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1 Abstract

This paper investigates, by direct numerical simu-
lation, the effects of an imposed magnetic field on a
weakly ionized Mach 4.5 boundary layer. The main
emphasis of the study is on MHD effects on the sec-
ond mode instability in supersonic boundary layer. The
imposed magnetic fields are generated by placing two-
dimensional magnetic dipoles below of the flat plate
surface. The gas is assumed to have a constant electri-
cal conductivity of lOOra/io/m. The magnetic Reynolds
number of the flow is small so that the induced magnetic
field in the flow is neglected. The governing equations of
the MHD flow, which are the Navier-Stokes equations
with the applied magnetic force terms, are computed
by a fifth-order shock-fitting numerical scheme. A se-
ries of cases with different imposed magnetic fields have
been investigated on the influences of imposed magnetic
field on both the mean flow and on the second mode
stability. It is found that the imposed magnetic fields
significantly retard the streamwise velocity and reduce
the local skin friction in the mean flow. For the case
of a strong imposed magnetic field, a local separation
region is generated in the mean flow with a strong ad-
verse pressure gradient. Meanwhile, the second mode
wave disturbances are found to be stabilized by the
imposed magnetic fields, even for the case with strong
adverse pressure gradient and a local separated flow re-
gion. This unexpected strong stabilization of the second
mode wave is believed to be caused by the alteration of
the steady base flow by the magnetic field. It is also
found that, unlike the second mode, the magnetic fields
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slightly destabilize the first mode waves because the dif-
ferent instability mechanisms of the two modes. The
results presented in this paper are the first concrete re-
sults on the interaction of second instability mode with
magnetic field in a supersonic boundary layer.

Nomenclature

B = magnetic field vector
Bx,By,Bz = Cartesian magnetic field components
c = local speed of sound
Cv — constant volume specific heat
e — total energy of fluid
E = electric field vector
J — Jacobian of grid transformation
J = conduction current density
k = thermal conductivity
K = surface electric current density
M = Mach number
p — pressure
Pr — Prandtl number
q = heat flux vector
Re — Reynolds number
t = time
T = temperature
Tr = reference temperature
u, v, w = Cartesian velocity components
#,y, z — Cartesian coordinates
ce = dielectric constant in free space
7 = ratio of specific heat
p, = dynamic viscosity
H& — magnetic permeability in free space
p — density of fluid
pe = local electric charge density
a = electrical conductivity of fluid
T = viscous stress tensor

2 Introduction

Sustained hypersonic flights offer potentially revolu-
tionary improvements in space access. Limiting factors
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in hypersonic vehicle performance include aerodynamic
drag and heating rates exerted on the vehicles by sur-
rounding flow fields. Recent research has indicated that
hypersonic flow fields may be modified significantly by
magnetic Lorentz forces through the creation and ma-
nipulation of plasma near the vehicles ̂ . Such concepts
can be used to control hypersonic flows by suppressing
or enhancing hypersonic boundary-layer instability and
transition. The suppression of the onset of hypersonic
boundary layer transition can lead to significant drag
and heating reductions. MHD control of hypersonic
boundary layer transition presents a challenge which re-
quires both an understanding of the complex hypersonic
MHD flow physics involving the stability and transition
of boundary layer. Currently, there have not been many
studies on MHD effects on supersonic and hypersonic
boundary layer stability and transition. Such MHD ef-
fects cannot not be analyzed by the popular linear sta-
bility analysis (LST) for supersonic boundary layers be-
cause the MHD effects can alter the mean flow profiles
substantially so that the parallel flow assumption used
in LST is no longer valid.

2.1 MHD Effects on Weakly Ionized Hypersonic Flows

In hypersonic flow, the gas can become weakly ion-
ized either by viscous heating or by artificially gener-
ated plasma in the flow. If there is an imposed elec-
tromagnetic field in the flow, the flow properties can
be changed substantially by the interaction of the elec-
trically conducting gas and the electromagnetic field.
Such interaction forms the basic idea of the electromag-
netic control of hypersonic flow. Many researchers have
shown that hypersonic flow can be altered significantly
by Lorentz force ^2~81. It was found that MHD effects
weaken the bow shock structure and significantly reduce
shock standoff distance for hypersonic flow over a blunt
body with the presence of an imposed magnetic field.

Rossow ̂  first studied the incompressible boundary
layer flow over a flat plate in the presence of a uniform
magnetic field applied normal to the plate. The elec-
trical conductivity was assumed to be constant. The
MHD boundary-layer equations were solved by numeri-
cal integration. He found that the skin friction and heat
transfer rates were reduced when the transverse mag-
netic field was fixed to the plate, but increased when
the magnetic field was fixed to the moving fluid. In
both cases, the total drag was found to be increased.
Bleviss *10J investigated MHD effects on hypersonic Cou-
ette flow in which a uniform magnetic field normal to
the wall was externally imposed. Assuming variations
of electrical conductivity, viscosity, and Prandtl number
with temperature, the flow was solved exactly with min-
imum assumptions about the gas. The results for the
case of thermally insulated wall showed a tremendous
decrease in skin friction and significant increase in total
drag with reasonable magnetic field strength. It was

also found that the temperature increased across the
flow field and heat transfer increased at the moving wall.
For the heat transfer case, a significant increase in total
drag was accompanied by a moderate increase in the
heat transfer. The interesting result however, was the
hysteresis character of the skin friction which was ab-
sent in the case of the thermally insulated wall. Bleviss
attributed the hysteresis behavior to the dramatic vari-
ation of the electrical conductivity with enthalpy that
was present in the heat transfer case. Due to the fact
that pure shear flow contained many important features
of boundary layer flow, Bleviss expected that the mag-
netic field would decrease the heat transfer and the skin
friction but increase the total drag. Furthermore, the
hysteresis effect was expected to be present in bound-
ary layer flow. In 1960, Bush ̂  studied a high-speed
compressible air flow over a flat plate under an applied
magnetic field having its component normal to the plate
proportional to -4=. Variation of electrical conductiv-
ity was also considered. In attempt to verify Bleviss's
predictions on boundary layer flow, Bush found that the
skin friction and heat transfer decreased with increasing
magnetic field strength. Moreover, the boundary layer
flow also exhibited the hysteresis behavior as found in
the case of MHD Couette flow, but disappeared at much
higher Mach number.

Since the magnetic field applied to hypersonic flow
can modify the flow field significantly, it is expected
that there are strong effects of magnetic field on the
stability and transition of supersonic boundary layers.
Effects of MHD on boundary-layer stability were inves-
tigated by Rossow ̂  using a linear stability analysis.
The effectiveness of a magnetic field in stabilizing the
laminar flow of an incompressible, electrically conduct-
ing fluid was studied. A two-dimensional infinitesimal
sinusoidal disturbance of a given wave number was im-
pressed on the fluid to test for the stability of the flow
in the presence of either a coplanar or transverse mag-
netic field. Rossow obtained the neutral stability curve
and found that the flow over a flat plate was stabilized
by either a coplanar or transverse magnetic field fixed
relative to the plate, but destabilized when the trans-
verse magnetic field was fixed relative to the fluid. He
attributed the destabilizing effect to the inherently un-
stable velocity profile induced by the magnetic field.

2.2 Supersonic Boundary Layer Instability

The transition process in boundary layers is the re-
sult of the nonlinear response of the laminar boundary
layers to forcing disturbances ^13\ In an environment
with small initial disturbances corresponding to those
encountered in hypersonic flights, the paths to tran-
sition consist of three stages: 1) receptivity, 2) linear
eigenmode growth or transient growth, and 3) nonlinear
breakdown to turbulence. The process of instability and
transition is much more complex and much less under-
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stood for hypersonic boundary layers than for low-speed
incompressible boundary layers. Most of our knowledge
on the stability properties of hypersonic boundary lay-
ers is obtained by the analyses of local parallel linear
stability theory (LST) [14'15]. Lees and Lin [16] showed
that the existence of a generalized inflection point is
a necessary condition for inviscid instability of a com-
pressible boundary layer. Mack *-14* found that there
are higher acoustic instability modes in addition to the
first-mode instability waves in supersonic and hyper-
sonic boundary layers. Among them, the second mode
becomes the dominant instability for hypersonic bound-
ary layers at Mach numbers larger than about 4. The
existence and dominance of the second mode have been
validated by experimental stability studies ^17\ The sec-
ond mode has been found to be most unstable when
two-dimensional. Currently, it is not known how an
imposed magnetic field will affect the stability charac-
teristics of the second mode. This is the focus of the
study presented in this paper.

2.3 DNS of Supersonic Boundary Layer Instability

Due to the difficulty in conducting ground-based hy-
pervelocity experiments and the complexity of hyper-
sonic flows, the approach of direct numerical simulation
without empirical turbulence models is a potentially
powerful tool in studying and understanding supersonic
and hypersonic flow physics for the development of fu-
ture hypersonic space vehicles. In DNS studies, the
full unsteady Navier-Stokes equations are numerically
simulated without using any empirical turbulence mod-
els. The development of instability waves and nonlinear
breakdown are numerically captured by the simulation.
Though such a simulation is computationally intensive,
it has the ability to simulate many of the effects that
are neglected by parallel linear stability theory (LST)
and parabolic stability equations (PSE) •-18-'.

Erlebacher et al. t19>20J studied the secondary insta-
bility mechanism of compressible boundary layers over
a flat plate by temporal and spatial direct numerical
simulation. Thumm et al. &l\ Fasel et al. &2\ and
Eibler et al. [23'24] performed spatial DNS of the oblique
breakdown of transition in a supersonic boundary layer
over a flat plate based on compressible 3-D Navier-
Stokes equations. Adams and Kleiser t25'26-! studied
the subharmonic transition process of a flat-plate at
a freestream Mach number of 4.5 by temporal direct
numerical simulation. Pruett et al. [27~293 performed
spatial simulations for supersonic boundary layers over
flat plates and sharp cones. The results are compared
with parabolic stability equations (PSE). All these DNS
studies on compressible boundary layers show that the
DNS of high-speed boundary layer transition is feasi-
ble on existing computers using efficient and accurate
numerical methods. They can provide detailed infor-
mation which can not be obtained by other means for

the study of transition of hypersonic boundary layers.
In the past several years, Zhong and his colleagues at

UCLA have been developing new fifth and higher order
DNS methods and computer codes for the DNS studies
of supersonic and hypersonic boundary layer stability
and transition in non-trivial geometries with bow shock
effects t3°J. We have also conducted DNS studies of the
receptivity and stability of a number of 2-D and 3-D hy-
personic flows over blunt bodies *-3l\ The direct numeri-
cal simulation as well as other supporting theoretical ap-
proaches are used to gain a fundamental understanding
of the physical mechanism of laminar-turbulent transi-
tion of hypersonic boundary layers over complex 3-D
maneuvering vehicles affected by shock waves and real-
gas effects. The numerical tools developed in these stud-
ies are extended to the current study of MHD effects of
the second mode instability.

2.4 Scope of Current Study

The study by Rossow was done before the discovery of
the second instability mode in supersonic boundary lay-
ers by Mack ^14l It has been generally recognized that
the second mode is the most dangerous mode in high
Mach number boundary layers. So far, the MHD effects
on the second mode instability have not been studied.
Therefore, the objective of this paper is to investigate
MHD effects on the stability of a Mach 4.5 boundary
layer by using the approach of direct numerical simu-
lation (DNS). This paper presents the results of a di-
rect numerical simulation on the effects of imposed mag-
netic field on the propagation of second mode instabil-
ity in a Mach 4.5 boundary layer. The two-dimensional
steady base flow and unsteady flow are solved by non-
linear Navier-Stokes equations with an imposed mag-
netic field. The effects of the imposed magnetic field on
the second mode instability in the supersonic bound-
ary layer are investigated by the numerical simulations.
These results represent the first of this kind in demon-
strating the properties of the second mode under various
imposed magnetic fields.

DNS approach is chosen because LST may not apply
on the highly nonparallel mean flow distorted by the
applied magnetic field. The geometry of this study is
rather simple. A Mach 4.5 flow over a two-dimensional
flat plate in the presence of an imposed magnetic field
is simulated. All vector components and variations of
flow properties in the span wise direction are neglected.
The gas is assumed to have constant electrical conduc-
tivity of 100 mho/m. The imposed magnetic field is
generated by placing two-dimensional magnetic dipoles
below the flat plate. The resultant magnetic field is sim-
ilar to that produced by an array of permanent magnets
placed beneath the plate. The governing equations of
the MHD flow are formulated from the Navier-Stokes
and the Maxwell equations, and are spatially discretized
by our fifth-order numerical scheme. In an attempt to

American Institute of Aeronautics and Astronautics



(c)2002 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

solve the coupled MHD equations, difficulties were en-
countered due to the constraint of the size of time step
posed by the magnetic diffusivity of the magnetic in-
duction equation. To resolve the "stiffness" problem,
we solve the approximate MHD equations without the
induction equation by neglecting the induced magnetic
field and assuming that the imposed magnetic field is
constant. This is actually a fair assumption consider-
ing that the magnetic Reynolds number is in the order
of 10~3. The mean flow and stability analysis of this
flow without MHD effects have been studied by Ma and
Zhong f32'. The physical domain of the flat plate in
this paper corresponds to the region in which the sec-
ond mode disturbance is the dominant unstable mode.
By introducing the second mode disturbance at the en-
trance on the converged steady flow, we have conducted
a series of cases with different configurations of the im-
posed magnetic fields and investigated the influences of
MHD on the second mode instability.

3 Governing Equations

The governing equations of MHD of compressible flow
are the Maxwell equations coupled with the Navier-
Stokes equations through the momentum and energy
equations. In most practical situations, the fluid satis-
fies the magnetogasdynamic approximations t33-" so that
the displacement current and the excess electric charge
are neglected. The simplified Maxwell equations that
apply to MHD are:

B
Vx —

He

V x E

V - B

= J

SB
" dt

(i)
(2)

(3)
(4)

In Eq (1) and (4), the displacement current ^p and
the local charge density ^- are neglected respectively.
It implies that the plasma or fluid has the tendency
toward electrical neutrality, but this is true only when
the Debye length is much smaller than the typical length
scale of the flow. The magnetic permeability //e that
appears in Eq (1) is assumed constant throughout the
paper, its value is taken as the same as that in vacuum.

The current density J in MHD is given by the gener-
alized Ohm's law as follows,

J = er(E B) (5)

where a is the electrical conductivity. This equation
relates the current density with the electric field and the
induced electric field generated by crossing the magnetic
field lines with the velocity vector. This form of the
electric current equation neglects the Hall current for
simplicity.

The complete set of MHD equations consists of the
continuity equation, momentum equation, magnetic in-

duction equation, and energy equation. The continuity
equation has exactly the same form as it appears in the
Navier-Stokes equations. The momentum equation is
modified by adding the Lorentz force term J x B as
a body force, and the energy equation is modified by
adding the magnetic energy term E • J. The magnetic
induction equation is obtained by substituting Eq (1)
and Eq (5) into Eq (2). It is a vector equation coupled
with the velocity vector. It is written as

<9B—— (u x B) = —— v2 B (6)

where -~ is the magnetic diffusivity or viscosity. The
equation has a very similar form as the vorticity equa-
tion in conventional fluid mechanics. It can also be
shown that the magnetic field shares many physical phe-
nomena with the vorticity vector. The term on the right
hand side of the equation represents diffusion of mag-
netic field, and under the flow conditions in this paper,
the magnitude of the magnetic viscosity is several or-
ders higher than the fluid viscosity. Therefore, it causes
a stiffness problem that significantly reduces the size of
time step of our simulation. In order to solve the MHD
equations more efficiently, we only consider the cases
where the small magnetic Reynolds number assump-
tion applies. The magnetic Reynolds number defined
as UL(Tfj,e is on the order of 10~3 for all cases presented
in this paper. Since it is much less than unity, we as-
sume that the induced magnetic field is negligible and
the imposed magnetic field is constant throughout the
computations.

The set of MHD equations with the assumption of
negligible induced magnetic field are written as follows:

= 0 (7)

0u

de

- VP + V * ? + <
+cr(u x B) x B

- V • (pu) + V

x B)

• r)

(8)

(9)
where e =. tJLi\ + ^pU2, is the internal energy plus the
kinetic energy of the fluid. The viscous stress and the
heat flux are given by the usual constitutive equations
in Newtonian fluid as follows

dui duj 2 duk

where fj, is the viscosity coefficient determined by the
Sutherland law,

Tr

T + T,
(12)
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where Tr = 288K, Ts = 11QK, and p,r = 0.17894 x
W~4kg/(ms) for air. The thermal conductivity k is
computed from the Prandtl number, which is assumed
constant and it takes the value of 0.72 in this paper.

The imposed magnetic field in this paper is generated
by placing two-dimensional magnetic dipoles below the
flat plate. The resultant magnetic field at each point in
the flow field is computed by superimposing the mag-
netic field components induced by each 2-D magnetic
dipole. The formula of a 2-D magnetic dipole located
at the origin of the coordinate system and pointing up
vertically is written as follows

B = - [sin 20 i - (cos20 - sin2 6} j] (13)

where it is assumed that x and y form an orthogonal
coordinate system. The magnetic dipole is located at
the origin and is pointing in the positive y-direction. 0
is the angle measured from the dipole moment (y-axis
in this case) to the position vector r, r is the magnitude
of the position vector, and BQ represents the strength
of the magnetic dipole. The formulas for other dipoles
pointing to other directions can also be derived simi-
larly.

4 Numerical Method

There have been several recent works on developing
upwind schemes for MHD equations with shock captur-
ing capability [34>35J. Most of these methods are second-
order accurate TVD schemes, which may not be accu-
rate enough for the numerical simulation of instability
waves in hypersonic boundary layer. Such simulation
requires high-order numerical accuracy in order to cap-
ture a wide range of time and length scales in the wave
fields. Since our goal is to analyze the stability of super-
sonic boundary layers with MHD effects, it is necessary
to use a high-order and robust numerical scheme for the
numerical simulation. Therefore, we use a fifth-order fi-
nite difference scheme that we have developed and val-
idated for solving the full Navier-Stokes equation for
spatial discretization of the MHD equations ^3Q\ The
numerical method used in the current study is briefly
summerized in this section. More details on the method
and its validations can be found in [30].

In the numerical simulation, the MHD equations (7)
to (9) are written in the following conservative form,

8E OF dG dFv dGv

where U is the solution vector given by

U = {p, pu,pv,pw, e} (15)

E, F, G are the inviscid flux terms, and EV,FV, Gv are
the viscous terms. M is the MHD source term. They

are written as follows

E =

F = <

G = <

pu
pu2 +p

puv
puw

(e+p)u ^
pv

puv
pv2 +p

pvw
(e+p)v ^

pw
puw
pvw

pw2 -f p
k (e+p)w ^

(16)

(17)

(18)

Ev = - <

Fv = -

yX

k urxx + vryx -|- wrzx - qx

0

Tyy

(19)

UTXy VTyy WTZy ~

(20)

(21)

M =

vrzy + WTZZ - qz

0
•tf -rB2

2)+vBxBy +
uBxBy-v(Bx

2 + B2
2) +

uBxBz + vByBz - w(Bx
2

0

-u(B2 wBxBz

By2)

(22)

In the conservation equation (14), the inviscid fluxes
and the viscous fluxes have the same forms as those of
the Navier-Stokes equations. The new term, M, repre-
sents the contribution of the Lorentz force J x B. In
this paper, the imposed electric field is assumed to be
zero for simplicity.

Before discretizing the governing equation by a finite
difference method, equation (14) in the physical domain
is transformed to the body-fitted computational domain
by the following transformation relations,

and the transformed governing equation in the compu-
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field. A schematic of the flow field with an imposed
magnetic field is shown in Figure 1. The flow direction
is from left to right. The upper boundary of the com-
putational domain is a weak oblique shock induced by

tational domain is expressed as follows

BE' dF' 6G'\_8U_
J dr

dE'v dF'v 8G'V , .
~ ~~ ~

= M (24)

A fifth-order explicit finite difference scheme is used
for spatial discretization of the governing equation (24),
the inviscid flux terms are discretized by the upwind
scheme, and the viscous flux terms are discretized by
the central scheme. For the inviscid flux vectors, the
flux Jacobians contain both positive and negative eigen-
values, a simple local Lax-Friedrichs scheme is used to
split the inviscid flux vectors into positive and negative
wave fields. For example, the flux term F' in Eq (24)
can be split into two terms of pure positive and negative
eigenvalues as follows

' = F; + FL (25)

where F| = |(F' + Ai7) and FL = \(F'-XU] and A is
chosen to be larger than the local maximum eigenvalue
ofF'

-|V^l(v/RM^+c) (26)J
where

_ (27)

The parameter c is a small positive constant added to
adjust the smoothness of the splitting. The fluxes F+
and FL contain only positive and negative eigenvalues
respectively. Therefore, in the spatial discretization of
equation (24), the derivative of the flux F is split into
two terms

dF1 _ dF'+ dFL
~ - ~ ~ f ~ ( ]

where the first term on the right hand side is discretized
by the upwind scheme and the second term by the down-
wind scheme.

The fifth-order explicit scheme utilizes a 7-point sten-
cil and has a adjustable parameter a as follows

k=-3

(29)

where a,-±3 = dbl-f-^a, a,-±2 = =F9--|a, a,-±i = ±45 +
|a, a,- = 0 — fa, and 6,- = 60. The scheme is upwind
when a < 0 and downwind when a > 0. It becomes a
sixth-order central scheme when a = 0.

5 Boundary Conditions

The computational domain is weakly ionized super-
sonic flow over a flat plate with an imposed magnetic

boundary layer thickness. The boundary conditions are
described below.

5.1 Upper Boundary

The attached weak shock that originates from the
leading edge of the flat plate serves as the upper com-
putational boundary in the numerical simulation. The
location of the shock is determined by a shock fitting
method ^30-\ The flow variables behind the shock are de-
termined by the Rankine Hugoniot relation across the
shock and a characteristic compatibility equation be-
hind the shock. The MHD terms are not taken into
account in the Rankine Hugoniot relation because the
magnetic field strength considered is mainly concen-
trated near the wall and the magnetic field strength at
the upper boundary is approximately less than 5 percent
of the maximum value at the wall. In addition, because
the shock is very weak and far away from the boundary
layer, it plays no role in the second mode propagation
in the boundary layer. Therefore, we assume that the
local magnetic field at the shock is too weak to alter the
shock location significantly.

It should be noted that such assumption may not
be appropriate for flow across a strong bow shock in
the nose region of hypersonic and high-temperature flow
over a blunt body. The magnetic field in the local re-
gion at the shock can be strong and the local electrical
conductivity can be large there. In those cases, it is nec-
essary to include the B field effects in the shock fitting
formulas.

5.2 Lower Boundary

The flat plate itself is the lower computational bound-
ary, it is assumed to be adiabatic so that |j£ = 0 is
enforced at the wall. The velocity components u and w
are zero following the non-slip wall condition and v is
zero according to the solid-wall condition. For the mag-
netic field lines across the lower boundary, the normal
component of the magnetic field across the flat plate
is continuous. The flat plate is assumed non-magnetic
such that the tangential component across the bound-
ary is given by

n x (B2-Bi) = (30)

where n is the surface normal vector and K is the sur-
face current density. We assume that the flat plate is
electrically insulated, therefore the surface current den-
sity is zero and the tangential component of the mag-
netic field is continuous across the flat plate.

American Institute of Aeronautics and Astronautics
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5.3 Inlet and Exit Conditions

The inlet conditions are fixed and are given by the
initial conditions of the flow. The flow variables at the
exit are extrapolated from the interior points as done
in [30].

6 Flow Conditions

In this paper, Mach 4.5 weakly ionized viscous flows
over a flat plate in various imposed magnetic fields are
considered. The flow conditions in all cases are the same
except the magnetic fields. They are: MOQ =4.5, TOO —
65.15 K, p = 728.438 Pa, Pr = 0.72, Re^ = 7.2 x
106/ra, and a — 100 mho/m. The focus of the study
is on the MHD effects on the stability of second mode
wave disturbances. The steady flow solution and the
second mode stability of the same flow without MHD
effects have been studied by direct numerical simulation
by Ma and Zhong '•32-'. The velocity vectors shown in
the schematic of the flow with imposed magnetic field
in Figure 1 are those computed without the imposed
magnetic field. The steady flow solution for the case
without MHD effects of Ma and Zhong ̂  is used as
the basis for evaluating the MHD case. In addition, the
numerical accuracy of the results have been extensively
validated in the previous work '32l

In the current simulation, the flat plate has a length
of 0.048ra. The physical domain is resolved by 240 uni-
form grids in the horizontal direction and 120 stretched
grids in the vertical direction. A total of seven different
imposed magnetic fields are considered to investigate
the effects of magnetic field orientations, where the im-
posed magnetic field of each case is calculated by the
superposition of the magnetic dipoles located below the
plate. The schematic of the flow with imposed magnetic
field is shown in Figure 1.

The solutions include both steady solutions and un-
steady solutions with second mode instability waves
propagating in the boundary layers. The effects of the
imposed magnetic fields on both steady and unsteady
solutions are investigated. The results of these numeri-
cal studies are presented in the following sections.

7 MHD Effects on Steady Flow Solutions

The effects of an imposed magnetic field on steady su-
personic boundary-layer flow over a flat plate are first
studied. The magnetic fields are generated by placing
several magnetic dipoles under the plate. Six cases of
different dipole arrangements, in terms of orientations
and spacing of the dipoles, are considered to better un-
derstand the MHD effects on supersonic flow.

7.1 Case I. A Pair of Dipoles Pointing Vertically in
the Opposite Directions

We first consider the case of Mach 4.5 flow over a flat
plate with two magnetic dipoles of equal strength, one

pointing vertically upward and another downward. The
centers of two dipoles are located below the flat plate.
The first dipole is located at a distance of 0.02m from
the inlet and 0.01m below the plate. Its dipole mo-
ment is pointing in the positive ^/-direction. The second
dipole is located at a distance of 0.025m from the in-
let, and has the same y-location as the first one. The
dipole moment of the second dipole is pointing in the
negative t/-direction. For this magnetic dipole arrange-
ment, two sub-cases of different magnetic field strength
are considered, i.e.,

Case La: Relatively weak B-field of £0 = 1-5 x 10~4Tm2,
Case I.b: Relatively strong B-field of BQ = 3 x 10~4Tm2.

where BQ is the magnitude in equation (13). The value
of BQ is chosen such that the maximum strength of Case
I.b with stronger B-field is about 2.5 T on the wall and
that for Case La of weaker one is about 1.2 T on the
wall.

Figure 2 shows the magnetic field lines and the con-
tours of the B-field magnitude for the case of weaker B-
field. The B-field distributions for the case of stronger
magnetic field are similar to these plots except that the
magnitude is twice as strong for the latter case. The
figure shows that the magnetic field strength is mainly
concentrated in the boundary layer region near the plate
surface. It is expected that it will have the strongest ef-
fect on the boundary layer structure near the wall.

Numerical results of steady Mach 4.5 weakly ion-
ized flow with a pair of dipoles for both cases of BQ =
1.5 x 10~4Tm2 and BQ = 3 x 10~4Tm2 are obtained by
using a fifth order scheme. The results are shown in Fig-
ures 3 to 9. In general, the MHD effects on the steady
flow by the strong and weak magnetic fields have very
similar trends. The strong B-field alters the flow signifi-
cantly while the weak B-field modifies the flow in a rela-
tively lesser degree. Figure 3 compares the velocity pro-
files affected by the imposed magnetic fields for the cases
of £0 = 1.5 x 10-4Tm2 and BQ = 3 x 10-4rm2. This
figure shows that the flow in the vicinity of the bound-
ary layer is retarded by the opposing Lorentz force, this
also results in the thickening of the boundary layer. It
is observed that the magnetic fields induce strong modi-
fications on the vertical velocity components. The mag-
netic effects on the velocity fields are similar for both
cases except that they appear to be much stronger in
the stronger B-field case.

The contours of flow variables for the cases of weaker
and stronger magnetic fields and the case of no mag-
netic field are shown in figures 4, 5, and 6. From the
contours of normal velocity and pressure, it is observed
that the magnetic forces induce a new shock structure
outside of the boundary layer. It is identified as the
Mach wave associated with the interaction of the flow
with the Lorentz force, since the angle between the new
shock and the flat plate is approximately equal to the
Mach angle. Comparing the new shocks in both cases,
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the new shock in the stronger field case is much sharper
while it is relatively smeared in the weak field case, it
indicates that the stronger magnetic field produces a
much stronger Mach wave. The normalized pressure on
the wall and the skin friction coefficient are shown in
Figure 7 and 8 respectively. The magnetic dipoles in-
troduce adverse pressure gradient on certain regions but
favorable pressure gradient on other regions. The skin
friction coefficient is found to be reduced everywhere
on the flat plate for both cases. For the case of strong
magnetic field, the local adverse pressure gradient is suf-
ficient to cause local flow separation. There is a local
region on the wall where negative skin friction is pro-
duced by the magnetic field, which is an indication of
a local separation region. The local separation bubble,
which can be demonstrated by streamlines shown in fig-
ure 9, is found near the inlet. It is due to the relatively
strong adverse pressure gradient in that region.

Due to the local separation created by the imposed
magnetic field, the smooth development of the super-
sonic boundary layer has been changed. It is natural
to expect that the flow will become more unstable, and
it is interesting to investigate how the characteristics
of the boundary-layer instability modes, especially the
second mode, are affected by the magnetic field. It will
be shown later that contrary to intuitive expectation,
the second mode is substantially disrupted and stabi-
lized by the imposed magnetic field, even though there
exists a local separation area.

7.2 Case II. A Pair of Dipoles Pointing Vertically in
the Same Direction

In this case, two magnetic dipoles with both of their
dipole moments pointing in the positive y-direction is
considered. The first magnetic dipole is located at a
distance of 0.02m from the inlet and —0.007m below of
the plate. The second one is located at a distance of
0.025m from the inlet, and has the same y-location as
the first one. Both dipoles have magnetic field strength
specified by BQ = 0.45 x 10~4Tm2. The value of BQ is
chosen so that the maximum B field strength is about
the same as that of the weaker B-field case of Case I.
The magnetic field lines and the magnitude of the B-
field are shown in figure 10. Again, the magnetic field
is mainly concentrated in the boundary layer on the
surface.

Figure 11 shows the steady flow solution in this case.
Again, the streamwise velocity is retarded by the B-
field and a strong adverse pressure gradient region is
generated on the surface. The steady flow variables in
this case exhibit very similar behaviors as Case I with
a pair of magnetic dipoles in opposite directions. The
only noticeable differences appear in the pressure on
the wall and the skin friction coefficient. The pressure
on the wall in this case has only peak, where there are
two peaks in each of the previous cases. There are also

less peaks in the skin friction coefficient distributions of
the current case than than those of the previous cases.
Overall, the effects are similar.

7.3 Case III. Four Dipoles Pointing Vertically in Al-
ternating Directions

We next consider four magnetic dipoles placed be-
neath the flat plate with their dipole moments point-
ing in alternating vertical directions, i.e., the first one
points in the positive y-direction, the second one points
in the negative y-direction, and so on. The ar-locations
of the four dipoles from the inlet are 0.01m, 0.02m,
0.03m, and 0.04m, respectively. They are all located
at 0.005m below of the plate. Again, the value of BQ
of all dipoles is chosen so that the maximum B-field
strength is about the same as that of the weaker B-
field case of Case I. All dipoles have magnetic strength
specified by BQ = 0.27 x 10~4rm2. The magnetic field
and magnitude are shown in Figure 12. The magnetic
field strength in this case spreads over the flat more
uniformly than that of the two dipoles cases.

The steady solutions of the Mach 4.5 boundary layer
with the presence of these four dipoles are shown in
Figure 13. The effects of the imposed magnetic field
are again similar to the previous two dipoles cases, ex-
cept that the pressure on the wall and the skin friction
coefficient have more peaks.

7.4 Case IV. Four Dipoles Pointing Vertically in the
Same Direction

The effects of four magnetic dipoles with all of their
dipole moments pointing in the positive y-direction are
investigated. All dipoles are placed below of the plate
with their x and y locations the same as the previous
four dipoles case. All dipoles have a magnetic strength
given by BQ = 0.37 x 10~4Tm2, which is chosen similar
to the previous case. The magnetic field and the mag-
nitude are shown in Figure 14. Again, the magnetic
field strength in this case spreads over the flat more
uniformly than that in the two dipoles cases.

The steady solutions of Mach 4.5 boundary layer with
the presense of these four dipoles are shown in Figure
15. The effects of the imposed magnetic field are again
similar to the previous four dipoles cases.

7.5 Case V. A Pair of Dipoles Pointing Horizontally
in the Same Direction

The effects of orientation of the dipoles are considered
in this case. Two magnetic dipoles with their dipole
moments pointing in the positive z-direction are placed
below the plate. The first dipole is located at a distance
of 0.02 m from the inlet, its y-location is 0.007m below
of the plate. The second dipole is located at a distance
of 0.015m from the inlet, and has the same y-location
as the first one. All dipoles have a magnetic strength
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given by BQ = 0.45 x 10~4Tra2, which is chosen similar
to the previous case. The magnetic field lines and the
magnitude of the resultant magnetic field are shown in
Figure 16. The magnetic field for the current case is
similar to that of the case of vertical dipoles shown in
Figure 2.

Figure 17 shows the steady flow solution in this case.
Again, the imposed magnetic field for this case has very
similar influence on the steady flow variables as Case
I with a pair of vertical dipoles. These results show
that the effects of magnetic field on supersonic bound-
ary layers are not very senstive to the orientation of the
magnetic dipoles.

7.6 Case VI. Four Dipoles Pointing Horizontally in
the Same Direction

Four magnetic dipoles with their dipole moments
pointing in the positive ^-direction are placed below of
the plate. The x-locations of the magnetic dipoles from
the inlet are 0.0075m, 0.0175m, 0.0275m, and 0.0375m,
respectively. The y-locations of all of them are 0.005m
below of the plate. All dipoles have a magnetic strength
given by BQ = 0.35 x 10~4Tm2, which is chosen similar
to the previous case. The magnetic field lines and the
magnitude of the resultant magnetic field are shown in
Figure 18. The results of steady flow over a flat plate
are shown in Figure 19. The flow exhibits similar char-
acteristics as the vertical dipoles cases, but the profiles
of the pressure and the skin friction coefficient are quite
different in this case.

For all cases considered, the magnetic fields have very
similar effects on the supersonic boundary layer. The
results show that the flow in the vicinity of the bound-
ary layer is retarded by the opposing Lorentz force. This
also results in the thickening of the boundary layer. The
magnetic field shows strong modifications on the verti-
cal velocity components for all cases. For the case of
very strong B-field, a local separation region is created
by the imposed magnetic field.

8 MHD Effects on Second-Mode Instability
Waves

The steady flow solutions presented in the previous
section show substantial alterations of the boundary
layer structure by the imposed magnetic fields. The
effects of the magnetic fields on the stability of super-
sonic boundary layers are investigated in this section.
Mack '-14-' showed that, unlike low speed boundary lay-
ers, there are multiple instability modes in supersonic
boundary layers. Among these instability modes, the
second mode is the most unstable one at high Mach
numbers. The second mode waves are most unstable
when they are two-dimensional, i.e., they are most un-
stable when they propagate in the same plane as the
mean flow. Therefore, this paper mainly studies the
MHD effects on the two-dimensional second mode in-

stability in the supersonic boundary layer. Since the
mean flow under the influence of the magnetic field is
no longer parallel, the linear stability approach is not
expected to be valid. The most effective approach is the
DNS study of the propagation of the second mode wave
through the supersonic boundary layer with an imposed
magnetic field. This is the approach that we adopt in
this paper.

In this section, we will first discuss the second mode
instability results for Mach 4.5 flow without MHD ef-
fects. These results were obtained by Ma and Zhong
in [32]. The second mode results without MHD effects
are used as bases of comparison on the MHD effects.
Subsequently, we will present the results of the propaga-
tion of a second mode instability wave passing through
the supersonic boundary layer with the same six cases
of different arrangements of magnetic dipoles discussed
in the preceding section.

8.1 Second-Mode Instability Waves in Supersonic
Boundary Layers

Thanks to the work of Mack ̂  and many others,
it has been generally accepted that the linear stabil-
ity analysis is very accurate to describe the character-
istics of supersonic boundary layer instability (LST) in
the linear development region. In a two-dimensional
LST study, the disturbances of the unsteady flow in the
boundary layer are represented by the perturbations of
instantaneous flow variables with respect to their local
mean variables, such as

u'(x, y,t) = u(x, y, i) - u(x, y) (31)

where u(x, y) is the mean flow velocity. The linear sta-
bility analysis decomposes the fluctuations of an arbi-
trary variable, q in a normal mode form as follows

(32)

where q = {u,v,p,f, w}tr, and q = {£, 0,p,T» T. q
is complex amplitude of the disturbance, a = ar +-ia,-,
is the stream wise wavenumber and growth rate, and
u = u*L/UQQ is the frequency. The frequency of the
disturbance is generally characterized by a dimension-
less frequency Fy defined by F — ̂ /(pu2)^.

The linear stability analysis uses a local parallel mean
flow assumption to derive a linearized governing equa-
tion with homogeneous boundary conditions for flow
disturbances. The resulting equations form an eigen-
value problem. For the spatial stability problem, a; is a
given real parameter while a and q(y), both of which
are complex, are solved as eigenvalue and eigenfunction
of the linear stability equation. These solutions form
various modes of the boundary layer waves. A mode is
stable if a» is nonnegative. Otherwise, it is unstable.
For supersonic flow, besides the first mode, Mack found
a new family of unstable modes called Mack modes *-36*.
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For the Mach 4.5 boundary layer with MHD effects
studied in this paper, the first and second modes neutral
curve have been calculated by Ma and Zhong ̂  using a
multi-domain spectral method presented by Malik ^37\
Figure 20 shows the neutral curves of stability (F vs R)
for two-dimensional first and second mode disturbances
at Mach 4.5. In the figure, the nondimensional param-
eter R is the local Reynolds number defined using the
length scale of boundary layer thickness, i.e.,

R = (33)

where length scale of boundary layer is defined as

L = (34)

The region inside of the upper dash-dot curve is the
second mode instability region, while the region inside
of the solid curve is the first-mode instability region.
The region outside of these curves is a stable region.
The figure shows that the second mode is unstable at
high frequency as compared to the first mode.

We chose the linear development of a second mode
wave at a fixed frequency in the Mach 4.5 boundary
layer. The frequency is F = 2.2 x 10~4 as shown in Fig-
ure 20. It is chosen based on the neutral stability curve
such that it is unstable in this region in non-MHD flow.
The amplitude of the wave is small so that the devel-
opment of it is essentially linear. The computational
domain in the current calculations is inside the second
mode instability region in the figure. Therefore, the
amplitude of the second mode wave grows as it travels
downstream when there are no MHD effects in the flow
field. In the numerical simulation, a second mode wave
obtained from LST, is introduced at the inlet on the left
hand side of the computational domain over the steady
flow solution obtained from previous section. The effect
on the wave disturbance is then simulated by solving the
full Navier-Stokes equations with the MHD effects. The
stability results of the second mode propagation with-
out MHD has been studied by Ma and Zhong ̂  by
numerical simulations. The results are shown in Fig-
ure 21. The figure shows the growth of the wave am-
plitude along the flow direction. The figure also shows
the well-known properties of the second mode that the
pressure perturbation is concentrated on the wall, but
the density and temperature perturbations are largest
at the edge of the boundary layer, which forms the so
called rope waves observed in experiments t38-L

The propagation of second mode instability waves
in the boundary layer under the influence of magnetic
fields are subsequently studied by direct numerical sim-
ulation. The results of second mode instability in all six
cases of magnetic field arrangements (Case I to VI) dis-
cussed in the previous section are compared with those
of second mode wave without MHD effects.

8.2 Case I. A Pair of Dipoles Pointing Vertically in
the Opposite Directions

In this case, the stability of the second mode distur-
bance is investigated under the influence of a pair of
magnetic dipoles pointing in opposite directions. The
arrangements of the dipoles are given in Case I of the
preceding section. Specifically, two cases are considered
with a weak field (Case La) and strong field (Case I.b).
The corresponding steady flow solutions are presented
in the preceding section.

Figure 22 shows the results of the second mode dis-
turbances in the boundary layer for Case La of a pair
of magnetic dipoles in opposite vertical directions of
weak magnetic field at BQ = 1.5 x 10~4Tm2. Com-
pared with the non-MHD results of Figure 21, the im-
posed magnetic field has a stabilizing effect on the sec-
ond mode disturbances. The plots of the instantaneous
disturbance of pressure on the wall clearly show that
the wave is slightly destabilized in the early zone near
the inlet, and then stabilized in the regions where they
would be destabilized in the non-MHD case. The distur-
bance of pressure exhibits a transitional point at about
x — 0.13m, where the disturbance dies down and gets
re-excited before and after that point. The propaga-
tion of the second mode wave is substantially damped
at x = 0.13m, followed by the development of a much
weaker wave. The density and temperature contours
also show the sudden damping of the second mode wave
at x — 0.13m.

Similar results are found for Case I.b of the stronger
magnetic field as shown in Figure 23. In this case, the
stabilization effect on the second mode by the magnetic
force is stronger. The second mode wave is significantly
stabilized. Again the phase angle distribution shows
discontinuous steps at the transitional points, which in-
dicate changes of wave mode. Although the steady flow
in this case has a local separation region (Figure 9), the
second-mode wave disturbance is still stabilized by the
magnetic field. This result was somewhat unexpected
since one might expect that the separation bubble would
greatly destabilize the boundary layer.

The suppression of the second mode can also be ex-
amined by the plots of the Fourier phase angles of the
waves. The phase angles are obtained by a temporal
Fourier analysis on the numerical solutions of the per-
turbations of the unsteady flow variables after a peri-
odic state has been reached in a simulation. A Fourier
transform of a disturbance variable leads to:

q'(x,y,t) = (35)

where cj is the forcing frequency of the acoustic wave
in the free stream, g'(#,t/, tf) represents any instanta-
neous perturbation variables. |g'(#,t/)| and <j>(x,y) are
the local perturbation amplitude and phase angle re-
spectively. For simulation with small perturbation, only
linear responses are significant in the results. <j>(x,y)
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indicates a local phase angle with respect to the forc-
ing wave in the free stream. If the wave modes in the
boundary layer on the body surface are dominated by
a single wave mode, <j>(x,y) on the surface should be
linear with respect to #, i.e.,

— arx (36)

where ar is the wave number. Any discontinuity or step
in the distribution of <f>(x,Q) as a function of x repre-
sents a change of dominant wave mode in the distur-
bance, i.e., the decay of one wave mode followed by the
growth of another wave mode. Therefore, the <^(z,0)
distribution can indicate the change of wave mode in
the boundary layer.

The plots of the phase angle for the weak and strong
field cases are shown in Figure 22 and Figure 23 respec-
tively. In the weak field case, the distribution of the
phase angle of the disturbance shows a small discontin-
uous step between the region of damping of the original
second mode and the development of a new wave down-
stream. In the strong field case, more than one discon-
tinuity of the phase angle is observed. The locations of
the discontinuities for both cases roughly correspond to
the transitional points that appear on the plots of the
instantaneous disturbance of pressure. This is an indi-
cation that the waves before and after the step in phase
angle are two different wave modes: the original second
mode and a new mode afterward.

8.3 Other Cases on Various Magnetic Dipoles Ar-
rangements

The effects of five other cases of magnetic dipoles ar-
rangements, corresponding to Cases II to VI, on the
second mode instability are considered. These cases are:

Case II: A pair of dipoles pointing vertically in the
same direction.

Case III: Four dipoles pointing vertically in alternating
directions.

Case IV: Four dipoles pointing vertically in the same
direction.

Case V: A pair of dipoles pointing horizontally in the
same direction.

Case VI: Four dipoles pointing horizontally in the same
direction.

The steady flow solutions for all these cases are pre-
sented in the preceding section.

Figures 24 and 25 show the distributions of the in-
stantaneous surface pressure perturbations for all these
cases. All cases have the same flow conditions except
that the arrangements and orientations of the magnetic
fields are different. In general the magnetic effects on
the second mode for all arrangements are very similar
to that in Case La where the magnetic dipoles point

in opposite directions as shown in Figure 22. The sec-
ond mode wave disturbances are always stabilized by
the imposed magnetic fields, after some slight destabi-
lization initially. The wave mode transitional points in
the instantaneous pressure distributions correspond to
the discontinuities or steps in phase angle distributions.
The general trend is that the imposed magnetic field
stabilizes the second mode and induces the development
of a weaker wave mode afterward.

For Case VI of four magnetic dipoles pointing in the
positive x-direction are placed below of the plate, the
stabilizing effect on the second mode wave disturbance
occurs at further downstream compared with all previ-
ous cases. From the plot of instantaneous disturbance of
pressure, the second mode is destabilized from the inlet
to x = 0.132m, this destabilizing region is considerably
wider than all those regions in the above cases. Because
of the widening of the destabilizing region, the stabiliz-
ing effect is delayed and the second mode is not signifi-
cantly stabilized until the transitional point is reached.
The transitional point that corresponds to the disconti-
nuity of the phase angle is located near the exit of the
plate. Eventually, the second mode is stabilized by the
magnetic field.

The overall effects on the second mode instability by
different imposed magnetic fields are compared in Fig-
ure 26 and Figure 27. Figure 26 shows the effectiveness
of the stabilizing effects on the disturbance by compar-
ing the pressure perturbation amplitudes along the wall
of different magnetic field configurations. The solid line
in each of the plots is the result of the second mode
growth when there is no magnetic field for comparison.
The strong magnetic field in the two vertical dipoles
case has the most stabilizing effects while the four hor-
izontal dipoles case has the least. For all other cases,
the stabilization effects on the second mode are very
similar. The amplitudes reach a peak followed by rapid
drop of wave amplitudes due to stabilization.

Figure 27 compares the effects of the magnetic field
strengths for Case I of the two vertical dipoles on the
pressure and temperature disturbance amplitudes. A
non-dimensional parameter, Q = °^jl, is used to char-
acterize the magnitude of the Lorentz force over the
inertial force, where B is the maximum magnetic field
strength on the plate surface. The result in this figure
shows that the higher the value of Q, the greater is the
stabilizing effect. The common characteristics among
the MHD effects on the second mode is that the distur-
bance is not stabilized until the wave-mode transition
of the phase angle takes place.

Figure 28 shows the evolutions of the real part of the
eigenfunction of pressure disturbances with and with-
out magnetic field at several grid stations along the flat
plate. The imposed magnetic field in this case corre-
sponds to Case I.b of the strong field case of the two
vertical magnetic dipoles. As discussed earlier, the wave
disturbance undergoes mode shift after the second mode
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is stabilized. The mode shift for this case occurs in
the region between x = 0.12m and 0.13m. The fig-
ure shows that the mode shape at x — 0.115m before
the mode change is substantially different from that of
x — 0.135m after the mode change. In plot (c) two dis-
tinct bumps appear between y — 0 and y — 0.003m,
one of the bumps however, disappears at later zone
(x — 0.145m) after another transition of the phase
angle has taken place. This suggests that the distur-
bance tends to undergo mode shift. The evolutions of
the wave disturbance in other imposed magnetic fields
are found to have similar characteristics as those shown
here. They are not presented here due to length limits.
Notice in the figure that the shapes of the eigenfunc-
tions at different x go through a gradual change from
the profile similar to the first mode to that of a second
mode. Such evolution of the eigenfunctions is expected.
It is found found that all Mack modes at a fixed fre-
quency, including the first and second modes, are dif-
ferent sections of the same wave mode as it propagates
from upstream to downstream.

9 Result Discussions

In this paper, the steady and unsteady results of the
Mach 4.5 boundary layer under various magnetic fields
have been presented in Section 7 and Section 8. These
results are discussed further in this section.

The steady flow results indicate that all the imposed
magnetic fields considered in this paper can significantly
slowdown the flow in the vicinity of the boundary layer
due to the opposing Lorentz force. An adverse pres-
sure gradient is created in some regions and can cause
separation of the boundary layer if the magnetic field
is strong enough. All cases show similar modifications
of the boundary layer thickness by the magnetic forces.
As a result of the opposing motion induced by the im-
posed magnetic field, the stream wise velocity modified
by the magnetic field exhibits an inflectional profile that
was expected to destabilize the boundary layer and lead
to early transition of the flow. However, as shown in
Section 8, the result is in contrast to this intuitive ex-
pectation. It is found that the imposed magnetic field
always has stabilizing effects on the second mode wave
disturbance.

The effects of six cases of different arrangements of
magnetic fields on the second mode instability are stud-
ied by direct numerical simulation. All unsteady re-
sults show the same trend on the MHD effects on the
second mode instability, that the second mode is signifi-
cantly stabilized in the boundary layer region where the
mean flow boundary layer profile is substantially mod-
ified. The suppression of the second mode is followed
by the development of different wave modes of much
weaker amplitudes. This result is somewhat surprising
since the separated mean flow was expected to lead to
substantial destabilization of the supersonic boundary

layer.
One explanation for the strong suppression of the sec-

ond mode by magnetic forces in a separated flow is the
fact the second mode is a trapped acoustic wave reflect-
ing between the wall and a relative sonic layer in the
boundary layer. The second mode instability relies only
on the existence of a relative supersonic region in the
shear layer and does not require the existence of a gener-
alized inflection point. The most-unstable second-mode
frequency is strongly tuned to the boundary layer thick-
ness. In the current case of a supersonic boundary layer
with an imposed magnetic field, the mean flow bound-
ary layer is substantially altered, forming a local sepa-
ration for the case with strong magnetic field as shown
in Figures 4 and 5. Because of this, the wave length
of the original growing second mode is no longer tuned
with the boundary layer thickness. On the other hand,
the presence of an unstable first mode relies on the ex-
istence of a generalized inflection point in the boundary
layer. Therefore the first mode may be more strongly
affected by inflectional velocity profiles.

We have done some calculations of the MHD effects
on the first mode. It is found that the magnetic field ac-
tually amplifies the instability of the first mode, as com-
pared to the effects on the second mode. The first mode
is generated in the boundary layer region upstream of
the second mode region. We did not focus our efforts on
the first mode because the 2-D first mode is more sta-
ble than the second mode at a supersonic Mach number
and thus less relevant to the laminar-turbulent tran-
sition than the second mode. For demonstrating the
destabilization of the first mode by magnetic field, we
have done numerical simulations of a case of first mode
development in the same Mach 4.5 boundary layer with
similar magnetic field in terms of arrangement and field
strength as Case La. Eight vertical magnetic dipoles
pointing in alternating directions are evenly spread un-
der a flat plate which is exactly four times as long as the
one in the second mode study. The flat plate is divided
into four zones of equal length, and the resultant mag-
netic field in each zone resembles closely the distribution
of the magnetic field lines as Case La. The maximum
magnetic field strength on each zone is approximately
1.2T. The study of the first mode instability is done
on the first of the four zones. The simulations again
are to obtain both steady and unsteady solutions. The
computational domain has smaller value of x because it
appears upstream of the second mode. The nondimen-
sional frequency of the first mode is the same as the sec-
ond mode case of F = 2.2 x 10~4. Figure 29 shows the
results of the first mode disturbance in a Mach 4.5 flow
over the first one fourth portion of the flat plate. Two
vertical dipoles in opposite directions are located below
this region, and the maximum field strength is about
1.2T on the wall. The results show that the first mode
wave is slightly destabilized by the MHD effects. The
adverse pressure gradient destabilizes the first mode.
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10 Conclusion

Mach 4.5 weakly ionized flows over a two-dimensional
flat plate in the presence of a number of imposed mag-
netic fields have been studied by DNS. The main fo-
cus is on the MHD effects on the instability of second
mode wave at high Mach number. The effects of im-
posed magnetic fields on the second mode disturbances
are compared with the results with no magnetic field.
Six cases of different arrangements of the imposed mag-
netic fields have been simulated to obtain both steady
and unsteady solutions.

The steady flow results show that all the imposed
magnetic fields considered in this paper can significantly
decelerate the boundary layer. An adverse pressure
gradient is created in some regions and can cause sep-
aration of the boundary layer if the magnetic field is
strong enough. All cases show similar modifications of
the boundary layer thickness by the magnetic forces.

The effects of six cases of different arrangements of
magnetic fields on the second mode instability are stud-
ied by direct numerical simulation. All unsteady results
show the general trend of the MHD effects on the fixed-
frequency 2-D second mode instability is that the second
mode is substantially stabilized in the region where the
mean flow boundary layer is substantially modified, de-
spite the adverse pressure gradient and local separation
region in the mean flow. The suppression of the second
mode is followed by the development of different wave
modes of much weaker amplitudes. The degree of stabi-
lization varies and is mainly determined by the strength
of the imposed magnetic field, and it is not very sensitive
to the different arrangements of the magnetic dipoles.
It should be noted that the input disturbance is a 2-D
monochromatic wave. In a more realistic flow, it would
be expected that lower frequency disturbances tuned to
the thicker MHD boundary layer would be present and
would be destabilized. One case of MHD effects on the
first mode instability is also studied. The results show
that, unlike the second mode, the fixed-frequency 2-D
first mode is destabilized under the magnetic field be-
cause of *the adverse pressure gradient. It is conjectured
that the stabilization of the second mode is due to the
thickening of the boundary layer, because the most un-
stable second mode frequency is strongly tuned to the
boundary layer thickness. On the other hand, the first
mode instability is more closely related to the general-
ized inflection point, and was amplified in the presence
of the decelerated boundary layer profiles.

It should be pointed out that this is an initial study of
an idealized case with constant electrical conductivity,
neglect of the induced magnetic field, simple arrange-
ments of the magnetic dipoles, and monochromatic, 2-D
instability waves. This paper, however, does represent
the first DNS study on the interaction of the second
mode disturbances with an imposed magnetic field.
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Figure 1: A schematic of a Mach 4.5 2-D weakly ionized
flow over a flat plate in an imposed magnetic field.
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Figure 2: Magnetic field lines and the contours of B
magnitude for Case La of two vertical magnetic dipoles
in opposite directions with a relative weaker B field
(#0 — 1.5 x 10~4Tra2, the dimensional x (and y) co-
ordinates can be converted into nondimensional values
by: Rex = xRe^ = 7.2 x 106z).
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Figure 3: The profiles of streamwise and wall-normal
velocity components affected by the weak and strong
magnetic fields for Case I of the two vertical magnetic
dipoles in opposite directions (x = 0.1348m).
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Figure 4: Contours of velocity components, pressure,
and temperature for steady Mach 4.5 flow over a flat
plate with a pair of magnetic dipoles in opposite direc-
tions for Case La of weak magnetic field.

Figure 5: Contours of velocity components, pressure,
and temperature for steady Mach 4.5 flow over a flat
plate with a pair of magnetic dipoles in opposite direc-
tions for Case I.b of stronger magnetic field.
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Figure 6: Pressure and normal velocity contours for a
Mach 4.5 flow over a flat plate without MHD effect.
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Figure 7: Comparison of the MHD effects on surface
pressure distributions for Case I of a pair of vertical
magnetic dipoles in opposite directions.

0.0005

0.0000

0.110 0.120 0.130 0.140

tw without B-field
TW with weak B-field

with strong B-field

.150 A i

Figure 8: Comparison of the MHD effects on surface
skin friction coefficient distributions for Case I of a pair
of vertical magnetic dipoles in opposite directions.
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Figure 9: Streamlines showing a local separation bubble
near the wall in Case I.b of two vertical magnetic dipoles
in opposite directions with a strong magnetic field
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Figure 10: Magnetic field lines and the contours of B
magnitude for Case II of two vertical magnetic dipoles in
the same vertically upward direction with #0 = 0.45 x
10-4Tm2.
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Figure 11: MHD effects on streamwise velocity, surface
pressure, and skin friction coefficient distributions for
Case II of a pair of vertical magnetic dipoles pointing
in the same upward direction (Bo = 0.45 x 10~4Tm2).
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Figure 12: Magnetic field lines and the contours of B
magnitude for Case III of four vertical magnetic dipoles
pointing in alternating directions. All dipoles have
£0 = 0.27x 10-4Tm2.
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Figure 13: MHD effects on stream wise velocity, surface
pressure, and skin friction coefficient distributions for
Case III of four vertical magnetic dipoles pointing in
alternating directions (BQ = 0.27 x 10~4Tm2).
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Figure 14: Magnetic field lines and the contours of B
magnitude for Case IV of four vertical magnetic dipoles
pointing in the same direction. All dipoles have BQ =
0.37 x 10~4rm2.
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Figure 15: MHD effects on streamwise velocity, surface
pressure, and skin friction coefficient distributions for
Case IV of four vertical magnetic dipoles pointing in
the same direction (B0 = 0.37 x 10~4Tm2).
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Figure 16: Magnetic field lines and the contours of
B magnitude for Case V of two horizontal magnetic
dipoles pointing in the same direction. All dipoles have
B0 = 0.45 x 10-4Tm2.
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Figure 17: MHD effects on streamwise velocity, surface
pressure, and skin friction coefficient distributions for
Case V of two horizontal magnetic dipoles pointing in
the same direction (B0 = 0.45 x 10~4Tm2).

Y(m)

0.030

0.020

0.010

°'000 0.110 0.120 0.130 0.140 0.150

1.17874
1.067
0.955266
0.843528
0.731791
0.620054
0.508317
0.39658
0.284842
0.173105
0.0613681

X(m)

Figure 18: Magnetic field lines and the contours of
B magnitude for Case VI of four horizontal magnetic
dipoles pointing in the same direction. All dipoles have
£0 = 0.35 x 10-4Tm2.
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Figure 19: MHD effects on streamwise velocity, surface
pressure, and skin friction coefficient distributions for
Case VI of four horizontal magnetic dipoles pointing in
the same direction (B0 = 0.35 x 10~4Tm2).

Figure 20: Neutral curves of stability (F vs R) for two-
dimensional first- and subsonic-mode disturbances at
Moo = 4.5 (Ma and Zhong, 2001).
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Figure 21: Second mode disturbances in a Mach 4.5 flow
over a flat plate without MHD effect (F = 2.2 x 10~4)
(Ma and Zhong, 2001).
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Figure 22: Second mode disturbances in a Mach 4.5 flow
over a flat plate with a pair of magnetic dipoles in op-
posite vertical directions for Case La of weak magnetic
field with Bo = 1-5 x l(r4Tm2.

Figure 23: Second mode disturbances in a Mach 4.5 flow
over a flat plate with a pair of magnetic dipoles in oppo-
site vertical directions for Case I.b of strong magnetic
field with BQ = 3 x 10~4Tm2.
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Figure 24: Second mode disturbances of pressure in a
Mach 4.5 flow over a flat plate for three cases (Cases II,
III, and IV) of different arrangements of vertical mag-
netic field.
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Figure 25: Second mode disturbances of pressure in a
Mach 4.5 flow over a flat plate for two cases (Cases V
and VI) of different arrangements of horizontal mag-
netic field.
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Figure 26: Effects of different magnetic dipole configu-
rations on the magnitude of second mode disturbance
of pressure.
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Figure 27: Effects of magnetic field strength on the sec-
ond mode amplitude for the cases of the two vertical
dipoles pointing in opposite directions with different
strengths: (a) pressure perturbations on the wall, (b)
temperature perturbations at a horizontal grid line of
40 grid points away from the wall.
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Figure 28: Evolutions of the real part of the eigenfunc-
tion of pressure disturbance under the influence of the
two strong vertical magnetic dipoles (Case I.b).
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Figure 29: First mode disturbances in a Mach 4.5 flow
over a flat plate with two vertical magnetic dipoles
pointing in opposite directions. The nondimensional
frequency is F = 2.2 x 10~4 (top figure: p vs. x plot with
the magnetic field, middle figure: no magnetic field).
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