Magnetic-field effects on second-mode instability of a weakly ionized Mach 4.5 boundary layer

Felix Cheng and Xiaolin Zhong
Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California 90095
Sivaram Gogineni
Innovative Scientific Solutions, Inc., Dayton, Ohio 45440
Roger L. Kimmel
Air Vehicles Directorate, Air Force Research Laboratory, Dayton, Ohio 45433

(Received 22 October 2002; accepted 25 March 2003; published 6 June 2003)

This paper investigates, by numerical simulation, the effects of an imposed magnetic field on a weakly ionized Mach 4.5 boundary layer. The main emphasis of the study is on magnetohydrodynamic (MHD) effects on the second mode instability in supersonic boundary layer. The imposed magnetic fields are generated by placing two-dimensional magnetic dipoles below the flat plate surface. The gas is assumed to have a constant electrical conductivity of 100 mho/m. The magnetic Reynolds number of the flow is small so that the induced magnetic field in the flow is neglected. The governing equations of the MHD flow, which are the Navier–Stokes equations with the applied magnetic force terms, are computed by a fifth-order shock-fitting numerical scheme. A series of cases with different imposed magnetic fields have been investigated on the influences of imposed magnetic field on both the mean flow and on the second mode stability. It is found that the imposed magnetic fields significantly retard the streamwise velocity and reduce the local skin friction in the mean flow. For the case of a strong imposed magnetic field, a local separation region is generated in the mean flow with a strong adverse pressure gradient. Meanwhile, the second mode wave disturbances are found to be stabilized by the imposed magnetic fields, even for the case with strong adverse pressure gradient and a local separated flow region. This strong overall stabilization of the second mode wave is believed to be caused by the alteration of the steady base flow by the magnetic field. The results presented in this paper are the first concrete results on the interaction of second instability mode with magnetic field in a supersonic boundary layer. © 2003 American Institute of Physics. [DOI: 10.1063/1.1577565]

I. INTRODUCTION

Sustained hypersonic flights offer potentially revolutionary improvements in space access. Limiting factors in hypersonic vehicle performance include aerodynamic drag and heating rates exerted on the vehicles by surrounding flow fields. Recent research has indicated that hypersonic flow fields may be modified significantly by magnetic Lorentz forces through the creation and manipulation of plasma near the vehicles. Such concepts can be used to control hypersonic flows by suppressing or enhancing hypersonic boundary-layer instability and transition. The suppression of the onset of hypersonic boundary layer transition can lead to significant drag and heating reduction. Magnetohydrodynamic (MHD) control of hypersonic boundary layer transition presents a challenge which requires both an understanding of the complex hypersonic MHD flow physics involving the stability and transition of boundary layer. Currently, there have not been many studies on MHD effects on supersonic and hypersonic boundary layer stability and transition. Such MHD effects cannot not be analyzed by the popular linear stability analysis (LST) for supersonic boundary layers because the MHD effects can alter the mean flow profiles substantially so that the parallel flow assumption used in LST is no longer valid.

A. MHD effects on weakly ionized supersonic and hypersonic flows

In supersonic and hypersonic flow, the gas can become weakly ionized either by viscous heating at high temperatures or by artificially generated plasma for flow at low temperatures. If there is an imposed electromagnetic field in the flow, the flow properties can be changed substantially by the interaction of the electrically conducting gas and the electromagnetic field. Such interaction forms the basis of the electromagnetic control of hypersonic flow. Many researchers have shown that hypersonic flow can be altered significantly by Lorentz forces. It was found that MHD effects weaken the bow shock structure and significantly reduce shock standoff distance for hypersonic flow over a blunt body with the presence of an imposed magnetic field. Rossow first studied the incompressible boundary layer flow over a flat plate in the presence of a uniform magnetic field applied normal to the plate. The electrical conductivity

^aAuthor to whom all correspondence should be addressed. Electronic mail: xiaolin@ucla.edu
was assumed to be constant. The MHD boundary-layer equations were solved by numerical integration. He found that the skin friction and heat transfer rates were reduced when the transverse magnetic field was fixed to the plate, but increased when the magnetic field was fixed to the moving fluid. In both cases, the total drag was found to be increased. Bleviss10 investigated MHD effects on hypersonic Couette flow in which a uniform magnetic field normal to the wall was externally imposed. Assuming variations of electrical conductivity, viscosity, and Prandtl number with temperature, the flow was solved exactly with minimum assumptions about the gas. The results for the case of thermally insulated wall showed a tremendous decrease in skin friction and significant increase in total drag with reasonable magnetic-field strength. It was also found that the temperature increased across the flow field and heat transfer increased at the moving wall. For the heat transfer case, a significant increase in total drag was accompanied by a moderate increase in the heat transfer. The interesting result, however, was the hysteresis character of the skin friction which was absent in the case of the thermally insulated wall. Bleviss attributed the hysteresis behavior to the dramatic variation of the electrical conductivity with enthalpy that was present in the heat transfer case. Due to the fact that pure shear flow contained many important features of boundary layer flow, Bleviss expected that the magnetic field would decrease the heat transfer and the skin friction but increase the total drag, due to drag on the magnet in the body. Furthermore, the hysteresis effect was expected to be present in boundary layer flow. In 1960, Bush11 studied a high-speed compressible air flow over a flat plate under an applied magnetic field having its component normal to the plate proportional to $1/\sqrt{x}$. Variation of electrical conductivity was also considered. In an attempt to verify Bleviss’ predictions on boundary layer flow, Bush found that the skin friction and heat transfer decreased with increasing magnetic-field strength. Moreover, the boundary layer flow also exhibited the hysteresis behavior as found in the case of MHD Couette flow, but disappeared at much higher Mach number.

Since the magnetic field applied to hypersonic flow can modify the flow field significantly, it is expected that there are strong effects of magnetic field on the stability and transition of supersonic boundary layers. Effects of MHD on boundary-layer stability were investigated by Rossow12 using a linear stability analysis. The effectiveness of a magnetic field in stabilizing the laminar flow of an incompressible, electrically conducting fluid was studied. A two-dimensional infinitesimal sinusoidal disturbance of a given wave number was impressed on the fluid to test for the stability of the flow in the presence of either a coplanar or transverse magnetic field. Rossow obtained the neutral stability curve and found that the flow over a flat plate was stabilized by either a coplanar or transverse magnetic field fixed relative to the plate, but destabilized when the transverse magnetic field was fixed relative to the fluid. He attributed the destabilizing effect to the inherently unstable velocity profile induced by the magnetic field.

B. Supersonic boundary layer instability

The transition process in boundary layers is the result of the nonlinear response of the laminar boundary layers to forcing disturbances.13 In an environment with small initial disturbances corresponding to those encountered in hypersonic flights, the paths to transition consist of three stages: (1) Receptivity, (2) linear eigenmode growth or transient growth, and (3) nonlinear breakdown to turbulence. The process of instability and transition is much more complex and much less understood for hypersonic boundary layers than for low-speed incompressible boundary layers. Most of our knowledge on the stability properties of hypersonic boundary layers is obtained by the analyses of local parallel linear stability theory (LST).14,15 Lees and Lin16 showed that the existence of a generalized inflection point is a necessary condition for inviscid instability of a compressible boundary layer. Mack14 found that there are higher acoustic instability modes in addition to the first-mode instability waves in supersonic and hypersonic boundary layers. Among them, the second mode becomes the dominant instability for hypersonic boundary layers at Mach numbers larger than about 4. The existence and dominance of the second mode have been validated by experimental stability studies.17 The second mode has been found to be most unstable when two-dimensional. Currently, it is not known how an imposed magnetic field will affect the stability characteristics of the second mode. This is the focus of the study presented in this paper.

C. Numerical simulation of supersonic boundary layer instability

Due to the difficulty in conducting ground-based hypervelocity experiments and the complexity of hypersonic flows, the approach of direct numerical simulation (DNS) without empirical turbulence models is a potentially powerful tool in studying and understanding supersonic and hypersonic flow physics for the development of future hypersonic space vehicles. In DNS studies, the full unsteady Navier–Stokes equations are numerically simulated without using any empirical turbulence models. The development of instability waves and nonlinear breakdown are numerically captured by the simulation. Though such a simulation is computationally intensive, it has the ability to simulate many of the effects that are neglected by parallel linear stability theory (LST) and parabolic stability equations (PSE).18

Erlebacher \textit{et al.}19,20 studied the secondary instability mechanism of compressible boundary layers over a flat plate by temporal and spatial direct numerical simulation. Thumm \textit{et al.},21 Fasel \textit{et al.},22 and Eibler \textit{et al.}23,24 performed spatial DNS of the oblique breakdown of transition in a supersonic boundary layer over a flat plate based on compressible three-dimensional (3D) Navier–Stokes equations. Adams and Kleiser25,26 studied the subharmonic transition process of a flat-plate at a freestream Mach number of 4.5 by temporal direct numerical simulation. Pruet \textit{et al.}27,28 performed spatial simulations for supersonic boundary layers over flat plates and sharp cones. The results are compared with parabolic stability equations (PSE). All these DNS studies on
compressible boundary layers show that the DNS of high-speed boundary layer transition is feasible on existing computers using efficient and accurate numerical methods. They can provide detailed information which cannot be obtained by other means for the study of transition of hypersonic boundary layers.

In the past several years, Zhong and his colleagues at UCLA have been developing new fifth and higher order numerical simulation methods and computer codes for the simulation studies of supersonic and hypersonic boundary layer stability and transition in nontrivial geometries with bow shock effects. We have also conducted numerical studies of the receptivity and stability of a number of 2D and 3D hypersonic flows over blunt bodies. The numerical simulation as well as other supporting theoretical approaches are used to gain a fundamental understanding of the physical mechanism of laminar–turbulent transition of hypersonic boundary layers over complex 3D maneuvering vehicles affected by shock waves and real-gas effects. The numerical tools developed in these studies are extended to the current study of MHD effects of the second mode instability.

D. Scope of current study

The study by Rossow was done before the discovery of the second instability mode in supersonic boundary layers by Mack. It has been generally recognized that the second mode is the most dangerous mode in high Mach number boundary layers. So far, the MHD effects on the second mode instability have not been studied. Therefore, the objective of this paper is to investigate MHD effects on the stability of a Mach 4.5 boundary layer by using the approach of numerical simulation. This paper presents the results of a numerical simulation on the effects of imposed magnetic field on the propagation of second mode instability in a Mach 4.5 boundary layer. The two-dimensional steady base flow and unsteady flow are solved by nonlinear Navier–Stokes equations with an imposed magnetic field. The effects of the imposed magnetic field on the second mode instability in the supersonic boundary layer are investigated by the numerical simulations. These results represent the first of this kind in demonstrating the properties of the second mode under various imposed magnetic fields.

The numerical simulation approach is chosen because LST may not apply on the highly nonparallel mean flow distorted by the applied magnetic field. The geometry of this study is rather simple. A Mach 4.5 flow over a two-dimensional flat plate in the presence of an imposed magnetic field is simulated. All vector components and variations of flow properties in the spanwise direction are neglected. The gas is assumed to have constant electrical conductivity of 100 mho/m. The imposed magnetic field is generated by placing two-dimensional magnetic dipoles below the flat plate. The resultant magnetic field is similar to that produced by an array of permanent magnets placed beneath the plate. The governing equations of the MHD flow are formulated from the Navier–Stokes and the Maxwell equations, and are spatially discretized by our fifth-order numerical scheme. In an attempt to solve the coupled MHD equations, difficulties were encountered due to the constraint of the size of time step posed by the magnetic diffusivity of the magnetic induction equation. To resolve the “stiffness” problem, we solve the approximate MHD equations without the induction equation by neglecting the induced magnetic field and assuming that the imposed magnetic field is constant. This is actually a fair assumption considering that the magnetic Reynolds number is in the order of 10^{-3}. The mean flow and stability analysis of this flow without MHD effects have been studied by Ma and Zhong. The physical domain of the flat plate in this paper corresponds to the region in which the second mode disturbance is the dominant unstable mode. By introducing the second mode disturbance at the entrance on the converged steady flow, we have conducted a series of cases with different configurations of the imposed magnetic fields and investigated the influences of MHD on the second mode instability.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD

The governing equations of MHD of compressible flow are the Maxwell equations coupled with the Navier–Stokes equations through the momentum and energy equations. The current density \mathbf{J} in MHD is given by the generalized Ohm’s law as follows:

$$\mathbf{J} = \sigma (\mathbf{E} + \mathbf{u} \times \mathbf{B}),$$

where \mathbf{E} is the electric field vector, and σ is the electrical conductivity. This equation relates the current density with the electric field and the induced electric field generated by crossing the magnetic-field lines with the velocity vector. This form of the electric current equation neglects the Hall current for simplicity. In this paper, in order to solve the MHD equations more efficiently, we only consider the cases where the small magnetic Reynolds number assumption applies. The magnetic Reynolds number defined as $U L \sigma \mu_e$ is on the order of 10^{-3} for all cases presented in this paper, where σ is the electrical conductivity of fluid and μ_e is the magnetic permeability in free space. Since it is much less than unity, we assume that the induced magnetic field is negligible and the imposed magnetic field is constant throughout the computations.

There have been several recent works on developing upwind schemes for MHD equations with shock capturing capability. Most of these methods are second-order accurate total variation diminishing (TVD) schemes, which may not be accurate enough for the numerical simulation of instability waves in hypersonic boundary layer. Such simulation requires high-order numerical accuracy in order to capture a wide range of time and length scales in the wave fields. Since our goal is to analyze the stability of supersonic boundary layers with MHD effects, it is necessary to use a high-order and robust numerical scheme for the numerical simulation. Therefore, we use a fifth-order finite difference scheme that we have developed and validated for solving the full Navier–Stokes equation for spatial discretization of the MHD equations. The numerical method used in the current
study is briefly summarized in this section. More details on the method and its validations can be found in Ref. 30.

In the numerical simulation, the two-dimensional MHD equations are written in the following conservative form

$$\frac{\partial U}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial E_v}{\partial x} + \frac{\partial F_v}{\partial y} = M,$$

where U is the solution vector given by

$$U = \{p, p\rho u, p\rho v, e\},$$

E and F are the inviscid flux terms, p is density of fluid, u and v are velocity components, e is total energy of fluid, and E_v and F_v are the viscous terms. M is the MHD source term. They are written as follows:

$$E = \begin{cases} \rho u \\ \rho u^2 + p \\ \rho uv \\ (e + p)u \end{cases},$$

$$F = \begin{cases} \rho v \\ \rho uv \\ \rho v^2 + p \\ (e + p)v \end{cases},$$

$$E_v = -\begin{cases} 0 \\ \tau_{xx} \\ \tau_{yx} \\ u\tau_{xx} + v\tau_{yx} - q_x \end{cases},$$

$$F_v = -\begin{cases} 0 \\ \tau_{xy} \\ \tau_{yy} \\ u\tau_{xy} + v\tau_{yy} - q_y \end{cases},$$

$$M = \sigma' \begin{cases} 0 \\ -uB_y' + vB_xB_y' \\ uB_y' - vB_xB_y' \end{cases},$$

where $e = p/(\gamma - 1) + \frac{1}{2}pU^2$, is the internal energy plus the kinetic energy of the fluid, p is pressure, and B_x, B_y, B_z are Cartesian magnetic field components. The viscous stress and the heat flux are given by the usual constitutive equations in Newtonian fluid as follows:

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \frac{\partial u_i}{\partial x_k} \delta_{ij},$$

$$q_i = -k \frac{\partial T}{\partial x_i},$$

where μ is the viscosity coefficient determined by the Sutherland law

$$\mu = \mu_r \left(\frac{T}{T_r} \right)^{3/2} \frac{T_r + T_s}{T + T_s},$$

where T is temperature, $T_r = 288$ K, $T_s = 110$ K, and $\mu_r = 0.17894 \times 10^{-5}$ kg/(ms) for air. The thermal conductivity k is computed from the Prandtl number, which is assumed constant and it takes the value of 0.72 in this paper.

The imposed magnetic field in this paper is generated by placing two-dimensional magnetic dipoles below the flat plate. The resultant magnetic field at each point in the flow field is computed by superimposing the magnetic-field components induced by each 2D magnetic dipole. The formula of a 2D magnetic dipole located at the origin of the coordinate system and pointing up vertically is written as follows:

$$\mathbf{B} = \frac{B_0}{r^3} \left[\sin 2\theta \hat{\mathbf{r}} - (\cos^2 \theta - \sin^2 \theta) \hat{\mathbf{z}} \right],$$

where \mathbf{B} is the magnetic-field vector, and it is assumed that x and y form an orthogonal coordinate system. The magnetic dipole is located at the origin and is pointing in the positive y-direction. θ is the angle measured from the dipole moment (y-axis in this case) to the position vector \mathbf{r}, r is the magnitude of the position vector, and B_0 represents the strength of the magnetic dipole. The formulas for other dipoles pointing to other directions can also be derived similarly.

In the conservation equation (2), the inviscid fluxes and the viscous fluxes have the same forms as those of the Navier–Stokes equations. The new term, M, represents the contribution of the Lorentz force $\mathbf{J} \times \mathbf{B}$. In many actual applications, the imposed electric fields can be an important controlling force for high-speed flows in finite channels.35,36 In this paper, the imposed electric field and the Hall effects in the unbounded two-dimensional flow over a flat plate is assumed to be zero as a first step in such studies. These effects can be subjects of future investigations. On the other hand, only two-dimensional second-mode instability is considered here because the second-mode waves have been shown to be most unstable when they are two-dimensional.14

Before discretizing the governing equation by a finite difference method, Eq. (2) in the physical domain is transformed to the body-fitted computational domain by the following transformation relations:

$$\begin{align*}
\xi &= \xi(x,y) \\
\eta &= \eta(x,y,t) \Rightarrow \begin{cases} x = x(\xi, \eta, \tau) \\
y = y(\xi, \eta, \tau) \end{cases} \\
\tau &= t
\end{align*},$$

and the transformed governing equation in the computational domain is expressed as follows:

$$1 \frac{\partial U}{\partial \tau} + \frac{\partial E'}{\partial \xi} + \frac{\partial F'}{\partial \eta} + \frac{\partial E_v'}{\partial \xi} + \frac{\partial F_v'}{\partial \eta} + U \frac{\partial J}{\partial \tau} = M,$$

where J is the Jacobian of the grid transformation.

A fifth-order explicit finite difference scheme is used for spatial discretization of the governing equation (14), the inviscid flux terms are discretized by the upwind scheme, and the viscous flux terms are discretized by the central scheme. For the inviscid flux vectors, the flux Jacobians contain both positive and negative eigenvalues, a simple local Lax–Friedrichs scheme is used to split the inviscid flux vectors into positive and negative wave fields. For example, the flux term F' in Eq. (14) can be split into two terms of pure positive and negative eigenvalues as follows:

$$F' = F'_+ + F'_-,$$
where \(F' = \frac{1}{2}(F' + \lambda U) \) and \(F' = \frac{1}{2}(F' - \lambda U) \) and \(\lambda \) is chosen to be larger than the local maximum eigenvalue of \(F' \)

\[
\lambda = \frac{\left| \nabla \eta \right|}{f} (\sqrt{ec} + u^2 + c),
\]

where \(c \) is the local speed of sound, and

\[
u' = \frac{\eta_u u + \eta_v v + \eta_t}{\left| \nabla \eta \right|}.
\]

The parameter \(\epsilon \) is a small positive constant added to adjust the smoothness of the splitting. The fluxes \(F' \) contain only positive and negative eigenvalues, respectively. Therefore, in the spatial discretization of Eq. (14), the derivative of the flux \(F \) is split into two terms

\[
\frac{\partial F'}{\partial \eta} = \frac{\partial F'}{\partial \eta} + \frac{\partial F'}{\partial \eta},
\]

where the first term on the right-hand side is discretized by the upwind scheme and the second term by the downwind scheme.

The fifth-order explicit scheme utilizes a seven-point stencil and has an adjustable parameter \(\alpha \) as follows:

\[
u_i' = \frac{1}{h b_j} \sum_{k=-3}^{3} a_i+k u_{i+k} - \frac{\alpha}{61 b_j} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) + \cdots,
\]

where \(a_{i+1} = \pm + 1, a_{i+2} = \mp + 9 - \frac{3}{5} \alpha, a_{i+1} = \pm + 4 + \frac{3}{5} \alpha, a_i = 0 - \frac{3}{5} \alpha, \) and \(b_i = 60 \). The scheme is upwind when \(\alpha < 0 \) and downwind when \(\alpha > 0 \). It becomes a sixth-order central scheme when \(\alpha = 0 \).

III. BOUNDARY CONDITIONS

The computational domain is weakly ionized supersonic flow over a flat plate with an imposed magnetic field. A schematic of the flow field with an imposed magnetic field is shown in Fig. 1. The flow direction is from left to right. The upper boundary of the computational domain is a weak oblique shock induced by boundary layer thickness. The boundary conditions are described below.

A. Upper boundary

The attached weak shock that originates from the leading edge of the flat plate serves as the upper computational boundary in the numerical simulation. The location of the shock is determined by a shock fitting method. The flow variables behind the shock are determined by the Rankine Hugoniot relation across the shock and a characteristic compatibility equation behind the shock. The MHD terms are not taken into account in the Rankine Hugoniot relation because the magnetic-field strength considered is mainly concentrated near the wall and the magnetic-field strength at the upper boundary is approximately less than 5 percent of the maximum value at the wall. In addition, because the shock is very weak and far away from the boundary layer, it plays no role in the second mode propagation in the boundary layer. Therefore, we assume that the local magnetic field at the shock is too weak to alter the shock location significantly.

It should be noted that such assumptions may not be appropriate for flow across a strong bow shock in the nose region of hypersonic and high-temperature flow over a blunt body. The magnetic field in the local region at the shock can be strong and the local electrical conductivity can be large there. In those cases, it is necessary to include the \(B \) field effects in the shock fitting formulas.

B. Lower boundary

The flat plate itself is the lower computational boundary, it is assumed to be adiabatic so that \(\partial T / \partial z = 0 \) is enforced at the wall. The velocity components \(u \) and \(w \) are zero following the non-slip wall condition and \(v \) is zero according to the solid-wall condition. For the magnetic-field lines across the lower boundary, the normal component of the magnetic field across the flat plate is continuous. The flat plate is assumed nonmagnetic such that the tangential component across the boundary is given by

\[
\hat{n} \times (B_2 - B_1) = \mu_0 K,
\]

where \(\hat{n} \) is the surface normal vector and \(K \) is the surface current density. We assume that the flat plate is electrically insulated, therefore the surface current density is zero and the tangential component of the magnetic field is continuous across the flat plate.

C. Inlet and exit conditions

The inlet conditions are fixed and are given by the initial conditions of the flow. The flow variables at the exit are extrapolated from the interior points as done in Ref. 30.

IV. FLOW CONDITIONS

In this paper, Mach 4.5 weakly ionized viscous flows over a flat plate in various imposed magnetic fields are considered. The flow conditions in all cases are the same except the magnetic fields. They are: \(M_a = 4.5, T_a = 65.15 \text{ K}, \rho = 728.438 \text{ Pa}, \) \(Pr = 0.72, Re_a = 7.2 \times 10^6 / \text{m}, \) and \(\sigma = 100 \text{ mho/m}. \) The focus of the study is on the MHD effects on the stability of second-mode wave disturbances. The steady flow solution and the second-mode stability of the
same flow without MHD effects have been studied by numerical simulation by Ma and Zhong. The velocity vectors shown in the schematic of the flow with imposed magnetic field in Fig. 1 are those computed without the imposed magnetic field. The steady flow solution for the case without MHD effects of Ma and Zhong is used as the basis for evaluating the MHD case. In addition, the numerical accuracy of the results have been extensively validated in the previous work.

In the current simulation, the flat plate has a length of 0.048 m. The physical domain is resolved by 240 uniform grids in the horizontal direction and 120 stretched grids in the vertical direction. The set of 240×120 grid points for the current simulations involving the propagation of the second mode in the Mach 4.5 boundary layer has been shown by Ma and Zhong to be adequate in terms of numerical accuracy. Ma and Zhong evaluated the numerical accuracy of the velocity vectors and unsteady solutions with second-mode instability waves propagating in the boundary layers. The effects of the imposed magnetic fields on both steady and unsteady solutions are investigated. The results of these numerical studies are presented in the following sections.

A. Case I: A pair of dipoles pointing vertically in opposite directions

We first consider the case of Mach 4.5 flow over a flat plate with two magnetic dipoles of equal strength, one pointing vertically upward and another downward. The centers of two dipoles are located below the plate. The schematic of the flow with imposed magnetic field is shown in Fig. 1. The solutions include both steady solutions and unsteady solutions with second-mode instability waves propagating in the boundary layers. The effects of the imposed magnetic fields on both steady and unsteady solutions are investigated. The results of these numerical studies are presented in the following sections.

V. MHD EFFECTS ON STEADY FLOW SOLUTIONS

The effects of an imposed magnetic field on steady supersonic boundary-layer flow over a flat plate are first studied. The magnetic fields are generated by placing several magnetic dipoles under the plate. Six cases of different dipole arrangements, in terms of orientations and spacing of the dipoles, are considered to better understand the MHD effects on supersonic flow.

A. Case I: A pair of dipoles pointing vertically in opposite directions

Figure 2 shows the magnetic field lines and the contours of B magnitude for Case I.a of two vertical magnetic dipoles in opposite directions with a relative weaker B-field (B₀ = 1.5 × 10⁻⁴ Tm²), the dimensional x (and y) coordinates can be converted into nondimensional values by: \(x = x R e x / 3.2 \times 10^3 \) and \(y = y R e x / 3.2 \times 10^3 \). The value of B₀ is chosen such that the maximum strength of Case I.b with a stronger B-field is about 2.5 T on the wall and that for Case I.a of a weaker one is about 1.2 T on the wall.

The B-field distributions for the case of the stronger magnetic field are similar to these plots except that the magnitude is twice as strong for the latter case. The figure shows that the magnetic-field strength is mainly concentrated in the boundary layer region near the plate surface. It is expected that it will have the strongest effect on the boundary layer structure near the wall.

Numerical results of steady Mach 4.5 weakly ionized flow with a pair of dipoles for both cases of B₀ = 1.5 × 10⁻⁴ Tm² and B₀ = 3 × 10⁻⁴ Tm² are obtained by using a fifth-order scheme. The results are shown in Figs. 3–9. In general, the MHD effects on the steady flow by the strong and weak magnetic fields have very similar trends. The strong B-field alters the flow significantly while the weak B-field modifies the flow in a relatively lesser
degree. Figure 3 compares the velocity profiles affected by the imposed magnetic fields for the cases of \(B_0 = 1.5 \times 10^{-4} \text{Tm}^2 \) and \(B_0 = 3 \times 10^{-4} \text{Tm}^2 \). This figure shows that the flow in the vicinity of the boundary layer is retarded by the opposing Lorentz force. This also results in the thickening of the boundary layer. It is observed that the magnetic fields induce strong modifications on the vertical velocity components. The magnetic effects on the velocity fields are similar for both cases except that they appear to be much stronger in the stronger B-field case.

The contours of flow variables for the cases of weaker and stronger magnetic fields and the case of no magnetic field are shown in Figs. 4–6. From the contours of normal velocity and pressure, it is observed that the magnetic forces induce a new shock structure outside of the boundary layer. It is identified as the Mach wave associated with the interaction of the flow with the Lorentz force, since the angle between the new shock and the flat plate is approximately equal to the Mach angle. Comparing the new shocks in both cases, the new shock in the stronger field case is much sharper while it is relatively smeared in the weak field case, it indicates that the stronger magnetic field produces a much stronger Mach wave. The normalized pressure on the wall and the skin friction coefficient are shown in Figs. 7 and 8, respectively. The magnetic dipoles introduce an adverse pressure gradient on certain regions but a favorable pressure gradient on other regions. The skin friction coefficient is found to be reduced everywhere on the flat plate for both cases. For the case of strong magnetic field, the local adverse pressure gradient is sufficient to cause local flow separation. There is a local region on the wall where negative skin friction is produced by the magnetic field, which is an indication of a local separation region. The local separation bubble, which can be demonstrated by streamlines shown in Fig. 9, is found near the inlet. It is due to the relatively strong adverse pressure gradient in that region.

Due to the local separation created by the imposed mag-
netic field, the smooth development of the supersonic boundary layer has been changed. It is natural to expect that the flow will become more unstable, and it is interesting to investigate how the characteristics of the boundary-layer instability modes, especially the second mode, are affected by the magnetic field. It will be shown later that contrary to intuitive expectation, the second mode is substantially disrupted and stabilized by the imposed magnetic field, even though there exists a local separation area.

B. Case II: A pair of dipoles pointing vertically in the same direction

In this case, two magnetic dipoles with both of their dipole moments pointing in the positive y-direction is considered. The first magnetic dipole is located at a distance of 0.02 m from the inlet and −0.007 m below the plate. The second one is located at a distance of 0.025 m from the inlet, and has the same y-location as the first one. Both dipoles have magnetic field strength specified by $B_0 = 0.45 \times 10^{-4}$ Tm2. The value of B_0 is chosen so that the maximum B field strength is about the same as that of the weaker B-field case of Case I. The magnetic-field lines and the mag-
nitude of the B-field are shown in Fig. 10. Again, the magnetic field is mainly concentrated in the boundary layer on the surface.

Figure 11 shows the steady flow solution in this case. Again, the streamwise velocity is retarded by the B-field and a strong adverse pressure gradient region is generated on the surface. The steady flow variables in this case exhibit very similar behaviors as Case I with a pair of magnetic dipoles in opposite directions. The only noticeable differences appear in the pressure on the wall and the skin friction coefficient. The pressure on the wall in this case has only one peak, where there are two peaks in each of the previous cases. There are also fewer peaks in the skin friction coefficient distributions of the current case than those of the previous cases. Overall, the effects are similar.

C. Case III: Four dipoles pointing vertically in alternating directions

We next consider four magnetic dipoles placed beneath the flat plate with their dipole moments pointing in alternating vertical directions, i.e., the first one points in the positive y-direction, the second one points in the negative y-direction, and so on. The x-locations of the four dipoles from the inlet are 0.01, 0.02, 0.03, and 0.04 m, respectively. They are all located at 0.005 m below the plate. Again, the value of \(B_0 \) of all dipoles is chosen so that the maximum B-field strength is about the same as that of the weaker B-field case of Case I. All dipoles have a magnetic strength specified by \(B_0 = 0.27 \times 10^{-2} \) Tm\(^2\). The magnetic field and magnitude are shown in Fig. 12. The magnetic field strength in this case spreads over the flat more uniformly than that of the two dipoles cases.

The steady solutions of the Mach 4.5 boundary layer with the presence of these four dipoles are shown in Fig. 13. The effects of the imposed magnetic field are again similar to the previous two dipoles cases, except that the pressure on the wall and the skin friction coefficient have more peaks.

D. Case IV: Four dipoles pointing vertically in the same direction

The effects of four magnetic dipoles with all of their dipole moments pointing in the positive y-direction are investigated. All dipoles are placed below the plate with their x and y locations the same as the previous four dipoles case. All dipoles have a magnetic strength given by \(B_0 = 0.37 \times 10^{-4} \) Tm\(^2\), which is chosen similar to the previous case. The magnetic field and the magnitude are shown in Fig.
14. Again, the magnetic-field strength in this case spreads over the flat more uniformly than that in the two dipoles cases.

The steady solutions of Mach 4.5 boundary layer with the presence of these four dipoles are shown in Fig. 15. The effects of the imposed magnetic field are again similar to the previous four dipoles cases.

E. Case V: A pair of dipoles pointing horizontally in the same direction

The effects of orientation of the dipoles are considered in this case. Two magnetic dipoles with their dipole moments pointing in the positive x-direction are placed below the plate. The first dipole is located at a distance of 0.02 m from the inlet, its y-location is 0.007 m below the plate. The second dipole is located at a distance of 0.015 m from the inlet, and has the same y-location as the first one. All dipoles have a magnetic strength given by $B_0 = 0.45 \times 10^{-4}$ Tm2, which is chosen similar to the previous case. The magnetic-field lines and the magnitude of the resultant magnetic field are shown in Fig. 16. The magnetic field for the current case is similar to that of the case of vertical dipoles shown in Fig. 2.

Figure 17 shows the steady flow solution in this case. Again, the imposed magnetic field for this case has a very similar influence on the steady flow variables as Case I with a pair of vertical dipoles. These results show that the effects of magnetic field on supersonic boundary layers are not very sensitive to the orientation of the magnetic dipoles. This is, to some extent, expected since the flow is decelerated in the presence of the magnetic field, regardless of the pole orientation.

F. Case VI: Four dipoles pointing horizontally in the same direction

Four magnetic dipoles with their dipole moments pointing in the positive x-direction are placed below the plate. The x-locations of the magnetic dipoles from the inlet are 0.0075, 0.0175, 0.0275, and 0.0375 m, respectively. The y-locations of all of them are 0.005 m below the plate. All dipoles have a magnetic strength given by $B_0 = 0.35 \times 10^{-4}$ Tm2, which is chosen similar to the previous case. The magnetic field lines and the magnitude of the resultant magnetic field are shown in Fig. 18. The results of steady flow over a flat plate are shown in Fig. 19. The flow exhibits similar characteristics as the vertical dipoles cases, but the profiles of the pressure and the skin friction coefficient are quite different in this case.

For all cases considered, the magnetic fields have very
similar effects on the supersonic boundary layer. The results show that the flow in the vicinity of the boundary layer is retarded by the opposing Lorentz force. This also results in the thickening of the boundary layer. The magnetic field shows strong modifications on the vertical velocity components for all cases. For the case of a very strong B-field, a local separation region is created by the imposed magnetic field.

VI. MHD EFFECTS ON SECOND-MODE INSTABILITY WAVES

The steady flow solutions presented in the previous section show substantial alterations of the boundary layer structure by the imposed magnetic fields. The effects of the magnetic fields on the stability of supersonic boundary layers are investigated in this section. Mack14 showed that, unlike low speed boundary layers, there are multiple instability modes in supersonic boundary layers. Among these instability modes, the second-mode is the most unstable one at high Mach numbers. The second-mode waves are most unstable when they are two-dimensional, i.e., they are most unstable when they propagate in the same plane as the mean flow. Therefore, this paper mainly studies the MHD effects on the two-dimensional second-mode instability in the supersonic boundary layer. Since the mean flow under the influence of the magnetic field is no longer parallel, the linear stability approach is not expected to be valid. The most effective approach is the numerical simulation study of the propagation of the second-mode wave through the supersonic boundary layer with an imposed magnetic field. This is the approach that we adopt in this paper.

In this section, we will first discuss the second-mode instability results for Mach 4.5 flow without MHD effects. These results were obtained by Ma and Zhong in Ref. 32. The second-mode results without MHD effects are used as bases of comparison on the MHD effects. Subsequently, we will present the results of the propagation of a second-mode instability wave passing through the supersonic boundary layer with the same six cases of different arrangements of magnetic dipoles discussed in the preceding section.

A. Second-mode waves in supersonic boundary layers

Thanks to the work of Mack14 and many others, it has been generally accepted that the linear stability analysis is very accurate to describe the characteristics of supersonic boundary layer instability (LST) in the linear development
region. In a two-dimensional LST study, the disturbances of the unsteady flow in the boundary layer are represented by the perturbations of instantaneous flow variables with respect to their local mean variables, such as

\[u_{\infty}(x, y, t) \approx u_{\infty}(x, y) \]

where \(u_{\infty}(x, y) \) is the mean flow velocity. The linear stability analysis decomposes the fluctuations of an arbitrary variable, \(\tilde{q} \) in a normal mode form as follows:

\[\tilde{q} = \tilde{q}(y) e^{i(\alpha x - \omega t)} \]

where \(\tilde{q} = \{\tilde{u}, \tilde{v}, \tilde{T}, \tilde{w}\} \) and \(\tilde{q} = \{\tilde{u}, \tilde{v}, \tilde{T}, \tilde{w}\} \). \(\tilde{q} \) is complex amplitude of the disturbance, \(\alpha = \alpha_r + i \alpha_i \), is the streamwise wave number and growth rate, and \(\omega \) is a non-dimensional frequency normalized by \(\alpha \). The frequency of the disturbance is generally characterized by a dimensionless frequency \(F \), defined by \(F = \omega \mu / (\rho u_{\infty}^2) \).

The linear stability analysis uses a local parallel mean flow assumption to derive a linearized governing equation with homogeneous boundary conditions for flow disturbances. The resulting equations form an eigenvalue problem.

For the spatial stability problem, \(\omega \) is a given real parameter while \(\alpha \) and \(\tilde{q}(y) \), both of which are complex, are solved as eigenvalue and eigenfunction of the linear stability equation. These solutions form various modes of the boundary layer waves. A mode is stable if \(\alpha_i \) is non-negative. Otherwise, it is unstable. For supersonic flow, besides the first mode, Mack found a new family of unstable modes called Mack modes.

For the Mach 4.5 boundary layer with MHD effects studied in this paper, the first and second-modes neutral curve have been calculated by Ma and Zhong using a multi-domain spectral method presented by Malik. Figure 20 shows the neutral curves of stability (\(F \) vs \(R \)) for two-dimensional first and second mode disturbances at Mach 4.5.

In the figure, the nondimensional parameter \(R \) is the local Reynolds number defined using the length scale of boundary layer thickness, i.e.,

\[R = \rho_{\infty} u_{\infty} L / \mu_{\infty} = \sqrt{Re_x} \]

where length scale of boundary layer is defined as

\[L = \sqrt{\frac{\mu_{\infty} X}{\rho_{\infty} u_{\infty}}} \]

The region inside of the upper dash-dot curve is the second-mode instability region, while the region inside of the solid curve is the first-mode instability region. The region outside
of these curves is a stable region. The figure shows that the second mode is unstable at high frequency as compared to the first mode.

We chose the linear development of a second mode wave at a fixed frequency in the Mach 4.5 boundary layer. The frequency is $F = 2.2 \times 10^{-4}$ as shown in Fig. 20. It is chosen based on the neutral stability curve such that it is unstable in this region in non-MHD flow. The amplitude of the wave is small so that the development of it is essentially linear. The computational domain in the current calculations is inside the second-mode instability region in the figure. Therefore, the amplitude of the second-mode wave grows as it travels downstream when there are no MHD effects in the flow field. In the numerical simulation, a second-mode wave obtained from LST is introduced at the inlet on the left-hand side of the computational domain over the steady flow solution obtained from the previous section. The effect on the wave disturbance is then simulated by solving the full Navier–Stokes equations with the MHD effects. The stability results of the second-mode propagation without MHD has been studied by Ma and Zhong by numerical simulations. The results are shown in Fig. 21. The figure shows the growth of the wave amplitude along the flow direction. The figure also shows the well-known properties of the second mode, that the pressure perturbation is concentrated on the wall, but the density and temperature perturbations are largest at the edge of the boundary layer, which form the so called rope waves observed in experiments.

B. Case I: A pair of dipoles pointing vertically in opposite directions

In this case, the stability of the second-mode disturbance is investigated under the influence of a pair of magnetic dipoles pointing in opposite directions. The arrangements of the dipoles are given in Case I of the preceding section.
Specifically, two cases are considered with a weak field (Case I.a) and strong field (Case I.b). The corresponding steady flow solutions are presented in the preceding section.

Figure 22 shows the results of the second-mode disturbances in the boundary layer for Case I.a of a pair of magnetic dipoles in opposite vertical directions with a weak magnetic field at $B_0=1.5 \times 10^{-4}$ Tm. Compared with the non-MHD results of Fig. 21, the imposed magnetic field has a stabilizing effect on the second-mode disturbances. The instantaneous disturbance of pressure on the wall clearly show that the wave is slightly destabilized in the early zone near the inlet due to local adverse pressure gradients, and then stabilized in the region of local favorable pressure gradients where it would be unstable in the non-MHD case. The disturbance of pressure exhibits a transitional point at about $x=0.13$ m, where the disturbance dies down and gets re-excited before and after that point. The propagation of the second-mode wave is substantially damped at $x=0.13$ m, followed by the development of a much weaker wave. The density and temperature contours also show the sudden damping of the second mode wave at $x=0.13$ m.

Similar results are found for Case I.b of the stronger magnetic field as shown in Fig. 23. In this case, the stabilization effect on the second mode by the magnetic force is stronger. The second-mode wave is significantly stabilized. Again the phase angle distribution shows discontinuous steps at the transitional points, which indicate changes of wave mode. Although the steady flow in this case has a local separation region (Fig. 9), the second-mode wave disturbance is still stabilized by the magnetic field. This result was somewhat unexpected since one might expect that the separation bubble would greatly destabilize the boundary layer.

The suppression of the second mode can also be examined by the plots of the Fourier phase angles of the waves. The phase angles are obtained by a temporal Fourier analysis on the numerical solutions of the perturbations of the unsteady flow variables after a periodic state has been reached in a simulation. A Fourier transform of a disturbance variable leads to

$$ q'(x,y,t) = \Re[|q'(x,y)|e^{i(-\omega t + \phi(x,y))}] $$

where ω is the forcing frequency of the acoustic wave in the free stream. $q'(x,y,t)$ represents any instantaneous perturbation variables, $|q'(x,y)|$ and $\phi(x,y)$ are the local perturbation amplitude and phase angle, respectively. For simulation with small perturbation, only linear responses are significant in the results. $\phi(x,y)$ indicates a local phase angle with respect to the forcing wave in the free stream. If the wave modes in the boundary layer on the body surface are dominated by a single wave mode, $\phi(x,y)$ on the surface should be linear with respect to x, i.e.,

$$ \phi(x,0) = \alpha_x x + \phi_0, $$

where α_x is the wave number. Any discontinuity or step in the distribution of $\phi(x,0)$ as a function of x represents a change of dominant wave mode in the disturbance, i.e., the decay of one-wave mode followed by the growth of another wave mode. Therefore, the $\phi(x,0)$ distribution can indicate a change of wave mode in the boundary layer.
FIG. 21. Second mode disturbances in a Mach 4.5 flow over a flat plate without MHD effect ($F = 2.2 \times 10^{-4}$) (Ma and Zhong, 2001).

FIG. 22. Second mode disturbances in a Mach 4.5 flow over a flat plate with a pair of magnetic dipoles in opposite vertical directions for Case I.a of a weak magnetic field with $B_0 = 1.5 \times 10^{-4}$ Tm$^{-1}$.
The plots of the phase angle for the weak and strong field cases are shown in Figs. 22 and 23, respectively. In the weak field case, the distribution of the phase angle of the disturbance shows a small discontinuous step between the region of damping of the original second mode and the development of a new wave downstream. In the strong field case, more than one discontinuity of the phase angle is observed. The locations of the discontinuities for both cases roughly correspond to the transitional points that appear on the plots of the instantaneous disturbance of pressure. This is an indication that the waves before and after the step in phase angle are two different wave modes: The original second mode and a new mode afterward.

C. Cases II–VI: Other magnetic dipoles arrangements

The effects of five other cases of magnetic dipoles arrangements, corresponding to Cases II–VI, on the second mode instability are considered. These cases are:

- Case II: A pair of dipoles pointing vertically in the same direction.
- Case III: Four dipoles pointing vertically in alternating directions.
- Case IV: Four dipoles pointing vertically in the same direction.
- Case V: A pair of dipoles pointing horizontally in the same direction.
- Case VI: Four dipoles pointing horizontally in the same direction.

The steady flow solutions for all these cases are presented in the preceding section.

Figures 24 and 25 show the distributions of the instantaneous surface pressure perturbations for all these cases. All cases have the same flow conditions except that the arrangements and orientations of the magnetic fields are different. In general the magnetic effects on the second mode for all arrangements are very similar to that in Case I.a where the magnetic dipoles point in opposite directions as shown in Fig. 22. The second-mode wave disturbances are always stabilized by the imposed magnetic fields, after some slight destabilization initially. The wave mode transitional points in the instantaneous pressure distributions correspond to the discontinuities or steps in phase angle distributions. The general trend is that the imposed magnetic field stabilizes the second mode and induces the development of a weaker wave mode afterward.

For Case VI where four magnetic dipoles pointing horizontally in the same direction are placed below the plate, the stabilizing effect on the second-mode wave disturbance occurs further downstream compared with all previous cases. From the plot of instantaneous disturbance of pressure, the second mode is destabilized from the inlet to \(x = 0.132\) m, this destabilizing region is considerably wider than all those regions in the
above cases. Because of the widening of the destabilizing region, the stabilizing effect is delayed and the second mode is not significantly stabilized until the transitional point is reached. The transitional point that corresponds to the discontinuity of the phase angle is located near the exit of the plate. Eventually, the second mode is stabilized by the magnetic field.

The overall effects on the second mode instability by different imposed magnetic fields are compared in Figs. 26 and 27. Figure 26 shows the effectiveness of the stabilizing effects on the disturbance by comparing the pressure perturbation amplitudes along the wall of different magnetic-field configurations. The solid line in each of the plots is the result of the second-mode growth when there is no magnetic field for comparison. The strong magnetic field in the two vertical dipoles case has the most stabilizing effects while the four horizontal dipoles case has the least. For all other cases, the stabilization effects on the second mode are very similar. The amplitudes reach a peak followed by rapid drop of wave amplitudes due to stabilization.

Figure 27 compares the effects of the magnetic-field strengths for Case I of the two vertical dipoles on the pressure and temperature disturbance amplitudes. A nondimensional parameter, $Q = \sigma B^2 / \rho U$, is used to characterize the magnitude of the Lorentz force over the inertial force, where B is the maximum magnetic field strength on the plate surface. The result in this figure shows that the higher the value of Q, the greater is the stabilizing effect. The common characteristics among the MHD effects on the second mode is that the disturbance is not stabilized until the wave-mode transition of the phase angle takes place.

Figure 28 shows the evolutions of the real part of the eigenfunction of pressure disturbances with and without magnetic field at several grid stations along the flat plate. The imposed magnetic field in this case corresponds to Case 1.b of the strong field case of the two vertical magnetic dipoles. As discussed earlier, the wave disturbance undergoes
mode shift after the second mode is stabilized. The mode shift for this case occurs in the region between $x = 0.12$ and 0.13 m. The figure shows that the mode shape at $x = 0.115$ m before the mode change is substantially different from that of $x = 0.135$ m after the mode change. In plot (c) two distinct bumps appear between $y = 0$ and $y = 0.003$ m, one of the bumps, however, disappears at a later zone ($x = 0.145$ m) after another transition of the phase angle has taken place. This suggests that the disturbance tends to undergo mode shift. The evolutions of the wave disturbance in other imposed magnetic fields are found to have similar characteristics as those shown here. They are not presented here due to length limits. Notice in the figure that the shapes of the eigenfunctions of the non-MHD case at different x go through a gradual change from the profile similar to the first mode to that of a second mode. Such evolution of the eigenfunctions is expected. It is found that all Mack modes at a fixed frequency, including the first and second modes, are different sections of the same wave mode as it propagates from upstream to downstream.

VII. RESULT DISCUSSIONS

In this paper, the steady and unsteady results of the Mach 4.5 boundary layer under various magnetic fields have been presented in Secs. V and VI. These results are discussed further in this section.

The steady flow results indicate that all the imposed magnetic fields considered in this paper can significantly slow down the flow in the vicinity of the boundary layer due to the opposing Lorentz force. An adverse pressure gradient...
is created in some regions and can cause separation of the boundary layer if the magnetic field is strong enough. All cases show similar modifications of the boundary layer thickness by the magnetic forces. As a result of the opposing motion induced by the imposed magnetic field, the streamwise velocity modified by the magnetic field exhibits an inflectional profile that was expected to destabilize the boundary layer and lead to early transition of the flow. However, as shown in Sec. VI, the result is in contrast to this intuitive expectation. It is found that the imposed magnetic field always has overall stabilizing effects on the second mode wave disturbance.

The effects of six cases of different arrangements of magnetic fields on the second mode instability are studied by numerical simulation. All unsteady results show the same trend on the MHD effects on the second mode instability, that the second mode is significantly stabilized in the boundary layer region where the mean flow boundary layer profile is substantially modified. The suppression of the second mode is followed by the development of different wave modes of much weaker amplitudes. The MHD effects on the stabilization of the second mode are not very sensitive to the configurations of the magnetic fields.

One explanation for the strong suppression of the second mode by magnetic forces in a separated flow is the fact the second mode is a trapped acoustic wave reflecting between the wall and a relative supersonic layer in the boundary layer. The second mode instability relies only on the existence of a relative supersonic region in the shear layer and does not require the existence of a generalized inflection point. The most-unstable second-mode frequency is strongly tuned to the boundary layer thickness. In the current case of a supersonic boundary layer with an imposed magnetic field, the mean flow boundary layer is substantially altered, forming a local separation for the case with strong magnetic field as shown in Figs. 4 and 5. Because of this, the wave length of the original growing second mode is no longer tuned with the boundary layer thickness.

VIII. CONCLUSIONS

Mach 4.5 weakly ionized flows over a two-dimensional flat plate in the presence of a number of imposed magnetic fields have been studied by numerical simulations. The main focus is on the MHD effects on the instability of second mode wave at high Mach number. The effects of imposed magnetic fields on the second-mode disturbances are compared with the results with no magnetic field. Six cases of different arrangements of the imposed magnetic fields have been simulated to obtain both steady and unsteady solutions.

The steady flow results show that all the imposed magnetic fields considered in this paper can significantly decelerate the boundary layer. An adverse pressure gradient is created in some regions and can cause separation of the boundary layer if the magnetic field is strong enough. All
cases show similar modifications of the boundary layer thickness by the magnetic forces.

The effects of six cases of different arrangements of magnetic fields on the second-mode instability are studied by numerical simulation. All unsteady results show the general trend of the MHD effects on the fixed-frequency 2D second mode instability is that the second mode is substantially stabilized in the region where the mean flow boundary layer is substantially modified, despite the adverse pressure gradient and local separation region in the mean flow. The suppression of the second mode is followed by the development of different wave modes of much weaker amplitudes. The degree of stabilization varies and is mainly determined by the strength of the imposed magnetic field, and it is not very sensitive to the different arrangements of the magnetic dipoles. It should be noted that the input disturbance is a 2D monochromatic wave. In a more realistic flow, it would be expected that lower frequency disturbances tuned to the thicker MHD boundary layer would be present and would be destabilized.

It should be pointed out that this paper is an initial study of an idealized case with constant electrical conductivity, neglect of the induced magnetic field, simple arrangements of the magnetic dipoles, and monochromatic, 2D instability waves. The flow conditions used in the current computations do not represent a case of an actual wind tunnel test or an actual hypersonic flight. Instead, it is a focused numerical simulation study on the interaction of the second-mode disturbances with imposed magnetic fields under a simplified set of flow conditions. Specifically, in the current study, the gas is assumed to be a cold flow plasma with a constant conductivity of 100 mho/m. Cold flow plasma of relatively low speed flow can be generated in nonequilibrium plasma wind tunnels, often with lower conductivity. For example, Palm et al. generated stable ionization in Mach 4 He or N2 flow in a plasma wind tunnel. The flow is at a room temperature with a conductivity of 0.1–1 mho/m, which is much smaller than the 100 mho/m used in the current study. On the other hand, though a conductivity of 100 mho/m is high, it is possibly achievable in high-enthalpy seeded flow. In addition, only six magnetic field configurations are studied in this paper. It is well known that a co-planar field is stabilizing, but the effectiveness is much less than a perpendicular field. The orientation of the magnetic field is an important factor, but within the range of configurations that are explored in this paper, the effects are similar. Due to the limited configurations studied, the results presented in this paper are not necessarily extrapolatable to other configurations.

ACKNOWLEDGMENTS

This research was supported by the Aeronautical Sciences Division of the Air Force Research Laboratory, Air Vehicles Directorate, Dayton, Ohio, under a SBIR Phase I grant. The authors would like to thank Yanbao Ma in the Mechanical and Aerospace Engineering Department at UCLA for providing LST results used in this study.