-
tions of pressure p. From these plots, we can find these
modes are real modes and all of them are Gortler-like
modes. However, none of them has the similar struc-
ture as we observed in Figure 10. We can not identify
an specific mode causing the instability growth inside
boundary layer for the case of receptivity to streamwise
vorticity waves. We then try to explain this phenomena
by using the “transient growth” mechanism [24]. Be-
cause the linearized Navier-Stokes equations are not self
adjoint and therefore have nonorthogonal eigenmodes.
There exists a coupling of oblique T-S and Squire modes
in the flow field. Thus, even when all the eigenmodes
are damped, some transient period of algebraic growth
occurs prior to the eventual exponential decay of the
disturbances. From “transient growth” mechanism, it
consists of a decaying v’, w’ disturbance - a streamwise
vortex- that moves fluid from the high-velocity region
of a boundary layer to the low-velocity, near-wall region
and simultaneously moves the low-velocity fluid away
from the wall into the upper region. Even though the
streamwise vortices decay finally, their existence con-
tinues to redistribute fluid throughout the shear layer,
adding to the kinetic energy of the streamwise velocity
disturbance, u’. Because the u’ in the boundary layer
are so much larger than the original v/, w’ disturbance,
the kinetic energy loss associated with the decay of the
streamwise vortex is negligible with respect to the dis-
turbance kinetic energy gained by the redistribution of
u’. This process is what Landahl described as the “lift-
up” mechanism [22].

Streamwise Wavenumber g Effects

To study the effects of the spanwise wavenumber
on the receptivity and initial transient growth of cur-
rent case near the leading edge, we performed para-
metric studies on the receptivity of streamwise vortic-
ity waves at ¢ = 1 x 10™* by changing the values of
#. Figure 13 shows the comparison of the variation of
the |ul,,.| distributions along streamwise direction for
different spanwise wavenumbers 3. As [ decreases from
0.24 to 0.02, the |u'| amplitude approaches the largest
value at # = 0.18 and decreases thereafter , meanwhile,
their locations move downstream and the instability re-
gions are extended to much longer ranges. It also clearly
illustrates that before this large growth happens, there
is one more small growth occurring very close to the
stagnation line and then damping very quickly follow-
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ing a much larger growth occurs downstream.

Figure 14 shows the comparison of the receptivity pa-
rameters |u|mar/€Coo of various receptivity cases and
the locations of the maximum receptivity parameters to
the stagnation point for different spanwise wavenumbers
B. The largest receptivity parameter 1s at § = 0.18
and gradually decreases along with either increasing
# or decreasing 3. This agrees with the results from
Ref. [36] which studied the transient growth in com-
pressible flat plate boundary layer flow. Along with
spanwise wavenumbers [ increasing, the locations of
the the maximum amplitudes move closer to the stag-
nation point. To quantify the magnitudes of the insta-
bility growth inside the boundary layer, we also check
the ratio of the |u/|masz to the lowest amplitude before
the instability growth. The lowest amplitude occurs at
the switch points of those two parts of growth near the
leading edge which are discussed in previous part. The
ratios are listed in Table 3.

Table 3: Amplification Parameters for Different 3

p i p T
0.02 325.3 0.14 949.4
0.04 388.2 0.16 1158.37
0.06 437.7 0.18 1629.88
0.08 494.3 0.2 1352.21
0.1 524.65 0.22 1097.3
0.12 610.49 0.24 923.5

y — z Angle ¢ Effects

Since our enforcing disturbances are 3-D disturbances
in free-stream, we need consider the effects of angle ¢ on
the receptivity to streamwise vorticity wave. Here, the
angle ¢ 1s the angle of freestream wave with respect to
the z axis in the y-z plane for vorticity waves. When ¢ is
07, the streamwise vorticity waves are only in spanwise
direction. When ¢ is not zero, the disturbances has the
motion in wall-normal direction. It is necessary to study
the difference among the cases with different angle ¢,
and how the angle ¢ affects on the initial transient near
the leading edge. In this paper, three different angles
@ are chosen to make the comparisons. The spanwise
wavenumber f3 is fixed to € = 1 x 10~* for all the cases.
The disturbance parameters are listed in Table 4.

Figure 15 shows the comparisons of the maximum
|u’| distributions along z inside boundary layer for dis-
turbances with different y — z angles ¢. We can ob-
serve the intial instability growth inside the boundary
layers for all the cases. Among these cases, the case
with ¢ = 0° has the largest amplitudes. For non-zero
¢ cases, the |u/| distributions along z have slight os-
cillations due to the up and down of the disturbances
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Table 4: Disturbance Parameters for Different ¢
4 k ky p
0° 57.7764 0.0 0.18
30° 66.7145 33.3572 0.18
45° 81.7082 57.7764 0.18
60° 115.553 100.0717 0.18

in wall-normal direction. The amplitude of ¢ = 60° is
larger than that of ¢ = 30° and ¢ = 45° at the region
very close to the stagnation point. However, the case
with ¢ = 30° approaches larger amplitudes than other
two downstream. This is because that the ¢ = 60° case
has larger k, in wall-normal direction. This will cause
the freestream disturbances move back and forth much
faster than ¢ = 30° and ¢ = 45° cases. This kind of
back and forth of the disturbances will accumulate the
disturbances at the region near the stagnation point.
Since ¢ = 0° has the largest instability growth inside
the boundary layer near the surface, our next compu-
tations will focus on the cases with y — z angle ¢ = 0°.

Nonlinearity Effects

For weak monochromatic free stream forcing waves,
the generation of boundary-layer instability waves with
the same fundamental frequency are expected to be lin-
ear with respect to the forcing amplitudes. However,
nonlinearity phenomena will be observed if we keep in-
creasing the amplitudes of the freestream disturbances,
€. To study the nonlinearity effects on the receptiv-
ity to freestream streamwise vorticity waves, we com-
puted different cases by increasing the amplitudes of
the freestream disturbances ¢ from 1 x 10~* to 1 x 107",
Figure 16 shows the maximum |u’| amplitudes as func-
tions of disturbance amplitudes of the free stream forc-
ing waves § = 0.18. The dotted lines are the expected
linear response to the free stream forcing amplitudes.
The figure shows that when € is very small, the recep-
tivity of the wave mode of the fundamental frequency
is linear. As ¢ increases, the receptivity results deviate
from the linear curves due to the nonlinear interactions.

As the forcing amplitudes increase, the nonlinear ef-
fects become significant. The nonlinear effects are a
results of nonlinear interaction among the wave modes
and their superharmonics. Figure 16 also shows the
scaled Fourier amplitudes |T”|/¢ along a parallel grid
line near the body surface for two cases of different val-
ues of € at F' = 2655. The fundamental mode (n = 1),
second harmonic (n = 2), and mode 3 (n = 3) for both
cases are plotted in the figure. The scaled amplitudes of
the two cases should be the same for linear modes. The
figure shows that receptivity of the fundamental modes
are governed by a linear mechanism, while the second
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harmonic and mode 3 are nonlinear with respect to e.

Wall Temperature Effects

It has been shown using linear stability analysis that
wall cooling stabilizes the first mode but destabilizes
the second mode in a hypersonic boundary layer over a
flat plate. In this part, the wall-cooling effect as well as
adiabatic wall effect on the hypersonic leading-edge re-
ceptivity is studied by comparing the receptivity to the
streamwise vorticity waves at # = 0.18 and e = 1 x 10~*
for 1sothermal wall boundary conditions with different
wall temperatures and adiabatic wall boundary condi-
tions. For the cases of 1sothermal wall, all cases have
relatively cold walls with respect to the free-stream to-
tal temperature, T,, /Ty = 0.1126 (T,, = 1000K), 0.0901
(Tw = 800K), and 0.0563 (T, = 500K) respectively.
For the case of adiabatic wall, the wall temperature
varies in 8000-9000K, which has T, /Ty around 1. All
other non-dimensional parameters of these cases, M,
Rews, 7, and Pr are the same.

Figure 17 shows wall-normal temperature distribu-
tions at different streamwise locations for the case with
isothermal wall and the case with adiabatic wall. For
both cases, the temperature increases gradually from
shock to the region of boundary layer. Due to the effect
of viscous dissipation and heating conduction on the
temperature field in the boundary layer, the tempera-
ture approaches a peak value and then decreases due
to the wall-cooling effect for the case with isothermal
wall. However, for the adiabatic wall, on the contrary,
the amplitude of temperature keeps increasing and ap-
proaches the peaks value on the surface. So for the case
with isothermal wall, there is a large temperature gra-
dient on the body surface due to the fact that the wall
temperature is low compared to the free-stream total
temperature Ty. And for the case with adiabatic wall,
the temperature gradually increases from the location
right after the shock to wall surface and the temperature
on the surface has the largest value compared to that
in the flow field. Figure 18 shows |u/|mar and |s'|mas
distributions along z with different wall temperatures
conditions. It is shown that the growth for the cases
with isothermal walls is much larger than the case with
adiabatic wall. Among isothermal wall cases, the lower
the temperature on the surface, the larger the maximum
|u| and |s'| inside the boundary layer. This agrees with
the results from Ref. [24] which performed studies on
flat plate flow. Figure 18 implies that the higher wall
temperature will destabilize the first part of the growth
and stablize the second part of the growth.

3.3.2 Receptivity to Traveling Vorticity Waves

In this part, we introduce traveling vorticity waves
instead of standing vorticity waves (w = 0) in the
free stream and perform studies on hypersonic bound-
ary layer receptivities to traveling vorticity waves. We
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fix the spanwise wavenumber # to 0.18 which is the
wavenumber that the largest instability growth can be
observed inside boundary layer for standing vorticity
wave in the free stream at current flow conditions. The
streamwise frequency w 1s nondimensionalized by,

(26)

ok
w=uw 'rref/uref

where z,.; is the reference length set to 0.55m and ref-
erence velocity is set to the velocity right after the shock
at this location, which is 2913.033m/s. Three different
kinds of w are considered in this part. They are w = 10,
20, and 30.

Figure 19 shows the |u/| contours for the case with
w=30at 3=0.18 and ¢ = 1 x 10~*. Figure 20 shows
comparisons of the maximum |u’| distributions along
z axis for above three cases and w = 0 case and the
Fourier amplitude |u’| distributions in wall-normal di-
rection for all cases at location i = 110. The structure
of Fourier amplitude |u/| distributions in wall-normal
direction looks similar for all cases. The the case with
w = 0 has the largest initial growth near the leading
edge among all the cases. This agrees with the con-
clusions from “transient growth” theory [24]. But the
wave structures inside boundary layer for all non-zero w
cases are more complicated than that for the case with
w = 0. For instance, at w = 30, there are three parts of
growth can be observed and the largest one is the sec-
ond peak. It is also shown that larger instability growth
is generated along with w increasing.

3.3.3 Surface Roughness Effect

We then continue our studies on the effects from the
surface roughness on the instability growth inside the
boundary layer near the leading edge. Two types of sur-
face roughness modelings are introduced in our numer-
ical simulations. The first one is a parametric study of
inhomogeneous boundary condition on the surface. The
second one is derived from considerations of asymptotic
equations at high Reynolds numbers under assumption
of small height of the humps 371,

Inhomogeneous Velocities on the Surface

For the first type of surface roughness modelings, we
are using inhomogeneous wall-normal direction velocity
boundary condition on the surface. We also enforce the
mass conservation conditions on it. The inhomogeneous
small velocities are randomly distributed along the sur-
face and their amplitudes are governed by parameter
€n- On the wall, non-slip velocity conditions becomes
to:

u |wall: €nf(l‘, Z)Vn sin @

v |wall: Enf(l‘, Z)Vn cos @ (27)

where ¢, is the amplitude parameter for inhomoge-
neous velocities V,, on the surface, f(z,z) is the ran-
dom function between (-1,1), and # is the angle of the

9

normal direction of the surface with respect to the y
axis. »_ f(x,z) = 0 is also set to enforce mass con-
servation conditions. Different values of ¢, are used to
change the amplitudes of V,, in our simulations. Figure
21 shows the 3-D instantaneous u’ contours of the case
with €, = 0.01 inhomogeneous velocity on the surface
at spanwise wavenumber 7 = 0.18. Stronger instability
growth can be observed for this figure due to the effects
of inhomogeneous velocity on the surface. Figure 22
shows the Fourier amplitude of |u'| and |T’| contours
at €, = 0.01 and ¢, = 0.03 respectively. The insta-
bility growth is getting stronger due to the changing
of amplitudes of the inhomogeneous velocities on the
surface. Figure 23 shows the comparisons of |u/|mas
distributions along z for different ¢, of inhomogeneous
velocity strips at 7 = 0.18. Along with increasing of
€n, the maximum |u'| of the instability growth within
boundary layer becomes larger. Comparing to the case
without inhomogeneous velocities on surface, the maxi-
mum |u’| can be increased about 20 times at ¢, = 0.12.
Figure 23 also shows the difference between two kinds
of lengths of the inhomogeneous velocities strips on the
surface at €, = 0.09. It is shown that the longer the
the region of inhomogeneous velocities on surface, the
larger the growth it can approach.

Random Roughness Strips on the Surface

The second modeling of surface roughness is derived
by considering asymptotic equations on the wall bound-
ary conditions B7. Due to these surface roughnesses,
the "true” wall has the coordinates y = exg(z, z). Then
the boundary conditions on the wall are:

dp

o (28)

U=v=w= 0 at y = exg(z, 2)
with € the roughness amplitude and g(z, z) the rough-
ness distribution function. Temperature boundary con-
ditions at wall are different for isothermal wall and adi-
abatic wall. Here, we are focusing on the cases with
isothermal wall. The roughness Reynolds number Rey

can be defined as following.
(29)

where the variables with subscript e are the variables at
the edge of boundary layer.

For small roughness amplitude we can do Taylor ex-
pansion on Eq. (28).

exg(z, 2) + O(ex?)

(30)
and similarly for v, w and 7. The computational do-
main in the vertical direction extends from y = 0, where
the Robin-type boundary condition

u(z,ep,z) = u(z,0,2) + g—;
y=0

u(z,0,2) + By erg(z,2) =0 (31)

y=0
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is implicitly enforced. The boundary conditions are
accurate up to O(eg). Furthermore, the inequality
€ < AyYmin must be hold to maintain the stability
requirement. Here, the Aypmi, 1s the minimum grid
distance along the vertical direction.

There are mainly two types of walls considered in this

paper:

e Random roughness:

9(z,z) = folz,2) (32)
where fo(z,z) is the white noise function in the
interval [-1,1].

e Rough Gaussian strip along z

g(z,2) = fo(z, z)6—50(17—0.8)2 (33)
Since the rough Gaussian strip along z is more efficient
than the distributed roughness, the results presented in
this part are mainly computed by this modeling even we
have done all the computational cases. We perform sev-
eral computational cases by choosing different values of
roughness amplitude ¢, = 0.01pm, 1pm, 3um and Sum.
The corresponding roughness Reynolds numbers, Rey,
at 2 = 110 are 0.0761968, 0.761968, 2.28594, and 3.8099
respectively. According to Ref. [31], it is low-amplitude
roughness when Rey is less than 15. All of our compu-
tational cases are using low-amplitude roughness on the
surface.

Figure 24 shows the 3-D instantaneous u’ contours of
the case with surface roughness amplitude e, = 1um at
wavenumber # = 0.18. Due to the strong effects from
surface roughness, the wave structures outside bound-
ary layer are too small to be displayed in instantaneous
u’ contours. Figure 25 compares the Fourier ampli-
tude |u'| contours of the case with surface roughness
amplitude ¢ = 0.1pum and that of the case with sur-
face roughness amplitude ¢ = 1um. In both cases, the
roughness strips are placed very close to the stagna-
tion point and cover the whole computational domain
to the end of the zone. Because of the presence of the
surface roughness strips, strong disturbances generated
from surfaces interact with the instability growth inside
the boundary layer near the surface due to the recep-
tivity process to standing vorticity wave. This results
in a series of strong disturbances near the leading edge.
The amplitudes of these disturbances are varying with
changing of the amplitude of the surface roughness ¢g.
When ¢, = 0.1um, the amplitudes of the new generated
disturbances are comparable to the instability growth
inside boundary layer. However, when ¢; increases to
1pm, the amplitudes of the new generated disturbances
are much stronger than the instability growth inside
boundary layer.

Figure 26 shows the the streamwise vorticity con-
tours with the amplitude of surface roughness ¢ =
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lpum. New counter-rotating vortices are generated in-
side the boundary layers downstream. Despite that the
main structure of the instability inside boundary layer
maintains the original size, some structures are gener-
ated from surface and interact with the main instabil-
ity growth. Zoomed streamwise vorticity contours are
shown in Figure 27. For the case of ¢4 = 0.1um, the
structures of counter-rotating vortices are not impacted.
When the amplitude of surface roughness becomes to
3pum, from Figure 27, the structure of the main counter-
rotating vortices can not be maintained and was broken
to more small vortices which are also counter-rotating
vortices. Larger instability growth occurs in these case
due to the strong effect from the surface roughness.
Much strong “lift-up” phenomena occurs in these cases
due to those counter-rotating vortices inside boundary
layer. This agrees with the results from previous theo-
retical and experimental. Figure 28 shows the compar-
ison of maximum |u’| distributions and comparison of
the maximum receptivity parameters |u/|mqz/(€Coo) for
different roughness amplitude ¢; at § = 0.18. The am-
plitudes of instability growth inside boundary layer are
dramatically increased by the surface roughness. When
€x = bum, the receptivity parameter is about 20 times
larger than that of the case without surface roughness.

We then introduce traveling vorticity waves into the
flow field to study the effects from the traveling waves
and how surface roughness affects the instability growth
inside the boundary. Same definition of the frequency
w of the traveling waves in Eq. 26 is used. We fix
the value of w to 20 and change the amplitudes of sur-
face roughness €;. Three different cases, ¢, = 0.1um,
€ = lum, and ¢, = 3um are studied at ¢ = 1 x 107*
and # = 0.18. Figure 29 shows the Fourier ampli-
tude |u’| and |T”|contours for the receptivity to vorticity
waves with random roughness ¢; = 1pym at w = 20 and
G = 0.18. Because the existences of traveling waves,
the wave structures of the instabilities inside bound-
ary layer are changed a lot compared to the case with
standing vorticity waves (w = 0). From both |u’| and
|T"| contours, we can not observe the small disturbances
generated from surface roughness. Instead, a dominant
growth exists because of the traveling wave. Figure 30
shows the comparisons of |u/| 4z distributions along z
for different amplitudes of surface roughness with or
without traveling waves with w = 20 in spanwise di-
rection. By comparing the maximum |u’| distributions
along z for no surface roughness cases at w = 0 and
20, we can observe that the case using standing vor-
ticity waves always has the largest instability growth.
And small surface roughness, for instance, e = 0.1um
and lpm, won’t increase the growth inside the bound-
ary layer. At larger amplitude of surface roughness, for
example, e = 3pum, the instability growth inside the
boundary layer becomes much larger than that without
surface roughness. And the waves structures becomes
much more complicated. This is because of the interac-
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tion of these small disturbances generated from surface
roughness and the traveling vorticity waves. The gener-
ated instability waves inside boundary layer have much
more amplifying and damping processes.

3.4 Receptivity to Entropy Waves

From previous part and conclusions from “tran-
sient growth” theory, standing waves can produce the
strongest initial growth inside boundary layer. In this
part, we are paying attentions on the the cases of recep-
tivity to streamwise entropy waves in Mach 15 boundary
layer over a 3-D blunt leading edge only. For standing
entropy waves in the freestream, nonzero disturbances
are density disturbance(p’) and wavenumber (k, and
k;). Amplitudes of other disturbances are zero. We
use the same nondimensional spanwise wave number [
defined in previous part. Parametric studies are per-
formed by changing the spanwise wavenumber g from
0.04 to 0.26 at e = 1 x 107*.

Figure 31 shows the 3-D streamwise velocity pertur-
bation contours at spanwise wavenumber 8 = 0.18. The
figure shows that after freestream entropy waves enter
the computational computational domain, one kind of
disturbance grows inside the boundary layer near the
leading edge and obtains larger amplitude in the down-
stream. This result is exactly the same as what we ob-
served 1n the cases of receptivity to freestream stream-
wise vorticity waves. Figure 32 shows the Fourier am-
plitude | v’ | and | T" | contours for the case of re-
ceptivity to standing entropy waves at § = 0.22. By
comparing these contours with that of receptivity to
streamwise vorticity waves in Figure 8, the region of
the initial growth is much closer to the stagnation point.
And the wave structure outside the boundary layer 1s
different from that in the cases of receptivity to stream-
wise vorticity waves. Figure 33 shows the comparison
of maximum |u’| distributions along z for different val-
ues of spanwise wavenumber . The larger the 3, the
larger the growth and the narrower the region of the
growth. Among all cases, § = 0.26 has the largest
amplitude of |u’| inside the boundary layer. Figure
34 shows the comparisons of the receptivity parameters
|t/ |mas/(€Cs) and the distances between the peaks of
|| mar to the stagnation point for different spanwise
wavenumber 8. From the plot, |t/|maes/(€Coo) increases
along with # increases while the distances between the
peaks of |u'|mas receptivity parameters and the stag-
nation points decreases. Along with f increasing, the
value of |t/|maz/(€Cs) may reach to the maximum.
Moreover, it is also shown that the receptivity parame-
ters are in the same order of magnitude as that of the
cases of receptivity to streamwise vorticity waves.

4 Summary and Future work

Parametric simulations of the receptivity process to
freestream fast acoustic waves, vorticity waves, and
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streamwise entropy waves of Mach 15 flows over 3-D
blunt leading edges has been carried out in this paper.
The unsteady results show that the free stream acoustic
disturbances generated first mode waves in current com-
putational domain. The first mode waves are always
generated near the leading edge and are amplified be-
fore decaying rapidly. By fixing the wavenumber of the
freestream disturbances, the maximum amplitude of the
first mode waves occurs around wave angle ¢ = 45°. In
simulations of the receptivity to freestream streamwise
vorticity waves and entropy waves, large initial growth
can be observed at the region where no unstable mode
could be found by using linear stability analysis. The
streamwise vorticity contours show that Gortler-like dis-
turbances are generated inside the boundary layer near
the leading edge. It has been shown that this initial
growth near the leading edge can be possibly explained
by the “transient growth” theory. Cooling the surface
wall will strengthen the initial growth near the leading
edge. By adding inhomogeneous boundary conditions
or random roughness strips on the wall can strongly in-
crease the magnitude of initial growth inside the bound-
ary layer. Large transient growth can not be observed
in the receptivity to traveling vorticity waves even with
surface roughness on the surface. So far in our work,
surface roughness effects are limited to low amplitude
roughness strips on the wall. We will continue our work
in developing good numerical modelings of larger sur-
face roughness and study how it affects the hypersonic
boundary layer stability and transition.

Acknowledgments

This work was sponsored by the Air Force Office
of Scientific Research, USAF, under AFOSR Grant #
F49620-00-1-0101 monitored by Dr. John Schmisseur.
The views and conclusions contained herein are those
of the author and should not be interpreted as neces-
sarily representing the official policies or endorsements
either expressed or implied, of the Air Force Office of
Scientific Research or the U.S. Government. We also
thank Dr. A. Tumin for the valuable suggestions on the
modelings of surface roughness.

References

[1] Morkovin, M. V. and Reshotko, E., “Dialogue on
Progress and Issues in Stability and Transition Re-
search,” In Laminar- Turbulent Transition, IUTAM
Symposium, Toulouse, France, 1989, D. Arnal, R.
Muchel, Editors, Vol. Springer-Verlag Berlin, 1990.

Bushnell, D., “Notes on Initial Disturbance Field
for the Transition Problem,” Instability and Tran-
sition, Vol. I, Vol. M. Y. Hussaini and R. G. Viogt,
editors, pp. 217-232, Springer-Verlag, 1990.

Morkovin, M., “On the Many Faces of Transi-
tion,” Viscous Drag Reduction, C.S. Wells, editor,

American Institute of Aeronautics and Astronautics



Plenum 1969.

[4] Goldstein, M. E., “The evolution of Tollmien-
Schlichting Waves near a Leading Edge,” Journal
of Fluid Mechanics, Vol. 127, pp. 59-81 1983.

[5] Kerschen, E. J., “Boundary-Layer Receptivity,”
ATAA paper §9-1109, 1989.

[6] Murdock, J. W., “Tollmien-Schlichting Waves Gen-
erated by Unsteady Flow over Parabolic Cylin-
ders,” ATAA paper 81-0199, 1981.

[7] Lin, N., Reed, H. L., and Saric, W. S., “Effect
of Leading-Edge Geometry on Boundary-Layer Re-
ceptivity to Freestream Sound,” Instability, Tran-
sitton, and Turbulence, M. Y. Hussaini et al., edi-

tors, pp. 421-440, Springer-Verlag 1992.

Buter, T. A. and Reed, H. L., “Boundary layer re-
ceptivity to free-stream vorticity,” Physics of Flu-
uds, Vol. 6, No. 10, 1994, pp. 3368-3379.

[9] Collis, S. S. and Lele, S. K., “A Computational Ap-
proach to Swept Leading-Edge Receptivity,” ATAA

paper 96-0180, 1996.

[10] Mack, L. M., “Boundary Layer Linear Stability
Theory,” AGARD report, No. 709, 1984.

[11] Morkovin, M. V., “Transition at Hypersonic
Speeds,” ICASE Interim Report 1, NASA CR
178315, May 1987.

[12] Arnal, D., “Laminar-Turbulent Transition Prob-
lems In Supersonic and Hypersonic Flows,” Spe-
ctal Course on Aerothermodynamics of Hypersonic

Vehicles, AGARD Report No. 761 1988.
Reed, H. L. and Saric, W. S., “Stability of Three-

Dimensional Boundary Layers,” Annual Review of

Fluid Mechanics, Vol. 21, pp. 235-284, 1989.

Reshotko, E., “Hypersonic Stability and Transi-
tion,” in Hypersonic Flows for Reentry Problems,
Eds. J.-A. Desider:, R. Glowinski, and J. Periauz,
Springer-Verlag, Vol. 1, 1991, pp. 18-34.

[15] Kovasznay, L. S. G., “Turbulence in Super-
sonic Flow,” Journal of the Aeronautical Sciences,

Vol. 20, No. 10, October 1953, pp. 657-682.

[16] Saric, W. S., “Gotler Vortices,” Annual Review of
Fluid Mechanics, Vol. 26, pp. 379-409, 1994.

[17] Reed, H. L., Saric, W. S., and Arnal, D., “Lin-
ear Stability Theory Applied to Boundary Layers,”
Annual Review of Fluid Mechanics, Vol. 28, pp.
389-428 1996.

[18] Malik, M. R., “Prediction and Control of Transi-
tion in Hypersonic Boundary Layers,” AIAA Paper
87-1414, June 1987.

12

[19] Lees, L. and Lin, C. C., “Investigation of the Sta-
bility of the Laminar Boundary Layer in Compress-
ible Fluid,” NACA TN No. 1115, 1946.

[20] Stetson, K. F. and Kimmel, R. L., “On Hypersonic

Boundary Layer Stability,” AIAA paper 92-0737,

1992.

Ellingsen, T. and Palm, E., “Stability of Linear
Flow,” Physics of Fluids, Vol. 18, No. 487, March
1975.

Landahl, M. T., “A note on an Algebraic Insta-
bility of Inviscid Parallel Shear Flows,” Journal of
Fluid Mechanics, Vol. 98, part 2, pp. 243-251, 1980.

L. Trefethen, A. Trefethen, S. R. and Driscoll,
T., “Hydrodynamic Stability without Eigenval-
ues,” Science, Vol. 261, 1993.

Reshotko, E., “Transient Growth: A Factor in By-
pass Transition,” Physics of Fluids, Vol 13, No. 5,
pp. 1067-1075 May 2001.

P. Andersson, M. B. and Henningson, D. S., “Opti-
mal Disturbances and Bypass Transition in Bound-
ary Layers,” Physics of Fluids, Vol. 11, No. 1, 1999.

Luchini, P.; “Reynolds-Number-Independent In-
stability of the Boundary Layer over a Flat Surface:
Optimal Perturbations,” Journal of Fluid Mechan-
1cs, Vol. 404, 2000, pp. 289-309.

Butler, K. M. and Farrell, B. F., “Three-
Dimensional Optimal Perturbations in Viscous
Shear Flow,” Physics of Fluid, Vol. 4, No. 8, pp.
1637-1650, 1992.

[28] Tumin, A. and Reshotko, E., “Spatial Theory
of Optimal Disturbances in Boundary Layers,”
Physics of Fluids, Vol. 13, No. 7, July 2001.

[29] M. V. Morkovin, E. R. and Herbert, T., “Tran-
sition in Open Flow Systems - A Reassessment,”

Bull. Am. Phys. Soc., 39, 1882, 1994.

S. A. Berry, S. A. Bouslog, G. J. B. and Caram,
J. M., “Shuttle Orbiter Experimental Boundary-
Layer Transition Results with Isolated Rough-
ness,” Journal of Spacecraft and Rockets, Vol. 35,
No. 3, 1998, pp. 241-248.

White, E. B. and Reshotko, E., “Roughness-
Induced Transient Growth in a Flat-Plate Bound-
ary Layer,” AIAA paper 2002-0138, January 2002.

Zhong, X., “Direct Numerical Simulation of Hyper-
sonic Boundary-Layer Transition Over Blunt Lead-
ing Edges, Part I. New Numerical Methods and
Validation ,” ATAA paper 97-0755, Jan. 1997.

American Institute of Aeronautics and Astronautics



[33] Dong, H. and Zhong, X., “High-Order Semi-
Implicit Schemes for Unsteady Compressible Flow
Simulations,” ATAA Journal, Vol. 40, No. 5, 2002.

[34] Zhong, X., “High-Order Finite-Difference Schemes
for Numerical Simulation of Hypersonic Bound-
ary Layer Transiton,” Journal of Computational

Physics, Vol. 144, August 1998, pp. 662-709.

[35] Zhong, X., “Leading-edge Receptivity to Free-
stream Disturbance Waves for Hypersonic Flow
over a Parabola,” Journal of Fluid Mechanics,

Vol. Vol. 441, pp. 315-367, 2001.

[36] A. Hanifi, P. J. S. and Henningson, D. S., “Tran-
sient Growth in Compressible Boundary Layer
Flow,” Physics of Fluids, Vol. 8, No. 3, March
1996.

[37] Bottaro, A. and Zebib, A., “Gértler Vortices Pro-
moted by Wall Roughness,” Fluid Dynamics Re-
search, Vol. 19, 1997, pp. 343-362.

13

American Institute of Aeronautics and Astronautics



/E
¢
Freestream Waves
, S
J ’<\\ %
. \ H
\\\ )
M>1 7 \
’ N

<

///////////////7/ 1

[

bow shock

Figure 1: A schematic of 3-D shock fitted grids for
the direct numerical simulation of hypersonic boundary-
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leading edge.
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Figure 3: Streamwise velocity contours and pressure
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Figure 8: Instantaneous u’ (upper figure) and Fourier
amplitude |u'| contours (lower figure) at 8 = 0.18.
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ent locations in streamwise. (upper figure: i = 70, mid

figure: ¢ = 110, lower figure: 7 = 140.)
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Figure 15: The variation of the |u'|4, distributions
along z near the surface for different disturbances with

y — z angle ¢.
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Figure 24: 3-D instantaneous u’ contours of the
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wavenumber # = 0.18.
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Figure 26: Streamwise vorticity, w,, countours at dif-
ferent streamwise locations for the case with random
surface roughness ¢, = lum. (upper figure: 7 = 70,
mid figure: i = 110, lower figure: ¢ = 140.)

Figure 27: Zoomed w, contours of the cases with surface
random roughness € = 1pum and € = 3um respectively at
streamwise location ¢ = 140. (upper figure: € = 0.1um,
mid figure: € = lum, lower figure: € = 3um.)
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Figure 29: Fourier amplitude |u'| and |T'| contours for
the receptivity to vorticity waves with random rough-
ness € = 3um at w = 20 and g = 0.18.
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Figure 32: Fourier amplitude |u'| and |T”| contours for bers, 3, (upper figure) and the locations of the peaks
the receptivity to standing entropy waves at 7 = 0.22. vs. B (lower figure).
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