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1 Abstract

The mechanisms of the receptivity to freestream dis-
turbances of a Mach 4.5 flow over a flat plate are stud-
ied by using both direct numerical simulations (DNS)
and linear stability theory {LST). A high-order shock
fitting scheme is used in the numerical simulations in
order to account for the effects of interactions between
freestream disturbance waves and shock wave. The re-
sults show that the receptivity of the flat plate bound-
ary layer to freestream fast acoustic waves leads to the
excitation of both Mack modes and a family of linearly
stable modes, i.e., mode I, mode II, etc. These modes
play a very important role in the receptivity process of
excitation of the unstable Mack modes, especially the
second mode. Though mode I and mode II waves are
linearly stable, they can have resonant (synchroniza-
tion) interactions with both acoustic waves and the
Mack-mode waves. The stable wave modes such as
mode I and mode II are critical in transferring wave
energy between the acoustic waves and the unsteady
second mode. The receptivity of the unstable second
Mack-mode waves to freestream fast acoustic waves is
mainly through their resonant interactions with mode I
waves. The receptivity mechanisms for flow over a flat
plat at Mach 4.5 to freestream acoustic waves has been
studied. The effects from frequencies, incident wave
angles, and wall boundary conditions on the boundary-
layer stability and receptivity are studied.

2 Introduction

The study of laminar-turbulent transition in super-
sonic and hypersonic boundary layers is important to
the development of future space vehicles operating at
sustained supersonic and hypersonic speeds. In an en-
vironment with small initial disturbances, the paths
to transition can conceptually be divided into three
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stages: 1) receptivity, 2) linear eigenmode growth or
transient growth, and 3) nonlinear breakdown to tur-
bulence. The first stage is the receptivity process,
which converts the environmental disturbances into in-
stability waves, such as the Tollmien-Schlichting (T-S)
waves, in the boundary layers. The study of the recep-
tivity mechanisms is important because it provides im-
portant initial conditions of amplitude, frequency, and
phase angles for the instability waves in the boundary
layers . The main objective of a receptivity study
of a boundary layer is to investigate the properties and
mechanisms of initial generation of unstable boundary-
layer wave modes by forcing waves.

This paper is concerned with the receptivity of a su-
personic boundary layer over a flat plate. The unstable
wave modes in a supersonic boundary layer have been
identified and extensively studied by Mack (2] using the
LST. Mack found that, in a supersonic boundary layer
of relatively high Mach numbers, there are multiple
higher instability modes in addition to the first insta-
bility mode, which is the compressible counterpart of
T-S waves in incompressible boundary layers. Among
them, the second mode is most interesting because it
becomes the dominant instability in supersonic bound-
ary layers at Mach numbers larger than about 4. On
the other hand, the oblique first mode Is most unstable
for supersonic flow at lower Mach numbers. Therefore,
the receptivities of the first and the second modes to
forcing disturbances are the main goal of a receptivity
study.

Though the linear stability properties of the unstable
Mack modes in supersonic boundary layers are well un-
derstood, it is still a subject of current research with
regard to the receptivity of the supersonic boundary
layer, i.e., the generation mechanisms of the unstable
Mack modes by various forcing waves. There have been
a number of experimental studies on the receptivity of
supersonic and hypersonic boundary layers (551 1t was
found that the forcing fast acoustic waves impinging on
the leading edge generate Tollmien-Schlichting waves in
supersonic boundary layers. There is a dependence of
receptivity coeflicients on the incident wave angles of
the forcing waves. On the other hand, most of the com-
putational and theoretical studies on boundary-layer
receptivity have been mostly for incompressible flow [!]
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There have been only a few theoretical and computa-
tional studies on the receptivity of compressible bound-
ary layers [6-9], Recently, Fedorov et al. [10,11] 4id an-
alytical analyses to show that strong excitation occurs
when external waves and wall induced disturbances are
in resonance with the boundary-layer normal modes.
Boundary-layer self-similar solutions were used in Fe-
dorov’s analyses. The effect of the bow shock wave on
the receptivity process, however, was not considered.
Zhong (12.13] gtudied the receptivity of hypersonic flow
over a parabola by numerical simulations of the full
Navier-Stokes equations. The effects of bow shock in-
teractions and the entropy layer are accurately taken
into account by using a fifth-order shock-fitting scheme.
It was concluded that the generation of boundary-
layer stability waves was mainly due to the interaction
of boundary layer with the transmitted fast acoustic
waves instead of entropy and vorticity waves. The re-
ceptivity coefficient was found to increase as the rela-
tive nose radius was decreased. Malik et al. U% stud-
led the receptivity of Mach 8 flow past a sharp wedge
with 5.3° half angle to three different types of external
disturbances by solving compressible linearized Navier-
Stokes equations. The forcing disturbances include a
surface suction/blowing embedded in wedge surface, a
narrow beam of freestream fast acoustic waves, and
plane freestream fast acoustic waves in the freestream.
Their results showed that similar boundary-layer insta-
bility wave patterns are resulted in all cases of different
forcing freestream disturbance waves. No gnantitative
analysis of the supersonic boundary-layer receptivity
mechanism was done on the computational results.

Figure 1 shows a schematic of the receptivity process
of a supersonic flat-plate boundary layer to freestream
disturbances. An oblique bow shock wave is gener-
ated in supersonic viscous flow over a flat plate due
to the displacement of the boundary layer by the vis-
cous effects. The strength of the bow shock, which
is not known in advance, depends on the freestream
Mach number and Reynolds number of the flow. The
induced oblique shocks were neglected in most of the
previous theoretical and computational studies of the
stability and receptivity of supersonic and hypersonic
boundary layers. Such simplification is acceptable in
the LST 2. because the standoff distance of the shock
away from the wall is relatively large compared with
the boundary-layer thickness. For the study of the su-
personic boundary-layer receptivity to freestream dis-
turbances, however, the effects of the oblique shock
on the receptivity can be significant, hence cannot
be neglected. In the receptivity process, the forcing
freestream disturbance waves need to pass through the
oblique shock wave before they enter the boundary
layer to excite the unstable Mack modes. The inter-
actions between the shock wave and the forcing waves

generate complex wave patterns behind the shock.
Therefore, it is necessary to include the shock inter-
action in numerical simulation studies of supersonic
boundary-layer receptivity.

The objective of this paper is to study the recep-
tivity mechanisms of the supersonic boundary layer to
freestream acoustic waves by numerical simulations. In
the simulation, the {reestream acoustic waves are su-
perimposed on the steady base flow to investigate the
generation and development of boundary-layer insta-
bility waves. A plane freestream fast acoustic wave at
F = 2.2x107* with zero angle (0,, = 0} was studied in
our previous paper [5] However, different components
of discrete wave modes involved in boundary-layer dis-
turbances was not completely identified. Therefore,
the same case are studied in this paper in order to
completely identify all different wave modes induced in
boundary-layer disturbances by forcing freestream fast
acoustic waves. The receptivity properties are analyzed
based on numerical simulations and by the LST analy-
ses. The effects of forcing incident wave angles, forcing
wave frequencies, and wall temperature perturbations
on the receptivity are studied in this paper.

3 Governing Equations and
Numerical Methods

The governing equations, the numerical methods,
and the flow parameters are briefly described in this
section. Under thermally and calorically perfect gas
regime, the two-dimensional Navier-Stokes equations
in conservative form can be written as:

aU* 8 * * 0 * *
7?9—757+8?(F1+F"1)+8_y7( 2T FL) =0, (1)

©L,»
%

where the superscript represents dimensional vari-
ables, and U~ is a vector contalning the conservative
variables, {p*, p*u*, p*v*,e*}. F} and Fj are inviscid
flux vectors, and F%, and F%, are viscous and diffusive
flux vectors. In the numerical simulations, a constant
Prandt]l number of Pr = 0.72 1s used, and the viscos-
ity coeflicient are calculated by using the Sutherland’s
law.

In this paper, dimensional flow variables are nondi-
mensionalized using the steady-state freestream con-
ditions. Specifically, velocities are nondimensional-
ized by the freestream velocity UZ, length scales by
a boundary-layer thickness length L* given by Eq. (4),
density by pg,, pressure by pi,, temperature by 7%,
time by L*/U%,, vorticity by UZ /L*, entropy by )
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wave number by 1/L*, circular frequency by ul, /L*,
etc. The dimensionless flow variables are denoted by
the same notations as their dimensional counterparts
but without the superscript.

A fifth-order shock-fitting method of Zhong (16] ig
used to compute the two-dimensional Navier-Stokes
equations in the flow field bounded by the bow shock
and the plate (Figure 1). The shock-fitting method
treats the bow shock as a computational boundary.
The flow variables behind the shock are determined
by Rankine-Hugoniot relations across the shock and a
characteristic compatibility equation from behind the
shock. The transient movement of the shock and its in-
teraction with freestream disturbance waves are solved
as a part of the solutions. The use of shock-fitting
method make it possible to use high-order finite dif-
ference scheme for spatial discretization. Fifth-order
upwind finite difference scheme is applied for convec-
tive terms while sixth-order central scheme for the dis-
cretization of viscous terms. The spatial discretization
of the governing equations leads to a system of first-
order ordinary differential equations. Explicit Runge-
Kutta method is used for temporal discretization. The
detail numerical method has been presented in the pre-
vious paper [15] They are not repeated here.

Non-slip wall boundary condition is used for veloc-
ity. Adiabatic wall boundary condition is used for the
steady base flow. For unsteady flow simulations, the
boundary conditions for temperature fluctuations at
the wall satisfy either adiabatic wall (07"/9y = 0)
or isothermal wall (77 = 0) conditions. It has been
argued 217 that it is more physical to assume that the
temperature perturbations vanish at the solid bound-
ary even though an adiabatic wall boundary condition
1s used to calculate the base flow. In reality, the tem-
perature perturbations could be somewhere between
zero perturbation for isothermal condition and zero
normal gradient for adiabatic condition. Therefore, in
this paper, both the adiabatic wall and 1sothermal wall
boundary conditions are used for the temperature per-
turbations as two bounds for real cases if physical con-
dition for temperature perturbations is difficult to de-
termine. The effect of the two wall temperature bound-
ary conditions on the boundary-layer instability wave
growth rates will be investigated and discussed.

4 Flow Conditions

The receptivity of a Mach 4.5 boundary-layer flow
over a flat plate is considered because the sta-
bility of this Mach 4.5 flow has been extensively
studied 18721 The flow conditions are same as those

used in Kendall’s Y} experiment on the stability of a
Mach 4.5 flow over a flat plate, i.e.,

My, =45, Tz = 65.15 K
pl, = 728.4381557 Pa, Pr=0.72,

. LUl -
Rel, = form = 7.2 % 10°m~ 1 .

bl

In many figures of this paper, the results are plotted as
a function of dimensional ™ coordinate along the flat
plate because this case has been studied by previous
experiments. The dimensional z* coordinate in the
figures can be easily converted to dimensionless local
Reynolds numbers according to the following formula:

Rez; = Re:o 13* =T7.2% 10617* 3 (2)

where z* is the dimensional coordinate in meters mea-
sured from the leading edge along the plate surface for
the current simulations.

The computational domain of the current simula-
tions by using the shock-fitting method begins at z* =
0.006m and ends at 0.63m, corresponding to the local
Reynolds numbers ranging from Re, = 0.432 x 10°® to
Re, = 4.54 x 105, In studies of boundary-layer sta-
bility, the following Reynolds number, R, based on the
length scale of boundary-layer thickness are often used:

R Peots LT
Ho

; (3)

where length scale of boundary-layer thickness is de-
fined in this paper as

. “* r*
b= \ pi.‘:ou;o ' “

Hence, the relation between R and local Reynolds num-
ber Re, is

R=/Re, . (5)

In terms of R, the full computational domain of the
current simulations spans from R = 2079 to R =
2129.8. In the actual simulations, the computational
domain is divided into 11 sub-zones with a total of
3121 grid points in the streamwise direction and 121
grid points in the wall-normal direction. From super-
sonic boundary-layer self-similarity solutions, the dis-
placement thickness of the current boundary layer is
approximately 12.9L*. Grid stretching function is used



in wall-normal direction to cluster more points inside
the boundary layer near the wall. The grid points are
distributed uniformly in the streamwise direction. The
numerical accuracy of the results based on this grid as-
signment has been evaluated by grid refinement studies
to ensure grid independence of the numerical solutions,
which is shown in the previous paper (Ma & Zhong

2001).

5 Boundary-Layer Wave Mode
Characteristics

The purpose of the boundary-layer receptivity study
is to find out how environment disturbances enter the
boundary layer and generate boundary-layer instabil-
ity waves. The instability waves in supersonic bound-
ary layers, such as the first and the second modes,
have been studied extensively by Mack I and other re-
searchers by using the approach of the LST. However,
previous LST studies have been mainly focused on the
instability of the first- and second-mode waves. In a
receptivity process, it is found that some other wave
modes, which are stable in a linear stability analysis,
play an important role in the receptivity process. In
order to understand the receptivity process, it is nec-
essary to understand the characteristics of these sta-
ble wave modes. Therefore, as the first step in study-
ing the receptivity of a supersonic boundary layer to
freestream disturbances, the characteristics of normal
modes of the Mach 4.5 boundary layer are studied by
the LST in this section. A LST computer code based
on multi-domain spectral method of Malik 17 is devel-
oped to carry out the LST to identify instability modes.

Modes I, II, III and IV

The characteristics of Mach 4.5 (ReX, = 7.2x10%/m)
boundary-layer normal modes are studied. The base
flow obtained from self-similar boundary-layer solu-
tions are used to perform the LST because it is easier
to obtain self-similar base flow solutions at arbitrary
locations. Qur calculations have shown that the linear
stability properties based on steady flow solutions from
numerical simulations are very close to those based
on self-similar steady boundary-layer solutions. There-
fore, the self-similar base flow solutions are used in the
LST calculations in this section in order to extend the
stability calculation to much further downstream.

In the first test case, the eigenvalues o associated
with different modes are identified and tracked from
upstream to downstream with fixed frequency F =
2.2 x 10~* (spanwise wave number # = 0 for two-
dimensional waves). Here, adiabatic boundary condi-

(c)2002 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

tion for temperature disturbances is used. After com-
plex parameter o is found, a non-dimensional phase
velocity of the normal mode can be calculated as

a:B-E. (6)

oy

Either phase velocity a or the real part of the wave
number @, can be used to characterize the normal
mode inside the boundary layer. Figure 2 shows the
distributions of the phase velocities of boundary-layer
wave modes. The phase velocity distributions shown
in this figure include the following two computational
cases:

e Case 1: phase velocity distributions as a function
of different streamwise locations R at a fixed fre-
quency of F = 2.2 x 107*,

o Case 2: phasé velocity distributions as a function
of different frequencies F' at a fixed streamwise
location of R = 2000.

The figure shows that the two cases have identical
phase velocity curves when they are plotted as func-
tions of w = RF. In general, the phase velocities of
different normal modes inside the boundary layer can
be written as a function of nondimensional circular fre-
quency w for cases of different frequencies F' and dif-
ferent local Reynolds numbers R.

This figure shows the phase velocities of the first sev-
eral wave modes in the supersonic boundary layer. The
phase velocities of the fast acoustic wave (1 + 1/M,,),
entropy/vorticity wave (1), and slow acoustic wave
(1—1/M) are also shown in the figure for comparison.
In the figure, there are a class of wave modes, which
are originated with a initial phase velocity of the fast
acoustic wave (141/M). Before these wave modes be-
come distinct modes, their eiguvalues merge with the
continuous spectra. After these wave modes appear,
their phase velocities decrease gradually as they prop-
agate to downstream. In this paper, we define these
wave modes as mode I, mode II, mode III, etc. accord-
ing to the sequences of their appearance. Specifically,
mode I appears from the leading edge; mode II comes
out next, followed by mode III, and so on. In further
downstream, even higher modes will appear.

Figure 3 shows the typical eigenfunction profiles of
this class of modes at R = 4000 and F = 2.2 x 10~¢.
At this location, there is only one peak for mode I dis-
turbances, while there are one peak and one valley for
mode II, two peaks and one valley for mode III | two
peaks and two valleys for mode IV disturbances. This



figure also shows that the disturbances of this family
of modes are mainly concentrated inside the bound-
ary layer (the boundary-layer displacement thickness
is about §* = 12.9L*). When this class of distur-
bances propagate from upstream to downstream, the
total number of peaks and valleys for pressure distur-
bance profiles does not change, although the locations
of peaks and valleys can change gradually.

Mack modes (1st, 2nd, and 3rd modes)

Besides the family of wave modes I, II, III defined
above, Fig. 2 shows that there is another wave mode
starting from the leading edge with an initial phase
velocity close to 1 — 1/My, near the leading edge. For
this mode, its phase velocity is less than the freestream
velocity, and approaches the value of the freestream
velocity as it propagates to downstream. This mode
is termed the Mack modes because different sections
of this mode shown in the figure have been defined
by Mack (21 as the first, second, and third modes as
marked in the figure. It should be pointed out that
the first, second, third modes defined by Mack are in
fact different section of a single Mack mode as shown
in Fig. 2.

In the phase velocity curves shown in Fig. 2, the
Mack modes intersect with Mode I, II, III, and I'V sub-
sequently as RF increases. At the intersections of the
phase velocity curves, the Mack modes are synchro-
nized with mode [, mode II, mode III, or higher modes
because they have the same frequency and phase veloc-
ity there. The synchronization of two wave modes can
lead to resonant interactions between the two waves.
Unlike mode I, IT and III, whose numbers of the peaks
and valleys do not change as R increase for a fixed F,
the total number of peaks and valleys for pressure dis-
turbance profiles of the Mack modes increase gradually
when the Mack mode waves propagate from upstream
to downstream. For example, near the leading edge,
there is only one peak for pressure disturbance pro-
file of the Mack mode. After the synchronization with
mode I, another valley appears in pressure disturbance
profile. Mack defined the numbering of these modes
as first mode with one peak in pressure profile, second
mode with one peak and one valley, etc.

When the first mode propagates to downstream, it
is synchronized with mode I when the two modes in-
tersect in the phase velocity curves. At the location of
synchronization (R = 845 for F = 2.2 x 107%), both
the first mode and mode I have almost the same pro-
files of disturbances inside the boundary layer, which
is shown in Fig. 4. As a result, it is almost impossible
to distinguish mode [ from the first mode based on the
profiles of disturbances at this location. Because both
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the first mode and mode I have the same phase veloc-
ity at their synchronization location, it is impossible
to identify them from the phase velocity either. The
characteristic that can distinguish them is the change
of phase velocities during propagation. The phase ve-
locity of mode 1 decreases while that of the first mode
increases during their propagation to downstream. Af-
ter the synchronization point between mode I and the
first mode, another valley gradually appears in the pro-
file of pressure disturbances for the Mack mode. The
Mack mode in this region is called the second mode.
When the second mode propagates to downstream, it
gets synchronized with mode II. At the location of syn-
chronization (R = 2509 for F = 2.2 x 10™%), both the
second mode and mode II have almost the same pro-
files of disturbances inside the boundary layer, which
is shown in Fig. 4. This figure also shows that there is
much stronger oscillation in the profiles of the second
mode disturbances near the edge of the boundary layer
(6* = 12.9L*) compared with that of mode II. At the
location of Mack-mode synchronization with mode II,
another peak appears in the profile of pressure distur-
bances for the Mack mode, which is the characteristic
of the third mode based on Mack’s definition. Actually,
the profiles of Mack mode at R = 2509 shown in Fig.
4 are located in the transition region from the second
mode to the third mode. Similarly, the Mack mode will
get synchronized with mode IIT and become the fourth
mode when it propagates to further downstream (Fig.
2).

Stability of boundary-layer normal modes

The phase velocity distributions of disturbances
combined with growth rates (a;) and disturbance pro-
files are important parameters to identify different nor-
mal modes. The growth rates of different normal modes
for the previous two groups of computational cases are
plotted in Fig. 5. In this figure, different symbols stand
for the first group of cases of different R at a fixed
frequency of F = 2.2 x 10™%, and line patterns rep-
resent the second group of cases of different F at a
fixed Reynolds number of & = 2000. For both groups
of cases, the growth rates for mode I, II, III and IV
are always positive, which means this family of modes
are always stable. Furthermore, the values of o; of
these modes increase as they propagate to downstream,
which indicates that these modes become more and
more stable during their propagation to downstream.
Figure 5 also shows that only the Mack modes are un-
stable in the range of R+ F between 0.18 and 0.23, in
which the unstable Mack modes are the conventional
second mode. In this range, the growth rates of the
second mode change dramatically. As shown in the
figure, the slope of the growth rate curve for the sec-
ond mode is very sharp in this range. The shape of



growth rate curve of the unstable second mode is al-
most the same for the two groups of cases of fixed fre-
quency at F = 2.2 x 10~* and fixed Reynolds number
at R = 2000. In addition, the locations of the branch
I and II neutral stability points of the second mode
in terms of R * F are almost same for both group of
computational cases.

Effect of temperature boundary condition

To study the effect of wall boundary condition for
temperature perturbations on the stability character-
istics of the boundary-layer normal modes, eigenval-
ues associated with different modes at fixed location
(R = 2000) are obtained for a range of frequencies with
both isothermal and adiabatic wall boundary condi-
tions. The results of the isothermal case are compared
with those of the adiabatic case. Figure 6 and 7 com-
pares the phase velocities and the growth rates of the
relevant normal modes as a function of w (w = R F).
Different line patterns show the phase velocities of dif-
ferent normal modes for the isothermal case while dif-
ferent symbols denote those for the adiabatic case. The
figure shows that the phase velocities of normal modes
are the same for both isothermal case and adiabatic
case, which shows that the effect of wall temperature
disturbance boundary condition on the phase velocities
is very small. This figure also shows that all normal
modes of the isothermal case are more stable than the
corresponding modes of the adiabatic case.

6 Forcing Waves from Inlet

The characteristics of unsteady Mack modes have
been studied by both DNS and LST in our previous pa-
per ['5] The characteristics of steady boundary-layer
modes, mode 1 and mode 11, are studied by numeri-
cal simulations in this section. Mode I and mode II
waves with fixed frequency are imposed at the inlet to
study the wave modes characteristics and resonant in-
teractions in the supersonic boundary layer. The pro-
files of the forcing waves at the inlet are specified as
those obtained from the LST. At the inlet boundary of
the computational domain, the flow is specified as the
superposition of the steady base flow and a temporal
fluctuations of flow variables at frequency w, amplitude
¢, and streamwise wave number «,, i.e,

{@in, Y, 1) = G(Tin, y) + ed(y)e (FrTin—wt) (7)

where ¢(z;,,y,t) represents any of the flow variables.
For a given wave mode at a fixed frequency, the wave
number «, and the disturbance structure contained in

(c)2002 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

qS(y) is obtained from the LST results. Because z;,
is fixed at the inflow, the product of a,z;, is a con-
stant for a given a,. This constant can only affect the
phase angle at the inflow. Therefore, it is not neces-
sary to specify o, when a normal mode is introduced at
the inlet. The subsequent downstream propagation of
this wave mode and its interactions with other modes
are simulated by time-accurate computations of the full
Navier-Stokes equations.

6.1 Mack modes at different frequen-
cies

The effects of wave frequency on the propagation of
the Mack modes are studied by comparing the results
of four cases with different frequencies, i.e.

F=06x10"%12x10"%16x10"%2.2x 1074

The adiabatic boundary condition is used for the tem-
perature perturbations on the wall for these computa-
tional cases. Figure 8§ compares amplitudes of pressure
perturbations on the wall for the four cases with differ-
ent frequencies when the Mack-mode waves with the
same initial pressure amplitude of |p/|/pe, = 0.0002835
are imposed at the inlet. The inlet of the four cases has
the same location of z* = 0.025m (R = 424.26), where
the Mack mode is in the first mode region. The fig-
ure shows that as the frequencies decrease, the growth
rates of the Mack mode increase and the locations of
branch II neutral stability points move downstream.

The effects of frequencies on the growth rates and
the locations of branch II neutral stability points are
consistent with the LST prediction. Based on the LST
prediction, the locations of branch II neutral stability
point of the second mode in terms of R % F' are same
for cases of different frequencies (Figs. 5). The peak
amplitude of pressure perturbations at the branch 11
neutral stability point for the case of FF = 2.2 x 104 is
located at 2* = 0.155m, or R+ F' = 0.2324 (R = 1056).
Therefore, it is expected that the peak amplitudes of
pressure perturbations for cases of F = 1.6 x 10~% and
F = 1.2 x 107% should be located at R F = 0.2324
also, i.e., B = 1452.6, or z* = 0.293m for the case of
F=16x10"% and R = 1936.7or * = 0.521m for the
case of F = 1.2 x 10™*%. From the numerical simulation
with F = 1.6 x 107%, the peak amplitude of pressure
perturbation is |p'|/pe = 0.003774 and located at z* =
0.2914m (R = 1448.5). For the case of FF = 1.2 x
10~%, the peak amplitude of pressure perturbation is
[9’|/poo = 0.007658 and it is located at z* = 0.5188m
(R = 1932.7). Therefore, the locations of the peak
pressure amplitudes from the numerical simulations are
consistent with those predicted by the LST.



On the other hand, the peak value of pressure per-
turbations for the case of F = 1.2 x 107* is almost
quadruple of that for the case of F = 2.2 x 10~* and
twice of that for the case of F' = 1.6 x10™%. This can be
explained from the LST prediction on the growth rates
of the second mode. For different frequencies, there are
very similar growth rate curves in the second-mode un-
stable region in terms of R * I shown in Fig. 5. R* F
is proportional to the square root of physical length
z* for a fixed frequency. For different frequencies, the
second-mode unstable region expressed in z* should be
longer for lower frequency case given the same range of
R % F. From the definition of growth rates [15], the
amplitude changing with # can be obtained by taking
integration of growth rates with respect to z* according
to the following formula:

fz: —a{w)dz”
“o

|6](z") = |¢ole ) (8)

where |¢5| is the initial wave amplitude at zj. There-
fore, a longer integration range in the second-mode un-
stable region leads to larger disturbance amplitudes for
the cases of lower frequency given the same initial wave
amplitudes.

For the case with F = 0.6 x 10~%, the unstable re-
gion of the second mode is out of the range of the cur-
rent computational domain (0.02592 < R F < 0.128),
while the first mode is slightly unstable from the LST
prediction. The LST prediction agrees with the simula-
tion results as shown in Fig. 8. The first-mode branch
I neutral stability point from the LST is located at
z* = 0.536 (R = 1963.6). From simulation, pressure
perturbation reach peak value of p’/p = 0.001226 at
¢* = 0.573 (R = 2031.16). The numerical solutions
agree well with those of the LST prediction in term of
the location of the branch II neutral stality point for
the first mode.

Figure 9 compares the growth rates as a function
of R % F between the results from LST and numerical
simulations for two cases of different frequencies, i.e.,
F = 22x107% and 1.6 x 10~*. Again, the growth
rate curves obtained from the numerical simulations
for two cases of different frequencies are very close to
each other, except that the peak growth rate is slightly
larger for the case of F = 1.6 x 10~*. The locations
of the peaks at different frequencies are approximately
the same. Therefore, both the results from the LST
predictions (Figs. 5) and those from numerical simu-
lations (Fig. 9) show that the growth rate curves of
the second mode vs. R x F are very close for differ-
ent frequencies. As discussed before, compared with
the numerical solutions, the corresponding LST results
under predict the growth rates of the second mode in
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the supersonic boundary layer.

Therefore, the results predicted by the LST are ac-
curate in predicting the wave numbers and wave mode
structures of the Mack modes in the supersonic bound-
ary layer, but the LST results are not accurate in pre-
dicting the growth rates of the Mack modes. The LST
calculations consistently under predict the growth rates
as compared with the full Navier-Stokes simulations.

6.2 Mode I Propagation and Resonant
Interactions with Mack Modes

Mode I at F=22x 10-¢

The development of mode I waves in the boundary
layer is considered in this section, where forcing distur-
bances of mode I with a frequency of F = 2.9 x 107%
are introduced at the inlet of the computational do-
main located at z* = 0.026m (R = 424.26). Though
this mode is always stable according to the LST predic-
tion, it is important to the supersonic boundary-layer
receptivity process. Unlike the Mack mode with a sin-
gle mode propagation without significant excitation of
other modes, the simulation results in this section show
that mode I can convert to the Mack-mode waves in
the boundary layer through the resonant interactions
between mode I and the Mack modes. Such resonant
interactions are the key to the receptivity of the second
mode in the supersonic boundary layer.

Figure 10 shows the instantaneous pressure distur-
bances along the wall surface after the unsteady solu-
tions reach a periodic state. There are multiple peaks
in amplitudes in pressure perturbations, which indi-
cates the excitation of different wave modes at differ-
ent locations of the wave propagation from the inlet to
downstream. The amplitudes of pressure disturbances
increases before reaching the first peak located approx-
imately at ©* = 0.06m, which means this mode is un-
stable in this region. This is contradictory to the LST
prediction shown in Fig. 5 that mode I should be always
stable. Intuitively, the amplification of mode I may due
to effect of the shock wave, which 1s not included in
the LST. A similar numerical simulation on the prop-
agation of mode I is performed by using a rectangle
domain without the shock wave and boundary-layer
self-similar solutions are used as inflow conditions (Ma
& Zhong 2000). Figure 11 compares the amplitudes
of pressure perturbations for two simulations with and
without shock. This figure indicates that the effect of
the shock on the propagation of mode I disturbances
in the boundary layer are negligible. One possible rea-
son for the amplification of mode I is resulted from
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the interaction between mode I disturbances and other
discrete modes or continuous disturbances in the flow
field.

After passing the first peak (at £* = 0.06m), mode I
waves decay due to its inherent stable property. Figure
10 show a second growth region for mode I in the range
of z* between 0.115m to 0.155m. This growth results
from resonant interaction between mode I and the first
mode when the two modes intersect at the synchro-
nization point shown in Fig. 2. As shown in Fig. 4,
both the first mode and mode I have almost the same
profiles of disturbances across the boundary layer at
the synchronization point. As a result, mode I waves
convert to the Mack-mode waves in the synchroniza-
tion region. After the synchronization point between
mode I and the first mode, the Mack mode becomes the
second mode, which is unstable in the region closely be-
hind the synchronization point. The wave amplitudes
in the region after the synchronization point increase
because of the growth of the induced second mode in its
unstable region. Therefore, the boundary-layer distur-
bances obtalned by the numerical simulation are ampli-
fled again when they reach the second-mode unstable
region because the second mode are induced by reso-
nant interaction with mode I.

The process that mode 1 waves convert to the sec-
ond mode waves is also shown in the distribution of the
phase velocities calculated from the numerical solutions
of the pressure disturbances along the wall surface as
shown in Fig. 12. The figure shows that the phase ve-
locities obtained from the simulation are the same as
those of mode I predicted by the LST in the upstream
region. This is expected because the disturbances im-
posed at the inlet are those of mode 1 obtained from the
linear stability analysis. As the wave propagates down-
stream, mode I has an energy exchange with the sec-
ond mode at the wave synchronization point between
mode I and the Mack mode located approximately at
z* = 0.1m. The Mack mode is excited by the interac-
tion with mode I at the synchronization point. After
the synchronization point, the second mode induced
by mode I propagates downstream. The amplitudes of
the second Mack mode grow in the subsequent unsta-
ble region until it reaches branch Il neutral stability
point. After the Mack-mode waves pass branch II neu-
tral stability point of the second mode, the amplitudes
of disturbances decay rapidly in the second-mode sta-
ble region. There are strong oscillations in the phase
velocity distribution after the decay of the second mode
because the disturbances result from the modulation
of the second mode and mode 1T excited further down-
stream. Finally, both mode II and the Mack-mode dis-
turbances die down in the downstream.

These results indicate that although mode I is al-
ways stable, it can play an important role in the re-
ceptivity process because it can convert to the unsta-
ble Mack mode through the resonant interaction with
Mack modes. The amplitudes of the induced Mack
mode can grow in its unstable region immediately fol-
lowing the wave synchronization point.

Effect of wall temperature boundary conditions

The effect of the wall temperature boundary con-
ditions on the propagation of mode I is investigated
by introducing mode I disturbances at the inlet with
both the isothermal wall and the adiabatic wall bound-
ary conditions. The inlet is located at z* = 0.025m
(R = 424.26), and the initial pressure amplitude is
[9'|/pse = 0.0002835. Two cases with different fre-
quencies of F = 2.2 x 107 and F = 1.2 x 10~4
are studied. Figure 14 compares the amplitudes of
pressure perturbations on the wall between the cases
with two different wall temperature boundary condi-
tions and two different frequencies. QOverall, the am-
plitudes of pressure perturbations away from the inlet
are much smaller for the isothermal cases compared to
those of the adiabatic cases with the same frequency.
Especially, at the same frequency, pressure amplitudes
at the second-mode branch II neutral stability points
are much smaller in the isothermal case than those
in the adiabatic case. The reason for the difference
in wave amplitudes between the adiabatic cases and
the isothermal cases is that the normal modes of the
isothermal cases are linearly more stable than those
of the adiabatic cases (Fig. 7). Compared with an
adiabatic case, mode I in an isothermal case is less
amplified before it reaches the first peak in pressure
perturbations. Furthermore, the amplitudes of mode I
disturbances in the isothermal case decay much faster
and die down to a much smaller value when the wave
reaches the synchronization point between mode I and
the Mack modes. As a result, the initial amplitudes of
the induced second-mode waves are much smaller in the
isothermal cases than those in the corresponding adia-
batic cases. In addition, the growth rates of the second
mode shown in Fig. 7 are smaller for the isothermal
case than those for the adiabatic case. Therefore, the
amplitudes of induced second-mode waves at branch II
neutral stability point are significantly smaller for the
isothermal cases than those for the adiabatic cases.

6.3 Mode Il Propagation and Resonant
Interactions with Acoustic Waves

The development of mode II waves in the boundary
layer is considered in this section. Similar to mode
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I, this mode is always stable according to the LST
prediction, but they are important to the supersonic
boundary-layer receptivity process. As shown in Fig.
2, mode II was initiated at the same phase velocity as
that of the freestream fast acoustic wave at 14+ 1/Meo.
As mode II propagates downstream, its phase velocity
decreases. Mode II can have a energy exchange with
the fast acoustic waves in the boundary layer through
these resonant interactions. Such resonant interactions
are critical to the receptivity of the Mack mode in the
supersonic boundary layer.

The results of two test cases of mode II propagation
are presented in this section. In these cases, mode II
disturbances of the same frequency are imposed at dif-
ferent inlet locations. In the first case, the initial mode
Il waves are imposed at RF = 0.3552. Figure 2 shows
that the inlet location of this case is in the downstream
of the location where mode II first appear in Fig. 2. On
the other hand, in the second case, the initial mode 11
waves are imposed at RF = 0.2539. The inlet location
1s near the location of first appearance of mode II. The
results in this case will show that the subsequent devel-
opment of mode II is very different in these two cases
because there are wave Interaction near this synchro-
nization point between mode II and the fast acoustic
waves.

Mode II imposed at the inlet with RF' = 0.3552

expected to agree with the LST results because there
is no other wave components in the solutions.

Figure 17 compares the profiles of disturbances at
z* = 0.488m (R = 1874.46) obtained from the numer-
ical simulation and those predicted by the LST as the
eigenfunctions of mode II. The figure shows an excel-
lent agreement in the disturbance structures between
the numerical results and the LST predictions. Figure
18 shows the comparison of streamwise wave numbers
(o) and growth rates (a;) obtained by the numerical
simulation and the corresponding values predicted by
the LST. The figure shows a very good agreement in
streamwise wave numbers. Therefore, there are only
pure mode IT waves in the boundary layer. The eigen-
functions and wave numbers of the waves can be pre-
dicted very well by the linear stability analysis. How-
ever, consistent with other modes, the LST analysis
overpredicts the growth rates («;) of mode II in the
boundary layer as shown in Fig. 19. Therefore, there
are significant differences on the growth rates between
the LST predictions and the numerical simulation re-
sults (larger than 50% in maximum). Again, the differ-
ences may be due to the fact that a parallel assumption
is used in the linear stability analysis, while the actual
boundary layer is not parallel. The nonparallel effect
becomes stronger at higher Mach numbers.

Mode II imposed at inlet with RF = (.2539

In this case, the forcing disturbances of mode IT with
a frequency of F = 2.2 x 10~% are introduced at the
inlet of the computational domain located at z* =
0.362m (R = 1614.43). The adiabatic wall boundary
condition is used for the temperature perturbations on
the wall. The inlet is located at RF = 0.3552 in the
phase velocity plots of Fig. 2, which shows that mode
Il is imposed from downstream of its initial synchro-
nization point with the fast acoustic wave.

Figure 15 shows the contours of instantaneous den-
sity perturbations obtained from the numerical simu-
Jation after the flow solution reaches a periodic state.
Unlike the density contours of the second mode, the
density disturbances of mode II do not have the rope-
like density wave patterns, which is a signature mark
of the second mode. Figure 16 shows the instantaneous
pressure disturbances along the wall surface. The de-
caying of pressure disturbances indicates that mode I
waves are stable, which is consistent with the predic-
tion of the LST (Fig. 5). This figure show the simula-
tion results of this case only contains the disturbances
of pure mode II waves in the boundary layer. No other
wave modes are excited. As predicted by the linear sta-
bility analysis, the wave mode is stable as it propagates
downstream. The results of numerical simulations are

In this case, mode II disturbances at a fixed fre-
quency F = 2.2x107% are introduced through the inlet
at #* = 0.185m (R = 1154.12). This case is different
from the previous case only in the location of the inlet.
For previous case, the inlet is located in the down-
stream of the initial synchronization point between
mode IT waves and fast acoustic waves. For this case,
the inlet is located at R = 1154.12 (RF = 0.2539),
which 1s very close to the synchronization point be-
tween mode II waves and fast acoustic waves. The
profiles of mode II disturbances at the inlet are showed
in Fig. 20. It shows that the wave structures of mode
II at this early location contain strong amplitudes in
region outside the boundary layer.

Figure 21 shows the contours of instantaneous den-
sity perturbations obtained from the numerical simu-
lation after the flow field reaches a periodic state. The
results show a strong wave field outside the boundary
layer near the inlet location. Compared with the pre-
vious case of a single mode 1I wave propagation in the
boundary layer, the wave field in the current case is
much more complex because of the wave-mode syn-
chronization between mode II and the fast acoustic
wave at the inlet. Figure 22 shows the distribution
of instantaneous pressure disturbances along the wall



surface. Compared with the previous case of mode 11
propagation shown in Fig. 16, Fig. 22 shows that the
disturbance field of the current case contains a mixture
of several wave modes with multiple peaks in pertur-
bation amplitudes. Even though mode II is always a
stable mode according to the LST analysis, the am-
plitudes of pressure disturbances along the wall sur-
face for the current case increase before they reach the
peak value. However, according to Fig. 5, mode II is
predicted by the LST to be always stable. This differ-
ence in stability result is not caused by the fact that
the effect of the shock is neglected in the LST analysis.
A similar numerical simulation study on the stability
properties of mode II by using a rectangle domain with-
out the shock shows that the effect from the shock on
the mode II stability are negligible.

It is found that the reason for the amplification of
wave amplitudes in a stable region of mode II is caused
by a resonance between mode II disturbances and the
fast acoustic waves outside the boundary layer. From
the profiles of mode IT disturbances at the inlet shown
in Fig. 20, the structure of wave disturbances of mode
IT does not decay exponentially outside the boundary
layer in the synchronization point at the inlet. The
mode II wave profiles are very different from those of
the same mode at downstream locations (see Fig. 17)
where mode II is not synchronized with the fast acous-
tic wave. In another word, there are strong distur-
bances outside the boundary layer for mode II near the
synchronization point between mode II waves and fast
acoustic waves. The disturbances outside the boundary
layer belong to fast acoustic waves because the nondi-
mensional amplitudes of disturbances satisfy the dis-
persive relationship of fast acoustic waves, i.e.,

R = Mo = (@

(v-1)

Figure 23 compares the nondimensionalized magni-
tudes of mode II wave at the inlet. The figure shows
that the perturbations of mode II outside the bound-
ary laver satisfy the acoustic wave relations given by
Eq. (9). In addition, the phase velocities of induced
disturbances outside the boundary layer are the same
as the phase velocity of a fast acoustic wave, i.e.,

a=1+ M. (10)

Figure 24 shows the profiles of phase velocities of in-
duced disturbances along the wall-normal direction at
different streamwise locations. The phase velocities ap-
proach that of a fast acoustic wave in the region outside
the boundary layer. The results in both Fig. 24 and
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Fig. 23 indicate that there are strong acoustic wave
components outside the boundary layer in the initial
mode II disturbances, which are introduced through
the inlet at 2* = 0.185m (RF = 0.2539) in the numeri-
cal simulation. Figure 24 also shows that the phase ve-
locities of mode II inside the boundary layer decreases
as mode II waves propagate to downstream.

Figure 25 shows the comparison of streamwise wave
numbers of mode II predicted by the LST and those ob-
tained by the numerical simulations of imposed mode
IT with the same frequency at different inlet locations.
The figure shows that mode II waves are modulated
by the fast acoustic wave when mode II are imposed
near their initial wave synchronization location. On the
other hand, if mode II are imposed at an inlet down-
stream of the initial point, there is no wave modulation.
The wave numbers of the numerical simulation for this
case (simulation 1) agree very well with those obtained

by the LST.

Figure 26 compares the profiles of disturbances at
z* = 0.488m (R = 1874.46 and RF = 0.4124) ob-
tained from the numerical simulation with those pre-
dicted by the LST. The numerical simulation is for
the second case of mode II imposed near the initial
wave synchronization location. The figure shows that
there is good agreement in the disturbance structures
inside the boundary layer between the numerical sim-
ulation solutions and eigenfunctions predicted by the
LST. However, because a modulation of mode II with
the acoustic wave in the simulation, the two sets of
results do not agree outside the boundary layer. In
the numerical simulation, the wave field downstream
contain both mode II wave and a strong acoustic wave
components outside the boundary layer. The acous-
tic wave is excited by mode II through their mutual
resonant interaction. It is expected that an imposed
forcing acoustic wave can also excite mode II at this
synchronization location through their resonant inter-
actlons.

Therefore, the characteristics of mode II propagation
in the supersonic boundary layer can be summarized
as follows. Figure 2 shows that the phase velocities of
mode II waves are the same as that of the fast acoustic
waves when mode II waves initially appear in the figure.
At this initial location, there is a strong resonant in-
teraction between mode IT and the fast acoustic waves,
because the phase velocities of mode II disturbances
are synchronized with that of the acoustic waves. As
a result, though predicted to be stable by the LST,
mode II disturbances are amplified when they are in-
troduced at the inlet near this synchronization point
located at RF = 0.2539. Similarly, the amplification
of mode I waves is also due to the resonance between
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mode I waves and acoustic waves. Since the LST anal-
ysis can not account for the interactions between dif-
ferent types of waves, the amplification of mode IT dis-
turbances can not be correctly predicted by the LST
when there are resonant wave interactions. The cur-
rent numerical stmulation approach based on the full
Navier-Stokes equations can take into account for these
interactions, as well as the effect of shock interaction
with wave modes. On the other hand, when mode II
disturbances are introduced through the inlet at a fur-
ther downstream location with RF = 0.3552, the mode
I disturbances are mainly confined inside the bound-
ary layer and all disturbances decay exponentially to
z2ro outside the boundary layer (see Fig. 17). In addi-
tion, in the downstream after RF = 0.3552, the phase
volocities of mode IT waves are far away from those of
the fast acoustic waves as shown in Fig. 25). There-
fore, there is no interaction between mode II waves and
the acoustic waves in this case. Consequently, there is
good agreement on the wave numbers of mode II dis-
turbances between the results from the LST and the
numerical simulation, though the LST consistently un-
der predicts the magnitude of the growth rates, due
to the effect of non-parallel boundary layer, which is
neglected in the LST.

7 Freestream Disturbances

The receptivity of the supersonic boundary layer to
freestream disturbance waves are considered by the nu-
merical simulations. The oblique shock plays an impor-
tant role in the current study because the disturbance
waves first pass through the shock before entering the
boundary layer. In the simulation, the freestream dis-
turbances are superimposed on the steady base flow
to investigate the excitation and the development of
boundary-layer instability waves. The effects of the in-
teractions between the oblique shock and freestream
disturbances are accurately taken into account by us-
ing shock-fitting method. The freestream disturbances
are assumed to be weak monochromatic plane acoustic
waves before reaching the shock. The perturbations
of flow variable in the freestream introduced by the
freestream acoustic waves can be written in the follow-
ing form:

; e )
) 'l ) o

where |u'|, |v'|, |p|, and |p'| are perturbation ampli-
tudes satisfying the following relations:
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oo = Utk /K,
[P'loo = PooCoo '],

[v|o0 = Ucothy/k ,
1P loo = Pl /C2, ,

where ¢ is a small nondimensional parameter represent-
ing the freestream wave magnitude. The parameter k
is the freestream wave number with components &, and
ky in streamwise and normal direction respectively, i.e.

)

kg = kcos(fsc), ky = —ksin(l,.) , (12)

where §,. is the incident angle of the freestream acous-
tic waves relative to streamwise direction as shown in
Fig. 1. The nondimensional wave number is related to
the circular frequency w by dispersion relation:

W = k (j:COO -+ Uno COS gac) 3 (13)

where “+4” are associated with fast or slow acoustic
waves respectively. The frequency is characterized by
a dimensionless frequency F' defined by

* %
F__w/“oo
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(14)

where w* is dimensional circular frequency. The rela-
tion between nondimensional circular frequency w and
Fis

F= (15)

W€

8 Receptivity to Plane
Freestream Fast Acoustic
Waves

In this group of cases, plane freestream fast acous-
tic waves with different frequencies and incident wave
angles (#,.) are imposed at the top of computational
boundary in front of the shock. The amplitude of
the velocity disturbance in freestream is chosen to be
¢ = 5.0 x 107%. The receptivity mechanisms and
properties of different boundary-layer discrete normal
modes to plane freestream fast acoustic waves with dif-
ferent incident wave angles, frequencies, and different
wall boundary conditions are studied in this section.

A plane freestream fast acoustic wave at F = 2.2 x
10~* with zero angle (8, = 0) was studied in our pre-
vious paper *3, However, different components of dis-
crete wave modes involved in boundary-layer distur-
bances was not completely identified. Therefore, the
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same case are studied here in order to completely iden-
tify all different wave modes induced in boundary-layer
disturbances by forcing freestream fast acoustic waves.

Identification of wave mode

Figure 27 shows the distribution of instantaneous
pressure perturbations along the wall surface induced
by a plane freestream fast acoustic wave at F
2.2 x 10~* with zero angle. Pressure perturbations on
the wall shows complex wave patterns, which indicates
the existence of a number of wave modes generated in
the boundary layer by the receptivity process. Accord-
ing to Mack ] and Gaponov’s (22] study, transmitted
acoustic waves can penetrate the boundary layer and
form the Stokes waves with continuous spatial spectral
as well as discrete wave modes in the boundary layer.
Stokes waves are combination of acoustic waves, vor-
ticity waves and entropy waves. Among Stokes waves,
the component of acoustic waves is dominant in this
case. The discrete wave modes induced in the bound-
ary layer include both Mack modes and a family of sta-
ble modes of mode I, mode I1, etc. Based on our previ-
ous study (5] the second Mack-mode disturbances are
expected to be the dominant instability waves in a local
region between z* = 0.1m (R = 848.5) and z* = 0.2m
(R = 1200). However, this figure shows that there are
no dominant second-mode disturbances shown in this
range. On the contrary, a clearly dominant wave mode
appears after z* = 0.2m. Its amplitudes increase be-
fore reaching a peak value at z* ~ 0.31m, although
all normal modes are stable in this region predicted by
the LST analysis. In fact, a strongly unstable band
lying at frequencies above the second-mode one was
also observed in Kendall’s [*!] experiment on hyper-
sonic boundary-layer disturbances induced by acous-
tic waves. So far, the contradiction on the stability
of boundary-layer normal mode between experimental
observation and LST prediction has not been resolved
yet. Therefore, it is necessary to identify all different
wave modes in the boundary layer in order to under-
stand the receptivity mechanisms.

The change of pressure perturbations along the wall
surface in the downstream shown in Fig. 27 has a very
similar pattern as that of mode II when a single mode
I1 wave is introduced at the inlet with RF = 0.2539
shown in Fig. 22. Though mode II is linearly always
stable as predicted by LST, it was shown that the
growth of mode II is caused by a resonance between
mode II disturbances inside the boundary layer and
fast acoustic waves outside the boundary layer in the
region near the synchronization point between the two
waves. Figure 28 compares the amplitudes of pressure
perturbations along the wall surface due to two differ-
ent ways of imposing disturbances: the current case of
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plane freestream fast acoustic waves and the previous
case of imposing mode II wave at the inlet located at
z* = 0.185m (Fig. 22. The amplitude of mode II waves
which are introduced at the inlet is multiflied by a fac-
tor so that the maximum amplitude of pressure pertur-
bations on the wall surface are the same as that induced
by plane freestream fast acoustic waves in current case.
This figure shows that the two cases have very similar
pattern of growth and decay in pressure perturbations.
Hence the receptivity to freestream fast acoustic wave
generates mode II waves in this region. To support this
conclusion, Fig. 29 compares the profiles of induced dis-
turbances with the structure of mode II wave obtained
from LST at «* = 0.362m (R = 1614.43). It shows
that the structure of induced disturbances inside the
boundary layer (y/L < 12.9) matches the structure of
mode II wave from LST very well. The differences in
the region outside the boundary layer is due to the
existence of transmitted acoustic waves outside of the
boundary layer. Therefore, the boundary-layer distur-
bances in the downstream (z* > 0.2m) of current case
contain a dominant mode II.

The phase velocities of the induced boundary-layer
disturbances are calculated based on pressure pertur-
bations by using temporal Fourier analysis. Figure
30 shows the distribution of the phase velocities along
the wall surface. The phase velocities of the first and
the second Mack modes, and modes I and II from the
LST are also plotted in the same figure for compar-
ison with the numerical solutions. The figure shows
that as freestream fast acoustic waves enter the bound-
ary layer, phase velocities of the induced waves is
close to those of mode I waves in the upstream region
(z* < 0.1m). This indicates that mode I waves are
generated inside the boundary layer due to the reso-
nant interaction between mode I waves and fast acous-
tic waves. near the leading edge. This is confirmed by
the fact that the structures of the induced disturbances
can match the structure of mode I in this region, which
is shown in Fig. 31. Figure 31 compares the structure of
disturbances induced by freestream fast acoustic waves
and the structure of mode I disturbances from LST at
a grid station (z* = 0.065m), After passing the first
peak (at z* = 0.065m), mode I waves decay due to its
inherent stable properties after its phase velocities de-
crease and there is no more resonance between mode I
waves and acoustic waves. Before mode I waves die out
during the propagation, they are synchronized with the
Mack mode. As shown in Fig. 4 both the first mode
and mode I have almost the same profiles of distur-
bances across the boundary layer at the synchroniza-
tion point. As a result, mode I waves convert to the
Mack-mode waves in the synchronization region (Fig.
30). Fig. 30 shows a strong oscillation in the region
between z* = 0.1m and z* = 0.2m, where the second
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mode is expected to be dominant. The oscillation in
the phase velocity curve results from the modulation
between the second mode waves and Stokes waves.

In the region of further downstream (z* > 0.2m),
Fig. 30 shows that the disturbances in the boundary
layer are dominated by a wave mode and the phase
velocity of which is close to that of mode II. As shown
in Fig. 29, the the structures of induced disturbances
match the structure of mode II predicted by LST in this
region. If further downstream at location of z* > 0.5m,
the mode I waves die down due to their inherent stable
properties. As a result, no dominant modes exists in
this region. Therefore, there are strong oscillations in
phase velocities again in further downstream.

Response coefficient

In the current study, it is found that the Mack-
mode waves and fast acoustic waves have very different
wave numbers. This fact can be used to extract the
wave components of the the second Mack mode from
the overall disturbance field in the boundary layer by
means of a spatial Fourier analysis. After identification
of different discrete modes included in boundary-layer
disturbances induced by freestream fast acoustic waves,
TFourier analysis and a band-pass filter is used to decom-
pose the second mode waves from the total boundary-
layer disturbances. This wave decomposition method
has sucessfully been used in our previous study 18]

Response coefficients of the boundary-layer normal
modes, such as Mack mode, mode I and mode II, are
defined to to quantitatively study the acoustic recep-
tivity of the boundary layer. Specifically, the response
coefficient of the boundary layer to forcing disturbances
for a given mode in this paper is defined as

!
I{mode — lpm/ode l
Phol

(16)

where [p|mode 1s the maximum amplitude of pressure
perturbations for the wave mode. For the second mode,
this maximum value is located at branch II neutral
point of the decomposed second wave fields. Hence, the
response coeflicient for the second mode is in fact the
receptivity coefficient commonly defined in receptivity
studies, i.e., the ratio of the decomposed second mode
maximum amplitude over the forcing wave amplitude.

In upstream region near the leading edge, the dis-
turbance waves after removing the second mode are
dominated by mode I waves. The response coefficient
for mode I wave is close to the receptivity coefficient of
mode I. In the downstream region, mode II waves are
dominant. The response coefficient for mode II wave in
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this region is close to the receptivity coefficient of mode
II. It is should noted that the disturbances in mode I
and mode IT dominant regions also contain some mi-
nor components of the Stokes waves, which cannot be
separated from mode I and mode II waves. As dis-
cussed earlier, the acoustic wave components are rela-
tively very weak in the peak locations of mode I and
mode II waves. Therefore, we use response coefficient
instead of receptivity coefficient for mode I and mode II
waves. For example, for the current case of freestream
fast acoustic waves at zero incident angle, the response
coefficients for mode I, the second mode and mode II
are:

Second mode: Kq,5 = 1.03
Mode I: Ky =175
Mode II: I\"[[ =214

Mode II has much stronger receptivity than the other
two mdoes because its resonant Interaction with the
fast acoustic wave.

Effects of incident angles of the forcing waves

The forcing fast acoustic waves in the freestream
can impinge on the flat plate at different incident an-
gles. The effects of incident angles on the receptivity
are studied by numerical simulations on receptivities of
the Mach 4.5 boundary layer to freestream fast acous-
tic waves at different incident angles. Specifically, 12
computational cases of different incident wave angles
6. are considered. The following forcing incident wave
angles 8, have been considered:

Z 1 2 3 4 5 &6
. 0 75 150 180 200 225
£ 7 8 9 10 11 12
0. 30.0 375 450 60.0 75.0 90.0

All other flow conditions are the same for these cases.
Especially, the frequency of different cases are the same
at F=22x 1074

In this paper, the receptivity characteristics of sec-
ond mode, mode I, and mode II are measured by re-
sponse coefficients defined in Eq. (16). As discussed
earlier, the response coefficients calculated in this pa-
per for the second mode, K4, are the same as recep-
tivity coefficients defined by most researchers in this
field. Figure 33 shows the response coeflicients for com-
putational cases of different incident fast acoustic wave
angles. Each symbol in the plot represents one of the
12 computational cases of different impinging angles
with the same frequency. It shows that the receptivity
of the mode II (and mode I to less degree), which is lin-



early stable from LST, has a much stronger receptivity
response to the forcing waves than that of the unsta-
ble second mode. This figure is a significant because it
demonstrates the importance of stable modes in the re-
ceptivity process and shows the effects of incident wave
angles on the receptivity process.

Figure 33 shows that for a fixed frequency of the cur-
rent case, there is an “optimal” incident angle 8,. for
each wave mode to reach a maximum wave amplifica-
tion. The maximum receptivity for mode II is reached
for incident wave angles in the range between 18° and
22.5°. The maximum receptivity for mode I is reached
for §,. around 45°. On the other hand, the receptivity
coeflicient for the second mode is less sensitive to the
change of the incident wave angles. The maximum re-
ceptivity for the second mode is reached for 4,. around
26°. The second mode is not very sensitive to the inci-
dent wave angles because the second mode is unstable
in this case. The linear growth of the second mode is
independent of the forcing waves, which can only affect
the initial conditions of the second mode growth.

Effect of wall temperature conditions

In the current study, the steady base flow field is al-
ways the same supersonic boundary layer flow over a
flat plate with an adiabatic wall boundary condition.
For the temperature disturbances in the unsteady so-
lutions, either adiabatic or isothermal conditions can
be used for the perturbations only. The temperature
perturbation condition in practical applications will be
somewhere between these two extreme cases. For this
reason, both boundary conditions have been consid-
ered in this paper. In this section, the effect of the wall
temperature perturbation boundary conditions on the
receptivity are compared by numerical simulations.

To study the effect of wall temperature perturbation
conditions on the boundary-layer receptivity proper-
ties, the receptivity to plane acoustic waves at a fixed
F = 2.2 % 10"* are considered. Both isothermal wall
and adiabatic wall boundary conditions are used while
all other flow conditions are same. The forcing fast
acoustic waves in the freestream can impinge on the flat
plate at different incident angles. The effects of inci-
dent angles on the receptivity are studied by numerical
simulations on receptivities of the Mach 4.5 boundary
layer to freestream fast acoustic waves at different inci-
dent angles. Adiabatic wall boundary condition is used
in all these cases. Specifically, 12 computational cases
of different incident wave angles 8,. are considered.

Figure 32 compares the amplitudes of pressure per-
turbations induced by freestream fast acoustic waves at
B, = 0° for the two cases of the different wall bound-
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ary conditions for the temperature perturbations. The
figure shows a very similar wave patterns for both cases
of different wall temperature conditions. The main dif-
ferences are the fact that the amplitudes of pressure
perturbations on the wall for the case of the isothermal
wall are smaller than those of the case of the adiabatic
wall. A close examination of the peaks of mode I, the
second mode, and mode II in the figure shows that the
second mode is much weaker for the isothermal case,
while mode I and mode Il are not affected very much by
the change in the wall temperature perturbation con-
ditions. Quantitatively, the response coefficients are
calculated for mode I, the second mode and mode II
for the isothermal case are

Second mode: Ko,4 = 0.187
Mode I Kr =145
Mode 1II: Ky =162

Compared the results for the adiabatic case shown pre-
viously, the response coefficients of the second mode in
the adiabatic case is 5.5 times as large as that of the
isothermal case. On the other hand, the response coef-
ficients of mode I and mode II in the adiabatic case are
only 1.2 and 1,3 times as large as those of the isother-
mal case. Therefore, due to the different receptivity
and stability mechanisms between the second mode,
and mode I and mode II, the use of isothermal wall
boundary condition substantially stabilize the second
mode, but does not affect mode I and mode 1T very
much.

Figure 33 compares response coeflicients as a func-
tion of the incident wave angles for two groups of cases
with different wall boundary conditions for the tem-
perature disturbances. The response coefficients dis-
tributions are very similar for two groups of cases of
different boundary conditions except that the values
are smaller for the cases of an isothermal wall. In par-
ticular, the response coefficients of the second mode
are several times smaller for the cases of an isother-
mal wall than those for the cases of an adiabatic wall.
On the other hand, the response coefficients for mode
I and mode IT of the isothermal cases are only mod-
erately smaller than those of the adiabatic cases. The
incident angle at which mode II reaches maximum re-
sponse coefficient is also about the same for the two
group of wall boundary conditions. The difference in
response coefficients for mode I and mode I and for the
second mode is again due to their different receptivity
mechanisms.

The general trend on the effects of wall tempera-
ture perturbation boundary conditions are also true
for computational cases of other frequencies. Figure 34
and 35 show the effect of different wall boundary condi-
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tions on the amplitudes of pressure perturbations along
the wall surface due to plane freestream fast acous-
tic waves with incident wave angle of ;. = 22.5° at
two different frequencies: (a) F' = 1.6 x 107*, and (b)
F = 1.2 x 10~%*. For both frequencies, pressure am-
plitudes are smaller for the cases of isothermal wall
than those for the adiabatic wall. For the case of
F = 1.6 x 10™%, the response coeflicients of mode I,
the second mode and mode II for the isothermal case
and the adiabatic case are:

Isothermal Case Adiabatic Case

](an = 0.87 Kong = 5.61
K =282 Ky =347
Ky =547 Kip =745

Again, the response coefficients of model and mode II
are relative close between the isothermal case and the
adiabatic case. However, the response coefficients of
the second mode of the adiabatic case is 8.56 times as
large as that of the isothermal case. As discussed ear-
lier, for the cases of F = 1.2 x 10=%, mode II waves do
not appear in the computational domain because the
domain is not long enough. The response coefficients of
mode I and the second mode of the isothermal case at
this frequency are 3.19 and 2.44 respectively. The cor-
responding values of adiabatic case are 4.50 and 13.2
for mode I and the second mode, respectively. Again,
the response coefficient of the second mode for the adi-
abatic case is 5.41 times as large as that of the isother-
mal case at F' = 1.2 x 10~*. The reasons for the differ-
ent response coefficients of the second mode between
isothermal case and adiabatic case can be explained
from Fig. 14. Specifically, all normal modes are more
stable in the isothermal case than the adiabatic case
as predicted by the LST (Fig. 7). The second mode
waves are converted from mode I waves. Compared
with an adiabatic case, mode I in an isothermal case is
less amplified before it reaches the first peak in pressure
perturbations, which is shown in Fig. 14. Furthermore,
the amplitudes of mode I disturbances in the isother-
mal case decay much faster and die down to a much
smaller value when the wave reached the synchroniza-
tion point between mode I and the Mack mode and
converted to the second mode. As a result, the initial
amplitude of the induced second mode is much smaller
in the isothermal case than that in the corresponding
adiabatic case. In addition, the growth rates of the
second mode are smaller for the isothermal case than
those for the adiabatic case. Therefore, the amplitude
of induced second mode at branch II neutral stabil-
ity point is significantly smaller for the isothermal case
than that for the adiabatic case.

The results of the receptivity characteristics of mode
I, the second mode and mode II with different wall
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boundary conditions can explain some discrepancy be-
tween the LST predictions and the results of boundary-
layer stability experiments. Measurements in the lam-
inar boundary layer on a flat plate by Kendall *Y and
Wendt et al. [23], and a hollow cylinder by Stetson et
al. %1 did not show the expected dominance of high-
frequency second mode instabilities. In reality, the
temperature perturbations on the wall could not follow
the adiabatic condition even though the steady flow
satisfies a adiabatic condition on the wall. For high
frequency disturbances, the temperature perturbations
on the wall performs more close to the isothermal wall
condition. From our numerical simulation studies of
the boundary-layer receptivity with an isothermal wall
for perturbations, the induced second mode from mode
I is very weak due to the stable property of mode I as
discussed in section 6.2. In addition, the subsequent
amplification of the second mode disturbances are very
weak because the linear stability is much weaker for
the isothermal cases. On the other hand, strongly un-
stable modes in a frequency band, where the second
mode is predicted to be stable by LST, were observed
in Kendall’s experiment on hypersonic boundary-layer
disturbances induced by acoustic waves. This can be
explained by the amplification of mode I and mode II
due to their resonance with the acoustic waves. Again,
though they are linearly stable modes, mode I and
mode II play an important in the boundary-layer re-
ceptivity process.

9 Receptivity to Plane
Freestream Slow Acoustic
Waves

In this group of cases, plane freestream slow acous-
tic waves with different frequencies and incident wave
angles (f,;) are imposed at the top of computational
boundary in front of the shock. Isothermal wall bound-
ary condition is used for temperature perturbations
on the wall in this group of cases. The amplitude of
the velocity disturbance in freestream is chosen to be
€ = 5.0x107*. There receptivity of boundary layer to a
plane freestream slow acoustic wave at F = 1.6 x 10~
with zero incident angle are analyzed first. The effect
of incident wave angle of freestream slow acoustic wave
on the receptivity are studied in the next step.

Slow acoustic wave (F = 1.6 x 107* and 6,, = 0°)

Figure 36 shows the contours of instantaneous pres-
sure perturbations induced by a plane freestream slow
acoustic wave at F' = 1.6 x 10~* with zero incident an-
gle. There are strong transmitted slow acoustic waves



propagating in the direction almost parallel to the
wall surface. Meanwhile, strong boundary-layer dis-
turbances are induced by forcing slow acoustic waves.
Figure 37 also shows the local pattern of density pertur-
bations in the region (0.2m < z* < 0.35m), where the
second mode is expected to be dominant based on the
discussion in section 6.1. Unlike boundary-layer dis-
turbances induced by forcing fast acoustic wave, there
are clear rope-like second-mode disturbances shown in
boundary-layer disturbances induced by forcing slow
acoustic waves.

Figure 38 shows the distribution of instantaneous
pressure perturbations along the wall surface. The
change of amplitudes in pressure perturbations has a
very similar pattern as that of the second mode when a
single second mode at £ = 1.6 x 107% is introduced at
the inlet z* = 0.025m. In addition, the induced wave
structure profiles in the region {0.2m < z* < 0.35m)
can match those of the second mode obtained from
LST. Therefore, the boundary-layer disturbances in-
duced by forcing slow acoustic waves are dominated
by the second mode waves. The induced second mode
waves grow before reaching the Branch II neutral sta-
bility point due to their unstable property. As dis-
cussed in section 6.1, the locations of branch II neutral
stability point of the second mode in terms of R % F
are same for different frequencies. For isothermal case,
the second-mode branch II neutral point is located at
RF = (.2248 based on the growth rate curve shown
in Fig. 7, which is at z* = 0.2738m for the case of
F = 1.6 x 10~%. For the current simulation, the max-
imum amplitude of pressure perturbations on the wall
is located at z* = 0.2754m, which is very close to that
from LST prediction.

Figure 39 shows the distribution of the phase veloc-
ities based on pressure perturbations on the wall. The
phase velocities of the first and the second Mack modes,
and modes I and II from the LST are also plotted in
the same figure for comparison with the numerical so-
lutions. The phase velocity curve in current case is
totally different from the case in which boundary-layer
disturbances are induced by freestream fast acoustic
waves. First of all, there are neither mode I nor mode
1T waves shown in the current case. The phase velocity
curve in current case can match that of Mack modes,
which indicates Mack-mode waves are dominant. This
can be easily explained from phase velocity curves of
different boundary-layer normal modes shown in 39.
After freestream slow acoustic waves enter the bound-
ary layer, the first Mack-mode waves are generated be-
cause the synchronization of wave numbers or wave
speeds between the first Mack-mode waves and slow
acoustic waves near the leading edge. The Mack-mode
waves are significantly amplified and become dominant
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mode waves after enter the second-mode unstable re-
glon. After passing the branch II neutral point, the
Mack-mode waves die down and becomes no longer
dominant due to their stable property. As a result,
there are strong oscillations in phase velocity curve in
downstream z* > 0.4m.

Effect of incident wave angles

The effects of incident angles on the receptivity are
studied by numerical simulations on receptivities of
the Mach 4.5 boundary layer to plane freestream slow
acoustic waves at F' = 1.6 x 10™* with at 4 different
incident angles, i.e., 05 = 0,22.5,45 and 67.5.

Figure 40 shows the wave amplitudes of pressure dis-
turbances on the wall surface due to freestream slow
acoustic waves for four different incident wave angles.
The dominant Mack-mode waves are induced in all
four cases. With increasing incident wave angles, the
peak amplitude of induced second Mack-mode waves
decrease dramatically. In fact, for different incident
angle §,. of forcing slow acoustic waves, there always
exists the component of slow acoustic waves propagat-
ing in the direction parallel to the wall surface due to
diffraction and diffusion of transmitted slow acoustic
waves near the leading edge. However, the amplitude
of the component for fast acoustic waves propagating
in the direction parallel to the wall surface change sig-
nificantly with different incident angle 8,.. Specifically,
the wave component of slow acoustic waves propagat-
ing in the direction parallel to the wall surface decrease
as the incident angle ;. increases. As a result, the
initial amplitude of induced first Mack-mode waves de-
crease as the incident angle increases. The maximum
initial amplitude of induced first Mack-mode waves is
reached at f,, = 0°. Due to the different initial ampli-
tudes of first Mack-mode waves induced by slow acous-
tic waves with different incident angles, the receptivity
of unstable second mode is very sensitive to incident
slow acoustic wave angles. Figure 41 shows the recep-
tivity coefficients of the second mode as a function of
the incident wave angles. The receptivity coefficients
of the second mode decrease linearly with increasing
incident wave angles.

Slow acoustic wave vs. fast acoustic wave

The receptivity of boundary layer to freestream
slow acoustic waves are compared with that that to
freestream fast acoustic waves in this section. Two
cases of receptivity to plane freestream acoustic waves
at F = 2.2 x 107* with zero incident angle are con-
sidered here. One is for plane fast acoustic waves.
The other is for slow acoustic waves. Isothermal wall
boundary condition is used for temperature perturba-
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tions on the wall in both cases. The case of receptiv-
ity to fast acoustic waves has been discussed in sec-
tion 8. The receptivity to a plane slow acoustic wave
at F = 2.2 x 10™* with zero incident angle is stud-
ied here. Figure 42 compares amplitudes of pressure
perturbaticns on the wall induced by freestream fast
acoustic waves and slow acoustic waves separatedly.
While both unstable Mack modes and a family of sta-
ble modes, i.e. mode I, mode II, are generated by forc-
ing fast acoustic waves, only Mack modes are excited
by forcing slow acoustic waves. Compared with the
maximum amplitude of the second mode induced by
fast acoustic waves, the peak amplitude of the second
mode induced by slow acoustic waves are much larger.
Quantitatively, the receptivity coefficient of the second
mode by slow acoustic waves shown in Fig. 121s 0.7013,
which 1s 3.75 times of the receptivity coefficient of the
second mode by fast acousic waves (Kapg = (_).187) in
Fig. 42. Therefore, for the second-mode receptivity to
freestream acoustic waves at zero incident angle, slow
acoustic waves are more efficient to generate unstable
boundary-layer disturbances than fast acoustic waves.

10 Conclusions

In this paper, the receptivity of the supersonic
boundary laver to acoustic waves coming from the
freestream are studied by numerical simulation.

A LST-code based on multi-domain spectral method
has been developed to identify different boundary-
layer normal modes. The performances of different
boundary-layer normal modes have been studied by
both numerical simulation and LST. The results from
both DNS and LST show that the phase velocities of
normal modes are implicit functions of the product
of frequency and Reynolds number (R * F). Almost
same locations of branch I or IT neutral points of sec-
ond mode in terms of R * F are obtained for different
frequencies and Reynolds number. LST results show
that all normal modes are stable except that the sub-
sonic mode is unstable in certain small range of R« .
The numerical study on the performance of mode I and
mode II shows that there are strong resonance between
them and acoustic waves, which lead to the amplifica-
tion of mode I and mode I, although LST results show
that both of them are stable. Both mode I and mode-11
can get synchronized with the subsonic mode. Different
modes have the same structure at the synchronization
point. Therefore, it is impossible to distinguish dif-
ferent modes from their structure alone. Mode I can
convert to the second mode after they get synchronized
with each other.
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The receptivity mechanisms for flow over a flat plat
at Mach 4.5 to freestream acoustic waves has been stud-
ied. All components of boundary layer disturbances
induced by free-stream disturbances are identified by
comparing with LST. It is found that the forcing fast
acoustic waves do not interact dirvectly with the unsta-
ble Mack modes. Instead, the stable modes of mode
I and mode II play an important role in the receptiv-
ity process because they interact with both the forcing
acoustic waves and the unstable Mack modes. Through
the interactions, the stable modes transfer the wave
energy from the forcing freestream fast acoustic waves
to the second Mack-mode waves. The effects of inci-
dent wave angles, forcing wave frequencies, and wall
temperature perturbation conditions on the receptiv-
ity are studied. The maximum receptivities of the sec-
ond mode, mode I and mode II to plane freestream
fast acoustic waves are obtained when incident wave
angles approximately equal 26°, 45°, and 20°, respec-
tively. The receptivity mechanisms of the second mode
are very different from those of mode I and mode II,
which lead to very different receptivity properties for
these discrete wave modes to freestream fast acoustic
waves with different incident wave angles, frequencies,
and different wall boundary conditions.

The receptivity mechanisms of the second mode to
freestream slow acoustic waves are different from those
by freestream fast acoustic waves. Unlike forcing fast
acoustic waves, the forcing slow acoustic waves can di-
rectly generate Mack-mode waves without exchanging
energy with stable boundary-layer normal modes, such
as mode I and mode 1. For the second-mode receptiv-
ity to freestream acoustic waves at zero incident angle,
slow acoustic waves are more efficient to generate un-
stable boundary-layer disturbances than fast acoustic
waves.
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Figure 3: Profiles of stable boundary-layer normal Figure 6: Comparison of phase velocities of boundary-
modes (mode I, mode II, etc) obtained by the LST layer normal modes between the isothermal case and
at R = 4000 (F = 2.2 x 107%). the adiabatic case.
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Figure 32: Pressure perturbation along the wall surface
induced by freestream fast acoustic waves of zero inci-
dent wave angle and different temperature boundary
conditions (F = 2.2 x 107* and 4. = 0°).
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Figure 33: Response coefficients of boundary-layer nor-
mal modes to freestream acoustic waves with differ-
ent wall boundary conditons vs. incident wave angles
(F=22x107%).
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Figure 34: Pressure perturbation amplitudes along the
wall surface induced by plane acoustic waves of differ-
ent boundary conditions (F = 1.6 x 1074, 8, = 22.5°).
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Gac = 0°).

—~ 16  mm=-- LST (mode I)
:8 LST (Mack modes)
O i LST (made IT}
o — = Simulation
~— :
1.4
& i
5 H
[~
—
g L frmee e e 1+1/M_
[5) ’ N [ S SR
» h

g L2E2

ip’'l/p

8.0E-3

4.0E-3

N 1

0.6 0.7

X (m)
Figure 40: Amplitudes of pressure perturbations on the
wall for the cases of freestream slow acoustic waves at
different incident wave angles (I = 1.6 x 107%)
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Figure 41: Receptivity coefficients of the boundary-
layer second modes to freestream slow acoustic waves
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