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STABLE HIGH-ORDER SCHEMES AND DNS OF BOUNDARY-LAYER STABILITY ON A
BLUNT CONE AT MACH 8

Xiaolin Zhong * and Mahidhar Tatineni t
University of California, Los Angeles, California 90095

ABSTRACT

The objectives of this paper are two fold: 1) to
present new high-order (12th or higher order) ex-
plicit and compact finite difference schemes with stable
boundary closures for the DNS of transitional or turbu-
lent flows; 2) to present results of numerical simulation
of nonlinear boundary layer stability of Mach 7.99 ax-
isymmetric flow over a blunt cone. The first part of
this paper presents a way to stabilize high-order finite
difference schemes with boundary closures. Current nu-
merical methods used in most practical DNS studies of
compressible flows are limited to 6th-order or lower in
the interior and 4th-order or lower on the boundary
because of the numerical instability of the boundary
closure schemes. This paper shows that this numeri-
cal instability for high-order schemes based on uniform
grids is due to the instability of polynomial interpola-
tion based on uniform grids (the Runge phenomena). It
is shown that the instability can be overcome for arbi-
trarily high-order finite difference schemes with stable
boundary closure schemes if the schemes are derived di-
rectly on a non-uniform stretched grid. Explicit formu-
las for computing the coefficients of high-order compact
(and explicit) schemes on nonuniform grids are derived.
The second part of the paper is motivated by a project
of NATO RTO Working Group 10 on Boundary Layer
Transition to conduct numerical simulation of nonlinear
boundary layer stability for blunt cone at Mach 7.99 cor-
responding to Stetson's experiment. The emphasis is on
the nonlinear second mode instability of the hypersonic
boundary layer observed in the experiments. The initial
results of the first test case under the isothermal wall
condition are presented and compared with the experi-
mental results.

INTRODUCTION

The prediction of laminar-turbulent transition in hy-
personic boundary layers is a critical part of the aerody-
namic design and control of hypersonic vehicles. Most
of our knowledge of hypersonic boundary layer stabil-
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ity is obtained by the linear stability theory (LST) ̂ .
Mack found that there are higher acoustic instability
modes in addition to the first-mode instability waves
in supersonic and hypersonic boundary layers. Among
them, the second mode becomes the dominant insta-
bility for hypersonic boundary layers at Mach numbers
larger than about 4. The existence and dominance of
the second mode has been observed by experimental
studies [2'3].

The objectives of this paper are two fold: 1) to
present new high-order (12th or higher order) finite dif-
ference schemes with stable boundary closures for the
DNS of transitional or turbulent flows; 2) to present
results of numerical simulation of nonlinear boundary
layer stability of Mach 7.99 axisymmetric flow over a
blunt cone. These two parts are briefly discussed be-
low.

Stability of High-Order Boundary Closure Schemes

The first part of this paper presents and analyzes new
numerically stable high-order finite difference schemes
with boundary closures. We have been working on the
the numerical simulation of hypersonic boundary-layer
transition by developing high-order accurate numerical
methods for direct numerical simulation'•4'5-') and we
have developed and validated a set of fifth and seventh-
order shock-fitting schemes for the DNS of practical hy-
personic flows over blunt bodies. The use of the shock-
fitting method makes it possible to accurately compute
the physical bow-shock interactions, and the develop-
ment of instability waves in the boundary layers. It is
necessary to use high-order numerical methods in the
simulation in order to resolve all length and time scales
in complex wave fields in hypersonic boundary layers.

High-order finite-difference methods have recently
received much attention for the DNS of transitional
and turbulent flows t6"10]. Finite-difference schemes in-
clude both traditional explicit schemes and compact ^
schemes. High-order schemes are required because
lower-order schemes do not have an adequate accuracy
level to resolve a wide range of spatial and temporal
scales in the direct numerical simulation of fluid flows.
Most finite difference schemes used in direct numeri-
cal simulation are either central difference schemes '•6'7-'
with filtering or upwind high-order schemes I5'11"13!,

The orders of accuracy of numerical methods used
in practical DNS studies, however, are often limited
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to 6th-order or lower in the interior and 4th-order or
lower on the boundary closure schemes because of the
numerical instability of the boundary closure schemes.
Most high-order explicit and compact finite schemes are
derived on a uniformly spaced grid. The schemes are
applied to a nonuniform grid by a coordinate trans-
form from the nonuniform physical coordinates to uni-
form computational coordinate. The finite difference
schemes are applied in the uniform computational co-
ordinates through this transformation. The main lim-
iting factor in the application of high-order schemes is
the numerical instability of high-order boundary clo-
sure schemes L7 '1 4>1 5-l . por example, difference schemes
of fourth order or higher are unstable when they are
coupled with high-order boundary schemes using one-
sided finite-difference approximations^7'14^. Carpenter
et al. ̂  showed that for a sixth-order inner compact
scheme, only a third-order boundary scheme can be
used without introducing instability. This results in
globally fourth-order accurate schemes even though the
inner scheme is sixth-order accurate. For still higher
order schemes, it is necessary to use very lower order
boundary closure scheme in order to maintain numer-
ical stability. Consequently, the orders of accuracy of
numerical methods used in most practical DNS stud-
ies are often limited to 6th-order or lower in the interior
and 4th-order or lower on the boundary closure schemes
because of the numerical instability of the boundary
closure schemes. The overall accuracy of the overall
schemes are at most one order higher than the order of
the boundary scheme no matter how high the order of
the interior scheme.

This paper proposes a simple way to overcome the
instability in arbitrarily high-order finite difference
schemes with boundary closure schemes. We show that
numerical instability on high-order boundary schemes
is a result of the use of uniform computational grids in
applying high-order schemes. An effective way to over-
come the instability in arbitrary high-order finite dif-
ference schemes with boundary closure schemes can be
achieved by using the high-order schemes directly in a
non-uniform stretched grid without coordinate transfor-
mation. The coefficients of the high-order schemes are
determined based on polynomial interpolation in the
physical nonuniform grids. The amount of grid stretch-
ing is determined to maintain the stability of the overall
schemes. This paper presents explicit formulas for com-
puting the coefficients for arbitrary order explicit and
compact schemes in a general non-uniform grid. As a
result, the high-order schemes can be easily used in ap-
plications by computing the derivative coefficients using
these explicit formulas. The use of non-uniform grid ap-
proach also has the advantage that it does not require
the grid spacing to be smooth. The new high-order (up
to 12-th order) schemes have been tested in computing
a linear wave equation with oscillation boundary condi-
tions. It is found the high-order schemes are stable and

produce much higher degree of accuracy. Work is cur-
rently underway to apply them to the full Navier-Stokes
equations.

Stetson's Stability Experiments

The second part of the paper is motivated by a project
of NATO RTO Working Group 10 on Boundary Layer
Transition described in [16]. This paper presents our re-
sults on numerical simulation of the nonlinear boundary
layer stability for blunt cone at Mach 7.99 correspond-
ing to an stability experiment by Stetson et al. '-17-'. The
numerical simulation of the full nonlinear Navier-Stokes
equations are able to take in to account the nonlinear
wave interactions, the bow shock effects, the wall cur-
vature effects, and the non-parallel mean flow effects
on the stability of the boundary layer. The emphasis of
the current study is on the nonlinear second mode insta-
bility of the hypersonic boundary layer observed in the
experiments. The numerical results on the second mode
instability and nonlinear interactions are compared with
experimental results. It is hoped that the comparison of
nonlinear simulation experimental results will lead to a
better understanding of the hypersonic boundary layer
instability mechanism. The particular test case studied
in this paper is a Mach 7.99 axisymmetric flow over a
blunt circular cone with nose radius of 0.15 inch at zero
angle of attack. Both steady and unsteady flow fields
between the bow shock and the boundary layer are nu-
merically simulated by using a high-order shock-fitting
scheme to study the wave generation in the boundary
layer.

Stetson et al. ^17-' carried out boundary layer stability
experiments for an axisymmetric blunt cone at Mach
7.99. The half angle of the cone is 7° and the freestream
Reynolds number based on the nose radius is about
33,449. The total length of the cone is about 270 nose
radius. The experiments measure detailed frequency
spectra of the disturbance waves along the body sur-
face. The instability waves were found to be dominated
by second mode instability. There are also significant
components of harmonics of the second modes. They
also found evidence of entropy layer instability in the
region outside of the boundary layers for a case of blunt
cone with large nose radius. The stability characteris-
tics of the boundary layer flow over the blunt cones cor-
responding to Stetson's experiments have been exten-
sively studied using the linear stability analysis t18~21J.
The linear stability analyses predicted slightly lower fre-
quency of the dominant second mode, but much higher
amplification rates than the experimental results at a
downstream location of 175 nose radius. It has been
speculated that the discrepancy between the linear sta-
bility results and the experimental results are due to the
fact that there are significant harmonic components at
the 175 nose radius station in the experimental results.
The harmonics are the result of nonlinear interaction

American Institute of Aeronautics and Astronautics



c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

among the second modes. The nonlinear effects are ne-
glected in a linear stability analysis. Furthermore, the
effects of bow shocks and non-parallel boundary layers
are neglected in a normal mode stability analysis. The
initial receptivity process, which becomes very complex
due to hypersonic bow shock interaction t22'23^ is not
considered in the linear stability analysis.

All these effects can be taken into account in a di-
rect numerical simulation of the full Navier-Stokes equa-
tions. So far, no DNS studies have been carried out for
the stability of Stetson's cone experiment. This paper
reports our initial results in the DNS studies of the non-
linear stability of this particular flow. More complete
results and analyses will be presented in future papers.

HIGH-ORDER SCHEMES WITH STABLE
BOUNDARY CLOSURE

This sections details the numerical methods, formu-
las and test cases used in the development and valida-
tion of stable high-order finite-difference schemes with
stable high-order boundary closure for stretched grids.
Existing high order schemes have to reduce order at
the boundaries in order to ensure stability. In our new
approach, we use a stretching function to cluster grids
near the boundary to enable high order closure. The ef-
fect of stretching is studied by systematically changing
the stretching between a Chebyshev distribution and a
uniform distribution.

Basic Ideas

A high-order finite difference scheme is based on a
polynomial interpolation of increasing degrees to ap-
proximate the derivatives of a function. A compact
scheme can be derived by a Hermite polynomial in-
terpolation using both the function values and their
derivatives. It is well known (the Runge phenomena)
that a high-order polynomial interpolation based on a
uniform grid distribution develops oscillations near the
boundary of the interpolation domain. Higher order
polynomials lead to larger oscillations at the boundary.
Because finite difference schemes are based on polyno-
mial interpolation, it is not surprising that a high-order
finite difference scheme based on uniform grids will de-
velop instability at the boundary closure schemes. This
instability of the high-order schemes is a result of the
instability of polynomial interpolation on a uniform grid
as shown by the Runge phenomena.

On the other hand, a spectral collocation method us-
ing the Chebyshev polynomials is identical to a global
high-order finite difference scheme using all grid points
directly derived on nonuniform grid points located at
the zeros or maximas of the Chebyshev polynomials.
The Chebyshev grid spacing is as follows:

y = cos(m/N) (1)

where i is grid index, TV is total number of grid points,

and y is the physical coordinate. Therefore, a Cheby-
shev spectral collocation method using 101 grid points
is a lOOth-order finite difference scheme using a grid
stretching given by Eq. (1). Such a finite difference
scheme is based on a polynomial interpolation based
on a nonuniform grid distribution without coordinate
transformation. Such interpolation is stable both in the
interior and in the boundary points because of the con-
densation of grid points at the boundary. As a result, a
lOOth-order or higher finite difference scheme based on
Chebyshev grid spacing is numerically stable because of
the grid stretching at the boundary in the polynomial
interpolations. On the other hand, although they are
much superior in numerical accuracy, the spectral meth-
ods have the drawback that they are computationally
expensive because they are global schemes based on all
grid points. Such global accuracy may be an overkill in
terms of accuracy. For example, it may not be necessary
to use a 200th-order scheme as the spectral collocation
method for a 200 points domain, because the truncation
errors will lose significance because of computer round-
off errors. Another drawback of the spectral method is
that the grid spacing given by Eq. (1) leads to a highly
stretched grid at the wall. It can be shown that the
minimum grid spacing at the wall is O(l/N2). Such
fine grid spacing leads to a very restrictive stability re-
quirement in the time step in the temporal integration
of the equations.

Therefore, we propose an intermediate approach to
use fixed high-order (up to 10 to 15th order) local
schemes, while using grid stretching to ensure the stabil-
ity of boundary closure schemes. At the same time, be-
cause the order of the schemes is fixed, the grid stretch-
ing at the wall does not need to be as strict as the spec-
tral stretching given by Eq. (1). The minimum grid
spacing at the wall can be determined so that the high-
order schemes are stable with boundary closure. It can
be in the order O(l/N) instead of O(1/JV2).

The application of high-order schemes in non-uniform
grids do not introduce additional computational diffi-
culty, while the schemes developed for uniform grids do
so. The coefficients of the high-order schemes at each
grid point are different because of grid stretching, but
they can be computed and saved in memory once and
for all at the beginning of a calculation. The conven-
tional methods for deriving the coefficients for the finite
difference (especially the compact) schemes is to use the
method of undetermined coefficients with Taylor expan-
sions. The coefficients are computed by solving a lin-
ear equation for the coefficients. Such methods are not
convenient for deriving the coefficients with nonuniform
grids because every case may have a different grid spac-
ing. In addition, the matrix in solving the coefficients
has high condition numbers, which can lead to large
round off errors in solving the linear equations for the
coefficients of the high-order schemes.

In this subsection, we present explicit formulas for
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computing the coefficients of the explicit and compact
higher order schemes for an arbitrary nonuniform grid
distribution. Such explicit formulas can be easily used
to calculate the coefficients of high-order schemes for
discretizations. A general purpose FORTRAN subrou-
tine has been written to calculate the coefficients for
both explicit and compact schemes on nonuniform grid
and is available upon requests to the authors by e-mail.

Explicit Scheme Coefficients in Nonuniform Grid

The derivation for the coefficients for the explicit high
order schemes on nonuniform grids is straight forward.
They are listed here for completeness. The coefficients
are derived from a Lagrange polynomial interpolation.
For the case of TV grid stencil with arbitrary distribution
of grid points with coordinates #,-, the N — I degree
interpolation polynomial is:

N

where HJ is the variables at the node points, and

n1=1,i?j

(2)

(3)

The derivative at a grid point Xi can be calculated by
differentiating the above polynomial as:

N

(4)

where the coefficients b{j in the derivatives are different
for different grid point with index i, and are given by

and lj(x{) is calculated as follows:

(5)

(6)1=1,1
If i = j:

where a,j is :

(8)

Hence, once the Xi locations of the stencil are known
the coefficients for the finite difference formulas for a

high-order scheme in a nonuniform grid can be calcu-
lated explicitly using the above formulas. The coeffi-
cients at the boundary closure scheme are derived using
the same formula by specifying one-sided grid stencils.
The derivatives at all grid points, including the interior
and boundary points, can be combined into the follow-
ing vector formula:

u — Au (9)

where u is a vector of variables and A is a banded co-
efficients matrix, which can be computed once and for
all at the beginning of a calculation.

The truncation error of the polynomial interpolation
is as follows:

f(X] - Pn(x) =
f n+1

-f-
- XQ)(X - - Xn) (10)

Compact Scheme Coefficients in Nonuniform Grid

In this paper, the explicit formulas for computing the
coefficients of a compact schemes in arbitrary nonuni-
form grids is derived based on a generalized Hermite
interpolation polynomial. Consider a generalized Her-
mite polynomial interpolation to compute u'G by inter-
polation through two groups of grid points: 1) interpo-
lates through both U{ and u^ for n grid points located
at Xi for (i = 1, • • - n ) , and 2) interpolates through only
Ui for additional m + 1 grid points located at Xj for
(j = 0, — 1, • • • — m). An example of the grid stencil is
shown in Fig. 1 for a 7-3 compact scheme on a nonuni-
form grid. The locations of these node points do not
have to be arranged in a particular order, as long as
they are distinct points.

The generalized Hermite interpolation polynomial is:

Hn(x) is the Hermite interpolant for the first group of
n grid points without XQ :

(12)
i = l i = l

where :

zT/ \ _ / _ •}]?(}

The function </></(#) is defined as:

*j oo = & (*))%•(*)
where:

f i \ TT x ~
tj(x) = 11

~1=1

(13)
(14)

(15)

(16)
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The values of dj are determined so that the polynomial
interpolates through the second group of m -j- 1 grid
points (including XQ). There are ra + 1 conditions for
solving for dj:

=uj, j = 0,-l,...,-m (17)

The dj values are substituted back into the original in-
terpolation polynomial. The formula for the compact
derivatives can be derived by evaluating

4 = ̂ (20) (18)

This formula leads to the compact coefficients as fol-
lows:

n n —m

(19)

where the coefficients a2-, 6j, and GJ are determined by

60 = 1 (20)

(21)

ai = +

Cj = <t>j(xQ)

(XQ
j=0

(22)

(23)

It is easy to test that the formulas above lead to the
same compact scheme formulas on a uniform grid. For
example, a Gth-order compact scheme can be derived
using the above formulas with a 5-3 stencil as follows:

ai+k Ui+k (24)

where aj±2 = ±|, a2-±i = ±^, and a» = 0.
Hence, given the grid distribution, the compact

scheme coefficients can be calculated explicitly without
using the Taylor expansion for uniform or nonuniform
grids. The coefficients at the boundary closure scheme
are derived using the same formula by specifying one-
sided grid stencils. Similarly, the derivatives at all grid
points, including the interior and boundary points, can
be combined into the following vector formula:

Pu1 = Qu (25)

where P and Q are banded coefficients matrices, which
can be computed once and for all at the beginning of
a calculation. In the stability analysis, the compact
scheme can also be written into explicit form as

where A = P~1Q.
Examples of these coefficients matrix for high-order

compact schemes on non-uniform grids are shown in
the Appendix. Once the coefficients are computed, the
higher-order explicit or compact schemes can be used
to discretize a first-order derivative in numerical simu-
lation by using the formulas given by Eqs. (9) or (25).
The matrix multiplication is only partially carried be-
cause P and Q are banded matrices.

Similar explicit formulas for second derivatives can
also be derived by a generalized Hermite interpolation
formula. They are not presented here.

Grid Spacing

The stability of high-order schemes is dependent on
the grid clustering near the boundaries. Spectral col-
location methods utilizing the Chebyshev spacing are
stable for arbitrary order schemes with boundary clo-
sure. The Chebyshev grid spacing is given by Eq. (1).
However, this spacing is very restrictive on the timestep
(O(l/N2)) in a temporal integration of a PDE. In this
paper we are using a less restrictive spacing with high-
order finite difference schemes in order to maintain sta-
bility and high spatial accuracy and an O(l/N) in min-
imum grid spacing and timestep.

In this paper, the grid spacing in the numerical sim-
ulations is controlled using the stretching function pro-
posed by Kosloff and Tal-Ezer ̂  for a spectral method,
i.e.,

sin~1 (—a cos(m/N))
x =

sn a
(27)

where the parameter a is used to change the stretching
of the grid points from one limit of a Chebyshev grid at
a —>• 0 and the other limit of an uniform grid at a=l.
Figure 2 shows a x vs. i/N plot for the stretching func-
tion (N=101). A grid stretching factor can be measured
by Azm 2- n /A£uniform, where A#m2-n is the minimum
grid spacing in the stretching grid and Axuniform is the
average grid spacing. Figure 3 shows the grid stretch-
ing factor as a function of the stretching parameter a
(for N—51). Hence, the stretching can be controlled to
find the optimum a for which the high order scheme is
stable.

Asymptotic Stability Analysis

The asymptotic stability of the high-order explicit
and compact schemes with boundary closures is ana-
lyzed by computing the eigenvalues of the matrices ob-
tained by spatial discretization of the following wave
equation

du du— + c— = 0ot ox (28)

u — Au (26)
in a fixed computational domain (—1,1) . The non-
periodic boundary condition is specified at x — — 1 to
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a fixed value u(x — l,t) — f ( t ) . After a computa-
tional grid has been assigned to the domain, the spa-
tial derivatives of all grid points, including the interior
and boundary points, are discretized by a explicit or
compact finite difference algorithms given by Eqs. (9)
or (25). Substituting the approximation above into the
wave equation (28) with the non-periodic boundary con-
dition at x = —I leads to

du—
at

(29)

The asymptotic stability condition for the semi-discrete
equations is that all eigenvalues of matrix M contains
no positive real parts.

The asymptotic stability, which requires that the
eigenvalues of the spatial discretization matrices con-
tain no positive real parts, is necessary for the stability
of long-time integration of the equation. The eigen-
value analysis is a necessary condition for the stability
of the schemes when the matrices do not have full sets
of eigenvalues and eigenfunctions. Numerical compu-
tations show that the matrices for high-order upwind
schemes with boundary conditions have full eigenval-
ues. For such normal matrices, the eigenvalue analysis
is accurate in assessing the stability of high-order finite-
difference schemes.

Figure 4 shows the spectrum for a 6th-order scheme
on a uniform grid of 101 points. The grid stencil in the
interior is to use seven points to evaluate the derivative
at the center node point, and use one-sided seven point
stencil as boundary closure scheme. The figure shows
there are two eigenvalues in the unstable region of the
spectrum. Therefore a 4th-order scheme with boundary
closure will not be stable because a uniform grid is used.

In order to stabilize the 6th-order scheme, a stretched
grid given by Eq. (27) is used for the seven stencil
scheme in the physical domain. It is found that the sta-
bility of the scheme improve as the grid becomes more
and more stretched towards the boundary by decreas-
ing the value of a. Figures 5 and 6 show the spec-
trum for the 6th-order scheme on a stretched grid with
a = 0.9997 and a - 0.9995 respectively. The two unsta-
ble eigenvalues become less unstable for a = 0.9997 and
are completely stable for a = 0.9995. Hence, computing
the derivatives directly on a stretched grid results in a
stable boundary closure.

It is also found that as the order increases, the
amount of grid stretching needs to be increased in order
to stabilize the schemes with boundary closure. There-
fore, it is necessary to determine the grid stretching
needed for stable algorithms as a function of the order
of the finite difference algorithm and the number of to-
tal grid points in the domain. The stability results for
the 4th, 6th, 8th, 10th, and 12th order schemes are pre-
sented in Fig. 7. The minimum Axmfn required for
a stable closure is plotted versus the total number of
points, for all schemes. The Axmin is normalized by

with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

averaged grid spacing A;cum-yorm = 2/N. The results
show that higher-order schemes required smaller Axmin
in order to maintain stable boundary closure. As N in-
creases, the value of Axmin/Axunz-/orm approach a con-
stant value, which means that the required minimum
grid spacing is in the order of l/N. Hence, the high
order schemes are less restrictive than spectral methods
(where the Axmz-n is of order l/N2}.

The variation of minimum required grid spacing
Axmin for stability with the order of accuracy (sten-
cil width) is shown in Fig. 8. The figure shows that
for 6th to 20th order schemes A#mt-n is approximately
of 0(1/(7VM)) for a finite difference scheme using a set
of local stencil width of M (M — 1-th order scheme).
This is much less restrictive than the O(1/7V2) spacing
in the case of the spectral collocation method based on
Chebyshev polynomial.

As stated earlier, the instability of the boundary clo-
sure scheme is a result of oscillation of polynomial in-
terpolation at the boundary on a uniform grid. It is can
also be demonstrated by the distribution in the interpo-
lation error formula given by Eq. (10), where the error
is proportional to the following function:

g(x) -(x- XQ)(X - - x (30)

The error in approximating the derivative at a grid
points xi is given by gf(xo).

Figure 9 shows the distribution of the truncation er-
ror for a 11 points global scheme with three different
grid spacing: 1) uniform grid, 2) stretching grid, and
3) spectral collocation grid. The figure clearly shows
that the use of uniform grid produces large error at
the boundary, while the use of stretching grid produces
relatively uniform errors in the whole domain. The er-
ror at the boundary for uniform grid increase rapidly
as the order of the schemes increase. Figure 10 shows
the distribution of the error function given by Eq. (30)
(normalized by the maximum uniform grid truncation
error) for a sixth order scheme on a Chebyshev spacing
and two intermediate stretching cases. The truncation
error is oscillatory near the boundary for the interme-
diate stretching cases. This is clearly seen in Fig. 11
which is a zoomed version of Fig. 10. When the stretch-
ing is moved closer to the uniform case the oscillations
are larger in magnitude which can result in an unstable
scheme. Hence, for a stable closure the truncation error
near the boundaries must be kept low.

The stability analysis was repeated with compact
schemes with similar results. We tested four cases of
compact schemes with a 5-3 (7th order), 7-3 (9th or-
der), 7-5 (llth order), and 9-3 (12th order) grid stencil.
An example of the derivative matrix of the 7-3 compact
scheme with 15 grid points is shown in the Appendix
for the stretching grid of a = 0.8. Figure 12 shows the
eigenvalue spectrum for a 7 — 3 compact scheme on a
uniform grid. The scheme is clearly unstable if high
order accuracy is retained at the boundary. Figure 14
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shows the same scheme on a nonuniform grid (a = 0.8 in
the stretching function). The scheme is now stable and
has high order boundary closure. Hence, for both ex-
plicit and compact high order schemes, clustering grids
near the boundaries stabilizes the schemes and allows
high order accuracy without the timestep restrictions
encountered in spectral methods.

The stability for other compact schemes of higher or-
der have also been evaluated. The variation of minimum
required grid spacing Axmin for stability with the high-
order compact schemes is shown in Fig. 13. The figure
shows that for up to llth-order, the compact schemes
can be stabilized by requiring Axmin to be smaller than
a certain number, however, the 12th-order cannot be
stabilized when the grids are stretched. The reason is
not clear at this point. The results indicated that the
compact schemes of very high order is not stable with
boundary closure. Therefore, only moderately high or-
der compact schemes (up to llth order) can be used
with grid stretching. On the other hand, there is not
stability problem for arbitrarily high-order explicit fi-
nite difference schemes, as long as the grid stretching is
below the limits shown in Fig. 8.

Results of Wave Equation Computations

The high order explicit and compact schemes are
tested by solving the one-dimensional linear wave equa-
tion. Work is underway to test the algorithm for the
Navier-Stokes equations. The main objective of the
tests are to evaluate the accuracy of using very high-
order schemes and their numerical stability.

The model equation used is given by Eq. (28).
The non-periodic boundary condition is set at the left
boundary as

u(-l,t) = sin(u;7rt) * > 0 (31)

The wave equation is solved in a fixed computational
domain (—1,1) . The parameters of the calculations are:
c = 1, LJ = 1. The computations are performed for
the 2nd, 4th, 6th, 8th, 10th, and 12th order explicit
schemes on the same stretched grid with the stretching
parameter a = 0.91. The boundary closure scheme is
the same order as the interior so that there is no loss of
accuracy due to boundary schemes. This grid stretching
parameter satisfies the stability condition for all these
schemes. The calculations are done using 21, 41, 51, and
101 grids. The time stepping scheme is a Runge-Kutta
4th-order scheme, where the time step is chosen and
tested to be small enough so that the temporal errors
are smaller than spatial errors.

As expected, the computations of all orders are sta-
ble with high-order boundary closure schemes. Figure
15 shows a typical result on the comparison for 6th order
scheme on a stretched grid with the stretching param-
eter a = 0.91. The boundary closure is now stable and
there is excellent agreement between the numerical and

exact solutions. The error distribution for the 10th or-
der scheme is shown in Fig. 16. The average error for all
the schemes and grid sizes are shown in Table 2. The re-
sults show the advantage of using higher order schemes.
The errors of the results using 21 grid points reduced
substantially when the order of the schemes increases.
The error of a second order scheme is 0.3E-01 using 21
points. The error reduced to 0.6E-09 for the 12th-order
scheme. The stretching allows high order accuracy and
stability to be maintained at the boundary.

On the other hand, the computation of a 4th-order
or higher schemes are not stable if the grid is uniform.
Figure 17 shows a typical result of the comparison of
the numerical solution with the exact solution for a 6th
order interior and boundary scheme on a uniform grid
at t — 2.2 seconds. The instability at the boundary can
be seen. This instability will develop rapidly to lead to
a diverged numerical solution at later time steps. The
use of a stretched grid, but computed by a high-order
scheme derived on a uniform computational coordinates
through a coordinate transformation also leads to nu-
merical instability at the boundary. Figure 18 shows
the comparison of numerical solution (at t = 0.01 s) us-
ing the stretched grid computed by a 6th order explicit
scheme on a uniform grid through coordinate transfor-
mation. The computations develop numerical instabil-
ity at the boundary and will diverge at a later time.
Hence, using a uniform grid distribution with high or-
ders leads to an unstable scheme. As detailed earlier,
the new scheme is stable with high order boundary clo-
sure.

STABILITY OF MACH 7.99 FLOW OVER A
BLUNT CONE

Governing Equations and Numerical Methods

The stability of axisymmetric laminar hypersonic flow
over a blunt cone at zero angle of attack is computed
using a three-dimensional grid. The governing equa-
tions are briefly presented in this section. Details can
be found in previous papers for 2-D and 3-D flows t4'25^.
The governing equations are the unsteady full three-
dimensional Navier-Stokes equations written for the
computation in the conservation-law form:

dU*
!H* • + + ̂ ? = o

dXj

(32)

where superscript "*" represents dimensional variables,
and

17* = (33)

The gas is assumed to be thermally and calorically per-
fect. The viscosity and heat conductivity coefficients
are calculated using Sutherland's law together with a
constant Prandtl number, Pr. The equations are trans-
formed into body-fitted curvilinear computational coor-
dinates in a computational domain bounded by the bow

American Institute of Aeronautics and Astronautics



c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

shock and the body surface. The location and the move-
ment of the bow shock is an unknown to be solved with
the flow variables by a shock-fitting method.

The numerical simulation for the axisymmetric hy-
personic flow over a blunt cone is carried out using our
3-D fifth-order shock fitting scheme where the outer grid
line is the bow shock. The unsteady bow shock shape
and shock oscillations are solved as part of the computa-
tional solution. The numerical methods for spatial dis-
cretization of the 3-D full Navier-Stokes equations are a
fifth-order shock-fitting scheme in streamwise and wall-
normal directions, and a Fourier collocation method in
the periodic spanwise flow direction for the case of a
wedge geometry or in the azimuthal direction for the
case of a cone geometry. The spatially discretized equa-
tions are advanced in time using a Runge-Kutta scheme
of up to third order.

Because the flow field behind the bow shock is not
uniform, the flow variables are nondimensionalized us-
ing the freestream conditions as characteristic variables.
Specifically, we nondimensionalize the velocities with re-
spect to the freestream velocity U^, length scales with
respect to a reference length cP, density with respect
to /?£<.>, pressure with respect to p^, temperature with
respect to T^, time with respect to d^/U^, vorticity
with respect to U^/d*, entropy with respect to c*, wave
number by 1/c?*, etc. The dimensionless flow variables
are denoted by the same dimensional notation but with-
out the superscript "*".

Flow Conditions

The flow conditions are the same as Stetson's exper-
iments. Specifically,

I? = 750 K
Pr = 0.72

Moo = 7.99
p* = 4 x 106 Pa
1= 1.4

The viscosity is computed using the Sutherland's law
for air. The cone is a 7° half angle blunt cone with
spherical nose of radius: r* — 3.81 x 10~3m. The total
length of the cone is L = 1.016m. The body surface is
assumed to be a non-slip wall with either an isothermal
wall with temperature T^ or an adiabatic wall.

The wall temperature in the experiment was neither
isothermal nor adiabatic. In order to access the effects
of wall temperatures on the boundary-layer stability
properties, a number of cases with different isothermal
wall temperatures and a case of adiabatic wall are con-
sidered. So far, we have finished the first case of higher
wall temperature of T£ =800 K and are currently com-
puting the case with adiabatic wall. The results pre-
sented in this paper is mainly for the case of isothermal
wall with T^ — 800 K. Whenever possible, the nu-
merical solutions are compared with the experimental
results published by Stetson et al. '-17-' and some newly
compiled results by Schneider '-16-'.

The main objective of this paper is to study the non-
linear stability of the second modes and harmonics. In
stability experiments of Stetson et al. "-1 \ the instability
waves in the boundary layer were generated naturally
in a relatively noisy wind tunnel without artificial forc-
ing disturbances. Stetson et al. f17-' showed detailed fre-
quency spectra of disturbance waves at various surface
stations. The wave spectra show clearly that the insta-
bility waves are dominated by two-dimensional second
modes and their harmonics. As the observation stations
move downstream, the frequency of the dominant sec-
ond mode reduces and the strength of the harmonics
increases. At the station of 175 nose radius, the second
mode waves is maximum at the frequency of about 135
kHz.

In order to reproduce similar flow conditions in the
numerical simulations, it is necessary to introduce ini-
tial forcing waves to excite the instability waves in the
boundary layer. The forcing waves can originate from
the freestream or at the wall by surface roughness or
vibrations. It is a difficult task to simulate a stabil-
ity experiment without knowing exactly the source of
the initial disturbances. As a first step in our numer-
ical simulation, we introduce the disturbances by the
blowing and suction of a narrow surface strip in the up-
stream region of the body surface. Since the wave fields
in the experiment contain a wide range of second-mode
frequencies, we introduce, by surface blowing and suc-
tion, disturbances of a number of frequencies near the
dominant second mode waves in the simulation. The
subsequent receptivity and development of the instabil-
ity waves at these frequencies and their harmonics due
to nonlinear interactions are computed by the numerical
simulation.

The specific formula for surface blowing and suction
in a narrow upstream range are given by the perturba-
tions to the wall normal velocity, i.e.,

vn(x,t) = csmawx
k=kl

^ Ak cos
k=k0

XQ < X <

(34)

where e is a small nondimensional number represent-
ing forcing disturbance amplitudes. The forcing dis-
turbances contain a number of wave frequencies which
are multiples of CJQ, which are chosen such that the fre-
quencies cover the dominant second-mode frequencies
observed in the experiment. The amplitudes of the forc-
ing waves can be changed by varying the value of e to
study the nonlinear wave interactions. The forcing fre-
quency a;* is commonly represented by a dimensionless
frequency F defined by

F = 106 = 106 uj/Rec (35)
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The numerical simulation for an unsteady hypersonic
layer stability problem is carried out in two steps. First,
a steady flow field is computed by advancing the un-
steady flow solutions to convergence with no distur-
bances imposed. Second, unsteady viscous flows are
computed by imposing blowing-and-suction, at the nar-
row surface strip, on the steady flow variables according
to Eq. (34). In the first test case, the blowing and suc-
tion strip is located at about 135 nose radius surface
station, with seven discrete wave modes of different fre-
quencies of the same forcing amplitudes.

Steady Base Flow Solutions

The steady base flow solutions of the Navier-Stokes
equations for the axisymmetric Mach 7.99 flow over the
blunt cone are obtained first by advancing the solutions
to a steady state without freestream perturbations. The
simulation is carried out using a multi-zone approach
using 21 zones with a total of 1260 by 121 grid points
for the axisymmetric flow field from the leading edge to
the 180 nose radius surface station. The results here are
mainly the results for the first case of isothermal wall
at T£j = 800 K and some initial results for the second
case of adiabatic wall.

Figure 19 shows the Mach number contours of the
steady state solution, where the bow shock shape is ob-
tained as the solution for the freestream grid line. The
lower figure is a blow-up of the first one near the leading
edge region. The corresponding values of Mach num-
bers immediately behind the bow shock are shown in
Fig. 20. Mach numbers approach a constant value of
about 7 behind the shock at downstream locations.

Figure 21 compares steady pressure along the cone
surface between the current computation and the ex-
perimental results obtained by Stetson et al ̂ . There
is a discontinuity in surface curvature at the junction of
the sphere nose and cone afterward. The flow experi-
ences an overexpansion at the junction and goes through
a recompression along the cone surface afterward. As
a result, there is a slight adverse pressure gradient at
downstream surface locations. The figure shows that
the surface pressure compares well with the experimen-
tal results.

Computations are currently underway to compute the
steady flow solutions for the second case of adiabatic
wall. Figures 22 and 23 compare the pressure and tem-
perature distributions along the cone surface for two
cases of isothermal and adiabatic walls. The results
show that the pressure is not sensitive to the change
of wall temperatures, while the wall temperature in the
adiabatic case is lower than the first isothermal wall
case.

The velocity and temperature profiles across the
boundary layer at a surface location of 175 nose radius
downstream are shown in Figs. 24 and 25. The linear
stability analysis of the boundary layer is carried out

Table 1: Frequencies introduced by surface blowing and
suction.

k Frequency *£*• (kHz) F
9
10
11
12
13
14
15

89.53
99.48
109.4
119.4
129.3
139.3
149.2

240.1
266.8
293.5
320.2
346.8
373.5
400.2

using this steady profile. In the LST calculations, it
is necessary to provide the first and second derivatives
of velocity and temperature profiles in the wall-normal
direction. Figures 26 and 27 show the distribution of
the first and second derivatives of tangential velocities
at the same surface location. In order to be consis-
tent with the convention in LST for reference length,
the nondimensional y coordinate in the wall-normal di-
rection in these two figures is nondimensionalized by a
boundary layer length scale defined by: 6* —

Unsteady Flow Solutions

Having obtained the steady solution, the stability
of the hypersonic boundary-layer in the axisymmetric
Mach 7.99 flow over the blunt cone is studied by numer-
ical simulation. The results presented here are those for
the first case of isothermal wall at T* = 800 K. The
unsteady flow solutions are obtained by imposing sur-
face disturbances in a narrow blowing and suction sur-
face strip according to Eq. (34), where UQ — 9.948&#z.
The blowing and suction strip is located at about 135
nose radius downstream. The forcing wave in Eq. (34)
contains seven terms of different frequencies described
in Table 1. The relative nondimensional amplitudes of
these amplitudes are chosen to be the same by setting
Ak to 1, while their phase angles </>k are randomly cho-
sen. The dominant second mode waves observed by
experiments and also predicted by the linear stability
analysis is around 140 kHz. Table 1 shows that these
seven forcing waves represent seven waves of equal am-
plitudes with amplitudes spanning a frequency range
covering the frequency of the dominant second mode
waves. More simulations are currently underway to in-
clude a wider range of forcing frequencies in the forcing
waves.

The amplitudes of the forcing waves are determined
by the parameter e in Eq. (34). The nonlinear stability
of the hypersonic boundary layer is studied by simu-
lation of a number of cases with different c. For the
results presented in this paper, only the first case of
c — 0.0005, which produces pressure perturbation at
the blowing and suction strip at the level of approxi-
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mately 3.8% of the pressure behind the shock at the
same grid station. The stability is expected to be only
weakly nonlinear at this forcing amplitude.

The unsteady calculations are carried out until the so-
lutions reach a periodic state in time. Temporal Fourier
analysis is carried out on local perturbations of un-
steady flow variables after a time periodic state has been
reached. The Fourier transform for the real disturbance
functions lead to:

N
(36)

where ku$ is the frequency of the k-ih wave mode,
q f ( x , y , i ) represents any perturbation variables, and
\ q k ( x , y ) \ and 4>k(x, y) are real variables representing the
local perturbation amplitude and phase angle of the k-
th wave mode. These variables indicate the amplitude
of local disturbances and the local phase angle with re-
spect to the forcing waves in the freestream. For per-
turbations in the boundary layer near the body surface,
we can define a local growth rate ar and a local wave
number a,- of the perturbation fields by,

a:,- = dx

dx

(37)

(38)

where the derivatives are taken along a grid line parallel
to the body surface.

Figure 28 shows the distribution of the pressure per-
turbation amplitudes for the seven fundamental fre-
quencies (shown in Table 1) along the body surface.
The figure shows that at the end of the blowing and suc-
tion region, higher frequency waves induce higher wave
amplitudes. These waves of different frequencies prop-
agate downstream with different amplification rates,
which experience nonlinear interaction among them. As
shown in the figure, the wave modes of k — 13 and 14
are most amplified as the wave propagates downstream.
The corresponding frequencies of these two modes are
129 and 139 kHz (Table 1). They are very close to the
most amplified frequency observed in the experiment.
The results also show that the development of these
fundamental modes at low frequencies decay first, and
then are followed by growth and decay afterward. This
is an indication of modulation of multiple modes of the
same frequency.

The total perturbations of the flow variables in the
unsteady flow field is a combination of all wave modes
developed in the boundary layer. Figure 29 shows the
contours for the instantaneous perturbation T' after the
flow field reaches a time periodic state. The instan-
taneous contours show the development of typical sec-
ond mode instability waves in the boundary layer on
the surface. The wave fields is dominated by the wave
mode of the most amplified frequency at 129 and 139

kHz. As shown by Stetson's experiment, the numerical
results also show that the temperature perturbations
are much stronger than velocity perturbations for the
second mode waves. The maximum amplitude of the
temperature, as well as density, perturbations are lo-
cated near the edge of the boundary layers. The shape
the second-mode waves at the edge demonstrate the
shape of the "rope-like" waves observed in experiments
as pointed out by Stetson and Kimmel ^26-'.

Figure 30 shows the contours for the instantaneous
perturbation p1'. The instantaneous profile of surface
pressure perturbations in a local section of the compu-
tational domain is shown in Fig. 31. In addition to the
typical second-mode wave developing in the boundary
layer, there are also some acoustic waves outside of the
boundary layer. These acoustic waves are induced at
the blowing and suction strip and propagate along the
Mach lines in the flow field. Again, the waves are dom-
inate by the most amplified second mode waves in the
boundary layer.

In response to the perturbations of the forcing waves
with seven fundamental frequencies, the unsteady flow
field produces second mode waves of fundamental fre-
quencies and their harmonics. The harmonics are waves
of higher frequencies created by nonlinear interactions
among the fundamental modes. The frequencies of the
harmonics are multiples or combinations of the funda-
mental frequencies. In the present case, the harmonics
are mainly second order ones created by the nonlinear
interactions of two fundamental modes of mode number
k\ and k%. The frequency of the resulting harmonic by
the nonlinear interaction of these two modes is

_ f ja \ l^ \ ^QC^

where the mode number for the new modes is

**i,*2 = £i + &2 (40)

where the self-induced second harmonics of a single
fundamental k\ mode is k^i^ki — 2ki for the case of

Figures 32 to 35 show the frequency spectra of sur-
face pressure perturbation amplitudes at three surface
locations downstream of the blowing and suction strip.
The figures show that the wave amplitudes of the seven
fundamental modes increase when the waves propagate
downstream. The amplitudes of fundamental mode
k — 13 and k — 14 are most amplified. At the same
time, second-order harmonics also develop in strength
as they propagate downstream. Figure 36 is a detailed
plot of Fig. 35 to show the relative strength of the har-
monics. The figure shows that the most amplified sec-
ond harmonics are for a mode of

= 27= 13+14 (41)

This mode is a result of the nonlinear interaction be-
tween the two most amplified fundamental modes of
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k — 13 and k = 14. The self induced second har-
monic of k = 28 = 2 * 14 is also very strong. On
the other hand, the self induced second harmonics of
/c = 26 = 2*13is relatively weak. More parametric cal-
culations are needed before detailed comparisons with
experimental results can be made and conclusions can
be drawn about the nonlinear interactions.

Local parallel linear stability theory (LST) is used
to identify the boundary layer eigenmodes and to an-
alyze the instability mechanisms. The LST is used to
obtain instability modes based on the numerically ob-
tained base flow between the body and the bow shock.
In LST analysis, the disturbance equations are reduced
to an eigenvalue problem by assuming the perturbations
of flow variables in a normal mode form:

qf - g(yn) i.(-wt+as) (42)

where n and s is coordinate along the wall-normal and
surface directions, a is the wave number, and q(yn) is
the eigenfunction. In the LST analysis, a and q(yn]
are obtained as the eigenvalue and eigenfunction of the
stability equations for a given forcing frequency cj. For
the spatial problem, u; is real, and a is a complex wave
number,

a = ar -f i (43)

where ar and a?- represent the spatial wave number and
growth rate of a wave mode respectively. The wave is
unstable when a; is negative.

The linear stability analysis can only analyze the lin-
ear fundamental wave modes in the boundary layer.
The harmonics due to nonlinear interactions are ne-
glected in the linear stability analysis. Figures 36 and
37 show the two-dimensional wave mode amplification
rates as a function of frequency obtained by linear sta-
bility analysis for 2-D waves at two surface locations.
The results at x/rn — 175 grid station are also com-
pared with experimental results of Stetson et al^17-".
The LST results in the first mode region is most un-
stable when they are three-dimensional waves. In the
current calculation, both first and second modes are
the two-dimensional wave modes only. The resulting
first mode is lower than LST results reported by other
researchers t18~21J. The figures show that the most am-
plified waves are second mode waves with a fundamental
frequency near 140 kHz. As the wave propagates down-
stream, the most amplified frequency moves to a lower
frequency. The LST results over predict experimental
values on the amplification rates, but the frequency is
very close to the experimental results.

The identification of the wave modes computed by
the numerical simulations is further examined by com-
paring the LST eigenfunctions with Fourier amplitudes
of the Navier-Stokes solutions at the same fundamental
frequency. For the purpose of comparison, the eigen-
functions are normalized by their respective pressure

perturbation at the wall. Figures 38 and 39 show the
comparison of the normalized temperature and velocity
amplitudes along grid lines normal to the parabola sur-
face at a surface location of 160 nose radius for the wave
frequency 139.27 kHz (k = 14). The figure shows that
numerical solutions agree reasonably well with the LST
second mode. As stated earlier in this paper, the fig-
ures also show that the relative temperature perturba-
tion amplitudes in hypersonic boundary layer is about
40 times stronger than those of the velocity perturba-
tions. The peak of the temperature of the second mode
wave are at the edge of the boundary layer, which is
responsible for producing the "rope-like" shaped wave
in hypersonic boundary layers.

CONCLUSIONS

This paper has presented new high-order (12th or
higher order) finite difference schemes with stable
boundary closures for the DNS of transitional or tur-
bulent flows. In addition, numerical studies have been
conducted on the stability of Mach 7.99 flow over a blunt
cone. The emphasis is on the nonlinear second mode
instability of the boundary layer observed in Stetson's
experiment. The initial results of the first test case have
been finished and they have been presented in the pa-
per. The conclusions are:

1. We have argued and shown that high-order finite
difference schemes with high-order boundary clo-
sure schemes of the same order can be made stable
when they are derived based on a stretched grid in
the physical domain, instead of a uniform compu-
tational domain. We have also developed explicit
formulas for computing the coefficients of high-
order compact (and explicit) schemes on nonuni-
form grids. The high-order schemes on nonuniform
grids can be easily applied in practical calculations
by computing once and for all of the derivative
(banded) matrix at the beginning of a calculation.

2. A requirement of grid stretching to meet the stabil-
ity requirement for high-order schemes with bound-
ary closure has been established by asymptotic sta-
bility analysis. For the explicit scheme, arbitrar-
ily high-order schemes can be made stable by grid
stretching. It is shown that the minimum grid
stretching for a fixed arbitrary high-order explicit
finite difference scheme is proportional to I/TV,
which is much less restrictive than spectral collo-
cation schemes. On the other hand, the compact
scheme of 12th or higher order cannot be made sta-
ble by grid stretching.

3. The new high-order schemes have been tested in
wave equations of up to 16th order. It has been
found that the accuracy can be increased suffi-
ciently when the order of schemes is increased to
lOth-order or higher. Such implementations are
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much more efficient than a spectral collocations
method in terms of spectral derivative and in terms
of time step restrictions. Work is underway to ex-
tend the schemes to full Navier-Stokes equations.

4. We have finished the computation of one case of
Mach 7.99 flow over a cone with an isothermal wall.
The steady surface pressure compared well with ex-
perimental values.

5. We have done one case of stability calculations with
seven frequencies component in the forcing waves in
surface blowing and suction. Other unstable cases
are currently under calculation. The results of the
present case show that the wave modes develop into
second-mode waves downstream. The dominant
waves are frequency agree well with experimental
results. The eigenfunction of the modes obtained
by the numerical simulations also agree very well
with the LST results. The numerical results also
show the development of second harmonics due to
the nonlinear interaction among these fundamen-
tal waves. This is a case with very weak nonlinear
effects due to relative weak initial forcing waves. A
stronger forcing waves case is currently being com-
puted to study the nonlinear effects in more detail
and will be compared with experimental results.
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Table 2: Average error (L-l norm) for explicit high order scheme solutions of the wave equation.

21 Pts 41 Pts 51 Pts 101 Pts

2nd order 0.326162889E-01 0.810332811E-02 0.518681321E-02 0.129591602E-02

4th order 0.843494315E-03 0.551459581E-04 0.227042686E-04 0.142848006E-05

6th order 0.243947839E-04 0.413791452E-06 0.109559034E-06 0.173423464E-08

8th order 0.718268037E-06 0.325263739E-08 0.555259542E-09 0.221586820E-11

10th order 0.215320258E-07 0.263122100E-10 0.289553460E-11 0.292310374E-14

12th order 0.610218527E-09 0.215510847E-12 0.153853384E-13 0.402305767E-17
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Appendix A

The spatial discretization using an explicit scheme can be written in the matrix form given by Eq. (9). An
example of derivative A in Eq. (9) for a 15 point domain (with a = 0.91) and a 6th order scheme using seven grid
stencil in both interior and in boundary points is given in the matrix below. The numbers below are truncated to
three significants as a demonstration, the actual significant digits of the coefficients are longer with about 15 digits
for double precision calculations and can be longer if necessary.

-36.368 45.503 -12.961
-10.592 4.043 8.758

3.042 -8.831 1.570
-1.988 4.836 -8.508

— 0.291 1.566
-0.152

0

5.316
-3.011
5.340
2.824

-5.532
1.099

-0.116

-1.887
1.008

-1.379
3.309
1.062

-4.731
0.943

-0.101

0.448
-0.233
0.288

-0.524
3.812
0.462

-4.403
0.869

-0.092

-0.051
0.026

-0.030
0.050

-0.689
4.008
0.183

-4.233
0.819

-0.083

0.071
-0.769
4.121
0.000

— 4.121
0.769

-0.071

0.083
— 0.819
4.233

— 0.183
-4.008
0.689

-0.050
0.030

-0.026
0.051

0.092
-0.869
4.403

-0.462
-3.812
0.524

-0.288
0.233

-0.448

0.101
-0.943
4.731

-1.062
-3.309
1.379

-,1.008
1.887

0.116
-1.099
5.532

-2.824
-5.340
3.011

-5.316

0.152
-1.566 0.291
8.508 -4.836

-1.570 8.831
-8.758 -4.043
12.961 -45.503

0

1.988
-3.042
10.592
36.368

(44)

The spatial discretization using a compact scheme can be written in matrix form given by Eq. (25). An example
of the coefficient matrices P and Q for a 7-3 compact scheme for a 15 point domain (with a = 0.8) is given below:

1.000
0.046

0.223
1.000
0 .615

-0.066
0.343
1.000
0.791

0.340
1.000
0.519

0.251
1.000
0.439

0.306
1.000
0.402

0.339
1.000
0.380

0.361
1.000
0.361

0.380
1.000
0.339

0.402
1.000
0.306

0.439
1.000
0.251

0.519
1.000
0.340

0.791
1.000
0.343

-0.066

0.615
1.000
0.223

0.046
1.000

(45)

-16.392 8.256 7.948
-6.887 -2.559 3.923

1.469 -4.748 -4.831
0.104 -0.949

0.034

0

0.203
5.335
4.308

-4.972
-0.491
0.019

-0.016
0.199
3.705
1.804

-4.483

0.013

0.001
— 0.012
0.100
3.857
0.837

-0.284
0.010

-0.0002
-0.0001
0.0005

— 0.003
0.162
3.906

-4.037
-0.243
0.008

— 0.006
0.206

0.000
-3.952
— 0.206
0.006

-0.008

4.037
-0.341
-3.906
— 0.162
0.003

— 0.0005
0.0001
0.0002

— 0.010
0.284
4.196

-0.837
-3.857
-0.100
0.012

-0.001
-0.004

-0.013
0.349
4.483

-1.804
-3.705
-0.199
0.016
0.040

-0.019
0.491
4.972

-4.308
— 5.335
-0.203
-0.524

-0.034
0.949
4.831

-3.923
-7.948
5.503

-0.104
4.748
2.559

-8.256
-49.766

0

— 1.469
6.887
16.392
44.750

(46)
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Example 7-3 Compact Stencil

j=0 j=-3 j=-4

u., U., u.

j=0, -1.-2, -3, -4 (M=4)
i=1,2 (N=2)
Stencil Size 7 (M+N+1) - 3 (N+1)

-r,. i A rr o ^ i ^ -i T Figure4: Eigenvalue spectrum of the spatial discretiza-tigure 1: A 7-o compact scheme stencil on a nonumform . ° . ° xl _ , . .r . ,r\ tion matrix for the 6th order scheme on a uniform grid
gn ' of 101 points.

Chebyshev grid (o = 0)
a = 0.9
a = 0.9995

• Uniform (a=1)

^. n /-i • i ^ x i • f , • T • / Figure 5: Eigenvalue spectrum of the spatial discretiza-Figure 2: Grid stretching function used m this paper (x .° x . f ,, „ . , , , , , , , . ,. / A T x tion matrix lor the bth order scheme on a stretched grid
VQ ? / A/I °7 j" of 101 points with a = 0.9997.

Axmln/AXun

0.90 0.92 0.94 0.96 0.98 1.00
a (stretching parameter)

-6 -5 -4 -3 -2 -1 0

Figure 3: Grid stretching factor as a function of the
stretching parameter a.

Figure 6: Eigenvalue spectrum of the spatial discretiza-
tion matrix for the 6th order scheme on a stretched grid
of 101 points with a = 0.9995.
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1.0

0.9

0.8

0.7
AXmin/AXuni(ofm

0.6

0.5

0.4

0.2

0.1

0.0

——— - 8th Order
............. 10th Order
— — — - 12th Order

v__
:.

k

:'N"*--.»

: C---..........

'r

100 150

N (Number of Points)

• Axmln/Axunilorm = 0.02467
- Axmin/Axunl(0fm = 0.18028

............. AxmlI/Axunj(orm = 1

Figure 7: Variation of minimum Ax required for stable Figme 10: Distribution of the truncation error (normal-
boundary closure with the total points used, for various ized bY the maximum uniform grid truncation error) for
schemes. a sixth order scheme for 101 points.

M (Stencil Width)

- - - - - Ax jr/Axunj)orm = 0.02467
————— AXmk,/AxundonT1 = 0.18028
............. Axmin/Axun((orm = 1

Figure 8: Variation of minimum Ax required for sta-
ble boundary closure with the stencil width, for various
schemes.

Figure 11: Distribution of the truncation error (normal-
ized by the maximum uniform grid truncation error) for
a sixth order scheme for 101 points.

............. Axmjn/Axuni(om = 0.2447 (Spectral a=0) /
————Axmjrt/Axunj(orm = 0.6219 (Stretched a=0.95) i
----- AxmiyAxuni(orm = 1.0000 (Uniform a= 1) /

Figure 12: Eigenvalue spectrum of the spatial dis-
Figure 9: Distribution of the truncation error for a 11 cretization matrix for the 7-3 compact scheme on a
points global scheme with different grid spacing. uniform grid of 101 points.
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............. 5.3 compact Scheme
_ _ _ _ _ 7.3 Compact Scheme
_._._._._ 7.5 compact Scheme
———— 9-3 Compact Scheme 6.00E-
———— 6th Order Explicit Scheme

100
N (Total grid points)

Figure 13: Variation of minimum Ax required for sta-
ble boundary closure with the stencil width, for various
compact schemes.

Figure 16: Error distribution for numerical solution,
using a 10th order explicit scheme on a stretched grid
(a = 0.91), at t - I second.

6th Order Uniform Grid
Exact Solution

U(x,t)

Figure 14: Eigenvalue spectrum of the spatial dis-
cretization matrix for the 7 — 3 compact scheme on a
stretched grid of 101 points with a — 0.8.

Figure 17: Comparison of numerical solution , using a
6th order explicit scheme on an uniform grid, with the
exact solution at t — 2.2 seconds.

—— 6th Order Numerical
0 Exact Solution

—— 6th Order Numerical
o Exact Solution

Figure 15: Comparison of numerical solution, using a
6th order explicit scheme on a stretched grid (a — 0.91),
with the exact solution at t — 1 seconds.

Figure 18: Comparison of numerical solution (at t =
0.01s) using a stretched grid and is computed by a 6th
order explicit scheme on a uniform grid through coor-
dinate transformation.
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P/Poo

Level M

5 7
4 5.25
3 3.5
2 1.75
1 0

Current Computation

o Experiment

x/r

Figure 21: Steady pressure along the cone surface. The
experimental results were obtained by Stetson et al.
(1984).

P/Poo

Figure 19: Multi-zone solutions of Mach number con-
tours for steady Mach 7.99 flow over a 7 degree half
angle round blunt cone at the same flow conditions as
Stetson's experiments (1984), and an isothermal wall.

———— Isothermal Wall
o Adiabatic Wall

x/r

Figure 22: Comparison of steady pressure distributions
along the cone surface for two cases of isothermal and
adiabatic walls.

.oo

_C 6

0)
CD 5

CD

I4

O
CC 2

x/rv

T/T

- Isothermal Wall
. Adiabatic Wall

x/r

Figure 20: Steady Mach number immediately behind Figure 23: Comparison of steady temperature distribu-
the bow shock vs. a?. tions along the cone surface for two cases of isothermal

and adiabatic walls.
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Yn

d2u/dy2

Figure 24: Steady tangential velocity profile along the Figure 27: Second derivative of tangential velocity along
wall-normal direction at the surface location of 175 nose the wall-normal direction at the surface location of 175
radius. nose radius.

yn
0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Figure 25: Steady temperature profile along the wall-
normal direction at the surface location of 175 nose ra-
dius.

Figure 28: Amplitudes of pressure perturbations for the
seven fundamental frequencies along the body surface.
The labels "a" to "g" refer to kth wave modes of differ-
ent frequency for k changing from 15 to 9, respectively.

yn

du/dy

Figure 26: First derivative of tangential velocity along Figure 29: Instantaneous contours of temperature per-
the wall-normal direction at the surface location of 175 turbations in a local section of the computational do-
nose radius. mam.
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50 100 150 200 250 300 350

Frequency (kHz)

Figure 30: Instantaneous contours of pressure pertur-
bations in a local section of the computational domain.

X

Figure 31: Instantaneous profile of surface pressure per-
turbations in a local section of the computational do-
main.

Figure 33: Frequency spectra of surface pressure pertur-
bation amplitudes at surface location of 160 nose radius
from the leading edge.

0.10

P 0.09

0.08

0.07
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0.05
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0.00
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Frequency (kHz)

Figure 34: Frequency spectra of surface pressure pertur-
bation amplitudes at surface location of 175 nose radius
from the leading edge.

0 50 100 150 200 250 300 350
Frequency (kHz)

Figure 32: Frequency spectra of surface pressure pertur-
bation amplitudes at surface location of 155 nose radius
from the leading edge.

0.00 I i Q O Q Q O O - O ' I
0 50 100 150 200 250 300 350

Frequency (kHz)

Figure 35: Blow-up plot of the previous figure.
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LSI 2nd mode

DNS

150 200

Frequency (kHz)

Figure 36: Two-dimensional wave mode amplification
rates as a function of frequency obtained by linear sta-
bility analysis for 2-D waves at the x/rn = 160 surface
location.

Figure 38: Temperature perturbation amplitudes dis-
tribution in the wall-normal direction at x/rn = 160
nose radius surface location for wave frequency 139.27
kHz (Ar = 14).

LSI 2nd mode

DNS

150 200

Frequency (kHz)

Figure 37: Two-dimensional wave mode amplification
rates as a function of frequency obtained by linear sta-
bility analysis for 2-D waves at the x/rn — 175 surface
location. The experimental results were obtained by
Stetson et al. (1984).

Figure 39: Tangential velocity perturbation amplitudes
distribution in the wall-normal direction at x/rn = 160
nose radius surface location for wave frequency 139.27
kHz (Ar = 14).
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