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over Blunt Bodies Using Implicit Parallel Algorithms

Haibo Dong *and Xiaolin Zhong t
University of California, Los Angeles, California 90095

Abstract

The receptivity process of hypersonic boundary layer
flows over blunt leading edges has been paid more at-
tentions in recent years. After free stream disturbances
pass through and interact with the bow shock, three
kinds of transmitted waves will be generated and in-
teract with the boundary layer on the body during
propagation to downstream. This generated complex
wave field behind the bow shock will lead linear eigen-
mode growth or transient growth of perturbations in-
side boundary layer. Due to the progress of computer
techniques, Direct numerical simulation (DNS) has re-
cently become a powerful tool to study the stability
and transition of compressible boundary layers. 3-D
unsteady Navier-Stokes equations are numerically sim-
ulated without using any empirical turbulence models.
Highly efficient and accurate numerical methods are im-
plemented in the numerical simulation of such compli-
cated problems. In this paper, we extend our previ-
ous work to do the direct numerical simulation of hy-
personic boundary layer stability and transition over
blunt bodies by using high-order parallel time-accurate
semi-implicit shock-fitting and Fourier spectral code on
massively distributed memory computers. Meanwhile,
Linear stability theory (LST) is used to do the analy-
sis on the base mean flow. Our numerical methods has
been firstly validated by comparing numerical results
with experimental results and results predicted by LST.
Then, detailed numerical simulations of 3-D hypersonic
boundar}' layer receptivity to fast acoustic waves and
vorticity waves have been investigated. On-going work
of investigating transient growth of 3-D perturbations
in viscous hypersonic boundary layer over blunt wedge
is in progress.

1 Introduction

The prediction of laminar-turbulent transition in hy-
personic boundary layers is a critical part of the aero-
dynamic design and control of hypersonic vehicles. The
transition process is a result of nonlinear response of
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laminar boundary layers to forcing disturbances ^l>2\
which can originate from many difference sources in-
cluding free stream disturbances, surface roughness and
vibrations ̂ . In an environment with weak initial
disturbances, the path to transition consists of three
stages: 1) receptivity, 2) linear eigenmode growth or
transient growth, and 3) nonlinear breakdown to tur-
bulence.

The first stage is the receptivity process ^, which
converts the environmental disturbances into initial
instability waves in the boundary layers. Theo-
retical results on incompressible boundary layer re-
ceptivity are mainly obtained based on the asymp-
totic theory f5 '6 ' . The asymptotic analysis explains
how the long wavelength free stream acoustic distur-
bances enter the boundary layer and generate short-
wavelength Tollmien-Schlichting (T-S) waves in incom-
pressible boundary layers. The receptivity mechanism
provides important initial conditions of amplitude, fre-
quency, and phase of instability waves in the bound-
ary layers. The direct numerical simulation, which
numerically solves the full Navier-Stokes equations as
an initial-boundary problem, has become an important
tool in receptivity and transition studies in recent years.
The direct numerical simulation of the receptivity of
incompressible boundary layers has been performed b
Murdock [7]; Lin, Reed, and Saric [8]; Buter and Reed
and Collis and Lele [10].

The stability and transition of supersonic and hy-
personic boundary layers was reviewed by Mack ^u\
Morkovin [12], Arnal [13], and Reed and Saric[14].
The receptivity process of hypersonic boundary layer
flows over blunt leading edges has been paid more at-
tentions in recent years. For hypersonic boundary-
layer flows over blunt bodies, the receptivity phenom-
ena are much more complex and are currently not well
understood I-12'15-!. Figure 1 shows a schematic of wave
interactions in the leading edge region of a hypersonic
flow in the presence of free stream disturbances. The
receptivity phenomena are altered considerably by the
bow shock in front of the body. The interaction of
free stream waves with the shock affects the receptiv-
ity process of the boundary layer behind the shock.
Kovasznay "-1 ^ showed that weak disturbance waves in
compressible flow can be decomposed into three inde-
pendent modes: acoustic, entropy, and vorticity modes.
The acoustic wave is propagated with the speed of sound
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relative to the moving fluid, while the entropy and vor-
ticity waves convect with the moving fluid velocity. Be-
fore entering the boundary layer, free stream distur-
bances first pass through and interact with the bow
shock. Irrespective of the nature of a free stream distur-
bance wave, its interaction with the bow shock always
generates all three types of disturbance waves ̂  after
passing through the shock. These three kinds of trans-
mitted waves are propagated downstream and interact
with the boundary layer on the body. At the same
time, the perturbed boundary layer also generates re-
flected acoustic wave propagating upstream. When it
reaches back to impinge on the shock from behind, the
reflected acoustic wave generates at the shock additional
three kinds of disturbances which also propagate down
stream. Such back and forth reflection and interaction
creates a complex wave field behind the bow shock. The
combined effects of these interactions determine the re-
ceptivity process of the hypersonic boundary layer be-
hind the shock.

The second stage is the subsequent linear de-
velopment and growth of boundary-layer instability
waves. Relevant instability waves for hypersonic
boundary layers include the first mode and higher
mode instability *-ll\ the Gortler instability over con-
cave surfaces '-18-', attachment line instability in leading
edges, and cross flow instability in three-dimensional
boundary layers '14^. Another possible second stage of
the transition process is transient growth mechanism.
Transient growth t19~25J arises through the nonorthog-
onal nature of the Orr-Sommerfeld and Squire eigen-
functions. According to Ref. [25], the largest effect
comes from the nonorthogonal superposition of slightly
damped, highly oblique (near stream wise) T-S and
Squire modes. Transient growth is considered as a can-
didate mechanism for many examples of bypass transi-
tion. Many research has been done in this field. The
study of transient growth emanated from Landahl '•19^s
"lift-up" mechanism, a localized three-dimensional up-
down motion in regions of high mean shear (near the
wall) that grows algebraically in time. Butler and
Farrell t20^ determined optimal disturbance parameters
for maximum transient growth in plane Couette, plane
Poiseuille, and Blasius flows. Consideration of tran-
sient growth has lead to an enlargement and clarifica-
tion of the paths to transition by Morkovin, Reshotko,
and Herbert t26^. Upon on their clarification, there are
five possible paths to transition. Among those paths,
some transient growth may provide a higher amplitude
to the eigenmode growth upon crossing into an expo-
nentially unstable region. If the transition growth is
large enough, it could directly excite secondary insta-
bilities and mode interactions. Spatial theories of linear
transient growth for disturbances in a circular pine '•24-'
and in a parallel boundary layer '•27-' have been presented
recently. It is shown that stationary disturbances may
achieve more significant transient growth than nonsta-

tionary ones. Numerical examples illustrate that fa-
vorable pressure gradient decreases the overall amplifi-
cation. Reshotko ^ recently analytically studied the
problem of the "blunt body paradox", which refers to
the early transition on speeds both in flight and in wind
tunnels. This transition occurs usually in the subsonic
portion of the flow behind the bow shock wave, a re-
gion of highly favorable pressure gradient that is stable
to T-S waves, even the surface is smooth. Meanwhile,
surface cooling leads to even earlier transition. The ten-
tative suggestions are generally roughness related since
stagnation point boundary layers are very thin. But
no connection has been made between the microscopic
roughness on the surface and the features of the ob-
served early transition such as location, sensitivity to
surface temperature level, etc. This has led to a search
for an explanation through transient growth.

The objective of this paper is to extend the previous
2-D and 3-D parallel high-order shock-fitting schemes
in [28-30] to solve compressible Navier-Stokes equations
implicitly on massively distributed memory computers.
Divide and conquer algorithm are used to solved the
big banded Jacobian matrices from implicit methods.
Meanwhile, Linear stability theory (LST) is used to do
the theoretical analysis. Our numerical methods has
been firstly validated by comparing numerical results
with experimental results and results predicted by LST.
Then, detailed numerical simulations of 3-D hypersonic
boundary layer receptivities to fast acoustic waves and
vorticity waves have been investigated. On-going work
of investigating transient growth of 3-D perturbations
in viscous hypersonic boundary layer over blunt wedge
is in progress.

2 Governing Equations and Numerical
Methods

2.1 Governing Equations

The governing equations are the unsteady three-
dimensional Navier-Stokes equations written in a
conservation-law form

dt
dFj dFvj

where

U =

Pj =
(e + p)

0

(1)

(2)

(3)

(4)
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p
e

= pRT
p(cvT+-ukUk)

= -A* • + ~dx~i

qj == — K-
OT

(5)
(6)

(7)

(8)

The details for the expressions above can be found
in [31]. The viscosity and heat conductivity coefficients
are computed by the Sutherland law and the assump-
tion of a constant Prandtl number. Perfect gas assump-
tion is used in all flows considered in this paper, though
the method presented here can be easily extended to
nonequilibrium real-gas hypersonic flows.

For numerical simulations of flow fields over a curved
body surface, structured body fitted grids are used to
transform the governing equations (1) in the Cartesian
coordinates into a set of curvilinear three-dimensional
coordinates (£, 77, £, r) along the body fitted grid lines.
The transformation relations for the two set of coordi-
nates are

17 = r } ( x , y , z , i )
(9)

r — t { t = r

The governing equations (1) are transformed as follows
l_dU_ dE' OF' OG'
J dr + d£ + dr} + 9C

S '̂ 9F' 8G1

dr,

where
„, FI£X + F2£y + F3£, + tE = ———————_—————

G. =

zr/ _Ev -

„,Fv =

S-,/Gv =

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where J is the Jacobian of the coordinate transforma-
tion, and &., fj,, £,, rjx, rjy, r\z, rjt, &, Cy, and £, are
the grid transformation matrices. In the equations, the
transformed inviscid fluxes E1', F', and G1 are standard
flux terms with known eigenvalues and eigenvectors.
The transport flux terms Ef

v, F^ and G'v contain both
first-order and second-order spatial derivatives of veloc-
ity and temperature. These derivatives in the Cartesian
coordinates (x, y, z) are transformed into the computa-
tional coordinates (£, 77, C) using a chain rule for spatial
discretization.

2.2 Numerical Methods

2.2.1 High-Order Semi-Implicit Method

The stiffness of viscous flow simulations is mainly due
to terms associated with derivatives in the wall-normal
direction (-^M and ^er) because of grid stretching near
the wall. Therefore, Navier-Stocks Equation (10) for a
three-dimensional flow in (£, 77, C, T) is additively split
into relatively nonstiff part f (Uijk) and stiff part g(E/*jfc)
as follows

i dUw
J dt (17)

where details can be found in Ref. [30]. In Eq. (17),
g(Uijk) is much stifFer than f (t/ij*) since grid spacing
in the wall-normal direction is much smaller than that
used in streamwise direction for most viscous flow sim-
ulations. Therefore, high-order semi-implicit method
can be used to overcome the stiffness of g((7,j^) while
maintaining high-order temporal accuracy.

The split governing equation (17) is first approxi-
mated by high-order accurate finite difference methods.
For the case of direct numerical simulation of compress-
ible boundary layers with a bow shock, the shock wave
can be treated by a shock-fitting method because there
is no discontinuity in the interior of the computational
domain. In this paper, a fifth-order upwind scheme ^28^
is used to discretize the inviscid flux derivatives. Mean-
while, high-order central difference schemes, such as the
sixth-order central scheme, are used to discretize the
viscous flux terms in the equations. A simple local Lax-
Friedrichs scheme is used to split the inviscid flux vec-
tors into positive and negative wave fields. Details of
derivations can be found in Ref. [30]. The spatial dis-
cretization of the split Eq. (17) using these high-order
schemes coupled with appropriate boundary conditions
leads to a system of ordinary differential equations in
the form of

(18)

where u = {Uij,foii = ! , ••• /£ , j = l , - - -J i} is
the vector of all discretized variables in the flow field,
[f(tf,u)j represents the discretized nonstiff term, and
[g(t,u)j represents the discretized stiff term.

The system of ordinary differential equations of Eq.
(17) can be integrated in time using semi-implicit tem-
poral schemes, where f is treated explicitly and g is
treated implicitly. It was shown by Zhong ̂  that in
order to have a third or higher order temporal accu-
racy, the semi-implicit method need to be derived in a
way that the effects of coupling between the implicit
and explicit terms on the accuracy need be considered.
Zhong •• * subsequently derived three kinds of third-
order semi-implicit Runge-Kutta schemes for high-order
temporal integration of the governing equations for re-
acting flow simulations. High-order low-storage semi-
implicit Runge-Kutta method versions(LSSIRK) have
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also been derived in [33]. In particular, Rosenbrock type \(®IL\, /^^'4fe\ ( ]

t,dU, ,dVnk,,dV,
Runge-Kutta (LSSIRK-rC) Method can be written as
following

[I - hcjJ(uj-_i + Cjk^-i)] kj =
h(f(uj.l) + g(uj^l + cjkj.l
+ aj [I - hcjJ(uj-i + Cjkj-i

, - Q X where d^ylk (j = 2,..., 5) is the coefficients of the corre-
sponding boundary conditions applied to the lower wall.

where j = 1, ..., r and parameters GJ , cy, 6j can be found
in [33]. For instance, in LSSIRK-3C, 61 = ±, b2 = f ,
63 rr 3, ai = -|, a2 = -|f, ci = 2.26760, c2 = 2.68530,
c3 = 2.30975, c2 = -1.14310, and c3 = -2.03122. The
parameters of the semi-implicit Runge-Kutta methods
are chosen by both stability and accuracy requirements
with the simultaneous coupling between the explicit and
implicit terms.

In applying the semi-implicit method to Navier-
Stokes equation (18), global Jacobian matrices J comes
from the implicit method and can be defined by J (u) —
5g/<9u. As the derivations in Ref. [34], the fifth-order
upwind scheme and sixth-order central scheme are used

o/\ o2 / \

to approximate the derivatives of j£ and j^-. This
leads to

-f
+GijkSUij+3k (20)

where the coefficient matrices can also be found in Ref.
[34].

The final global Jacobian matrix for the system of or-
dinary differential equations, Eq. (18), is a block seven-
diagonal matrix involving terms along the j grid di-
rection only. This block seven-diagonal system of equa-
tions can be solved efficiently by a banded matrix solver.

The physical boundary conditions for viscous flows
are non-slip condition for velocity and isothermal or adi-
abatic condition for temperature. The freestream flow
conditions are specified by a given flow. For the flow
disturbed by disturbances, the disturbances are speci-
fied according to the particular physical nature of the
disturbances. Since the emphasis of current paper is the
parallelized semi-implicit method for efficient and accu-
rate time integration of the governing equations, we will
mainly consider flows with a supersonic exit where the
reflection of disturbances are negligible,

Boundary conditions on the wall are included in the
global Jacobian matrix to ensure that it is a global im-
plicit equation and advanced in time. For example, to
include the lower wall boundary conditions, by impos-
ing the fourth-order boundary conditions, SUnk can be
written as,

eu dvilk dv8Uilk = ( ) i l

du dvilk dv

2.2.2 Parallelization Approach

The standard (portable) message passing inter-
face(MPI) is the parallel library we used to parallelize
our code. A cluster of workstations are used to run
our parallel codes. The present configuration has 14
RISC/6000 processors. The main memory capacity of
these nodes is 256 megabytes. All of these nodes are
connected via ethernet.

The first step of parallelization approaches is to ini-
tialize the MPI environment and to establish com-
municators that describe the communication con-
texts and the associated groups of processors. The
MPLCOMMLWORLD default communication that de-
fines one communication context and uses the set of all
processors as its group is the one we used in this version.
There are several modes of communication in MPI. In
this work the data exchange at the block boundaries is
implemented using the MPLSENDRECV routine. This
routine is a locally blocking one which means that a
send or a receive would not return until it is complete,
and therefore a tight synchronization is achieved among
the processors. Divide and Conquer (DAC) method is
implemented to solve the big banded Jacobian matrices
of implicit algorithms during numerically solving high-
order discretized nonlinear Navier-Stokes equations on
massively distributed memory computers. Details of the
method can be found in Ref. [30].

3 Numerical Results

A flexible three-dimensional solver has been written
by using parallelized explicit and semi-implicit high-
order upwind schemes for the spatial discretization with
a high-order shock fitting algorithm. Fourier collocation
method are used in computing the azimuthal direction.
Our numerical codes have firstly been validated by sim-
ulating the the case of supersonic flow over a sphere.
We then compare our numerical results with results pre-
dicted by LST by forcing a temporally periodical fluc-
tuation into 2-D flow field. At last, we study the hyper-
sonic boundary layer receptivities to fast acoustic wave
and vorticity wave over 3-D blunt wedge. Investigations
have been done as followings:

3.1 Supersonic Flow over a Sphere

As the first validation of the new parallel semi-
implicit code, a sphere is chosen since there are a lot
of experimental results for a sphere in supersonic flow
[35,36] QUI, numerjcai results are compared with exper-
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imental results to check the accuracy of the new implicit
parallel algorithms.

The body surface is a sphere given by:

a:*2+y'2 + z*2 = cr2 (21)

where d* is the radius of the sphere and is used as the
reference length. The flow conditions are

e = 5 x 10-4

14 = 10.3 Pa
7= 1.4
Pr=0.72

MOO = 5.25 and 7.4
T^ = 192.989 K
T£ = 1000 A"
H* = 286.94 Nm/kgK

2? = 288 K T; = 110.33 K
\jf = 0.17894 x lQ~*kg/ms
R6oo - p^U^d*/^ = 36,159.3

The body surface is assumed to be a non-slip wall with
an isothermal wall temperature T^.

The results presented in here are obtained using 91
grid points in the streamwise direction and 61 points in
the wall-normal direction. 32 Fourier collocation points
are used in computing the azimuthal direction. 6 pro-
cessors are using to run the high-order parallel implicit
codes. Figure 2 shows the steady solution for a set of
90 x 60 x 32 computational grids. Bow shocks are cap-
tured well by the methods. Figure 3 shows the com-
puted and experimental pressure coefficients

CP - (Pbody -Poo) /(7/2)00 (22)

for Mach number 5.25 and Mach number 7.4 in Cleary's
experiments ^36\ The agreement is pretty good, at
least to within the scatter in the experimental data.
Because of the way that the experiments were clone,
Cleary claimed that the data should only be accurate
to xf — 0.75. We still can see good agreement for the
larger values of x'. Figure 4 compares the computed and
experimental bow shock shapes for two test cases with
freestream Mach numbers of 2 and 4. Numerical results
compare very well with the experimental results. Our
numerical methods method can approach high-order ac-
curacy in DNS of 3-D boundary layer problem.

3.2 Hypersonic Flow over 3-D Parabola Wedge

Our new 3-D parallel shock-fitting hypersonic DNS
code has been applied to DNS of the receptivity of a
three-dimensional boundary layer to weak freestream
oblique acoustic disturbance waves for a hypersonic flow
boundary layer over a 3-D parabolic leading edge whose
body surface is given by

x = (23)

where 6* is a given constant and d* taken as the ref-
erence length. The body surface is assumed to be a
non-slip wall with an isothermal wall temperature T£.

The specific flow conditions are

Moo = 15
2£ = 192.989 K
T* = 1000 K
IT = 286.94 Nm/kgK
T: = 288 K

€ = 5 x 10~4

p*00 = 10.3 Pa
-/= 1.4
Pr = 0.72
27 = 110.33 K

H* = 0.17894 x lQ-4kg/ms
Low Reynolds number case:

6*= 40m-1 d* = 0.1m
Nose Radius of Curvature — r* = 0.0125ra
^oo = p*00UZ>d>/iJL*QO = 6026.55

High Reynolds number case:
6*= 4m-1 d* = 1.0m
Nose Radius of Curvature = r* = 0.125 m
te°o = P*00UZ,d*/iJL*00 = 60265.5

There is no flow in spanwise direction.
In the simulations, steady flow solutions are first ob-

tained by advancing the unsteady flow computations
to convergence using the new parallelized semi-implicit
computer code. No disturbances are imposed in the
freestream. The results presented in here are obtained
by using 161 grid points in the streamwise direction
and 121 points in the wall-normal direction, 4 Fourier
collocation points are used in computing the azimuthal
direction. Figure 5 shows the steady solution for a set
o f l 6 1 x ! 2 1 x 4 computational grids obtained by the
simulation. Figure 6 shows steady flow solutions for
temperature and pressure contours obtained by using
12 processors simultaneously. Edges in figure are the
boundaries of subdomains.

Validation of LST Results

Before we start to do the numerical simulation of re-
ceptivity of 3-D hypersonic flow, another test case is
investigated to validate the accuracy of our numerical
method. Necessary linear stability (LST) analysis is
carried out to obtain more clear knowledgement of the
characteristics of the wave used in the simulation. The
Reynolds number, Re, used in the calculations is based
on the local length scale. A more standard length scale
5(s) is used to scale the wave numbers and frequencies.
S(s) is defined as

6 = (24)

where s is the distance from the leading dege.
A common forcing frequency is enforced in DNS . This

frequency is also enforced locally at each station in the
linear stability analysis during the study. In the normal
mode analysis for the linear disturbances, the fluctua-
tions of flow quantities are assumed to be represented
by harmonic waves of the following form:

(u',v',p',T',w']T ='T

(25)
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where a and /3 are the wavenumbers in x and z direc-
tions respectively, and w is the frequency of the distur-
bance waves. These parameters are in general complex
numbers. The complex amplitude (eigen) function of a
typical flow variable, say u, is u(y). In order to com-
pare with the DNS results, spatially stability problem
is solved. In a spatial stability problem, real-valued cj
and j3 are assumed. While a is the complex eigenvalue
to be solved for. The real part of a, ar, represents the
spatial frequency of the disturbance modes, while the
imaginary part, a;, represents the spatial amplification
rate of the disturbances. When — a« is greater, equal
to, or smaller than zero, a disturbance mode is unstable
with finite amplification, neutrally stable, or stable with
finite damping, respectively. In our research, a range of
forcing frequency is studied for obtaining spatial ampli-
fication rate of the disturbances.

The subsonic mode with fixed frequency F = 1.9 x
10~4 is introduced through the inflow condition located
at Re = 800. Figure 7 shows the computational domain.
The second mode is predicted unstable from Re = 915
to Re = 987 by LST at this fixed frequency. And it
is found only the subsonic mode will transition to un-
stable. The unsteady computations are carried on till
the solutions reach a periodic state. After that, un-
steady computations are conducted for one period in
time. Temporal Fourier analysis is performed on the
results of the unsteady flow in one period to obtain am-
plitude and phase angle of disturbances as follows,

Mx,y,t) = \<l>f\eiW*>rt-"t) (26)
Streamwise wavenumber can be extrated from DNS by
using

(27)dx

\<f>'\ dx
We then can compare wave numbers and growth rates
from numerical simulation are compared with the eigen-
values obtained from linear stability analysis based on
the same mean flow.

Figure 8 is the comparison of real part of the p1 eigen
function of the unstable second mode obtained by using
DNS and LST analysis at Re — 947 in the computa-
tional domain. The shape of this eigen function is close
to Mack's work *-ll\ Figure 9 shows the comparison of
streamwise wavenumbers and growth rates between the
results from numerical simulation and LST respectively.
In the figure, the real part and the imaginary parts of
cv are the wavenumbers and growth rates respectively.
It shows that there is a good agreement between the
results of simulation and LST on ar and at.

Receptivity Simulations

The receptivity problems are studied numerically by
solving the unsteady Navier-Stokes equations using a

high-order parallelized semi-implicit method. There are
two kinds of weak perturbation waves in a uniform flow
studied in the freestream in this paper. They are fast
acoustic waves, and vorticity waves. The perturbations
of an arbitrary flow variables before reaching the bow
shock can be written in the following form:

= k'l (29)

where |g'| represents one of the flow variables, |u'|, |v'|,
|it;'|, |p'|, and |p'|, koo is the wavenumber, and GJ is the
wave frequency in the freestream before reaching the
shock. The freestream perturbation amplitudes satisfy
the following dispersion relations:

Fast Acoustic Waves(c^ = u^ + a^ ):
\uf oo = e cos-0 , l-y'loo — 0 ,

where e represents the freestream wave magnitude. The
angle if> is the angle of freestream wave with respect to
the x axis in the x-z plane, where ^ = 0 corresponds to
2-D planar fast acoustic waves.

Vorticity WTaves(c^0 = u£
- o

\w'\oQ = esim

where the angle t/> is the angle of freestream wave with
respect to the y axis in the y-z plane for vorticity waves.
The parameter k is the dimensionless freestream wave
number which is related to the dimensionless circular
frequency u> by:

(jj •=. k (cos ̂  -f • r-l \

(28) The dimensionless frequency F is defined as:

(30)

(31)

After we obtained good steady mean flow of hyper-
sonic flow over blunt wedge, unsteady viscous flows are
computed by imposing a continuous planar acoustic
single-frequency wave or vorticity wave on the steady
flow variables at the free stream side of the bow shock.
The unsteady simulation is nonlinear by computing the
transient flow solutions of the Navier-Stokes equations
without any linearization in the equations and in the
shock jump conditions. The wave interaction with the
shock and the development of instability wave in the
boundary layer are simultaneously resolved by the sim-
ulation. The unsteady calculations are carried out for
about 20 to 40 temporal periods until the solutions
reach a periodic state in time. Then, the unsteady com-
putations are carried out for one additional period in
time to record the perturbations with respect to the
steady flow field obtained previously. A fast Fourier
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transform (FFT) is performed on the perturbation vari-
ables to obtain the Fourier amplitudes and phase an-
gles of the perturbations of the unsteady flow variables
throughout the flow field.

Receptivity to Fast Acoustic Waves

The generation of boundary-layer T-S and inviscid
instability waves by freestream acoustic disturbances
for hypersonic flow over 3-D parabolic leading edge has
been firstly simulated by studied the cases of introduc-
ing single oblique wave, and introducing two oblique
waves into the steady mean flow, For two oblique acous-
tic waves, we present the results of two 45° acous-
tic waves here. For single oblique acoustic waves, we
change the freestream disturbance wave angle ip from
0° to 15°, 30°, 45°, 55°, 60°.

Figure 10 shows the 3-D contours of the instanta-
neous perturbation u1 the streamwise velocity for single
'0 = 45° oblique wave case at F — 1770. Figure 11
shows contours of the instantaneous perturbation ve-
locity, u1, and the Fourier amplitude | u1 \ after the flow
field has reached a periodic state. Figure 12 shows the
3-D contours of the instantaneous perturbation u1 the
streamwise velocity for two ty — 45° oblique waves case
at F = 1770. Figure 13 shows contours of the instanta-
neous perturbation u' and the Fourier amplitude | uf |.
Both amplitude contours show a strong growth near the
leading edge in the boundary layer on the wall, followed
by a rapid decay and transition to another wave mode.
These figures show two distinct main wave zones of first
aud second mode instability waves. The first mode is
much stronger than the second mode for the current test
case. From the figure, the characteristics of the switch-
ing of instability modes for first mode instability dom-
inated region to second mode with the sudden phase
angle change near the body surface around x — 0.1
can be observed. Figure 14 shows the comparison of
distribution of the maximum amplitude of streamwise
velocity between the single oblique acoustic wave case
and the case of two oblique waves. The single oblique
acoustic wave performs higher growth than the case of
two oblique waves. We then stick on the case of single
oblique acoustic wave to do further studies.

We enforce the same wave number &, and compare
the velocity Fourier amplitudes by changing angle ^ to
0° to 15°, 30°, 45°, 55°, 60° for single oblique acoustic
wave case. Figure 15 shows the comparison of distribu-
tion of the Fourier amplitude | u1 \ along x axis. Figure
16 shows the comparison of the maximum Fourier am-
plitude | u1 | of the first mode. For the first mode, the
maximum Fourier amplitude occurs around ^ = 45°.
But for the second mode, the maximum Fourier ampli-
tude occurs on the 2-D wave case of t/> = 0°. This is
same as the conclusion of Mach's work ^ll\ where the
3-D effects on linear stability of compressible flat plate
boundary layer were studied.

A number of computational cases are studied on the
effects of frequency, and the effects of the freestream
disturbance wave angle on the hypersonic receptivity
process. Seven different cases with different frequencies
are tested by numerical simulations as followings.

Table 1: Seven Different Frequencies

Case Number
A.I
A.2
A.3
A.4
A.5
A. 6
A.7

F
2655

2212.5
1770

1327.5
1008.9
769.95

531

By fixing above frequencies, three different the
freestream disturbance wave angles are studied. They
are 0°, 45°, and 85°. To study to the effects of wave
angles and the effects of disturbance frequency, we are
mainly study the effects to amplitude of the first-mode
wave. Figure 17 shows the comparisons of the dis-
tributions of maximum Fourier amplitude | u' \ for
^ = 0°,45°,85° at the same frequency F = 1770. For
this figure, we can find the Fourier amplitude of | u1 \
has a stronger growth near the leading edge at t/> = 85°
than the growth of $ = 0° case due to the 3-D effect.
For ip — 85° case, even the 3-D effect is strong, how-
ever, at such high frequency, there is no strong growth
can be observed. Figure 18 shows the comparisons of
the spectrum of maximum Fourier amplitude | T" \ for
^ = 0°,45°,85° at different frequency. Along with the
decreasing of frequency, the maximum Fourier ampli-
tude | T' | is increasing. But the growth can not reach
very high value due to acoustic wave receptivities. How-
ever, even the transient growth is not that strong, we
still can observe the big growth near the leading edge.

Receptivity to Vorticity Waves (On-going)

According to Ref. [25], streamwise vortices is a very
reasonable means of exciting transient growth. To ap-
proach much stronger growth of the disturbances near
the leading edge, we are studying the vorticity wave
receptivities of low Reynolds number base flow and
high Reynolds number base flow. The results rep-
resented here are the results of low Reynolds num-
ber flow only. For vorticity waves, in the freestream,
nonzero disturbances are normal and spanwise velocity
disturbances(t;7 and wf) and wavenumber (ky and kz).
Amplitudes of other disturbances are zero. The results
represented here are only the cases o f ^ = 30° in the
low Reynolds number base flow. Unlike acoustic waves,
vorticity waves are hard to entry the boundary layer.
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In this paper, two different heights of vorticity wave
beams, O.lm and 0.03m, are tested. On the other hand,
we also compare the results of vorticity wave receptivi-
ties of two different streamwise wavenumber cases. One
is the case of zero streamwise wavenumber which gives
zero wave frequency. The other is the non-zero stream-
wise wavenumber case.

Figure 19 shows the 3-D and 2-D streamwise velocity
perturbation contours of first two computational zones
near the leading edge for the case with O.lm height of
vorticity beam and zero streamwise wavenumber. The
figure shows that freestream vorticity waves enter the
computational computational domain at top boundary.
The figure also shows that vorticity layer also exist in-
side boundary layer which is induced by vorticity waves
entered near the leading edge. Figure 20 shows the
streamwise velocity perturbation distribution and dis-
turbance energy distribution inside the boundary layer.
We can find that there is a large growth near the leading
edge due to the introducing of vorticity wave. For the
energy density plot, the strength of energy approaches
the maximum at the location of -0.7.

Figure 21 shows the 3-D streamwise velocity pertur-
bation contours of first two computational zones near
the leading edge for the case with 0.03m height of vor-
ticity beam and zero streamwise wavenumber. Figure
22 is the 2-D cross-secion of above streamwise velocity
perturbation contour. From Figure 23, the disturbance
performs stronger growth and higher value of distur-
bance energy than the height of O.lm case. This is be-
cause the peak of vorticity wave is much closer to the
leading edge which leads earlier entrance to the bound-
ary layer. To obtain enough growth of disturbance ex-
cited by vorticity wave, more test cases will be com-
pleted in the future computations.

Figure 24 shows the 3-D and 2-D streamwise velocity
perturbation contours of the case with 0.03m height of
vorticity beam and non-zero streamwise wavenumber.
By introducing cj, disturbances become temporally pe-
riodic. From Figure 25, the disturbance has higher value
of disturbance energy than zero streamwise wavenum-
ber case. Figure 26 shows the amplitude of streamwise
velocity perturbation in one cross-section of the flow
field. Besides the disturbance very close to the lead-
ing edge, there is another mode excited by the vorticity
wave. More detailed numerical simulations will be con-
tinued to find the optimal combination of frequency and
Reynolds numbers which will lead maximum growth.

4 Summary and Future work

High-order parallelized computer codes which include
parallel Fourier spectral method have been implemented
to do the direct simulations of fully 3-D hypersonic
boundary layers over a blunt body to freestream fast
acoustic disturbances arid vorticity disturbances using
3-D unsteady Navier-Stokes equations. Validation cases

show that our numerical methods are high accurate for
the simulations of compressible flow over blunt bodies.
The receptivity results show a strong growth near the
leading edge in the boundary layer on the wall. Due
to 3-D effect, acoustic wave receptivity performs larger
growth than 2-D case. On the cases of vorticity wave re-
ceptivities, after vorticity wave entering boundary layer,
high growth of disturbance is observed. By coupling
the streamwise disturbance, large growth appears. A
set of computational cases including a full spectrum of
streamwise frequencies and high Reynolds number case
will be completed soon.
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Freestream Waves

bow shock

Figure 1: A schematic of 3-D shock fitted grids for
the direct numerical simulation of hypersonic boundary-
layer receptivity to freestream disturbances over a blunt
leading edge.

0.0 0.2 0.4 0.6 0.8 Y 1.0

—— Computed
o Experiment

Figure 3: Comparison of pressure coefficients on a
spherical body with different Mach numbers.

Figure 2: Steady flow solutions for MOO = 5.25 flow over
a sphere by using high order 3-D shock-fitting method
for computational grids where the bow shock shape is
obtained as the freestream grid line.

M = 2

M = 4

Figure 4: Bow shock locations for hypersonic flow over a
sphere (lines: Numerical solutions, circles: experimen-
tal results).
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Figure 5: Steady flow solution of temperature contours
for hypersonic flow over a blunt wedge by using high
order parallelized code.
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Figure 7: M contour of steady flow for 2-D enforcing
mode case.

y/L

DNS
LSI

Figure 6: Steady flow solutions for hypersonic flow over
a blunt wedge by using high order parallelized code for
temperature (upper figure) and pressure contours (lower
figure). Edges show the boundaries of each subdomain.

Figure 8: Comparison of eigenfunctions of pressure real
part of the unstable second method obtained from DNS
and LST.
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Figure 9: Comparison of streamwise wavenumber anc
growth rates between simulation (solid line) and LSI
calculation (dots).

Figure 10: Instantaneous u' contours for the recep-
tivity to freest ream disturbances for 3-D hypersonic
boundary-layer over a parabolic leading edge (ijj = 45°).
Edges show the boundaries of each subdomain.

Figure 11: Instantaneous u1 contours for the receptivity
to single acoustic wave for 3-D hypersonic boundary-
layer over a parabolic leading edge (upper figure) and
Fourier amplitude | uf \ (lower figure)
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Figure 12: Instantaneous u1 contours for the receptivity
to two V-' = 45° oblique acoustic waves for 3-D hyper-
sonic boundary-layer over a parabolic leading edge.

one direction wave
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X

Figure 14: Comparison of the Fourier amplitude distri-
butions between the case of single oblique wave and the
case of two oblique waves.
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Figure 13: Instantaneous u' contours for the receptiv-
ity to two 45° oblique acoustic waves for 3-D hypersonic
boundary-layer over a parabolic leading edge (upper fig-
ure) and Fourier amplitude | u1 \ (lower figure)

-0.10 -0.05 0.00 0.05 0.10 j, 0.15

Figure 15: Comparison of the distribution of Fourier
amplitude | u1 along x axis for different ijj cases with
same wavenumber.

kl

Figure 16: Comparison of maximum Fourier amplitude
| u1 | for different ij) cases at fixed wavenumber.
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Figure 17: Comparison of distribution of maximum |tt'|
for different ^ at fixed frequency.
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Figure 18: Comparison of maximum |T'| along with the
changing of frequencies for different ip.

2.044E-7
•2.945E-7
•7.935 E-7
•1.292E-6
•1.791E-8
•2.290E-6

3 -2.789E-6
I -3.288E-6
I -3.787E-6

Figure 19: Streamwise velocity perturbation contours
with 0.5m height of vorticity beam and zero streamwise
wavenumber.
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Figure 20: Stream wise velocity perturbation distribu-
tion and disturbance energy distribution for the case
of 0.5m height of vorticity beam and zero streamwise
wavenumber.

Figure 22: 2-D Streamwise velocity perturbation con-
tour with 0.03m height of vorticity beam and zero
streamwise wavenumber.
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Figure 21: Streamwise velocity perturbation contour
with O.lm height of vorticity beam and zero streamwise
wavenumber.

Figure 23: Streamwise velocity perturbation distribu-
tion and disturbance energy distribution for the case
of 0.03m height of vorticity beam and zero streamwise
wavenumber.
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Figure 24: Streamwise velocity perturbation contours
with 0.03m height of vorticity beam and non-zerc
streamwise wavenumber.

Figure 26: Amplitude of streamwise velocity perturba-
tion for the case of non-zero streamwise frequency.

Figure 25: Streamwise velocity perturbation energy dis-
tribution for the case of O.lm height vorticity wave beam
and non-zero streamwise frequency.
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