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Abstract

Gortler vortices appear in boundary layer flow along
the concave surfaces due to the imbalance between
pressure and centrifugal force. Many practical engi-
neering designs involve concave surfaces such as engine
inlet. In hypersonic boundary layers, there exist higher
harmonic boundary layer modes (second, third mode
etc.) as well as the first mode. If the flow is associated
with the concave surfaces, Gortler mode also exists.
Finding the most dominant instability mode in bound-
ary layer flows is one of the fundamental problems
in fluid mechanics. Forcing disturbances initially en-
ter the boundary layers and generate instability waves
which is called receptivity. Receptivity to free stream
disturbances introduces random disturbances into the
boundary layers, and the most dominant instability
mode develops. It helps to find the most dangerous in-
stability wave in boundary layers. In this paper, recep-
tivity of Gortler and other instability waves in hyper-
sonic boundary layers are investigated using Direct Nu-
merical Simulation (DNS). Forcing disturbances are in-
troduced into the hypersonic boundary layers by recep-
tivity to free stream disturbances and blowing and suc-
tion. Random disturbances introduced by freestream
acoustic and vorticity waves and blowing and suction
develops Gortler kinds instability waves inside hyper-
sonic boundary layers in concave region.

1 Introduction

Longitudinal counter rotating vortices appear in
boundary layer flow along the concave surface. These
vortices are called Gortler vortices and affect the flow
instability in boundary layers along the concave sur-
face. Gortler vortices have been studied experimen-
tally and numerically since Gortler found them in
1940 ^~17\ Gortler vortices were observed experimen-
tally by Tani ̂  in 1962. In his low speed wind tunnel
experiment, he observed spanwise variations of stream-
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wise velocity along the concave wall. He found that
the induced vortex wavelength is independent of the
streamwise location and nearly independent of the free
stream speed. Aihara ™ showed that the nonlinear de-
velopment of Gortler vortices mainly affects the tran-
sition of the boundary layers. He imposed artificial
impulsive disturbances on the existence of Gortler vor-
tices. He found that the imposed disturbances am-
plify or decay in the linear region of Gortler vortices
depending on the initial value of the excitation, but
the disturbances rapidly grow in the nonlinear region.
Peerhossaini and Wesfreid ™ observed that unsteady
oscillations appear in steady Gortler vortices.

Recent experiments have shown that the breakdown
of Gortler vortices is mainly due to the secondary in-
stabilities. Aihara and Kohama ̂  and Aihara et al ̂
showed that the breakdown of the Gortler vortex struc-
ture into a horseshoe-vortex structure because of the
secondary instability. Swearingen and Blackwelder ̂
identified the two kinds of secondary instabilities to
be the sinuous and varicose (horseshoe) types. They
showed that the sinuous mode is produced by spanwise
velocity gradient, and the varicose is due to normal
velocity gradient. In their experiments, the unsteady
secondary instability fluctuations were mainly the sin-
uous mode. They concluded that the sinuous mode
plays a more important role in transition to turbulence
of Gortler vortices.

Recently many researchers have investigated non-
linear Gortler problems numerically. Hall ™ numeri-
cally integrated the nonlinear partial differential equa-
tions for finite wave number of the vortices and demon-
strated that nonlinear evolution of streamwise Gortler
vortices produces inflectional profiles which may pre-
sumably break down. Lee and Liu ™ simulated spa-
tially growing longitudinal vortices by a finite difference
algorithm in solving the three-dimensional parabolized
Navier-Stokes equations. Their results compared well
with those from Swearingen and Blackwelder ™.

Liu and Domaradzki[10], Yu and Liu[llj, and Li
and Malik t12] studied secondary instability effects on
Gortler vortices. Liu and Domaradzki ̂  solved the
full three-dimensional Navier-Stokes equations to in-
vestigate transition to turbulence of Gortler vortices.
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Their flow conditions were the same as those by
Swearingen and Blackwelder ™. Initial disturbances
were obtained from LST. They showed that Gortler
vortices become turbulent due to the spanwise velocity
gradient as well as the normal velocity gradient. These
velocity profiles contain inflection points which affect
the flow instabilities in boundary layers. They showed
that the varicose mode is related to the normal velocity
gradient, and the sinuous mode is to the spanwise gra-
dient and concluded that the sinuous mode dominates
the varicose. Li and Malik £12' used two-dimensional
LST and three-dimensional PSE (parabolic stability
equation) methods and studied nonlinear secondary
instability effects on Gortler vortices. In their ap-
proaches, they showed there are two kinds of the sec-
ondary instability modes; even and odd. The even
mode is related to the varicose mode, and the odd mode
is to the sinuous mode. Their linear stability analy-
sis showed that for the large wave length of Gortler
vortices, the even modes are dominant, and for the
short wave length, the odd modes have main roles for
transition. They explained that it is the reason why
some experiments *** ̂  showed a varicose mode dom-
inant break-down, but other experiment ̂  showed a
sinuous mode.

Nayfeh ^13\ in his multiple-scale analysis for two di-
mensional boundary layers, showed that Gortler vor-
tices can interact with the oblique Tollmien-Schlichting
(TS) waves whose spanwise wavelength is the twice of
the vortices. He found that Gortler vortices strongly
destabilize the TS waves. Malik t14' obtained the re-
sults which are not agreed with Nayfeh. He found
the inconsistent length scale in Nayfeh?s formula and
showed in his temporal and parallel analysis that the
oblique TS waves whose wavelength is the half of
the vortices are destabilized by the nonlinear interac-
tion. Nayfeh and Al-Maaitah ̂  corrected the formula
and presented the new results which are the same to
Malikfl4]. They used both Floquet theory and the
method of multiple-scale and showed both methods
give a good agreement. Malik and Hussaini t16' con-
sidered nonlinear interaction between two dimensional
TS waves and Gortler vortices. In the analysis, in-
compressible Navier-Stokes equations are solved using
a Fourier-Chebyshev spectral method. It is shown that
the TS waves can be excited by Gortler vortices, and
due to the nonlinear effects, Gortler vortices induces
the oblique wave whose wavelength is the equal to the
vortices.

There are many difficulties in the experimental stud-
ies of high speed receptivity phenomena. For example,
it is difficult to generate controllable disturbances with
a well defined and independently variable frequency.
Therefore, Direct Numerical Simulation becomes an

useful tool in order to investigate supersonic and hyper-
sonic receptivity process. Lin et al ̂  solved compress-
ible linearized Navier-Stokes equations and studied the
receptivity of hypersonic boundary layer to different
external disturbances. Zhong ̂  studied the acous-
tic receptivity of hypersonic flow over blunt wedge by
solving the full Navier-Stokes equations. It was shown
that the interaction of free stream acoustic wave with
bow shock generate instability waves behind the shock.
Recently receptivity becomes a critical issue for the
Gortler problem. Denier et al f17^ addressed receptiv-
ity issue by considering the vortex motion induced by
wall roughness.

2 FORMULATION

Governing equations and numerical methods for lin-
ear stability theory and direct numerical simulation
are discussed in this chapter. For LST analysis, the
full linearized compressible Navier-Stokes equations in
cartesian coordinate system are derived. Wall curva-
ture effects are included in LST analysis using a co-
ordinate transformation. In the numerical simulation,
the full Navier-Stokes equations are solved using a fifth
order explicit upwind shock fitting scheme. Governing
equations and numerical methods for the linear stabil-
ity analysis and the numerical simulation are explained
as follow.

2.1 Linear Stability Analysis

The compressible linear stability equations originate
from the compressible Navier-Stokes equations. The
gas is assumed to be perfect Newtonian gas. The
three-dimensional Navier-Stokes equations in cartesian
coordinates(x*,y*,z*) are

{ '

(2)

V -[A*(V •

= V (k* V

P* = p*R*T* , (4)

where '*' denotes dimensional quantities, u* is the ve-
locity vector, />* is the density, p* is the pressure, T*
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is the temperature, R* is the gas constant, c* is the
specific heat at constant pressure, k* is the thermal
conductivity, /** is the first coefficient of viscosity, and
A* is the second coefficient of viscosity. The viscos-
ity coefficient is determined by Sutherland's law. The
viscous dissipation function, $*, is given as

(5)

The flow variables and equations are nondimension-
alized as follows: velocity by {/£>, density by p^, pres-
sure by p^U^y length scales by «*, and time scale by
£*/^<£> where x* denotes a distance from the leading
edge. Instantaneous flow variables are represented as
the sum of mean value and fluctuation, i.e.

where q = {fi,v,p,T, w} .
function of mean values.

(6)

All matrix coefficients are

A coordinate transformations is applied to transform
cartesian coordinate (x,y,z) into curve linear system
(f jtyiC)- Resulting linear disturbance equations can be
expressed in matrix form as

t/2 ^/2

problem of homogeneous system of ordinary differential
equations:

(Ao D2 + Bo D + Co) q = 0 , (9)

where

Ao = [ff]
B0 = [D>] + ia[I']
Co = [A1] - iw(B'} + ia[C'] + i/3[E'} (10)

D is the derivative opperator in rf direction, i.e. D =
d/drf and D2 = d2/<V2.

Boundary conditions are subjected to no-slip condi-
tions at the wall, and temperature perturbations are
assumed to be vanished at the wall.

it, v, w, T1—>• 0 as 77 —^ oo
(ii)
(12).

Fourth order finite difference ^20-' and spectral collo-
cation methods ̂  are applied to discretize the linear
system, and the eigenvalue problem is solved numer-
ically by the QR matrix eigenvalue subroutine of the
IMSL library.

2.2 Direct Numerical Simulation

where qi = {w7, i/, //, T7, it;7} .

For normal mode analysis, the disturbance form is

In the numerical simulation, the three-dimensional
Navier-Stokes equations (1) to (4) are written in
conservative-law form as follows:

(8)

where qi = {u', t), p, T, w} .a and /3 are wave numbers
in the streamwise and spanwise direction respectively,
a; is a wave frequency. For Gortler instability, /? is real.
In the calculation of the temporal Gortler mode, a is
set to zero, and complex w becomes an eigenvalue to
be solved. For the spatial mode, u; is zero and complex
a is solved in the eigenvalue calculation.

When equation (8) is substituted into equation (7),
linearized disturbance equations become an eigenvalue

dU*
dt* dx}"*"

(13)

where superscript '*' represents dimensional variables
and

= {/>*, /)*«!, />*«;, p*ul, e*} (14)

(15)
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The flux vectors are transformed into the computational domain (£, rj, £, r).

(16)

(17)

where

= -K

H* is the viscousity coefficient and calculated using the
Sutherland's law:

IdU dE' dF' dG'
Jd7 + ~d£~ + lty~ + l?<r

dE'v dF'v dG'v
977 •-f t / (23)

The governing equation (23) is discretized in the
computational domain (f, 77, £, r). High order finite
difference methods are used for spatial discretization
of the equation. Inviscid and viscous flux terms are
discretized using different methods: fifth order upwind
explicit schemes for the inviscid flux terms and central
difference schemes for the viscous terms. For the in-
viscid flux vectors in governing equation (23), the flux
Jacobians contain both positive and negative eigenval-
ues in general. A simple local Lax-Priedrichs scheme is
used to split the inviscid flux vectors into positive and
negative wave fields. For example, the flux term F1 in
Eq. (23) can be split into two terms of pure positive
and negative eigenvalues as follows

F' = F'+ + FL (24)

where F| = |(F7 + \U) and FL = \(F' - XU). A is
(20) chosen to be larger than the local maximum eigenvalues

of F1

and /c* is the heat conductivity coefficient computed
by assuming a constant Prandtl number Pr. The gas
is assumed to be thermally and calorically perfect gas,

(21)

where R* is the gas constant.

The general curvilinear three-dimensional coordi-
nates (f, 77, C, T) are used along the body fitted grid
lines. A shock fitting method is used to treat the bow
shock as a computational boundary. The transforma-
tion relations for the current grid systems are

(25)

where

u = (26)

The parameter e is-a small positive constant added for
the smoothness of the splitting. The fluxes F+ and
FL contain only positive and negative eigenvalues re-
spectively. Therefore, in the spatial discretization of
equation (23), the flux derivatives are split into two
terms

(22)

t =

where & = 0 and £t = 0 because the £ and C grid
lines are fixed when the shock boundary moves. In the
numerical simulations, the governing equations (13) are

dF'_w (27)

where the first term on the right hand side is discretized
by an upwind high-order finite-difference method and
the second term by a downwind high-order finite-
difference method. Meanwhile, high order central dif-
ference schemes are used for the viscous flux terms.
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The time advancement of the governing equations is
solved by Runge-Kutta schemes.

The fifth-order upwind explicit scheme is

ai+k
* fe=-3

6! bi (28)

where

= ±l+&o

= ±45+2|a
0-fa = 60

This scheme is fifth-order upwind scheme when a < 0,
and it is sixth-order central scheme when a = 0.

The shock fitting method treats the bow shock as a
computational boundary at 77 = rjmax- The flow vari-
ables behind the shock are determined by the Rankine-
Hugoniot relation across the shock and a characteristic
compatibility equation from behind the shock.

3 Results

The specific test case is a Mach 15 flow over a blunt
wedge with a concave surface. The flow conditions in
free stream are

!£, = 101,059X
P*, = 10.3Pa
T* =1000^
Re°° = PloU*ln

(29)

= 150753.175/m

The body surface is assumed to be a non-slip wall with
an isothermal wall temperature T£. Two-dimensional
steady base flow along the blunt body with concave
surface is first obtained by two-dimensional simulation.
Three-dimensional simulation is carried out for recep-
tivity to freestream and blowing and suction. Figure 1
shows a schematic of the computational domain.

3,1 Steady Base Flow Solutions

In the simulation, the steady base flow is two di-
mensional while the perturbed flow is three dimen-
sional. The two-dimensional steady flow solutions of

the Navier-Stokes equations for the viscous hypersonic
flow over blunt body is simulated using a fifth order ex-
plicit upwind shock-fitting scheme. The details of the
method and its validations can be found in Ref. [22]
and are not discussed here. Grid refinment is used to
check the grid independence of the numerical results.

Ten computational zones are used in the two-
dimensional steady flow calculations which are resolved
by a total of 1617 x 121 grids. Stretched grids are
applied in the streamwise and wall normal directions
in order to resolve the rapid changes of flow proper-
ties near the stagnation point at the blunt nose and
in the viscous layers. First three zones are parabolic
blunt body given by x = by2 — d where b and d are
the given constants 40.0 and 0.1 respectively. The
concave surface is extended in the following zones.
The concave body surface is defined by two piecewise-
polynomial equations: y = aix3 + a^x2 + a^x + 04 and
y = bix2 + b%x + 63 where the coefficients are deter-
mined to maintain the continuous conditions for the
zeroth, first, and second order derivatives of the sur-
face functions. As a result, the current body surface
is continuous up to the second order derivatives of the
surface functions. More smooth surface can be gener-
ated by matching the third order or more, but in our
analysis, we match up to the second order in order to
get continuous radius curvature which is a function of
the first and second order derivatives. For the concave
surface, we use relatively large radius of curvature to
avoid shock formation due to the compressive waves
inside the computational zones. Local Reynolds num-
ber is calculated using the flow properties behind the
bow shock as Rex = p*U*x*/p*, where />*,£/*, and /4*
are density, velocity, and viscosity respectively, and x*
is the distance from the blunt nose. Reynolds number
(Rex) in the steady base flow calculation is between
0 to 1.3 x 106. Figure 2 shows the distributions of
Mach numbers and Gortler numbers along the stream-
wise direction in concave wall region. Mach number
and Gortler number ranges in concave surface are from
6 to 9 and from 4 to 14.7 respectively. For the current
test case, the Gorlter number increases as x increases.
For the LST analysis, the Gortler mode is unstable
when G is larger than 6. The figure shows Mach num-
ber decreases at later zone due to the concave wall.
The resulting surface is the blunt body with the con-
vex curve near the leading edge but gradually changes
to the concave afterward. The curvature of the concave
section is large enough so that the Gortler mode is in
unstable region.

Figure 3 shows the numerical solutions of the two-
dimensional steady flow. The bow shock shape is ob-
tained as the free stream grid line using a shock fitting
method. The numerical solutions for the dimensionless
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bow shock normal velocities are in order of 10~8 and
10~~9 which is an indication of the steady state solu-
tions. Pressure in figure 3 is nondimensionalized using
the free stream flow variable: P^. Pressure contours
in the figure show the changes of the flow properties
at x — 0.35 which is an indication of the concavity
since the concave body surface starts when x is ap-
proximately 0.3. Pressure distributions show that the
favorable pressure in convex surface and the adverse
pressure for the concave. The result of the adverse
gradient is a result of the concave surface which may
also have destabilizing effects on the Gortler instabil-
ity. The surface pressure gradient changes from the
favorable to the adverse as the concave wall develops.

3.2 Linear Developments of Instability
Waves

Having obtained the two-dimensional steady base flow
solutions, spatial linear stability analysis for the com-
puted two-dimensional steady base flow is applied to
find instability waves. In the LST analysis, spanwise
wave number /? is given, and complex a and corre-
sponding eigenfunctions are computed in the eigen-
value calculations for various frequencies. Figure 2
shows the Gorlter number increases almost linearly
with respect to a?. At low Gortler number, there is no
unstable Gortler modes. The unstable modes appear
approximately at G — 6, and LST analysis is applied
at G = 6.8 and x = 1.0 for various frequencies (a;).

Gortler vortices are spatially growing steady vor-
tices. LST analysis showed that Gortler mode appears
at zero forcing frequency (a; = 0), but as frequency
increases, the mode disappears and other instability
modes (first mode, second mode, third mode, etc) de-
velop at x = 1.0. It is found that when nondimensional
J3 is 0.1,' the growth rate of Gortler mode is maximum,
and /? is fixed as 0.1 for all instability modes. However,
LST results showed that only Gortler mode is unstable
and other modes are stable. Figure 4 shows streamwise
wave numbers (ar) and growth rates (a,-) for Gortler
mode, first mode, second mode, and third mode at var-
ious forcing frequencies. Gortler vortices are longitudi-
nal counter rotating vortices which develop in stream-
wise direction. Therefore, ar is zero for Gortler mode
and non-zero for other instability modes. Figure 4 also
shows that growth rates of all modes except for Gortler
modes are positive. Positive growth rates represent
the stable modes. LST results at x = 1.0 shows that
Gortler mode is the most dangerous mode which grows
as flow moves downstream.

Figure 5 shows the eigenfunctions of Gortler mode

obtained by LST at x - 1.0 and /? == 0.1. Flow proper-
ties are nondimensionalized by free stream values such
as streamwise velocities by [/<£>, normal and spanwise
velocities by U^0/^/Re^1 temperature by T^, length
scales by x* at G — 6.8. The growth rate (crt-) of the
primary Gortler mode is -1.014 which is unstable.

Figure 6 shows the eigenfunctions of pressure distur-
bances for boundary-layer modes. The nondimensional
forcing frequency (a;) for first, second, and third modes
are 40.0, 80.0 and 130.0 respectively. Streamwise wave
number and growth rates for each modes are repre-
sented in figure 4 by (1), (2) and (3). Mack [23] showed
that the number of zeros in pr is one less than the mode
number. It is well represented in figure 6: no-zeros for
first mode, one-zero for second mode, and two-zeros for
third mode.

Having obtained instability modes using LST analy-
sis, the modes are imposed at x = 1.0, and the three-
dimensional simulation is set up in a sectional com-
putational domain shown in figure 1. The simulated
results are compared with those obtained by LST for
code validation.

DNS study of linear development of Gortler mode
is first considered since it is the most unstable mode
in our computational domain. Weak disturbances of
Gortler mode are introduced to the base flow at the
entrance of the computational domain located at x =
1.0. Inlet Gortler number and local Reynolds number
is 6.8 and 4.23 x 105 respectively. One computational
domain (zone 7) is used for the linear development of
the Gorlter modes. The range of Gortler numeber is 6.8
to 8.5. Amplitudes of the disturbances are the order of
10~6[/oo so that the Gortler mode is linear. The results
from DNS are compared with those predicted by LST.

In the DNS, a Fourier collocation method is applied
to the spanwise direction since Gortler vortices are pe-
oriodic in the spanwise direction. For the simulation of
the linear development of Gortler vortices, four collo-
cation points are used to compute one spanwise wave
length of the disturbances. Four collocation points
are enough to resolve the linear growth of the Gortler
modes in spectral analysis because the four points can
resolve mean flow and the fundamental mode.

Figure 7 shows temperature perturbation contours of
the Gortler mode after it reaches a steady state condi-
tion. The growth of Gortler vortices in the streamwise
direction is shown by the intensity of the disturbances.
The variables in the figure are nondimensionalized in
the following: velocities by [/<£>, temperature by T£>,
and length by X$ of zone 7. In figure 7, DNS results of
temperature disturbance contours and wall normal dis-
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tributions are compared with those from LST located
at x — 1.15 and G — 7.57. Solid lines represent the
simulated results, and dashed lines are those from LST.
The simulated results are compared well with those ob-
tained from LST.

Boundary-layer modes are also studied by solving the
full Navier-Stokes equations. Eigenfunctions and cor-
responding forcing frequency of the modes are intro-
duced at the entrance of computational domain. The
disturbances propagate spatially and reaches periodic
conditions. Figure 8 shows instantaneous pressure per-
turbations of first mode after it reaches periodic condi-
tion. Non-dimensional forcing frequency is 40.0 which
is normalized by velocity behind shock at the inlet of
computational domain and streamwise distance from
blunt leading edge to the inlet. Instantaneous stream-
wise cross sectional contours ((a)) clearly show the de-
velopment of one peak pressure structure which is char-
acteristic of first mode. The development of first mode
is also well represented in the spanwise cross sectional
contours shown in figure 8 (b). Dashed line indicates
negative values of pressure perturbations. Figure 8
(c) is instantaneous streamwise distributions of sur-
face pressure disturbances. LST analysis shows that
first mode is stable in our computational domain at
u — 40.0. Amplitude of surface pressure perturbations
decays in the streamwise direction which indicates the
mode is stable.

Second and third modes obtained from LST are
also imposed at the entrance of computational domain.
Non-dimensional inlet forcing frequency of second and
third modes are 80.0 and 130.0 respectively. In each
cases, disturbances propagate spatially and reache peri-
odic conditions. Figure 9 shows the instantaneous pres-
sure disturbances of second mode after it reaches pe-
riodic condition. Two-peaks structure of second mode
pressure disturbances are well represented in figure 9
(a) and (b). Imposed disturbances are stable, and fig-
ui£ 9 (c) shows the decaying disturbances. Similar re-
sits are observed in development of third mode shown
itrfigure 10. Three-peaks structure of third mode pres-
sure distribution and spatially decaying disturbances
are well represented in the figure.

Fourier analysis is carried out on the numerical solu-
tion of instability modes after they reach the periodic
conditions. Fourier transform of a disturbance variable
is expressed to:

M N
q'(x,y,z) = (30)

m=0n=0

quency of inlet disturbance respectively, and <?'(#,*/,£)
represents any perturbation variables. |g^(#, t/)| and
<j>n(x,y) are the local perturbation amplitudes and
phase angles respectively. The integer ra and n rep-
resents the wave modes of the perturbation fields,
(m, n) = (1,1) represents a fundamental mode. Wave
number (ar) of the fundamental mode can be calcu-
lated using:

ar — dx (31)

Figure 11 compares wave numbers for three instabil-
ity modes obtained from Fourier analysis of numeri-
cal solutions and LST analysis in whole computational
domain. Wave numbers are nondimensionalized by
streamwise distance from blunt leading edge to the in-
let of computational domain. Simulated results are
compared well with those obtained by LST analysis.
The figure also shows that the higher instability mode
has larger wave number which represent shorter wave
length. Eigenfunctions obtained by Fourier analysis
are also compared with those from LST analysis. Fig-
ure 12 shows real and imaginary parts of pressure dis-
turbances of three instability waves at x = 1.15 ob-
tained by Fourier and LST analysis. All three cases
are compared well.

3.3 Blowing and Suction

Engine inlet contains concave surface, and air and fuel
is mixed near inlet which may impose disturbances
into the boundary layers. Such disturbances can be
studied using blowing and suction. Figure 13 shows a
schematic of the engine inlet with blowing and suction.
Using computed 2-D base flow, blowing and suction is
applied at inlet of zone 7 which disturbs flow, but net
amount of incoming flow is zero. Since Gortler mode
is steady, steady blowing and suction is investigated.
Boundary condition of normal velocity at the surface
is as follows:

v* = cos(/?*z) x f ( x ) , (32)

where /? and u is the spanwise wave number and fre-

where nondimensional /? is 0.1, and length of z is one
wavelength of the voticity. Figure 14 shows an ampli-
tude function, f ( x ) , which gives small slot at the sur-
face in which disturbances are imposed by blowing and
suction. Eq.(32) is independent of time and imposes
disturbances with spanwise wave number. 0, into hy-
personic boundary layers.

Figure 15 and 16 show cross sectional disturbance
contours after they reach steady state condition. Fig-
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lire 15 are the contours at several different stream wise
cross section. Blowing and suction is located a little
away from the inlet, so there is no disturbances at
the inlet. The figure shows Gortler mode development.
One peak point of streamwise (u) and normal (v) ve-
locity disturbances and two peak points of the temper-
ature are well represented in the figure which are the
characteristics of Gortler mode. However, the figure
also shows Mach wave development outside boundary
layers. Span wise cross sectional contours in figure 16
shows that disturbances induced by blowing and suc-
tion creates Mach wave as well as Gortler mode. The
contours show the development of streamwise vorticity
layer inside boundary layers which is Gfotler vortices.
However, other disturbances outside boundary layers
with a certain angle with respect to the body surface
also appear in the contours. We examined the wave
angle and realized that it is Mach wave angle. Such
Mach wave is relatively strong compared with Gortler
mode inside boundary layers, and it makes difficulties
of Gortler mode development inside boundary layers.

streamwise vorticity waves (u =

Oky/k ——

Moo = = 0 ;

where e is a small number, and eMoo represents the rel-
ative amplitude of a freestream wave. The parameter
k is the freestream wavenumber.

3.4.1 Fast Acoustic Waves

Fast acoustic waves with wave angle, 0ac, enter the top
computational boundary starting at the inlet of Zone
5 in which surface shape is concave. Wavenumbers of
•streamwise and spanwise components are as follows:

kx = kcos(0ac) , kz = (34)

3.4 Receptivity to Freestream Distur-
bance Waves

In this section, forcing disturbances are imposed by
receptivity to freestream disturbance waves. The wave
fields are represented by perturbations of instantaneous
flow variables with respect to the local steady base flow
variables at the same location. There are four kinds
of weak perturbation waves in a uniform flow in the
freestream: fast acoustic waves, slow acoustic waves,
entropy waves, and vorticity waves. The perturbation
of an arbitrary flow variables can be written in the
following form:

Yoo = (33)

where q'^ represents the perturbation of any flow vari-
able, |goo | is the wave amplitude constant, k^ is
the wavenumber, and u> is the wave frequency in the
freestream before reaching the shock. In this paper, we
have studied fast acoustic waves and vorticity waves.
Perturbation amplitudes of non-dimensional flow vari-
ables satisfy the following dispersion relations:

fast acoustic waves (a; = UOQ • k^ + c^k):

Ip'loo = b'|oo/7 =

akx/k = |«/|oo-Moo'

Two different wave angles (Oac) are investigated: 30°
and 90°.

Figure 17 shows the instantaneous streamwise veloc-
ity perturbation contours for two different wave angles.
In the case of Oac = 90° in which waves propagate span-
wise direction only, much stronger disturbance devel-
ops inside hypersonic boundary layers compared with
the case of Oac = 30°. It shows that the concave sur-
face has more influences on spanwise disturbance than
on the streamwise. In addition, at Oac = 90°, stream-
wise wavenumber is zero which gives much smaller fre-
quency compared with the one for 0ac — 30°. Gortler
mode is standing wave induced by spanwise distur-
bances. The figure shows that waves with lower fre-
quency directed more spanwise direction induce strong
disturbance development inside boundary layer. Fig-
ure 18 shows instantaneous spanwise cross sectional
streamwise disturbance contours for two different 0ac-
The figure shows that in both cases, freestream acous-
tic waves do not reach to boundary layer. 30° acous-
tic waves dose not induce disturbance inside boundary
layer since disturbances induced by the acoustic waves
are T-S waves which develop after the wave reach the
boundary layer. However, 90° acoustic waves create
disturbance inside boundary layer before they reach the
boundary layer which is associated with Gortler mode
induced by concave surface. Figure 19 shows wall nor-
mal distributions of streamwise velocity perturbations
at three different streamwise locations obtained from
Fourier analysis. While 30° acoustic waves induce dis-
turbances inside boundary layer whose amplitudes are
one order lower than those for acoustic waves, the am-
plitudes for the 90° are the same order of magnitude of
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those for the acoustic waves. Also the amplitudes for
the 90° increase as flow moves downstream. Freestream
receptivity to fast acoustic waves shows that distur-
bances inside boundary layer induced by the acoustic
waves in spanwise direction with low wave frequency
are more affected by the concave surface which is asso-
ciated with Gortler vortices.

3.4.2 Vorticity Waves

Results

In the 2-D base flow we have investigated so far,
only Gortler mode is unstable. LST analysis shows
that all other modes such as Mack's modes are stable
in our computational domain, and we have simulated
the new sets of 2-D steady base flow with ten times
higher Reynolds number. In the simulation, we have
enlarged the blunt body ten times with the same flow
conditions in freestream. Reynolds number of the re-
sulting 2-D base flow is ten times larger than the pre-
vious. Six computational zones are used in the new
two-dimensional steady flow calculations which are re-
solved by a total of 1933 x 241 grids. Figure 20 shows
the numerical solutions of the two-dimensional steady
flow. Pressure in figure 20 is nondimensionalized us-
ing the free stream flow variable: P£>. Basic structure
of the pressure is similar to the one in figure 3, but
Reynolds number is ten times larger. The figure also
shows the adverse pressure gradient in concave region.
Having obtained the new 2-D base flow, spatial lin-
ear stability analysis for the computed two-dimensional
steady base flow is applied at the end of the compu-
tational domain to find instability waves. In the LST
analysis, spanwise wave number /? is given, and com-
plex a and corresponding eigenfunctions are computed
in the eigenvalue calculations for various frequencies.
At zero wave frequency (a;), we found unstable Gortler
modes at the end of the computational domain. We
have also investigated Mack's modes at various fre-
quencies. Figure 21 shows the growth rates (a;) for
various wave modes with respect to wave frequencies.
Growth rates and frequencies are nondimensionalized
by stream wise velocity behind the shock and stream-
wise distance. At this location, there is unstable fre-
quency range for Modely but other modes are still
stable. For the high Reynolds number base flow, we
also found other modes indicated 1 and 2 in the fig-
ure which could not be found in the lower Reynolds
number. However, those modes are stable than Mode
I, II and III, and at this location, Gortler mode is still
most unstable. In order to investigate these modes, we
conducted receptivity to freestream disturbances. In
this study, we imposed freestream disturbances near
the leading edge in order to study leading edge effects.

Some instability modes such as the first mode appear
near the leading edge and develop downstream, and
disturbances imposed a little far away from the edge
may not excite such modes. Therefore, in this case,
we conducted freestream receptivity near the leading
edge.

First, we have investigated receptivity to freestream
stream wise vorticity waves. Acoustic waves enters
boundary layers and excite T-S waves, therefore, fast
acoustic wave studies in previous section, pure Gortler
mode could not be obtained. Gortler vortices may
be excited by freestream vorticity waves, and we im-
posed streamwise freestream vorticity waves to the 2-
D base flow solution. In the freestream, nonzero dis-
turbance variables are normal and spanwise velocity
disturbances (v1 and w'} and wavenumbers (ky and
kz). Amplitudes of other disturbances and streamwise
wavenumber are zero. Zero streamwise wavenumber
gives zero wave frequency. Resulting freestream waves
are streamwise vorticity with zero frequency which is
the characteristics of Gortler vortices inside boundary
layers. Figure 22 shows streamwise velocity pertur-
bation contours of the first two computational zones.
The figure shows that freestream vorticity waves en-
ter the computational domain at top boundary. The
figure also shows that vorticity layer also exist inside
boundary layer which is induced by vorticity waves en-
tered near the leading edge. We have simulated all
six computational zones for vorticity wave propaga-
tion. Concave surface is in last three zones, and adverse
pressure gradient region develops in last two compu-
tational zones. Figure 23 shows surface shape of the
blunt body and streamwise distributions of streamwise
velocity and temperature perturbation inside boundary
layers. The figure shows that the disturbances increase
near the leading edge due to the leading edge effects,
but decay before they reach the concave surface region.
Concave surface starts at x « 4 as shown in figure 23,
and the amplitudes of disturbances amplify in concave
region which may be associated with Gortler mode.
LST analysis shows that unstable Gortler mode ap-
pears at the end of the computational domain, so DNS
results could not be verified by LST; however concave
surface excite steady streamwise vorticity waves while
the convex stabilize the waves. It is the same phenom-
ena of Gortler vortices.

Continuing Simulation

Beam of vorticity waves with amplitude using shape
function shown in figure 14 imposed at top boundary is
simulating since it is more appropriate for experimen-
tal comparison. Work is also in progress to investi-
gate frequency effects of vorticity waves. LST analysis
showed that at low frequency (u;«50 (figure 21)), there
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is unstable Mode I in the concave region. Freestream
vorticity waves with the unstable forcing frequency will
be simulated to study if unsteady vorticity waves can
excite unstable T-S waves. Receptivity to freestream
acoustic waves with the same frequency will also be
simulated for the comparison.

4 Summary and Future Works

The main focus of this paper is to study receptivity
of Gortler vortices and its interactions with other en-
vironmental disturbances using Direct Numerical Sim-
ulation. Eigenfunctions of Gortler and other instabil-
ity modes from LST analysis were imposed at the in-
let of the computational domain. Subsequent develop-
ment of the modes were carried out by solving the full
Navier-Stokes equations. The DNS results were com-
pared with those from LST for a code validation. There
were good agreements between the two results. Blow-
ing and suction in concave region introduced spanwise
disturbance in hypersonic boundary layers and develop
Gortler mode inside the boundary layer. The simula-
tion of fast freestream acoustic waves imposed at bow
shock in concave region showed that the spanwise di-
rection acoustic waves with low frequency excite more
Gortler vorticity kind of disturbances inside boundary
layer than the streamwise direction. We also inves-
tigated steady streamwise vorticity waves imposed at
bow shock near the leading edge. The results showed
vorticity waves inside boundary layers amplify in the
concave region while decay in the convex region which
is associated with Gortler vortices.

LST analysis for 2-D high Reynolds number steady
base flow showed that there is unstable mode other
than Gortler mode although LST results showed that
Gortler mode is still the most dominant instability in
Mach 15 flow over a blunt wedge with concave sur-
face. We will verify this using receptivity to freestream
acoustic waves which applied from the leading edge
to the concave region. For the vorticity waves, we
will extend computational domain in streamwise di-
rection in order to study the instability effects of vor-
ticity waves in the concave region since the simulation
showed that vorticity waves inside boundary layer start
to amplify dramatically. The frequency effects of the
vorticity waves will also be investigated. In this pa-
per, we assumed streamwise wave number is zero in
freestream vorticity wave simulation, but if there is
non zero streamwise wave number, wave frequency is
not zero, and we will study the frequency effects on
instability induced by freestream vorticity waves.
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Figure 1: A schematic of computational domain of two-
dimensional base flow and three-dimensional Gortler
instability simulation.
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Figure 3: Temperature (upper figure) and pressure
(lower figure) contours for the steady two-dimensional
base flow at M^ = 15 and Re^ = 150753.17.
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Figure 2: Distributions of Gortler number and Mach
number behind shock. Gortler number increases since
Reynolds number increases.
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Figure 4: Streamwise wave number and growth rates
for instability modes obtained by LST analysis at x =
1, G = 6.8, M = 7.89, Rex = 4.23 x 105, and /? = O.L
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Figure 5: Eigenfunctions of Gortler mode obtained by
LST analysis at x = 1, G = 6.8, M = 7.89, Rex =
4.23 x 105, and/? = 0.1.
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Figure 7: Temperature perturbation contours of the
primary Gortler mode at x = 1.15 and G = 7.57. DNS
results compare well with those from LST
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Figure 6: Eigenfunctions of pressure disturbances for
boundary-layer modes obtained by LST analysis at x =
1, G = 6.8, M = 7.89, Rex = 4.23 x 105, and ft = 0.1.
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Figure 8: Instantaneous pressure disturbances distribu-
tions of first mode after it reaches periodic conditions
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Figure 9: Instantaneous pressure disturbances distri-
butions of second mode after it reaches periodic condi-
tions

Figure 11: Comparison of instability modes wave num-
ber obtained from DNS with LST for whole computa-
tional domain
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Figure 10: Instantaneous pressure disturbances distri-
butions of third mode after it reaches periodic condi-
tions
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Figure 12: Eigenfunctions comparison of DNS results
with LST results at x = 1.15 and G = 7.57.
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Gdrtler Vortices
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Figure 13: A schematic of the concave body(engine
inlet) on and Gortler vortices exist. Fuel injection is
placed in front of the vortices.
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Figure 14: Amplitude function of steady blowing and
suction.

Figure 15: Streamwise cross sectional disturbance con-
tours induced by steady blowing and suction. Gortler
mode develops in hypersonic boundary layers.
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Figure 16: Spanwise cross sectional disturbance con-
tours induced by steady blowing and suction. Mach
wave also develops induced by blowing and suction.

Figure 17: Instantaneous streamwise velocity pertur-
bation contours induced by freestream fast acoustic
waves: 0ac = 30° (up) and 90° (down).
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Figure 18: Instantaneous spanwise cross sectional
streamwise velocity perturbation contours induced by
freestream fast acoustic waves: Oac = 30° (up) and 90°
(down).

Figure 20: Pressure contours of 2-D numerical solution
for high Reynolds number at M^ = 15.
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Figure 19: Wall normal distributions of streamwise ve-
locity perturbation at three different streamwise loca-
tions obtained by Fourier analysis: 0ac — 30° (up) and
90° (down).

Figure 21: The growth rates (a,-) for various wave
modes with respect to wave frequencies at the end of
the computational domain.
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Figure 22: Streamwise velocity perturbation contours
of the first two computational zones. The figure shows
that freestream vorticity waves enter the computa-
tional domain at top boundary.
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Figure 23: Surface shape and streamwise distributions
of streamwise velocity and temperature perturbation
induced by steady freestream vorticity waves.
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