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The receptivity of hypersonic boundary layers to free-stream disturbances, which
is the process of environmental disturbances initially entering the boundary layers
and generating disturbance waves, is altered considerably by the presence of bow
shocks in hypersonic flow fields. This paper presents a numerical simulation study
of the generation of boundary layer disturbance waves due to free-stream waves,
for a two-dimensional Mach 15 viscous flow over a parabola. Both steady and
unsteady flow solutions of the receptivity problem are obtained by computing the full
Navier–Stokes equations using a high-order-accurate shock-fitting finite difference
scheme. The effects of bow-shock/free-stream-sound interactions on the receptivity
process are accurately taken into account by treating the shock as a discontinuity
surface, governed by the Rankine-Hugoniot relations. The results show that the
disturbance waves generated and developed in the hypersonic boundary layer contain
both first-, second-, and third-mode waves. A parametric study is carried out on the
receptivity characteristics for different free-stream waves, frequencies, nose bluntness
characterized by Strouhal numbers, Reynolds numbers, Mach numbers, and wall
cooling. In this paper, the hypersonic boundary-layer receptivity is characterized by
a receptivity parameter defined as the ratio of the maximum induced wave amplitude
in the first-mode-dominated region to the amplitude of the free-stream forcing wave.
It is found that the receptivity parameter decreases when the forcing frequency or
nose bluntness increase. The results also show that the generation of boundary layer
waves is mainly due to the interaction of the boundary layer with the acoustic wave
field behind the bow shock, rather than interactions with the entropy and vorticity
wave fields.

1. Introduction
The prediction of laminar–turbulent transition in hypersonic boundary layers is

a critical part of the aerodynamic design and control of hypersonic vehicles. The
transition process is a result of the nonlinear response of laminar boundary layers
to forcing disturbances (Reshotko 1991), which can originate from many different
sources including free-stream disturbances, surface roughness and vibrations. In an
environment with weak initial disturbances, the path to transition consists of three
stages: (i) receptivity, (ii) linear eigenmode growth or transient growth, and (iii)
nonlinear breakdown to turbulence. The first stage is the receptivity process (Morkovin
1969), which converts the environmental disturbances into initial disturbance waves
in the boundary layers. The second stage is the subsequent linear development and
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growth of boundary-layer instability waves. Relevant instability waves for hypersonic
boundary layers include the first-mode and higher-mode instabilities (Mack 1984),
the Görtler instability over concave surfaces, the attachment line instability at leading
edges, and the cross-flow instability in three-dimensional boundary layers. The third
stage is the breakdown of linear instability waves, and the transition to turbulence
after the linear instability waves reach certain magnitudes.

The stability and transition of supersonic and hypersonic boundary layers has been
reviewed by Mack (1984), Reshotko (1991), and many others. Most of our knowledge
of hypersonic boundary layer stability is obtained by the linear stability theory (LST)
(Mack 1984). Lees & Lin (1946) showed that the existence of a generalized inflection
point is a necessary condition for inviscid instability in a compressible boundary layer.
Mack (1984) found that there are higher acoustic instability modes in addition to the
first-mode instability waves in supersonic and hypersonic boundary layers. Among
them, the second mode becomes the dominant instability for hypersonic boundary
layers at Mach numbers larger than about 4. The existence and dominance of the
second mode has been validated by experimental studies (Stetson & Kimmel 1992).
Experimental measurements on hypersonic boundary layer stability on sharp cones
have been performed by Kendall (1975) and others. The results indicated that the
first- and second-mode instabilities are simultaneously present in hypersonic boundary
layers.

Practical hypersonic vehicles have blunt noses in order to reduce thermal loads.
It has been generally recognized that the bow shock in front of a blunt nose has a
strong effect on the stability and transition of the boundary layer behind it (Reshotko
1991). Reshotko & Khan (1980) showed that the swallowing of the entropy layer by
a boundary layer has a strong effect on the boundary-layer stability. These effects
on hypersonic boundary layer transition have been studied in experiments (Potter &
Whitfield 1962; Stetson et al. 1984). Experimental results show that an increase of
nose bluntness delays transition, but the trend is reversed when the nose bluntness
exceeds a certain limit. Stetson et al. (1984) also found evidence of inviscid entropy
instability in the region outside the boundary layers for blunt cones in a Mach 8 free
stream. The stability characteristics of hypersonic boundary layers over a blunt cone
corresponding to Stetson’s experiments have been studied using the linear stability
analysis (Malik, Spall & Chang 1990; Herbert & Esfahanian 1993; Kufner, Dallmann
& Stilla 1993). Though some observations on the effects of bluntness and the entropy
layer are consistent with linear stability analysis, the second-mode instability and the
general amplification characteristics in the blunt cone flows do not agree with the
experiments. The discrepancy may be due to the fact that it is difficult to obtain
highly accurate steady base flow solutions of hypersonic flow over blunt cones, for
the stability analysis. The effects of bow shocks and non-parallel boundary layers
are neglected in a normal-mode stability analysis. In addition, the initial receptivity
process, which becomes very complex due to hypersonic bow shock interaction, is not
considered in the linear stability analysis.

This paper is concerned with the receptivity process of hypersonic boundary layer
flows over blunt leading edges. The receptivity mechanism provides important initial
conditions of amplitude, frequency, and phase of instability waves in the boundary
layers. Theoretical results on incompressible boundary layer receptivity are mainly
obtained based on the asymptotic theory (Goldstein 1983). The asymptotic analy-
sis explains how the long-wavelength free-stream acoustic disturbances enter the
boundary layer and generate short-wavelength Tollmien–Schlichting (T–S) waves in
incompressible boundary layers. Direct numerical simulations, which solve the full
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Figure 1. A schematic of the wave field of the interaction between a bow shock and free-stream
disturbances in the leading-edge receptivity process. a: acoustic wave, e: entropy wave, w: vorticity
wave.

Navier–Stokes equations as an initial-boundary problem, have become an important
tool in receptivity and transition studies in recent years. Direct numerical simulations
of the receptivity of incompressible or subsonic boundary layers have been performed
by Murdock (1981), Buter & Reed (1994), Casalis & Cantaloube (1994), and Collis
& Lele (1996). For hypersonic boundary-layer flows over blunt bodies, the receptivity
phenomena are much more complex and are currently not well understood (Reshotko
1991). Only a few studies have been reported on the receptivity of hypersonic boundary
layers. Choudhari & Streett (1993) extended the asymptotic theory to the prediction
of receptivity in a Mach 4.5 boundary layer with a zero pressure gradient. The effects
of shock interaction were not considered.

Figure 1 shows a schematic of wave interactions in the leading edge region of a
hypersonic flow in the presence of free-stream disturbances. The receptivity phenom-
ena are altered considerably by the bow shock in front of the body. The interaction
of free-stream waves with the shock affects the receptivity process of the boundary
layer behind the shock. Kovasznay (1953) showed that weak disturbance waves in
compressible flow can be decomposed into three independent modes: acoustic, en-
tropy, and vorticity modes. The acoustic wave is propagated with the speed of sound
relative to the moving fluid, while the entropy and vorticity waves convect with the
moving fluid velocity. Before entering the boundary layer, free-stream disturbances
first pass through and interact with the bow shock. Irrespective of the nature of a
free-stream disturbance wave, its interaction with the bow shock always generates all
three types of disturbance waves (McKenzie & Westphal 1968) after passing through
the shock. These waves are propagated downstream and interact with the boundary
layer on the body. At the same time, the perturbed boundary layer also generates
reflected acoustic waves propagating upstream. When they return to impinge on the
shock from behind, the reflected acoustic waves generate additional disturbances of
all three kinds which also propagate downstream. Such back and forth reflections and
interactions create a complex wave field behind the bow shock. The combined effects
of these interactions determine the receptivity process of the hypersonic boundary
layer behind the shock.
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Owing to the complexity of transient hypersonic flow fields involving a receptivity
process, an effective approach to studying hypersonic boundary layer receptivity is
the direct numerical simulation of the full time-dependent three-dimensional Navier–
Stokes equations for the temporally or spatially evolving instability waves. Such a
simulation requires that all relevant flow time and length scales are resolved and so
highly accurate high-order numerical methods are required. One of the difficulties in
hypersonic flow simulations is that, owing to numerical instability, high-order linear
schemes can only be used for the spatial discretization of the equations in flow fields
without shock waves. In Zhong (1998), we presented and validated a new high-order
(fifth and sixth order) upwind finite difference shock-fitting method for the direct
numerical simulation of hypersonic flows with a strong bow shock and with stiff source
terms. There are three main aspects of this method for transient hypersonic flows: a
new shock fitting formulation, new upwind high-order finite difference schemes, and
recently derived third-order semi-implicit Runge–Kutta schemes (Zhong 1996). The
method has been validated and applied to numerical studies of receptivity of two-
and three-dimensional hypersonic flows over blunt bodies.

The purpose of this paper is to study the receptivity of hypersonic boundary-
layer flows to weak free stream disturbances, which are planar acoustic, entropy, and
vorticity waves with fixed frequencies. The body is a parabolic leading edge. The
generation of boundary-layer waves is studied using numerically obtained solutions
of the nonlinear Navier–Stokes equations. The bow-shock oscillations and the effects
of bow-shock/free-stream-sound interaction on the receptivity process are accurately
taken into account by treating the shock as a moving discontinuity surface governed
by the Rankine–Hugoniot relations. A parametric study is carried out by numerical
simulations of a number of computational cases with different free-stream forcing
waves, frequencies, forcing wave amplitudes, nose bluntness, Mach numbers, Reynolds
numbers, and wall cooling. In order to focus our attention on the leading-edge
receptivity, we limit the current study to the two-dimensional disturbance waves
in hypersonic boundary layers induced by two-dimensional free-stream disturbances.
The receptivity of three-dimensional wave interactions is a subject of a separate study,
and is not considered here. Since the receptivity of the fundamental frequency is linear
with respect to weak forcing waves, any weak disturbances in the free stream can be
decomposed into a linear combination of single-frequency Fourier modes. Numerical
solutions of the full Navier–Stokes equations are compared with theoretical analysis,
such as the local normal-mode linear stability analysis, for the purpose of analysing the
numerical results. The numerical accuracy of the computational results is evaluated by
a grid refinement study and by comparison with available experimental or theoretical
results. Detailed results of the code validation and error assessment have been reported
in Zhong (1998). They are not repeated in this paper.

2. Governing equations
The following gas models are used in the present study of the receptivity of

hypersonic flow over a parabolic leading edge. The gas is assumed to be a thermally
and calorically perfect gas governed by the continuum Navier–Stokes equations.
The viscosity coefficients are calculated according to the Sutherland law with the
assumption of zero bulk viscosity. The heat conductivity coefficients are determined
by assuming a constant Prandtl number. The bow shock is assumed to be thin so
that it is treated as a mathematically discontinuous surface satisfying the Rankine–
Hugoniot relations. This flow model corresponds to ground-based ‘cold’ hypersonic
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experiments where high Mach numbers are achieved in wind tunnels at relatively
low stagnation temperatures. For such hypersonic flows, the real gas effects are not
excited because of low gas temperatures. So far, most of the reported hypersonic
experimental and theoretical studies on stability and transition are in such flow
regimes. Examples are Kendall (1975), Stetson et al. (1984), and Stetson & Kimmel
(1992) for experiments and Herbert & Esfahanian (1993) and Kufner et al. (1993)
for theoretical works. The perfect gas assumption is necessary because the stability
and transition of hypersonic boundary layers is mostly a hydrodynamic problem
governed by the perfect gas flow equations. For ‘hot’ hypersonic flows, which are
often termed ‘hypervelocity’ flows, high-temperature real gas effects are significant.
Such effects include non-equilibrium thermal excitation and chemical dissociation.
In addition, rarefied gas effects may become significant because many hypersonic
vehicles operate in low Reynolds number and high Mach number conditions. The
bow shock may not be very thin in rarefied gas flow. These real gas effects may
introduce strong modifications to the stability and transition properties, but they can
be studied separately. Therefore, like most other hypersonic boundary-layer stability
and transition studies, perfect-gas flow equations are used in this paper in order to
bring out the main hydrodynamic features of their receptivity. Real and rarefied gas
effects are important but separate and are not considered in this paper.

The governing equations are the unsteady three-dimensional Navier–Stokes equa-
tions written in the following conservation-law form:

∂U ∗

∂t∗
+
∂F ∗j
∂x∗j

+
∂F ∗vj
∂x∗j

= 0 (1)

where the superscript ∗ represents dimensional variables, and x∗j and t∗ are inde-
pendent variables of Cartesian coordinates and time respectively. The vector of the
conservative flow variables is

U ∗ = {ρ∗, ρ∗u∗1, ρ∗u∗2, ρ∗u∗3, e∗}. (2)

The equations of state are p∗ = ρ∗R∗T ∗ and e∗ = ρ∗(c∗vT ∗ + 1
2
u∗ku∗k), where the gas

constant R∗ and the specific heats c∗p and c∗v are assumed to be constants. The flux
vectors in (1) are

F ∗j =



ρ∗u∗j
ρ∗u∗1u∗j + p∗δ1j

ρ∗u∗2u∗j + p∗δ2j

ρ∗u∗3u∗j + p∗δ3j

(e∗ + p∗) u∗j


, F ∗vj =



0

−τ∗1j
−τ∗2j
−τ∗3j

−τ∗jku∗k − q∗j


, (3)

where the viscous stress tensor and heat flux vector are

τ∗ij = µ∗
(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
− 2

3
µ∗
∂u∗k
∂x∗k

δij , q∗j = −κ∗ ∂T
∗

∂x∗j
. (4)

where µ∗ is the viscosity coefficient determined by Sutherland’s law,

µ∗ = µ∗r

(
T ∗

T ∗r

)3/2
T ∗r + T ∗s
T ∗ + T ∗s

,

and κ∗ is the heat conductivity coefficient determined by assuming a constant Prandtl
number defined by Pr = µ∗c∗p/κ∗.
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In a leading-edge receptivity problem, both steady and unsteady flow solutions of
the Navier–Stokes equations are computed by numerical simulations. For a steady
flow simulation, flow variables for the supersonic free stream in front of the bow shock
are constant, while for an unsteady flow they are time varying acoustic wave fields. The
body surface is assumed to be a non-slip isothermal wall with a given temperature T ∗w .
The bow shock is assumed to be an infinitely thin moving discontinuity surface, where
flow variables across the shock are governed by the Rankine-Hugoniot conditions.
These lead to jump conditions for flow variables behind the moving shock as functions
of unsteady free stream flow variables at the shock and the local shock normal velocity
v∗n , i.e.

p∗s = p∗1

[
1 +

2γ

γ + 1
(M2

n1 − 1)

]
, (5)

ρ∗s = ρ∗1

[
(γ + 1)M2

n1

(γ − 1)M2
n1 + 2

]
, (6)

u∗ns = v∗n +
ρ∗1
ρ∗s

(u∗n1 − v∗n), (7)

u∗ts = u∗t1 = u∗1 − u∗n1n, (8)

u∗s = u∗ts + u∗nsn = u∗1 + (u∗ns − u∗n1)n, (9)

where Mn1 = (u∗n1 − v∗n)/a∗1 is the normal component of the free-stream Mach number
relative to the shock motion, u∗ is the velocity vector, u∗t is the tangential velocity
vector, un is the normal velocity component. In order to compute the flow variables
behind the shock, the velocity of the shock front v∗n is needed. The shock normal
velocity is determined by a characteristic compatibility equation immediately behind
the shock. The details of the shock fitting formulas and numerical methods can be
found in Zhong (1998).

Since flow variables behind the bow shock are not constant, they are non-
dimensionalized using the steady-state free-stream conditions. Specifically, we non-
dimensionalize the velocities with respect to the free-stream velocity U∗∞, length scales
with respect to a reference length d∗, density with respect to ρ∗∞, pressure with re-
spect to p∗∞, temperature with respect to T ∗∞, time with respect to d∗/U∗∞, vorticity
with respect to U∗∞/d∗, entropy with respect to c∗p, wavenumber by 1/d∗, etc. The
dimensionless flow variables have no superscript asterisk.

3. Flow conditions
The receptivity of a two-dimensional boundary layer to free-stream waves for

hypersonic flows past a parabolic leading edge at zero angle of attack is considered.
The parabolic body surface is determined by

x∗ = b∗y∗2 − d∗, (10)

where b∗ and d∗ are constants. The nose radius of curvature is r∗ = 1/(2b∗). Free
stream disturbances are superimposed on a steady mean flow before it reaches the
bow shock, to investigate the process of free stream waves entering the boundary
layer and inducing boundary-layer waves. The free-stream disturbances are assumed
to be weak monochromatic planar waves with wave fronts normal to the centreline
of the body. The wave fields are represented by perturbations of instantaneous flow
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variables with respect to the local steady base flow variables at the same location. For
example, instantaneous velocity perturbation u′ located at (x, y), at time t, is defined
as:

u′(x, y, t) = u(x, y, t)−U(x, y), (11)

where u(x, y, t) is the instantaneous velocity component obtained by an unsteady
numerical simulation of the nonlinear Navier–Stokes equations, and U(x, y) is the
steady mean flow velocity obtained by a separate steady flow simulation.

There are four kinds of weak perturbation waves in a uniform flow in the free
stream: fast acoustic waves, slow acoustic waves, entropy waves, and vorticity waves.
For weak disturbance waves in the free stream before reaching the bow shock, the
perturbation of an arbitrary flow variable can be written in the following form:

q∞(x, y, t)′ = |q′∞|eik∞(x−c∞t), (12)

where q∞(x, y, t) represents the perturbation of any flow variable, |q′∞| is the wave
amplitude constant, k∞ is the wavenumber, and c∞ is the wave speed in the free stream
before reaching the shock. For the four kinds of linear waves, perturbation amplitudes
of non-dimensional flow variables satisfy the following dispersion relations:

fast acoustic waves (c∗∞ = u∗∞ + a∗∞)

|ρ′|∞ = |p′|∞/γ = |u′|∞M∞ = εM∞, |s′|∞ = |v′|∞ = 0;

slow acoustic waves (c∗∞ = u∗∞ − a∗∞)

|ρ′|∞ = |p′|∞/γ = −|u′|∞M∞ = εM∞, |s′|∞ = |v′|∞ = 0;

entropy waves (c∗∞ = u∗∞)

|ρ′|∞ = −|s′|∞ = εM∞, |u′|∞ = |v′|∞ = |p′|∞ = 0;

vorticity waves (c∗∞ = u∗∞)

|v′|∞M∞ = εM∞, |u′|∞ = |p′|∞ = |s′|∞ = 0;

where ε is a small number, and εM∞ represents the relative amplitude of a free-
stream wave. The free-stream wavenumber k∞ is related to the circular frequency ω
by ω = k∞ c∞.

The flow is characterized by a free-stream Mach number M∞ = u∗∞/a∗∞, and a
Reynolds number Re∞ = ρ∗∞U∗∞d∗/µ∗∞. The forcing frequency of the free-stream
acoustic wave is represented by a dimensionless frequency F defined with respect to
a viscous flow scale by

F = 106ω
∗ν∗

U∗2∞
= 106ω/Re∞. (13)

We can also define a Strouhal number S in terms of the nose radius r∗ by

S =
ω∗r∗

U∗∞
. (14)

The Strouhal number represents the relative nose bluntness in the receptivity problem.
The wall temperature is characterized by its ratio to the free-stream stagnation
temperature, i.e.

Tw

T0

=
T ∗w

T ∗∞

(
1 +

γ − 1

2
M2∞

) ,



322 X. Zhong

–1.0 –0.5 0 0.5 1.0 1.5 2.0

x

Figure 2. Computational grid for steady base flow solutions where the bow shock shape is
obtained as the numerical solution for the upper grid line boundary.

where T ∗w and T ∗∞ are the wall temperature and the free-stream temperature respec-
tively.

The receptivity problems are studied numerically by solving the unsteady Navier–
Stokes equations using a fifth-order shock-fitting scheme described in Zhong (1998). A
numerical simulation is carried out in three steps. First, a steady flow field is computed
by advancing the flow solutions to convergence with no disturbances imposed in the
free stream. Second, unsteady viscous flows are computed by imposing a continuous
planar acoustic single-frequency wave on the steady flow variables on the free-stream
side of the bow shock. The unsteady simulation is made nonlinear by computing the
transient flow solutions of the Navier–Stokes equations without any linearization in
the equations and in the shock jump conditions. The wave interactions with the shock
and the development of disturbance waves in the boundary layer are simultaneously
resolved by the simulation. The unsteady calculations are carried out for about 20
to 40 temporal periods until the solutions reach a periodic state in time. Third, the
unsteady computations are carried out for one additional period in time to record
the perturbations with respect to the steady flow field obtained previously. A Fourier
transform is performed on the perturbation variables to obtain the Fourier amplitudes
and phase angles of the perturbations of the unsteady flow variables throughout the
flow field.

Seven groups of computational cases are considered to study the effects of various
flow parameters on the hypersonic receptivity process. The non-dimensional flow
parameters are chosen for a typical Mach number and Reynolds number range for
hypersonic flow over a leading edge. The first group involves free-stream planar
acoustic waves, and is analysed in detail in § 5. A parametric study is then carried
out in § 6 by considering six additional groups of computational cases to study the
effects of different free-stream forcing waves, frequencies, nose bluntness, Reynolds
numbers, Mach numbers, and wall cooling. The flow conditions of all seven groups
(case A to case G) are tabulated in Appendix A.

Body-fitted grids are used in the computations, where the oscillating bow shock is
treated as an outer computational boundary. Figure 2 shows a 160×120 computational
grid for a Mach 15 steady base flow solution, where the upper grid line is the bow
shock. The shape of the bow shock, which is not known in advance, is obtained as
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Figure 3. Classification of flow field regions for a viscous hypersonic flow over a blunt leading
edge: I, inviscid rotational flow field; II, stagnation point region; III, boundary layer downstream.

a part of the base flow solution. A 320 × 240 grid is also used to repeat the steady
and unsteady calculations to evaluate the numerical accuracy of the Navier-Stokes
solutions. The calculations are also extended further downstream along the parabolic
body surface by using a multizone approach with 560×120 grid points. The grid lines
are stretched in both the streamwise and wall-normal directions to maintain a good
resolution in the high-shear regions inside the boundary layer and near the stagnation
line. The numerical accuracy of the solutions is evaluated by a grid refinement study
for both the steady and unsteady solutions. Examples of the results are presented in
Appendix B of this paper. Details of the numerical method and validation can be
found in Zhong (1998).

4. Steady flow solutions
Steady solutions of the Navier–Stokes equations for viscous hypersonic flows over a

parabola are obtained by using a fifth-order explicit unsteady computer code (Zhong
1998). A parabolic bow shock with a uniform flow field behind the shock is used as
the initial conditions for steady flow computations. The simulations are advanced in
time with fixed free stream flow conditions until the solutions between the shock and
the body converge to steady states. By using the high-order shock-fitting scheme, we
are able to obtain highly accurate mean flow solutions, which are free of spurious
numerical oscillations behind the bow shock, for subsequent unsteady calculations.

Hypersonic flow fields over a blunt leading edge consist of three main regions
as shown in figure 3. Region I is a rotational inviscid outer field, where vorticity
is generated by the curved bow shock according to Crocco’s theorem. Region II
is a viscous stagnation flow region, where the boundary layer thickness is constant
for incompressible flow and is near constant for compressible flows. Region III is
the boundary layer flow downstream where boundary layer thickness grows in the
streamwise direction.

Figure 4 shows the steady pressure contours and pressure distributions in both the
wall-normal and the streamwise directions. The steady flow conditions are the same
as those of case A.1 but with no free-stream disturbance. The i indices of the grid lines
in the figure are between 1 and 151, where i = 1 is located at the stagnation line. The
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Figure 4. Steady pressure solutions: (a) flow field contours, (b) distribution along wall-normal grid
lines for a number of grid stations, and (c) distributions of pressure gradient dp/dx along the body
surface and behind the bow shock (i = 1, 51, 101, 151 correspond to x = −1.0,−0.693,−0.0181, 1.033
respectively).

xs coordinates of the grid-line intersecting points on the body surface are given in the
figure. The figure shows that the steady flow over the parabola develops a favourable
pressure gradient along the body surface. The magnitudes of the negative pressure
gradients on the body surface decrease as the flow moves downstream. Owing to the
effects of nose bluntness, the pressure has a slight variation across the boundary layer
in the region near the leading edge. The pressure distribution across the boundary
layer approaches a constant as the flow develops further downstream.

Figure 5 shows the wall-normal distributions of tangential and normal velocities,
and ρ(dut/dyn) related to the generalized inflection point. The velocity distribution
across the boundary layer is very different from a hypersonic boundary layer over
a flat plate. Specifically, the velocity and other flow variables do not reach constant
asymptotic states outside the boundary layer, and the normal velocity components
un are about 10% of the tangential velocity ut at the edge of the boundary layer. In
addition, the ut distributions are inflectional in the region near the leading edge. For
compressible flat-plate boundary layers, Lees & Lin (1946) showed that the existence
of a generalized inflection point is a necessary condition for inviscid instability. The
generalized inflection point is located at d(ρ du/dyn)/dy = 0. Figure 5(b) shows that
when i 6 80 (x = −0.355 on the surface), there is only one generalized inflection point
near the wall. As i increases, an additional zero of the derivative of d (ρ dut/dyn)/dyn
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Figure 5. Variation of tangential velocity (ut), normal velocity (un), and generalized velocity gradient
ρdut/dn along grid lines normal to the parabola surface at several grid stations. (i = 50, 61, 100, 150
correspond to x = −0.702,−0.590,−0.0362, 1.189 respectively).

appears in the outer region of the boundary layer. At the same time, the main
generalized inflection point moves further away from the wall as i increases. The peak
in the plots for ρ dut/dyn is a result of the interaction between the vorticity generated
in the boundary layer in region III and the vorticity generated by the bow shock in
the external rotational flows in region I.

According to Crocco’s theorem, a curved bow shock generates an entropy gradient
and an inviscid vorticity field behind the shock in region I. The vorticity field
immediately behind the bow shock can be analysed by making an inviscid assumption
for flow near the shock. The vorticity jump condition across a bow shock was derived
by Truesdell (1952) using the Rankine–Hugoniot relations and Crocco’s theorem or
the momentum equation in the direction normal to the shock. For a bow shock in
a uniform free stream, the vorticity vector behind the shock depends only on the
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Figure 6. Vorticity to shock curvature ratio immediately behind the bow shock as a function of
the local shock angles (ω/k: numerical solutions of the Navier–Stokes equations; ω1/k: theoretical
prediction).

density ratio across the shock and the shock curvature, i.e.

ω∗shk = u∗t∞ k
∗ (1− ρ∗∞/ρ∗s )2

ρ∗∞/ρ∗s
(15)

where ω∗shk is the local vorticity immediately behind the shock, k∗ is the shock
curvature, and u∗t is the local tangential velocity component.

Equation (15) shows that the ratio of the vorticity immediately behind the bow
shock to the shock curvature, ωshk/k, is a function of local shock angle β, M∞, and γ
only. Figure 6 compares the vorticity to shock curvature ratio as a function of local
shock angle β between the steady Navier–Stokes solution and the inviscid theoretical
results of (15). The two sets of results agree very well. A close examination of the
figure shows that there are slight differences in the distribution near the leading
edge, which is located at β = 90◦. The differences are caused by the fact that at
those locations there are slight viscous effects which are not accounted for by (15).
The vorticities behind the bow shock are in the negative z-direction. The vorticity
generation by the bow shock is a function of free stream Mach number and γ.

The bow shock generates curved streamlines behind it. The streamlines immediately
behind the shock are concave at points near the stagnation line, but the streamlines
at the shock become convex at locations further away from the stagnation line. The
ratio of streamline curvature at the shock to the shock curvature at the same points
was found by Hornung (1998) to be a function of local shock angle, Mach number
and γ only, i.e.

kstreamline

kshk

= f(β,M∞, γ). (16)

Figure 7 compares the streamline to shock curvature ratios between numerical solu-
tions of the Navier–Stokes equations and the theoretical results given by (16). The
two sets of results compare very well with each other. The curvature ratio is zero
at the stagnation line (β = 90◦) because the streamline curvature is zero. The ratios
are negative near the stagnation point because the streamlines there are concave. As
β decreases, the ratios pass through the zero curvature point and become positive
further downstream.

Figure 8 shows steady vorticity solutions along the body surface and behind the
bow shock. The vorticity along the body surface is generated by the viscosity in the
boundary layer, while the vorticity behind the shock is generated by shock curvature.
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Figure 7. Streamline to shock curvature ratio as a function of local shock angles (k: numerical
solutions of the Navier–Stokes equations; k1: theoretical results by Hornung 1998).
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The intensity of the vorticity interaction can be characterized by the ratio of maximum
vorticity magnitudes behind the shock (ωshk) and on the body surface (ωwall). For the
present computational case, the ratio is found to be max(ωshk)/max(ωwall) = 4.65%,
which indicates a weak vorticity interaction between regions I and III. According to
(15), the vorticity behind the shock becomes stronger when the density ratio across
the shock decreases. Since the limiting value of the density ratio at an infinitely strong
shock is ρ∗∞/ρ∗s → (γ−1)/(γ+1), it is expected that the vorticity interaction is stronger
when γ is very close to 1 because the density ratio across the shock is very small.
This is the case for hypersonic flows with real gas effects. Figure 8(a, b) also shows
that the vorticity profiles are inflectional at the edge of the viscous boundary layer.
The inflectional profiles are created by the combined effects of the vorticity in region
I and in the viscous region III. It is also found that as Re∞ increases, the effects
of vorticity interaction become weaker because the vorticity in the boundary layer
increases while the vorticity generated by the bow shock is not affected very much by
the Reynolds numbers.

The current numerical solutions of the Navier–Stokes equations are compared with
approximate analytical boundary-layer equation results in order to partially validate
and to better understand the numerical simulation results. The numerical study of
the receptivity flow properties ultimately relies on the full Navier–Stokes solutions.
These are independent of the approximate analytical solutions, and are obtained with
no approximation beyond the gas models discussed in § 2.

An approximate local similarity solution of the boundary layer can be obtained by
using a standard similarity transformation, i.e.

ξ∗ =

∫ s∗

0

ρ∗eu
∗
eµ
∗
eds
∗, (17)

η =
u∗e√
2ξ∗

∫ n∗

0

ρ∗edn
∗, (18)

where s∗ and n∗ are the local dimensional natural coordinates defined by the surface
length and the distance in the wall-normal direction, respectively. Subscript e denotes
flow variables at the edge of the boundary layer. The variable η is the similarity
coordinate across the boundary layer.

The parameters ρ∗e , u∗e , and µ∗e are the dimensional density, tangential velocity,
and viscosity coefficient for inviscid flow on the wall, and they are used as free-
stream boundary conditions for the boundary-layer equations. For hypersonic flow
over a parabola, the boundary-layer edge conditions could be obtained from inviscid
solutions by computing the Euler equations. Since the pressure does not change
very much across the boundary layers, we use the surface pressure obtained by the
Navier–Stokes equations as the approximate edge inviscid pressure pe for boundary-
layer calculations. The other inviscid conditions on the surface are obtained by an
isentropic relation along the inviscid stagnation streamline.

Boundary-layer solutions in regions II and III are obtained by using an approximate
local similarity solution by assuming u∗/u∗e = f(η) and T ∗/T ∗e = g(η). Substituting
these new variables into the compressible boundary-layer equations, and neglecting the
effects of body surface curvature, leads to the following standard similarity equations:

(Cf′′)′ + ff′′ + α(g − f′2) = 0, (19)(
C

Pr
g′
)′

+ fg′ + (γ − 1)M2
e Cf

′′2 = 0, (20)
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Figure 9. Distributions of locally defined skin friction coefficients cf and heat transfer coefficients
St along the body surface (Case 1: Case A).

where C = ρ∗µ∗/(ρ∗eµ∗e) is the Chapman–Rubesin parameter, Me is the edge Mach
number, and

α =
2ξ∗

u∗e

du∗e
dξ∗

is the edge velocity gradient parameter. This nonlinear set of ordinary differential
equations with appropriate boundary conditions is solved by a shooting method
based on a fourth-order Runge–Kutta scheme. Although great simplifications have
been made in the boundary layer solutions, the results show that these local similarity
solutions are surprisingly accurate for hypersonic flow over a parabola, as long as the
surface pressure is known.

The Navier–Stokes solutions and independently obtained boundary-layer similarity
solutions for the same flow conditions are compared by normalizing the Navier–
Stokes solutions by local boundary-layer edge parameters. Figure 9 shows a local
shear stress coefficient cf and Stanton number St defined by local boundary layer
variables, i.e.

cf =
τ∗w

ρ∗eu∗2e /2

√
2ξ∗

µ∗2e
and St =

q∗w
ρ∗eu∗e(h∗0e − h∗w)

√
2ξ∗

µ∗2e
. (21)

The Navier–Stokes solutions agree well with the boundary-layer results for both skin
friction and heat transfer rates. The results also show that there is a characteristic
of cf and St similar to the Reynolds analogy in flat-plate boundary layers, in that
cf/(2St) is close to a constant, near 1.14 for the current flow conditions.

The interaction of solutions in regions I and III can be shown by plots of tangential
velocity u∗/u∗e vs. boundary-layer coordinate η along wall-normal grid lines. Figure 10
compares velocity profiles of the boundary-layer similarity solutions with those of
the Navier–Stokes solutions for two different Reynolds numbers. In the figure, i = 12
(x = −0.974 on the surface) is a grid line near the nose region while i = 127 (x = 0.539
on the surface) is located further downstream. The results show a good agreement
among the three sets of profiles near the wall up to the edge of the boundary
layer located approximately at η = 3. The velocity profiles are nearly independent
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of Reynolds number when the velocities are normalized by local boundary-layer
similarity parameters. The Navier–Stokes velocity profiles have an inflection point
near the leading edge due to strong inviscid vorticity outside the boundary-layer. As
the flow moves downstream, the velocity profiles become fuller and approach the
boundary-layer similarity solutions.

5. Receptivity to free-stream acoustic waves
The first group of cases (case A) is the receptivity simulations involving free-

stream planar acoustic waves. The unsteady flow solutions are obtained by imposing
acoustic disturbances on the steady flow solutions in the free stream. The subsequent
interaction of the disturbances with the shock and the receptivity of the boundary
layer over the parabola are computed by using the full Navier–Stokes equations. The
flow conditions of the computational cases are given in Appendix A for seven values
of F ranging from 531 to 2655, corresponding to the Strouhal numbers ranging from
0.4 to 2.0. Unless stated explicitly, we present the results for case A.1 with F = 2655
and ε = 5× 10−4.

5.1. Wave field structure

Figure 11 shows the contours of instantaneous perturbations u′ and v′, after the flow
field reaches a time-periodic state. The instantaneous contours show the interaction of
the free-stream disturbances with the bow shock and the development of disturbance
waves in the boundary layer on the surface. The wave patterns in region I outside
the boundary layer are different from those in region III inside the boundary layer:
in region I they are the result of free-stream waves passing through the shock and
propagating in the flow field; in region III they are dominantly the boundary-layer
waves induced by the forcing waves.

The wave field behind the bow shock is a combination of the external forcing
disturbance waves, Stokes-wave solutions, and boundary-layer waves. In a receptivity
study of an incompressible boundary layer, the wave field is a combination of a
T–S wave induced by the receptivity process and a Stokes solution in response
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Figure 11. Contours of instantaneous perturbations of velocity components (u′ and v′) after the
unsteady solutions reach a time-periodic state for case A.1 at ε = 5× 10−4.

to the forcing waves. The components of the T–S wave can be separated (Buter
& Reed 1994) from the Stokes-wave solutions by recognizing that the free-stream
wavelengths are an order of magnitude longer than those of the T–S waves in the
boundary layers. For hypersonic boundary layers, however, such separation is not
possible because the wavelengths of the forcing waves in the free stream are of the
same order of magnitude as those of the disturbance waves in the boundary layers.
Figure 11 shows the wavelengths of the disturbance waves developed in the boundary
layer to be very close to those of the external waves at the bow shock. In addition, the
disturbance wave field behind the shock is very complex due to the back and forth
reflection of the acoustic waves in the region between the bow shock and the body.
Though we cannot separate the external waves from the boundary layer wave modes
in hypersonic receptivity studies, figure 11 shows that the waves inside the boundary
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Figure 13. Distribution of instantaneous perturbations of velocity components immediately
behind the shock for case A.1 at ε = 5× 10−4.

layer near the body surface are dominantly boundary-layer waves, while the waves
immediately behind the bow shock are mainly external forcing waves.

The waves in the boundary layer region on the wall, as shown in figure 11, contain
two separate zones of different wave patterns. The first zone is located in the region
x < 0.2 and the second in x > 0.2. In the first zone, there is only one peak in the
oscillation magnitude across the boundary layer. On the other hand, in the second
zone oscillations develop away from the wall with two peaks. It is shown later in
this paper that the waves in the first wave zone correspond to the first-mode waves,
while those in the second zone are dominated by the second-mode waves. This will be
confirmed by comparing the eigenfunctions of the first and second modes obtained
by a local linear stability analysis with the numerical solutions of the Navier–Stokes
equations.

The instantaneous wave field development along the body surface is shown in
figure 12, for the variation of velocity perturbations along a parallel grid line near
the body surface. The instantaneous profiles, on the body surface, of other variables
are similar, in terms of the growth and decay of wave patterns, to those in this
figure. It shows two main distinct wave zones inside the boundary layer. However,
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behind the bow shock at the centreline for the case F = 7080 at ε = 5× 10−4.

the change of wave modes does not exist in region I which is outside the boundary
layer. Figure 13 shows the distribution of instantaneous perturbations of velocity
components immediately behind the bow shock. There is only a single wave pattern
in the solution behind the bow shock, which is outside the boundary layer.

In an unsteady flow simulation, the bow shock oscillates due to perturbations by
free-stream disturbances and by the reflection of acoustic waves from the boundary
layer to the shock. Figure 14 shows the numerical results for instantaneous perturba-
tions of normal shock velocities vs. x for case A.1. Positive normal shock velocities
represent shock movements in the direction opposite to the free-stream mean velocity.
There is no different wave mode of unsteady motion at the shock, which is outside
the boundary layer. The wavelength of the shock velocity is the same as that of the
disturbances in the free stream. Figure 12 shows that the wavelengths of disturbance
waves on the wall are very close to that of the forcing wave in the free stream.

One way to check the accuracy of the numerically computed unsteady shock/
disturbances interaction is by a comparison with linear theory of shock/disturbance
interaction. Figure 15 shows the time history, starting from t = 0, of the instantaneous
pressure perturbations at a point immediately behind the bow shock at the centreline



334 X. Zhong

for the case of F = 7080. A relatively higher frequency case is used here so that the
initial shock oscillates for a complete period in time before the acoustic wave reflection
from the wall returns and interacts with the bow shock. At the initial moment
of imposing the free-stream disturbances, there are no reflected waves from the
undisturbed steady boundary layer. The linear interaction of a free-stream disturbance
wave with a planar shock can be predicted by a linear theory such as that derived
by McKenzie & Westphal (1968). For the case of the transmission of a free-stream
acoustic wave through a normal shock,

|p′s|
|p′∞| =

2M4∞ + 2(γ + 1)M3∞ + 2(3γ − 1)M2∞ + 1− γ
(γ + 1)(1 +M2∞ + 2M2∞Ms)

, (22)

where |p′∞| and |p′s| are amplitudes of pressure perturbations in the free stream and
immediately behind the shock respectively. This prediction is valid for weak free-
stream waves until a later time (t ≈ 0.1 for the case of F = 7080). After t ≈ 0.1, the
wave amplitudes of the pressure perturbations in the numerical simulation change
because the disturbance waves generated at the shock enter the boundary layer and
generate reflected waves back to the shock. Figure 15 shows very good agreement
between the numerical simulation results and the linear predictions for the pressure
perturbation when they are assumed to agree with each other at the initial moment
of the simulation.

5.2. Wave amplitudes and phase angles

Temporal Fourier analysis is carried out on the numerical solutions of the pertur-
bations of unsteady flow variables after a time-periodic state has been reached in a
simulation. A Fourier transform of a disturbance variable leads to

q′(x, y, t) = Re

{
N∑
n=0

|q′n(x, y)|ei [−nωt+φn(x,y)]

}
, (23)

where ω is the forcing frequency of the acoustic wave in the free stream, q′(x, y, t)
represents any instantaneous perturbation variables, and |q′n(x, y)| and φn(x, y) are the
local perturbation amplitude and phase angle respectively. The integer n represents the
wave modes of the perturbation fields, where n = 0 is the mean flow distortion, n = 1
is the fundamental mode, and n = 2 is the second harmonic, etc. φn(x, y) indicates
a local phase angle with respect to the forcing wave in the free stream. If the wave
modes in the boundary layer on the body surface are dominated by a single wave
mode, a local growth rate αr and a local wavenumber αi of a perturbation field of the
fundamental frequency can be defined by

αi =
1

|q′1|
d|q′1|
ds

, αr =
dφ1

ds
, (24)

where the derivatives are taken along a parallel grid line near the body surface.
Figure 16 shows the contours of Fourier amplitudes and phase angles of the

horizontal velocity components u′ for F = 2655. The amplitude contours show a
strong growth near the leading edge in the boundary layer on the wall, followed by
a rapid decay and transition to another wave mode. This is shown quantitatively in
figure 17 for the amplitude distribution of the velocity perturbations near the parabola
surface. These figures show two distinct main zones of first- and second-mode waves.
The first mode is much stronger than the second mode for the current test case. The
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Figure 16. Contours of Fourier amplitudes and phase angles (in degrees) of horizontal velocity
components u′ for case A.1 at ε = 5× 10−4.

transition of wave modes from the first zone to the second occurs at about x = 0.2 on
the surface. Though not presented here, all other perturbation variables show similar
growth and decay characteristics inside the boundary layer. The propagation of the
perturbation waves is represented by the spatial distribution of lines of constant phase
angles shown in figure 16. Note that some of the discontinuous contour lines in the
phase angle contours with jumps in multiples of 360◦ are not real discontinuities for
phase angles. The decay of the first mode and the growth of the second mode is shown
by a sudden phase change near the body surface around x = 0.2. The phase structure
has one more variation across the boundary layer after the change of modes.

The variation of amplitude of tangential velocity perturbations along grid lines
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normal to the parabola surface at several grid stations is shown in figure 18. The first
three stations (a–c) are located in the first wave zone of the first mode, station (d) is
located in the mode switching zone, and the last two stations (e) and (f) are located
in the second wave zone of the second or third modes. The figure shows different
amplitude structures inside the boundary layer for the two wave zones. Mack (1984)
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defined the first, second, and third modes of a supersonic boundary layer on a flat
plate by the structure of the real part of the eigenfunctions of pressure perturbations.
The number of zeros in the eigenfunctions was used by Mack to identify the mode
numbers for compressible boundary layers. Figure 19 shows the variation of the
real part of the Fourier transform for the pressure perturbations obtained by the
numerical simulations for the present case A.1. The structure inside the boundary
layer shows the first mode in the first wave zone and the second or even third modes
in the second wave zone.

Therefore, on the body surface, first, second, and even higher modes are generated
and propagate downstream along the wall. The first mode is generated near the
leading edge. The amplitude of the first mode increases first and then decreases
rapidly after reaching maximum values. After the first-mode decay, the second and
third mode disturbances become dominant. The decay of the first mode and the
growth of the second mode are shown by a sudden change of phase angle near the
body surface at that location. The phase structure changes dramatically between the
two modes. Specifically, the second mode has one more variation across the boundary
layer.
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line near the parabola surface for case A.1 at ε = 5× 10−4.

5.3. Comparison with linear stability analysis

A local parallel linear stability analysis is used to compare with the numerical
solutions of the Navier–Stokes equations in order to confirm the identification of the
numerically obtained boundary-layer eigenmodes. Linear stability analysis is carried
out using the numerically obtained steady base flow between the body and the bow
shock. A spatial linear stability code, developed by Hu & Zhong (1998), based on
both a fourth-order finite difference method and a spectral method is used. The
disturbance equations are reduced to an eigenvalue problem by assuming that the
perturbations of flow variables are in a normal-mode form, i.e.

q′ = q̂(yn) ei(ωt−αs), (25)

where yn and s are coordinates along the wall-normal and the body surface directions,
α is the wavenumber, and q̂(yn) is the eigenfunction. In the linear stability analysis,
α and q̂(yn) are obtained as the eigenvalue and the eigenfunction of the stability
equations for a given frequency ω. For the spatial problem, ω is real, and α is a
complex wavenumber, α = αr + iαi, where αr and αi represent the spatial wavenumber
and growth rate of a wave mode respectively. A linear wave mode is unstable when
αi is positive.

The wave modes obtained by the linear stability analysis are compared with
the numerically obtained Fourier amplitudes and wavenumbers defined by (24).
Since the receptivity simulation is an initial boundary value problem with non-
homogeneous forcing terms in the free stream, while the linear stability analysis
involves a homogeneous eigenvalue problem, it is expected that the two solutions will
not agree in region I located outside the boundary layer. The comparison is used
mainly to identify the wave modes obtained by the receptivity simulations. If the waves
in the boundary layer consist dominantly of a single wave mode, the wavenumbers
and eigenfunctions from the numerical solution should agree reasonably well with
the linear stability results in region III in the boundary layer on the wall.

Figure 20 shows the local wavenumber αr in the boundary layer along a grid
line near the parabola surface for F = 2655. The receptivity solutions include the
wavenumber computed using both temperature and entropy perturbations. The linear
stability results for the first, second and third modes are compared with the results
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(b) x = −0.355 LST: 1st mode, (c) x = −0.0362 LST: 2nd mode, (d) x = 0.372 LST: 2nd mode,
(e) x = 0.886 LST: 3rd mode, (f) x = 1.525 LST: 3rd mode.

obtained by numerical simulations. In the first mode region, the wavenumber increases
(wavelength decreases) in the x-direction. The figure shows that the linear stability
first-mode wavenumber has the closest agreement with the numerical wave solutions
in this region. The results agree reasonably well considering the fact that the linear
stability analysis is based on a parallel flow assumption, while the numerical solution
is obtained in a flow field which is not strictly parallel and includes the effects of
surface curvature. As the waves develop downstream, there is in the simulations a
gradual transition from the first mode to the second, and then to the third mode.
The transition from the second to the third mode is not obvious in this figure. It is
determined by comparison with the LST results instead.

The identification of the wave modes induced by free-stream disturbances is further
examined by comparing the linear stability eigenfunctions with Fourier amplitudes
of the Navier–Stokes solutions for the receptivity problem. For the purpose of
comparison, the eigenfunctions are normalized by their respective first peak values
from the wall. Figure 21 shows such comparisons for the temperature amplitudes
along grid lines normal to the parabola surface at several grid stations for F = 2655.
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Figure 22. First-mode horizontal velocity eigenfunction amplitudes along the wall-normal
direction at x = 0.5521 for case A.3 at ε = 5× 10−4.

The numerical solutions at earlier stations in first wave zone I of x = −0.702 and
x = −0.355 agree best with the linear stability first mode inside the boundary layer
near the wall, whereas at later stations, the numerical results gradually change to
profiles that are closer to the linear stability second mode at x = −0.0362 and
x = 0.372, and to the linear stability third mode at x = 0.886 and x = 1.525. The
figure also shows that due to the effects of interaction of the bow shock with the
flow disturbances, the numerical solutions have very complex flow distributions in the
inviscid region I outside the boundary layer. The numerical results and linear stability
results agree mainly inside the boundary layer on the wall. In the flow region I outside
the boundary layer, the two solutions do not agree because the numerical solutions
contain both the homogeneous wave modes and the non-homogeneous solutions
induced by the forcing wave in the free stream. Therefore, the results indicate that
the disturbance waves excited in the first region are dominated by the first mode,
followed by a gradual transition to the second and third modes downstream.

The agreement between the linear stability wavenumbers and eigenfunctions and
numerical results becomes better for lower frequencies. Figure 22 compares the linear
stability first-mode eigenfunction with amplitudes of the simulation in the wall-normal
direction at x = 0.5521 for F = 1770. The numerical results agree very well with the
linear stability results inside the boundary layer. Again, the disagreement outside the
boundary layer, near the bow shock, is expected because the effects of the forcing
disturbances are not considered in the linear stability analysis.

The linear stability analysis also shows that the first mode is the least stable mode
near the leading edge, while the second mode becomes the least stable mode further
downstream. However, for the present test case, linear stability theory predicts stable
normal modes while the numerical simulation shows rapid growth in the first-mode
region near the leading edge. This is expected because the receptivity mechanism
involves interaction and energy exchange of the forcing waves and the boundary-
layer waves, while the LST results are based on the free development of a single wave
mode. Figure 23 shows the distribution of local growth rates defined by (24) along the
parabola surface for linear stability analysis and numerical simulation results for case
A.1. The figure shows linear stability results predict all stable modes in the boundary
layer, but the numerical simulation shows a strong growth of the first mode near the
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Figure 23. Distribution of local growth rates obtained by the linear stability analysis for the first,
and second, and third modes along the j = 30 grid line near the parabola surface for F = 2655.

leading edge by the receptivity process. Such strong growth is an indication that the
disturbance energy is converted to the first mode energy at the leading edge by the
receptivity process even though the linear eigenmode development is stable.

For hypersonic flows over a blunt body, the interaction of the bow shock with
a free-stream wave of any kind always generates a combination of all three kinds
of waves: acoustic, entropy, and vorticity. All these waves propagate downstream
and play a role in the receptivity of the boundary layer on the body surface. The
instantaneous contours of vorticity, pressure, and entropy perturbations are plotted
in figure 24 for case A.1. They are represented by pressure, vorticity, and entropy
perturbations, respectively. The wave patterns generated in the boundary layer on
the wall are similar for all three variables. The pressure contours show that effects of
acoustic wave reflection from the wall alter the wave pattern outside the boundary
layer. On the other hand, the vorticity and entropy waves are convected in the inviscid
region I without reflection. The figure also shows a strong interaction between the
boundary layer and the acoustic field, while the interaction of the boundary layer
with entropy and vorticity fields is much weaker.

5.4. Nonlinearity and superharmonics

For weak monochromatic free-stream forcing waves, the generation of boundary-layer
waves with the same fundamental frequency is expected to be linear with respect to
the forcing amplitudes. Figure 25 shows the maximum temperature amplitudes of
the first and second modes of the fundamental frequency as functions of disturbance
amplitudes of the free stream forcing waves for case A.1. When ε is very small, the
receptivity of the wave mode of the fundamental frequency is linear. As ε increases,
the receptivity results deviate from the linear curves due to the nonlinear interaction
between the wave harmonics.

As the forcing amplitude increases, the nonlinear receptivity effects become signifi-
cant. These are a result of nonlinear interaction among the wave modes and their
superharmonics. Previous receptivity and stability experiments (Stetson & Kimmel
1992) have shown the existence of higher harmonics in addition to the waves of
the fundamental frequency. Buter & Reed (1994) found nonlinear superharmonics
in their incompressible receptivity simulations. Nonlinear higher harmonics are also
found in the present numerical simulation study. Figure 26 shows the instantaneous
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Figure 24. Contours of instantaneous perturbations of vorticity, pressure,
and entropy for case A.1 at ε = 5× 10−4.

entropy disturbances along the body surface for F = 1770 and ε = 5 × 10−4 for the
fundamental frequency (n = 1) and its second harmonic (n = 2). Both the fundamental
mode and the second harmonic are plotted in the figure, where the magnitude of
the second harmonic is amplified 10 times so that the two modes can be plotted
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in the same figure. The figure shows that the wavelength of the second harmonic is
approximately half of that of the fundamental mode.

Figure 27 shows the scaled Fourier amplitude |T ′|/ε along a parallel grid line near
the body surface for two values of ε at F = 2655. The fundamental mode (n = 1),
the second harmonic (n = 2), and the mean flow distortion (n = 0) for the two cases
are plotted in the figure. The scaled amplitudes of the two cases should be the same
for linear modes. The receptivity of the fundamental modes is indeed governed by
a linear mechanism, while the second harmonic and the mean flow distortion are
nonlinear with respect to ε.

5.5. Characterization of hypersonic leading-edge receptivity

The purpose of a receptivity study is to study the link between the induced free
boundary-layer waves and the free-stream forcing waves. For an incompressible
boundary layer over a flat plate, a receptivity coefficient is defined as the ratio of the
induced T–S wave amplitude at the Branch I neutral stability point to the free-stream
wave amplitude. In a numerical study of the leading-edge receptivity process, the
unsteady solution of the forced response of the boundary layer contains both the
Stokes-wave solution and the T–S wave. For incompressible flow, the T–S wave is
usually weaker than the Stokes-wave solution. It is necessary to separate the two
solutions in order to calculate the receptivity coefficient. Several methods can be used
for the decomposition. For example, an incompressible T–S wave solution can be
separated from the Stokes-wave solution by recognizing that the Stokes wavelength
is an order of magnitude longer than that of the T–S wave (Buter & Reed 1994).
Another method (Haddad & Corke 1998) is to compute a corresponding Stokes-wave
solution independently by solving a Stokes-wave equation. The T–S wave solution is
then obtained by subtracting the Stokes solution from the full Navier–Stokes solution.

These methods for incompressible flow, however, cannot be extended to the current
receptivity problem of a hypersonic boundary layer over a blunt leading edge. First,
the flow field outside the boundary layer is a non-uniform field bounded by the wall
and the bow shock. The unsteady flow in this field is very complex because the bow
shock interacts with both the forcing wave from the free stream and the reflected
waves from the wall. Such interactions produce, behind the shock, a complex mix of
all three kinds of waves in the flow field regardless of the nature of the free-stream
forcing wave. Consequently, it is not possible to compute a separate Stokes-wave
solution corresponding to the receptivity simulation. In addition, the separation of
T–S wave and the Stokes wave solutions based on their disparity in wavelength is also
not applicable because the wavelength of the forcing waves in the free stream is of
the same order as that of the disturbance waves in the boundary layer. Consequently,
a receptivity coefficient like that defined in incompressible flow studies cannot be
obtained in the current numerical study.

Despite this difficulty in computing the receptivity coefficient, our results indicate
that the forced response in the hypersonic boundary layer contains dominantly
boundary layer waves (first mode, second mode, etc) in the leading-edge receptivity
process at hypersonic flow conditions. The Stokes-wave component in the solution
inside the boundary layer is not significant compared with the boundary layer free
waves, as shown by a comparison of the wave fields for two unsteady cases: one
induced by free-stream waves and the other induced by surface blow-and-suction
from a short surface slot near the leading edge. There is no Stokes wave solution
in the second case because there is no free-stream forcing wave. Therefore, if the
Stokes wave solution of the first case is a significant part of the forced response in
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Figure 28. Contours of instantaneous perturbations of vertical velocity component (v′) after the
unsteady solutions reach a time-periodic state for the case of wall blow-and-suction at F = 2655.

the boundary layer, the wave structures of the two cases will be very different inside
the boundary layer. Otherwise, the Stokes wave solution is not significant and the
boundary layer waves are dominant for the current study.

Specifically, we compare the boundary layer wave results of the following two cases:
case A.1 of a free-stream acoustic wave at F = 2655 and ε = 5×10−4, and a case with
the same steady base flow but without free-stream disturbances. The unsteady flow
of the second case is induced by a surface blowing-and-suction at the same frequency
of F = 2655 near the leading edge. The wall perturbations are introduced by setting
the non-dimensional vertical velocity at the wall to

vwall = ε sin

(
2π

x− x0

x1 − x0

)
cosωt (x0 6 x 6 x1), (26)

where x0 and x1 are the x-coordinates of the start and end of the blowing-and-suction
strip on the wall. The amplitudes of the wall disturbances are specified by ε. In the
second case, x0 = −0.9, and (x1− x0) is set to be a half of the free-stream wavelength
of case A.1.

Figure 28 shows the contours of instantaneous perturbations of the vertical velocity
component (v′) after the unsteady solutions reach a time-periodic state for the second
case, of wall blowing-and-suction at F = 2655. The figure shows the wave field induced
by the wall disturbances near the leading edge without free-stream perturbations. The
bow shock is perturbed by the acoustic waves originated at the wall. The wave
structure inside the boundary layer on the wall show a first and second mode
development which is similar to that of case A.1 with free-stream acoustic forcing
wave shown in figure 11, though the disturbance wave structures are very different
outside the boundary layer.

A quantitative comparison is made by comparing the wave amplitudes of the
two cases. Since their absolute amplitudes are different, the relative amplitudes are
compared to show that the wave structures inside the boundary layer are very similar
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same frequency: (a) normalized vorticity perturbation amplitudes along wall surface; (b) |v′| profile
along wall-normal grid line at x = −0.1066, (c) |v′| profile along wall-normal grid line at x = 0.3264.

for the two cases, which is an indication that the waves induced in the boundary layer
in case A.1 have a very weak Stokes wave component.

Figure 29 compares the normalized wave amplitudes of case A.1 and the case of
wall blowing-and-suction at the same frequency. The non-dimensional perturbation
amplitudes of all flow variables of each case are normalized by the amplitude of
local pressure perturbations at the wall. If the disturbances in the boundary layer are
dominated by a single T–S type wave, the amplitude profiles of the two cases should
be the same, because all wave amplitudes of a single wave change proportionally. If
the disturbances contained a mixtures of two or more different waves, the profiles
of the two cases will be different. Figure 29(a) compares the normalized vorticity
perturbations along the wall for the two cases. The two sets of results agree with each
other reasonably well except in the first–second mode transition area. Therefore, the
induced waves in the boundary layer are dominantly first mode near the leading edge
and second mode afterward. The results are different in the transition area because it
contains both first and second mode waves. The locations of wave-mode transition are
different for the two cases because of the different forcing mechanisms. Figure 29(b, c)
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compares the profiles along two wall-normal grid lines for the normalized vertical
velocity perturbations. Near the leading edge (b), the agreement is close for the two
cases which indicates that the main disturbances are first mode waves, while the
difference is due to the Stokes-wave solution in case A.1 and the initial transient
solution for the second case. As the flow moves downstream (c), the agreement inside
the boundary layer becomes very good. These results show that the solutions of the
boundary layer responses in the present hypersonic flow conditions are dominated
by boundary layer first and higher modes. At the peaks in the first and second mode
region, it is expected that the boundary layer responses are mainly first or second
mode waves. The Stokes wave solution is very weak. Similar comparisons have also
been made for other frequencies, and they lead to the same conclusion.

In addition, comparisons with the LST results also support the conclusion that the
response of hypersonic boundary layer at the leading edge has very strong first and
higher mode components and has very weak Stokes wave components. One example
is the comparison shown in figures 21 and 22 of § 5.3. The normalized Navier–
Stokes solutions agree very well with single-mode LST results inside the boundary
layer. This again shows that the boundary layer response contains mainly boundary
layer waves and very little Stokes-wave solutions. The comparison becomes better at
further downstream locations or for cases of lower frequencies. The comparison with
different types of free-stream disturbances also shows that the wave structures inside
the boundary layer are independent of the nature of the forcing waves, which will
be shown in figure 33 in § 6.1. Again, this is an indication that the waves induced at
the leading edge of the wall are dominately boundary-layer first, second, and third
modes. The Stokes-wave solution is not significant here.

Based on the results and discussion above, the leading-edge receptivity of a hyper-
sonic boundary layer is approximately characterized in this paper by a new receptivity
parameter (instead of the receptivity coefficient) defined as the ratio of maximum dis-
turbance amplitudes in the first mode or second mode regions to the free-stream
forcing wave amplitude, i.e.

|A| = |q
′|max

M∞ε
, (27)

where |q′|max is the Fourier amplitude for a flow variable q at the location of the
maximum first or second mode amplitudes in the boundary layer. The free-stream
wave amplitude is measured by M∞ε: it is not exactly the receptivity coefficient,
but can serve as an approximate measure of the receptivity strength because the
forced response of the boundary layer contains mainly the boundary layer waves
in a leading edge receptivity process at hypersonic flow conditions. Therefore, the
receptivity parameter |A| defined above is used in this paper.

5.6. Nose bluntness and frequency effects

The nose bluntness in a study of hypersonic boundary layer receptivity can be
characterized by a non-dimensional Strouhal number defined by (14) in which an
increase of forcing frequency at a fixed nose radius is equivalent to the increase
of relative nose bluntness. The effects of nose bluntness and forcing frequencies
on the receptivity of a hypersonic boundary layer is investigated in this paper by
considering seven test cases of different forcing frequencies F while holding all other
flow parameters fixed. The non-dimensional frequencies of the seven cases are in the
range of F = 531 to 2655 corresponding to the Strouhal numbers in the range of
S = 0.4 to 2.
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Figure 30. Contours of perturbation amplitudes of temperature for three free stream frequencies
(from top to bottom: case A.1 F = 2655, A.3 F = 1770, and A.4 F = 1327).

Figure 30 shows the contours of Fourier amplitudes for temperature perturbations
for three free-stream forcing frequencies. As the Strouhal number (and frequency)
decreases, the region of first mode waves on the wall induced by the receptivity
process becomes stronger in amplitude. Meanwhile, the location of maximum of the
first mode moves in the downstream direction and the region of first mode growth
and decay becomes longer. The contours show that the first mode region is very close
to the bow shock for F = 2655. It is expected that the presence of the bow shock
affects the first mode waves significantly at this frequency. As the frequency decreases,
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Figure 31. Variation of horizontal velocity and entropy perturbation amplitudes along the i = 30
grid line near the body surface with seven cases of different forcing frequencies at ε = 5 × 10−4

(cases a to g in the figure correspond to case A.1 to case A.7 respectively).

the first mode region moves downstream, and away from the shock. Therefore the
effects of interaction between the shock and the first mode wave decrease as the
frequency decreases. The figure also shows that the peak of the first mode wave
strength increases as the frequency decreases. This is equivalent to the decrease of
wave amplitude in the boundary layer when the relative nose radius increases. This
trend can be demonstrated more clearly by the development of wave amplitudes in
the boundary layer along the body surface.

Figure 31 shows the distribution of Fourier amplitudes of the fundamental fre-
quency for horizontal velocity and entropy perturbations along a grid line near the
body surface for the seven test cases of different frequencies. The results show similar
receptivity wave patterns for all frequencies: the first modes grow and decay, followed
by the growth and decay of second and third modes respectively. Consistent with
linear stability theory results, the second modes have much narrower ranges than do
the first modes. As frequency decreases, the maximum first mode amplitudes become
larger, their locations move downstream, and the first mode regions extend over much
longer ranges. For the present cases, the maximum first mode amplitude reaches a
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Figure 32. (a) Variation of receptivity parameters |A| based on first and second mode amplitudes
and (b) locations of maximum amplitudes as a function of forcing frequencies for case A of free
stream acoustic waves with ε = 5× 10−4.

peak value at a non-dimensional frequency around F = 500 to 600. The second
mode regions appear further downstream than the first mode regions with higher
local Reynolds numbers. Similar to the first mode cases, the second modes increase
in strength as frequencies decrease, though they are much weaker than the first mode
waves for the current flow conditions.

Figure 32 shows the variation of receptivity parameter |A| defined by entropy
perturbations as a function of the frequency. The receptivity parameters calculated
based on both the maximum first and second mode amplitudes are plotted in the
same figure for comparison. As the frequency decreases, the receptivity parameters
for the first modes increase, and approach peak values. The figure also shows that
the first mode amplitudes are higher than those of the second modes. The location
of the maximum first and second mode amplitudes as a function of frequency is also
shown in figure 32. As the frequency decreases, the locations of both maxima move
to the downstream. The frequency increase corresponds to the increase of a Strouhal
number and the relative nose radius. Therefore, the increase of nose bluntness leads
to a decrease in the receptivity parameter in general. At very low frequencies or
very low nose bluntness, figure 32 shows that the receptivity parameters are not very
sensitive to the change in frequency.

6. Parametric studies on receptivity
In the previous section, the receptivity to free-stream fast acoustic waves has been

studied in detail. In this section, six additional groups of computational cases are
considered to study the effects of different free-stream forcing waves, frequencies,
nose bluntness, Reynolds numbers, Mach numbers, and wall cooling on hypersonic
receptivity characteristics. The flow conditions of all seven computational cases (case
A to case G) are tabulated in Appendix A.

6.1. Effects of different free-stream waves

For hypersonic flow over a blunt leading edge, the bow shock plays an important
role in the leading-edge receptivity process. Before entering the boundary layer, a
free-stream disturbance wave will interact with the bow shock first. The interaction
of any kind of disturbances with a shock wave will produce four kinds of waves:
fast and slow acoustic, entropy and vorticity waves. It is these disturbances generated
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Incident waves |p′2|/(εM∞γp2) |s′2|/(εM∞) |v′2|/ε
Fast acoustic wave 0.4716 0.5124 0
Entropy wave 0.4023 0.6100 0
Slow acoustic wave 0.3423 0.6376 0
Vorticity wave 0 0 1

Table 1. Linear generation coefficients across a normal shock by free-stream waves
(M∞ = 15, γ = 1.4)

behind the bow shock which propagate or convect downstream to enter the boundary
layer. The interaction between free-stream waves and the bow shock produces a
complex wave pattern behind the shock because the local shock angle and shock
wave strength are different at different locations of the shock. Consequently, the
strength of the waves generated and the direction of their wave fronts behind the
shock vary along the bow shock. Particularly, the bow shock along the stagnation
streamline is a locally normal shock and is strongest. The interaction of a weak
free-stream disturbance wave with a planar shock can be predicted by linear theory
such as that of McKenzie & Westphal (1968).

Table 1 shows a comparison of pressure, entropy, and vorticity (represented by
|v′2|) perturbation amplitudes behind a normal shock generated by the four kinds of
incident waves in the free stream for a Mach 15 flow at γ = 1.4. The strength of
free-stream acoustic, entropy, and vorticity waves is measured by |p′∞|/γ, |s′∞|, and
|v′∞|M∞ respectively. They are equal to εM∞ in this paper. The table shows that
the free-stream fast acoustic waves generate the strongest acoustic wave components
behind a normal shock, while the free-stream vorticity waves generate no acoustic
waves behind the shock. Specifically, the acoustic wave components generated by
free-stream fast acoustic waves are 17% and 38% stronger than those generated by
free-stream entropy and slow acoustic waves of the same strength respectively. On
the other hand, the entropy wave components generated by free-stream fast acoustic
waves are 19% and 24% weaker than those generated by free-stream entropy and
slow acoustic waves of the same strength. The vorticity waves do not generate any
pressure and entropy perturbations behind a normal shock. Therefore, free-stream
vorticity, slow acoustic, entropy and fast acoustic waves represent increasingly stronger
acoustic waves behind the shock. A comparison of the receptivity results among the
four different kinds of waves in the free stream will show the relative importance
of the acoustic and entropy perturbations in generating disturbance waves in the
boundary layers.

Free-stream entropy waves

The receptivity of hypersonic boundary layers to single-frequency planar entropy
waves in the free stream is compared with case A of free-stream fast acoustic waves
of the same frequency and free-stream wave amplitude. The flow conditions for the
entropy wave cases are listed in the Appendix A as cases B.1 to B.8 for different
frequencies. They share the same steady two-dimensional base flow of Mach 15 and
Reynolds number 6026.6 over a parabola.

A comparison is made of the contours of instantaneous perturbations of horizontal
velocity components for case B.1 free-stream entropy waves and case A.1 acoustic
waves of the same frequency at F = 2655. It is found that though the wave com-
position generated at the bow shock by the two forcing waves is different, the wave
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patterns inside the boundary layer are very similar. Though the wave field outside the
boundary layer is very different for the two cases, the two free-stream waves induce
the same kinds of boundary layer waves when the frequency of the perturbations is
the same. Figure 33 compares the pressure and temperature amplitude profiles along
a wall-normal grid line in the first mode wave zone for the two cases of free-stream
acoustic and entropy waves of the same frequency. The magnitudes of the induced
waves in the boundary layer are different in response to different free-stream forcing
waves. But their relative profiles inside the boundary layer should be the same for
the same wave mode. In order to compare the two cases, the wave amplitudes of
each in the figure are normalized by their respective peak values on or near the wall.
The amplitude values of |p′| and |T ′| marked on the x-axes in the figure are those of
case A.1. The figure shows that while the wave amplitude profiles are very different
outside the boundary layers (corresponding to y > 0.54 in the figure), the induced
wave modes at the wall are identical for the two cases. They are the same first mode
waves discussed in § 5.

Though the wave form in the boundary layer is the same, the amplitudes of the
waves induced in the boundary layer are different for different free-stream forcing
waves. Figure 34 compares the distribution of the Fourier amplitudes of |u′| and |v′|
along a grid line near the parabola surface for the two cases of free-stream acoustic
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Figure 35. Distribution of the Fourier amplitudes of the pressure, entropy, and vorticity perturba-
tions immediately behind the bow shock for two free-stream waves at F = 2655 and ε = 5× 10−4

(acoustic: case A.1, entropy: case B.1).

and entropy waves of the same frequency. Both the first and second modes reach their
respective peak values at about the same locations for the two cases. The free-stream
acoustic wave generates stronger first and second wave modes in the boundary layer
than the free-stream entropy wave does. This is a result of the fact that a free-stream
acoustic wave generates a stronger acoustic wave, but weaker entropy and vorticity
waves behind the bow shock as shown in table 1. The disturbance waves in the
boundary layer are mainly induced by the acoustic waves behind the bow shock.
Figure 35 compares the distribution of wave amplitudes of pressure, entropy, and
vorticity perturbations immediately behind the bow shock for the two cases. These
wave amplitudes represent the strengths of acoustic, entropy and vorticity waves
immediately behind the bow shock. They are generated by the combined interaction
with the shock by the free-stream forcing waves and the reflected acoustic waves
behind the shock. This figure shows that the free-stream entropy waves generate
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Figure 36. Comparison of amplitudes of receptivity parameter |A| and location of maximum
amplitude as a function of F between two free-stream fast acoustic and entropy waves with
ε = 5× 10−4 (acoustic: case A; entropy: case B).

stronger entropy and vorticity perturbations behind the shock but weaker pressure
perturbations near the leading edge. The weaker acoustic waves behind the bow shock
generated by the free-stream entropy wave leads to weaker first and second mode
waves in the boundary layer. As shown later in this paper, the same trend is observed
for all other free-stream waves. Therefore, these results and similar results for other
cases presented in this paper show that the acoustic wave is mainly responsible for
penetrating the boundary layer to generate boundary-layer waves. The entropy and
vorticity waves generated at the bow shock do not have a strong interaction with the
boundary layer.

The effects of frequency and nose bluntness on the receptivity process for case
B of free-stream entropy waves are investigated by the numerical simulation of
several cases at different frequencies. The results show the same wave patterns in the
boundary layer as those of the free-stream acoustic waves shown in § 5. Figure 36
compares the receptivity parameters induced by free-stream fast acoustic and entropy
waves as a function of non-dimensional frequency F , which is proportional to the
Strouhal number. The receptivity parameter in the figure is evaluated based on
maximum entropy perturbations in the first mode region. Results for |A| based
velocity perturbations are also found to follow a very similar trend. The corresponding
comparison of the location of maximum entropy amplitude between the two cases is
also shown in figure 36. The receptivity parameters of free-stream entropy waves are
weaker than those of free-stream acoustic waves, but the locations of maximum wave
amplitudes are the same. The maximum receptivity parameters are approximately 1.2
and 1.5 for fast acoustic and entropy waves respectively. The difference is due to the
fact that the free-stream fast acoustic waves generate 17% stronger acoustic wave
components behind the normal bow shock than do the free-stream entropy waves.
The corresponding difference in the receptivity parameters is roughly of the same
order of magnitude.

Figure 36 also shows the effects of nose bluntness or frequency on the receptivity
parameters for the two cases. For both the free-stream acoustic and entropy waves,
as the frequency F decreases, the receptivity parameter increases and approaches a
peak value as F is further reduced. Since F is proportional to Strouhal number S , as
the relative nose radius decreases, the receptivity parameter will in general increase,
but reach a maximum if the nose radius further decreases. This trend is the same
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Figure 37. Distribution of the Fourier amplitudes of the pressure and entropy perturbations
immediately behind the bow shock for free-stream fast and slow acoustic waves at F = 2655 and
ε = 5× 10−4 (fast acoustic: case A.1, slow acoustic: case C.1).

for both cases. For the free-stream entropy waves, the receptivity parameters slightly
decrease when frequency F is lower than 500.

Free-stream slow acoustic waves

The receptivity of hypersonic boundary layers to single-frequency planar slow
acoustic waves in the free stream is compared with that of case A of free-stream
fast acoustic waves. The flow conditions of the slow acoustic wave cases are listed in
Appendix A as cases C.1 to C.7 for different F ranging from 531 to 2655.

Similar to the preceding cases of free-stream entropy waves, it is found that the
disturbance waves induced by the free-stream slow acoustic waves are the same as
those induced by other waves. Different kinds of free-stream forcing waves induce
different amplitudes of the same disturbance waves in the boundary layer. The acoustic
waves are mainly responsible for the generation of disturbance waves in hypersonic
boundary layers. As shown in table 1, slow acoustic waves in the free stream generate
38% weaker acoustic wave components behind a normal shock than do fast acoustic
waves. The distributions of wave amplitudes for pressure and entropy perturbations
immediately behind the bow shock for the two cases of free-stream fast and slow
acoustic waves of the same frequency are compared in figure 37. The slow waves
generate stronger entropy perturbations behind the shock but much weaker pressure
perturbations near the leading edge. The weaker acoustic waves behind the bow
shock in the free stream generate much weaker induced waves in the boundary layer.
This confirms again the observation stated earlier that the acoustic waves behind
the bow shock are mainly responsible for penetrating the boundary layer to generate
disturbance waves.

Seven cases of free-stream slow acoustic waves with different frequencies are com-
puted to study the effect of Strouhal numbers and frequencies on the receptivity
amplitudes. Figure 38 compares the receptivity parameter |A| induced by free-stream
fast and slow acoustic waves as a function of non-dimensional frequency F . It is found
that the corresponding location of maximum entropy amplitude for free-stream fast
waves is the same as for the slow acoustic waves. The receptivity parameters for free-
stream slow acoustic waves is much weaker than those for the fast acoustic waves
and entropy waves (see figure 36), but the location of maximum wave amplitude is
almost the same for all three kinds of free-stream waves, with those for the slow
acoustic waves being slightly larger.
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The effects of frequency or nose bluntness on the receptivity parameters are also
shown in figure 38 since the Strouhal number S is proportional to frequency F .
For both free-stream fast and slow acoustic waves, as the frequency decreases, the
receptivity parameters for the first modes increase, and approach a peak value as
F is further reduced. Then, for F still lower, the receptivity parameter trend for the
case of slow acoustic waves will reverse and become slightly lower than the peak
value. Therefore, as the nose radius decreases, the receptivity parameter will in general
increase, reach a peak value, and then slightly decrease.

Free-stream vorticity waves

The receptivity of hypersonic boundary layers to planar vorticity waves in the free
stream is compared with that of case A of free-stream fast acoustic waves. The flow
conditions of the free-stream vorticity waves are listed in the Appendix 1 as cases D.1
to D.7 of different frequencies F ranging from 531 to 2655. The free-stream vorticity
waves generate no acoustic waves behind a normal bow shock (see table 1). The
main wave components generated by the free-stream vorticity waves behind the bow
shock are vorticity waves. Since it is found that the generation of boundary layer
waves is mainly a result of the acoustic wave interaction with the boundary layer, it
is expected that the receptivity parameters of case D will be much smaller than those
of case A of free-stream fast acoustic waves.

Table 1 shows that a vorticity wave in the free stream generates no pressure per-
turbations behind a normal bow shock. The actual distributions of wave amplitudes
for pressure and vorticity perturbations immediately behind the bow shock for free-
stream fast and slow acoustic waves of the same frequency are shown in figure 39.
The free-stream vorticity waves generate much weaker acoustic wave components
behind the bow shock. They generate a stronger vorticity at the shock only in a
very narrow region near the stagnation centreline. The weak acoustic wave behind
the bow shock for free-stream vorticity wave generates weak first and second mode
waves in the boundary layer. Therefore, free-stream vorticity waves are the most
ineffective in penetrating the boundary layer to generate disturbance waves because
they generate the weakest acoustic wave at the bow shock among all four kinds of
forcing waves.

A number of cases of receptivity to free-stream vorticity waves of different fre-
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Figure 40. Distribution of receptivity parameter |A| vs. frequency F for free-stream fast acoustic
and vorticity waves at ε = 5× 10−4 (fast acoustic: case A, vorticity: case D).

quencies has been computed to study the effect of Strouhal numbers and frequencies
on the receptivity process. Figure 40 compares the variation of receptivity param-
eter |A| induced by free-stream fast acoustic waves and vorticity waves as a func-
tion of non-dimensional frequency F . The receptivity parameter in this figure is
evaluated based on the results of horizontal velocity perturbations. The receptivity
parameters for free-stream vorticity waves are an order of magnitude weaker than
those for the fast acoustic waves. They are also much weaker than those for the
slow acoustic waves and entropy waves (figures 36 and 38). The figure also shows
that, for both kinds of free-stream waves, as the frequency decreases, the recep-
tivity parameter for the first mode increases and approaches a peak value as F
is further reduced. Therefore, as the relative nose radius decreases, the receptivity
parameters will in general increase. It is also found that, similar to cases A, B, and
C, the wave modes induced in the boundary layer are independent of the nature of
free-stream waves.

6.2. Reynolds number effects

The Reynolds number effects on the receptivity process are studied by the numerical
simulations of the receptivity to free-stream fast acoustic waves at two Reynolds
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numbers. Listed in Appendix A are the flow conditions for the case E of higher
Reynolds number with F ranging from 101 to 266 corresponding to S in the range
of 0.76 to 2.43. Case E has the same flow conditions as case A except that the
Reynolds number is made 10 times as large by increasing the size of the parabola
by 10 times. The results of case A and case E with the same Strouhal number
are compared to investigate the Reynolds number effects on the receptivity process.
Unlike cases A to D, the steady base flow solutions of case E are different from those
of case A.

The first case of higher Reynolds numbers has the following flow conditions:
ε = 5× 10−4, F = 265.5, and a Strouhal number of S = 2. The computational results
show that for cases A and E with the same Strouhal number, the location where
the first mode wave reaches its maximum amplitude is approximately proportional
to
√
Re∞. This is shown by figure 41 which compares the Fourier amplitudes of the

horizontal velocity perturbations along a grid line near the parabola surface. The
x-axis is normalized by

√
Re∞ for comparison. The figure clearly shows that the

first modes reach their maximum at about the same value of xmax/
√
Re∞ for the

two different Reynolds numbers. All other Strouhal numbers also show the same
result that xmax/

√
Re∞ is the same for different Reynolds numbers but with the same

Strouhal number. On the other hand, the locations where the second modes reach
their maximum amplitudes do not follow the same trend. The figure also shows much
stronger receptivity parameters for the case of higher Reynolds number. Contrary to
case A.2 with a lower Reynolds number, the second mode of the higher Reynolds
number case is stronger than the first mode wave amplitudes, which indicates that
the second mode becomes more unstable at higher Reynolds numbers.

The effects of Strouhal numbers or the relative nose bluntness on the receptivity
parameters for case E are compared with those of case A of lower Reynolds number.
Figure 42 compares the receptivity parameter |A| induced by free-stream fast acoustic
waves as a function of the Strouhal number for the two Reynolds numbers. The
figure shows that the receptivity parameters for case E of higher Reynolds number
are much larger than those for case A. Both Reynolds numbers show the same
trend that the receptivity becomes stronger when the Strouhal number or the nose
bluntness decreases. Figure 42 also shows the locations of maximum first-mode
amplitudes defined by xmax/

√
Re∞ vs. Strouhal numbers for the two free-stream
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Figure 43. Linear transmission coefficients for pressure and entropy perturbations as a function of
free-stream Mach number, due to the interaction of free-stream fast acoustic waves with a normal
shock (γ = 1.4).

Reynolds numbers. The figure confirms the observation that for the frequencies
computed, the locations of maximum first-mode wave amplitudes are very similar for
the two cases when the distances from the leading edge are normalized by

√
Re∞.

6.3. Compressibility effects

The compressibility effects on the receptivity process are studied by comparing the
results of case F for Mach 8 with those of case A for Mach 15, while all other
non-dimensional parameters, Re∞, γ, Pr, and Tw/T0, are held constant. Listed in
Appendix A are the flow conditions of case F, with frequencies and Strouhal numbers
of the free-stream fast acoustic waves in the range of F = 531 to 2655 and S = 0.2
to 2 respectively.

Since the bow shocks of the steady base flows are stronger for higher Mach
numbers, the receptivity is affected by the change in Mach number in two respects,
(i) by the change of the interaction between the bow shock and free-stream forcing
waves, and (ii) by the change of the compressibility of the boundary layer. For the
first, the linear transmission of free-stream fast acoustic waves through a normal
shock at zero incident angle, the ratio of perturbations before and after the shock can
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be computed by using a linear theory. Figure 43 shows the linear pressure and entropy
transmission coefficients as a function of Mach numbers for free-stream fast acoustic
waves passing through a normal shock. The transmission coefficient is 1 for pressure
and 0 for entropy in the isentropic weak-shock limit of Mach number 1. As the
Mach number increases, the fast acoustic wave in the free stream generates a weaker
acoustic wave but a stronger entropy wave behind the bow shock. The transmission
coefficient approaches constant values for both acoustic and entropy components in
the high Mach number limit. For case F with Mach 8, the transmission coefficient
for pressure, |p′2|/(εM∞γp2), has a value of 0.5265, which is 12% larger than the
corresponding value for case A with Mach 15 shown in table 1. On the other hand,
|s′2|/(εM∞) = 0.4255, which is 14% smaller than the corresponding value for case
A. Therefore, the higher Mach number produces weaker acoustic waves behind the
bow shock before entering the boundary layer. The change of the induced waves in
the boundary layer for higher Mach number is a result of the combined effect of
weaker acoustic waves behind the shock and stronger compressibility in the boundary
layer.

The effect of compressibility on the receptivity to free-stream fast acoustic waves
is studied by comparing the results of cases A and F with two Mach numbers. The
effects of frequencies or Strouhal numbers for the relative nose bluntness on the
receptivity parameters are compared for the two Mach numbers. Figure 44 compares
the variation of the receptivity parameter |A| induced by free-stream fast acoustic
waves as a function of frequency F and shows that the receptivity parameter for
case A of higher Mach number is much weaker than the lower Mach number. The
difference is larger than the 12% difference in transmission coefficients across the
shock. The additional difference is attributed to the change in compressibility in
the boundary layers. In other words, the increase of Mach number leads to weaker
receptivity parameter due to the combined effects of stronger bow shock and higher
compressibility in the boundary layers. On the effects of nose bluntness, both Mach
numbers show the same trend in the receptivity parameter: the receptivity becomes
weaker when the Strouhal number or the nose bluntness increases. Therefore, the
increase of Mach number leads to the reduction of the overall receptivity parameter
in the boundary layer, caused by both the decrease in the transmission coefficients for
acoustic waves at the bow shock and the reduction in the receptivity in higher Mach
number boundary layers.



Receptivity for hypersonic flow over a parabola 361

0.6

0.4

500 1000 1500 2000 2500 3000

F × 106

|u
′ | m

ax
/(
ε

M
∞

)

Tw = 1000 K

0

0.8

1.0

Tw = 2000 K

0.2

1.0

0.5

500 1000 1500 2000 2500 3000

F × 106

0

1.5

|s
′ | m

ax
/(
ε

M
∞

)

Figure 45. Distribution of receptivity parameter |A| based on horizontal velocity and entropy vs.
frequency for two wall temperatures at ε = 5× 10−4 (T ∗w = 1000 K: case A; T ∗w = 2000 K: case G).

6.4. Wall cooling effects

It has been shown using linear stability analysis (Mack 1984) that wall cooling
stabilizes the first mode but destabilizes the second mode in a hypersonic boundary
layer over a flat plate. This wall-cooling effect is valid for the linear growth or decay
of boundary-layer wave modes after they are generated in the boundary layer by a
receptivity process. On the other hand, the wall cooling effect may be different for
the initial receptivity process because it is governed by a different mechanism. In this
section, the wall-cooling effect on the hypersonic leading-edge receptivity is studied by
comparing the acoustic receptivity for cases A and G of different wall temperatures.
Both cases have relatively cold walls with respect to the free-stream total temperature.
The wall to free-stream total temperature ratios are Tw/T0 = 0.1126 and 0.2253 for
cases A and G respectively. All other non-dimensional parameters of the two cases,
M∞, Re∞, γ, and Pr are the same. The free-stream forcing waves of case G are fast
acoustic waves of frequency ranging from 797 to 2655 corresponding to the Strouhal
numbers S in the range 0.6 to 2.

Figure 45 compares the variation of receptivity parameter |A| induced by free-
stream fast acoustic waves for the two wall temperatures and shows that the wall
cooling results in slightly stronger velocity perturbations and much stronger entropy
perturbations in the boundary layer. The reason for the larger difference in the
entropy perturbations is that the steady base flows of the two cases have very
different temperature profiles near the wall. The entropy perturbations are affected
strongly by the change of wall temperatures of the base flows. Therefore, the velocity
perturbations are a more accurate measurement of the relative strength of waves
induced in the boundary layer. This figure shows that the effect of wall cooling on
the receptivity amplitudes is opposite to the wall cooling effect on linear growth or
decay of wave modes in the boundary layer. Meanwhile, the results also show that
the locations of the peak in the first mode and the second mode are not very sensitive
to the changes in wall temperatures. The locations of maximum amplitudes moves
slightly downstream when the wall temperature is lower.

7. Summary and discussion
The receptivity of a hypersonic boundary layer to free-stream disturbances for a

two-dimensional Mach 15 flow over a parabola has been studied by numerical simu-
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lations. The study is based on the solutions of full Navier–Stokes equations obtained
by the simulations, while results of approximate analytical analyses are compared
with the Navier–Stokes solutions for a better understanding of the numerical results.
The main findings of the study are summarized below.

Steady flow solutions are studied in this paper with the focus on the interaction
between the inviscid vorticity field generated by the bow shock and the viscous
vorticity field in the boundary layer. The numerical Navier–Stokes solutions agree
very well with theoretical predictions of vorticity generation by the bow shock and
approximate local similarity solutions in the boundary layer. Steady results show that
inflectional velocity profiles are always generated at the edge of the boundary layer
due to the vorticity interaction. The vorticity interaction is stronger at lower Re∞,
higher M∞, or smaller γ.

The unsteady results show that the free-stream acoustic disturbances generate
first, second, and third mode waves in the boundary layer on the wall. The first
mode waves are always generated near the leading edge and are amplified before
decaying rapidly. The second mode waves are the dominant mode after the first
mode decay. The first mode waves have very strong vorticity while the second mode
waves have relatively weak vorticity. The first, second, and third modes are identified
by comparison with eigenfunctions obtained from an independent linear stability
analysis. Inside the boundary layer, the waves modes obtained by the numerical
simulations agree well with the eigenmodes obtained by the linear stability analysis.
The spatial wavenumbers of the simulations also agree reasonably well with the linear
stability results. The agreement becomes better for lower frequency where the effect
of the bow shock becomes weaker due to the wave modes developing downstream.

It is shown that the waves induced at the leading edge of the wall are dominantly
boundary-layer first, second, and third modes. The Stokes-wave solution is not sig-
nificant for the current case of leading-edge receptivity of high Mach number flows
over a blunt body. Based on these results, the leading-edge receptivity of hypersonic
boundary layers is approximately characterized in this paper by a new receptivity
parameter defined as the ratio of maximum disturbance amplitudes at the first mode
or second mode regions to the free-stream forcing wave amplitude.

The nose bluntness is characterized by the Strouhal number which shows that the
increase of forcing frequency at a fixed nose radius is equivalent to the increase of
relative nose bluntness. The effects of nose bluntness and forcing frequencies on the
receptivity of a hypersonic boundary layer are investigated by considering seven test
cases of different forcing frequencies while holding all other flow parameters fixed.
It is found that as the frequency decreases, the maximum first and second mode
amplitudes and the region of the first and second modes increases substantially.
The results also show that the receptivity parameter and the region of the first mode
increase substantially when the forcing frequency decreases. As the frequency decreases
further, the receptivity parameters for the first modes approach peak values. These
results indicate that the receptivity parameters increase as the relative nose radius
decreases, but there is a critical nose bluntness (or frequency) which corresponds to
maximum receptivity parameter.

The nonlinearity of the receptivity process is studied by considering a number
computational cases with different free-stream forcing wave amplitudes. The results
show that the generation of the first and second mode waves of the fundamental
forcing frequency is linear with respect to the weak forcing amplitudes in the free
stream. The receptivity also generates nonlinear superharmonics and mean flow
distortion.
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A parametric study of the leading-edge receptivity of hypersonic boundary layers
to free-stream disturbance waves has been carried out on the effects of different
free-stream waves, frequencies, nose bluntness, Reynolds numbers, Mach numbers,
and wall cooling.

The effects of different free-stream waves on the receptivity process are studied
first. For each of the four kinds of waves in the free stream, a number of sub-cases
are computed with different non-dimensional frequencies or Strouhal numbers. The
results show that for all kinds of forcing waves and all frequencies considered in this
paper, the free-stream forcing waves always generate first, second, and high mode
waves in the boundary-layer. The first mode is always generated near the leading edge
and is amplified before decaying rapidly. The second mode is the dominant mode
after the first mode decay. All results show that the generation of disturbance waves
in the boundary layer near the blunt leading edge is mainly due to the acoustic waves
entering the boundary layers. The entropy and vorticity waves behind the bow shock
do not interact very much with the boundary layer because they propagate along the
streamlines, which do not intersect with the boundary layer. An indication of this
is the fact that for different kinds of free-stream waves, the receptivity parameters
are larger for stronger acoustic components behind the bow shock in the leading-
edge region. As shown in table 1, the free-stream fast acoustic waves generate the
strongest acoustic wave components behind the bow shock with weakest entropy wave
components. As a result, they generate the strongest receptivity parameters in the
boundary layer. On the other hand, the free-stream vorticity waves generate almost
no acoustic wave components behind the bow shock. Their receptivity parameters
are an order of magnitude smaller than those of free-stream fast acoustic waves.
All these results show that acoustic waves generated at the bow shocks are mainly
responsible for generating hypersonic boundary layer instabilities near the leading
edge. Entropy and vorticity waves are not effective in the hypersonic boundary
receptivity process.

The effects of Reynolds number on the receptivity process for the case of fast
acoustic waves have been studied by comparing two Reynolds numbers. The increase
in free-stream Reynolds number leads to a substantial increase in the receptivity
parameter. As the Reynolds number increases, the second mode becomes much
stronger, stronger than the first mode for some cases of lower frequencies. It is also
found that the location of the maximum first mode amplitudes is proportional to√
Re∞ for the same free-stream waves of the same Strouhal number. The perturbation

wave profiles across the boundary layer are the same for the same Strouhal number
but different Reynolds numbers.

The compressibility effects are considered for two Mach numbers of 8 and 15.
The difference in Mach number affects both the compressibility in the boundary
layer and the transmission coefficients of free-stream waves interacting with the
bow shock. It is found that the increase in Mach number reduces the receptivity
parameters significantly due to the combined effects of stronger bow shock and
higher compressibility in the boundary layer. The increase of Mach number leads to
the reduction of the overall receptivity parameter in the boundary layer. The reduction
of the receptivity parameters is caused by both the decrease in the transmission
coefficients for acoustic waves at the bow shock and the reduction in the receptivity
in higher Mach number boundary layers.

The wall-cooling effects on the hypersonic leading edge receptivity are studied by
comparing the acoustic receptivity for two wall temperatures. The results show that
wall cooling increases the first-mode receptivity parameter or wave perturbations
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generated in the boundary layers, though the effects are not very strong for the
velocity perturbations. This is different from the results of wall-cooling effects on the
linear stability of the first mode in compressible boundary layer, where wall cooling
stabilizes the first mode. The difference in the wall-cooling effect is due to the fact
that the receptivity is governed by the different mechanism of an initial-boundary
value problem.
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Appendix A. Flow conditions of computational cases
Seven groups of computational cases are considered to study parametric effects

of nondimensional frequency, nose bluntness (Strouhal number), Reynolds number,
Mach number, wall cooling, and different kinds of free-stream waves, on the receptivity
of hypersonic flows over parabolic bodies. The flow conditions of the seven groups
of computational cases are given in table 2.

Appendix B. Code validation and numerical accuracy
For the numerical results presented in this paper, much effort has been made to

evaluate the correctness and the accuracy of the numerical solutions for both steady
and unsteady flow solutions. There are two main aspects of the validations process:
(i) to ensure the solutions provide the correct physical solutions by comparing with
theoretical solutions and experimental results; (ii) the numerical accuracy of the
solutions needs to be assessed by grid refinement studies. Both have been done for
many steady and unsteady viscous flow computations. Some of the results have been
presented in an earlier paper on the numerical aspects of our studies. Details of those
studies can be found in Zhong (1998), they are not repeated here. The grid refinement
for numerical results relevant to this paper are briefly discussed below.

The first step is to evaluate the physical correctness of the numerical solutions by
comparison with theoretical and experimental results. The two- and three-dimensional
fifth-order computer codes for the unsteady full Navier–Stokes equations have been
extensively tested and validated for many steady and unsteady flow simulations. The
code has been tested for a diverse range of test cases with and without bow shocks for
both steady and unsteady flows. Examples of the test cases are hypersonic viscous flow
over a circular cylinder, hypersonic viscous flow over a sphere, hypersonic viscous
flow over a non-axisymmetric elliptical cone, supersonic Couette flows, supersonic
boundary layer flow over a flat plate, and others. Many results have been published
in our previous papers.

For the current case, there are no experimental results. The numerical solutions of
the Navier–Stokes equations are compared with theoretical results for both viscous
and inviscid regions. Some such comparisons are presented in the paper in Figs. 6, 7,
9, 10, 15, 20, 21, and 22. The numerical accuracy of the results is evaluated by a grid
refinement study. Both steady and unsteady solutions have been checked on two sets
of grids of 161×121 and 321×241. Figure 4(c) shows an example of the grid refinement
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Case # k∞ F S Case # k∞ F S

A.1 15 2655 2.00 A.5 5.7 1008.9 0.76
A.2 12.5 2212.5 1.67 A.6 4.35 769.95 0.58
A.3 10 1770 1.33 A.7 3 531 0.40
A.4 7.5 1327.5 1.00

B.1 16 2655 2.00 B.5 7.5 1244.5 0.94
B.2 15 2489.1 1.88 B.6 5.7 945.84 0.71
B.3 12.5 2074.2 1.56 B.7 4.6 763.31 0.58
B.4 10 1659.4 1.25 B.8 3.5 580.78 0.44

C.1 17.143 2655 2.00 C.5 6.5143 1008.9 0.76
C.2 14.286 2212.5 1.67 C.6 4.9414 769.95 0.58
C.3 11.429 1770 1.33 C.7 3.4286 531 0.40
C.4 8.5714 1327.5 1.00

D.1 16 2655 2.00 D.5 6.08 1008.9 0.76
D.2 13.333 2212.5 1.67 D.6 4.64 769.95 0.58
D.3 10.667 1770 1.33 D.7 3.2 531 0.40
D.4 8 1327.5 1.00

E.1 15 265.5 2.00 E.4 7.5 132.8 1.00
E.2 12.5 221.3 1.67 E.5 5.7 100.9 0.76
E.3 9.487 167.9 1.26

F.1 14.222 2655 2.00 F.5 5.4044 1008.9 0.76
F.2 11.852 2212.5 1.67 F.6 4.1244 769.95 0.58
F.3 9.4815 1770 1.33 F.7 2.8444 531 0.40
F.4 7.1111 1327.5 1.00

G.1 15 2655 2.00 G.4 7.5 1327.5 1.00
G.2 12.5 2212.5 1.67 G.5 5.7 1008.9 0.76
G.3 10 1770 1.33 G.6 4.5 796.5 0.6

Table 2. Case A. Free-stream fast acoustic waves: Re∞ = 6026.6, T ∗w = 1000 K, r∗ = 0.0125 m,
d∗ = 0.1 m. T ∗∞ = 192.989 K, p∗∞ = 10.3 Pa, γ = 1.4, Pr = 0.72. M∞ = 15, ε = 5 × 10−4 to 10−1.
Parameters in Sutherland’s viscosity formula: T ∗r = 288 K, T ∗s = 110.33 K, µ∗ = 0.17894 ×
10−4 kg m−1 s−1. Case B. Free-stream entropy waves: all conditions same as case A. Case C.
Free-stream slow acoustic waves: all conditions same as case A. Case D. Free-stream vorticity
waves: all conditions same as case A. Case E. Reynolds number effects: all conditions same as
case A except r∗, d∗, Re∞ are 10 times larger; Re∞ = 60 266. Case F. Mach number effects: M∞ = 8
while other non-dimensional parameters are the same as case A. Case G. Wall temperature effects:
T ∗w = 2000 K and Tw/T0 = 0.2253, while other non-dimensional parameters are the same as case A.

effects on steady flow solutions of pressure profiles behind the bow shock and on
the body surface. The results from the two sets of grids are indistinguishable. The
numerical errors can be quantitatively evaluated using the Richardson extrapolation
method. The L1 relative error for pressure (‖∆p/p‖1) on the body surface is 1.7×10−6

for the current test case, and that for the bow shock location is 5.0 × 10−7. For
steady solutions, the simulation is treated as an unsteady flow with shock motions.
The solution is advanced in time without free-stream disturbances. A steady state is
reached in the flow field when local velocities of the bow shock converge to zero.
Therefore, it is necessary to ensure the steady solution is a converged solution with
zero shock velocity. In the steady solution presented in this paper, the maximum
relative velocity of the bow shock is 2.8× 10−12.

A grid refinement is also used to check the numerical resolution of the 160 × 120
grid for unsteady receptivity simulations. As an example of such a grid refinement



366 X. Zhong

0.6

0.4

0.2

0 0.0005 0.0010 0.0015

|u′|

y

Figure 46. Unsteady flow solutions for case A.1 for F = 2655 for variation of |u′| along a grid line
normal to the parabola surface at x = 0.239 (line: 320× 240 grid, and circles: 160× 120 grid).

study, the variation of the Fourier perturbation amplitudes of velocity |u′| along a grid
line normal to the parabola surface at x = 0.239 is shown in figure 46. The unsteady
solutions obtained by using two sets of grids, 320 × 240 and 160 × 120 grids, agree
very well with each other. This figure shows that the unsteady solutions presented in
this paper are adequately resolved by the 160 × 120 grid for the first computational
zone used in most of the calculations for the results presented in this paper.
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