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Chong W. Whang *and Xiaolin Zhong f
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Abstract

Secondary Gértler instability in hypersonic bound-
ary layers is studied in this paper. The nonlinear devel-
opment of Gortler vortices distorts the mean flow and
leads highly inflectional profiles not only in wall normal
direction but also in spanwise direction which induce
the secondary instability. In the break-down process of
Gortler vortices, unsteady fluctuations appear in the
vortices. Such process is through a secondary insta-
bility. In this paper, secondary instability of hyper-
sonic Gortler vortices is studied using two-dimensional
linear stability analysis and numerical simulations. A
two-dimensional linear stability code is developed in
order to find secondary modes of hypersonic Gortler
vortices. The mode obtained by linear stability analy-
sis is imposed at the entrance of the computational do-
main. Subsequent development of the secondary mode
is carried out by solving the full Navier-Stokes equa-
tions. We investigate secondary Gortler instabilities in
hypersonic boundary layers.

1 Introduction

Longitudinal counter rotating vortices appear in
boundary layer flow along the concave surface. These
vortices are called Gortler vortices and affect the
flow instability in boundary layers along the concave
surface. Gortler vortices have been studied experi-
mentally and numerically since Gortler first studied
them in 1940 [, Linear and nonlinear developments,
and break-down of Gortler vortices in incompressible
boundary layers along the concave surfaces had been
studied experimentally. (271 Aihara [ showed that the
nonlinear development of Gértler vortices mainly af-
fects the transition of the boundary layers. He im-
posed artificial impulsive disturbances on the existence
of Gortler vortices. He found that the imposed distur-
bances amplify or decay in the linear region of Gortler
vortices depending on the initial value of the excita-
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tion, but the disturbances rapidly grow in the nonlin-
ear region. Winoto and Crane [l measured stream-
wise and spanwise mean velocity components using
laser anemometry in developing laminar flow in a water
channel experiment. Hydrogen bubble flow was used to
visualize the naturally occurring pattern of Gortler vor-
tices. They found the unsteadiness of Gértler vortices
at high Reynolds numbers. Using laser induced flu-
orescence technique, Peerhossaini and Wesfreid 4! ob-
served the development of the mushroom-shaped vor-
tices due to the nonlinear growth of Gortler vortices.
By a laser anemometry measurement of velocity field,
they found two regions in the development of Gortler
vortices. The first region is the up-wash in which flow
particles move outward from the wall. The second re-
gion is the down-wash in which the particles are forced
toward the wall. Gortler vortices are spatially evolving
steady disturbances, but due to the secondary instabil-
ity effects, unsteady oscillations appear in the vortices.
Peerhossaini and Wesfreid found that such oscillations
first appear in the up-wash region. They also observed
the interaction between two neighboring vortices in the
spanwise direction. Such interaction leads to attraction
and swallowing of the vortices as the Gortler number
increases.

Recent experiments have shown that the breakdown
of Gértler vortices is mainly due to the secondary in-
stabilities which are nonlinear interactions between the
Gortler mode and the shear mode in the boundary lay-
ers. Aihara and Kohama '® and Aihara et al [®! showed
that the breakdown of the Gortler vortex structure into
a horseshoe-vortex structure because of the secondary
instability. Swearingen and Blackwelder [ identified
the two kinds of secondary instabilities to be the sinu-
ous and varicose (horseshoe) types. They showed that
the sinuous mode is produced by spanwise velocity gra-
dient, and the varicose is due to normal velocity gra-
dient. In their experiments, the unsteady secondary
instability fluctuations were mainly the sinuous mode.
They concluded that the sinuous mode plays a more
important role in transition to turbulence of Gortler
vortices.

Nonlinear developments and secondary instability of
Gortler vortices had been investigated using the di-
rect numerical simulations especially for incompress-
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ible flow. (514l The results showed that the nonlinear
effects of Gortler vortices produce inflection points in
the spanwise direction as well as the wall normal direc-
tion which induce the secondary instabilities. Hall (%
numerically integrated the nonlinear partial differential
equations for finite wave number of the vortices and
demonstrated that nonlinear evolution of streamwise
Gortler vortices produces inflectional profiles which will
presumably break down. Denier and Hall ] inves-
tigated the spatial nonlinear evolution of the fastest
growing Gortler vortex and found that the nonlinear
development of the Gortler mode results in a reversed
flow. However, inflection profiles develop earlier than
such separation flow, so they concluded that it has
a little effect on transition. Sabry and Liu 119 gimy-
lated the nonlinear development of Gérlter vortices by
solving a time dependent, guasi-two-dimensional for-
mulation which simplified the computational frame-
work. A spatial development of Gdrtler vortices was
related to temporal calculations by a constant con-
vection velocity. They compared their numerical re-
sults with previous experimental works of Swearingen
and Blackwelder [l and Ito 1], The quantitative com-
parison with the structural aspects of the experiments
showed good agreements. Lee and Liu (11 simulated
spatially growing longitudinal vortices by a finite differ-
ence algorithm in solving the three-dimensional parab-
olized Navier-Stokes equations. Their results compared
well with those from Swearingen and Blackwelder [7).

Liu and Domaradzki*?, Yu and Liu[3 and Li
and Malik ' studied secondary instability effects on
Gértler vortices. Liu and Domaradzki*? solved the
full three-dimensional Navier-Stokes equations to in-
vestigate transition to turbulence of Gortler vortices.
Their flow conditions were the same as those by
Swearingen and Blackwelder [, Initial disturbances
were obtained from LST. They showed that Gortler
vortices become turbulent due to the spanwise velocity
gradient as well as the normal velocity gradient. These
velocity profiles contain inflection points which affect
the flow instabilities in boundary layers. They showed
that the varicose mode is related to the normal velocity
gradient, and the sinuous mode is to the spanwise gra-
dient and concluded that the sinuous mode dominates
the varicose. Li and Malik ¥ used two-dimensional
LST and three-dimensional PSE (parabolic stability
equation) methods and studied nonlinear secondary
instability effects on Gortler vortices. In their ap-
proaches, they showed there are two kinds of the sec-
ondary instability modes; even and odd. The even
mode is related to the varicose mode, and the odd mode
is to the sinuous mode. Their linear stability analy-
sis showed that for the large wave length of Gértler
vortices, the even modes are dominant, and for the
short wave length, the odd modes have main roles for

transition. They explained that it is the reason why
some experiments B! showed a varicose mode dom-
inant break-down, but other experiment [l showed a
sinuous mode.

Secondary Gortler instability in incompressible
boundary layers had been studied extensively, but hy-
personic Gortler instability is not well understood. In
this paper, we study secondary instability of hypersonic
Gortler vortices using two-dimensional linear stability
analysis and numerical simulations.

2 Formulation

Governing equations and numerical methods for 2-D
linear stability theory and direct numerical simulation
are discussed. The full linearized compressible Navier-
Stokes equations in cartesian coordinate system are
derived. Wall curvature effects are included in LST
analysis using a coordinate transformation. In the nu-
merical simulation, the full Navier-Stokes equations are
solved using a fifth order explicit upwind shock fitting
scheme. Governing equations and numerical methods
for the linear stability analysis and numerical simula-
tion are explained as follow.

2.1 2-D Linear Stability Analysis

The compressible linear stability equations originate
from the compressible Navier-Stokes equations. The
gas is assumed to be perfect Newtonian gas. The three-
dimensional Navier-Stokes equations in cartesian coor-
dinates (z*,y*,z*) are

P[5 +ut-yut] = -yt (1)
+ ¥ [M(V - uf) T4 pf (Vu* 4 yurin)],

dp* “ow
at*+V'(pu)"0v (2)

P b +ut v = v - (k* v T%)

3
+%%+u*'vp*+q>*> ()
p* —~— p*R*T* , (4)

where "*’ denotes dimensional quantities. u* is the ve-
locity vector, p* is the density, p* is the pressure, T*
is the temperature, R* is the gas constant, cp is the
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specific heat at constant pressure, k* is the thermal
conductivity, u* is the first coefficient of viscosity, and
A* is the second coefficient of viscosity. The viscos-
ity coefficient is determined by Sutherland’s law. The
viscous dissipation function, ®*, is given as

& =2 (v-u)+ [vu + vu?. (5)

The flow variables and equations are nondimension-
alized as follows: velocity by U% , density by pf,, pres-
sure by p, U2, length scales by z*, and time scale by
z*/U%, where z* denotes a distance from the leading
edge. Instantaneous flow variables are represented as
the sum of mean value and fluctuation, i.e.

q=§‘($,y,z)+§($»y,2,t) (6)

Resulting linear disturbance equations can be ex-
pressed in matrix form as

[A]q+ [B] 3+ [C'] a4+ [D] N
+E] 5 + [F] awz +16123 24 o+ [H] & (7)
+1l i axay +[J ]ayaz+[L]'5z—5’;=0 ;

where §q = {&,%,5,T, d:}". All matrix coefficients are
function of mean values. A coordinate transformations
is applied to equation (7) to transform cartesian coor-
dinate (x,y,z) into curve linear system (£,7,{). Trans-
formation gives new matrix form of the disturbance
equations:

[4%a: + [B15 + [C15% + (D53 .
+[E']—‘§1— +[FE% 66,2 + [G']—qf + [H15%  (8)
[I’]m;',,L + 724, anoer + L0554, aeac =0,

~ ~ e~~~ B
where q: = {u’,v’,p’,T’,w’}

Secondary disturbance form is
q=q(n,¢)e* e, ©)

Equation (8) and (9) constitute an eigenvalue problem
which is solved by using a fourth order finite difference
in the wall normal direction and a Fourier collocation
method in the spanwise direction. The discretized sys-
tem can be represented in the form

Aq=oaq, (10)

Since the basic flow state is symmetric, the eigenfunc-
tions can be split into families of even (varicose} and
odd (sinuous) modes. For varicose modes, all eigen-
functions except spanwise velocity are symmetric, but
those for sinuous modes are anti-symmetric. Spanwise
velocity disturbances are ant-symmetric for varicose
mode and symmetric for sinuous mode. Taking ad-
vantage of the symmetric conditions, the resulting dis-
cretized system can be reduced by approximately half.
The eigenvalue problem is solved by the QR method
which yields all the eigenvalues of the discretized sys-
tem.

2.2 Direct Numerical Simulation

Linear and nonlinear growth of Gértler vortices at hy-
personic speed is numerically simulated using a fifth
order upwind shock fitting scheme. Governing equa-
tions and numerical schemes are briefly summarized
here.

In the numerical simulation, the three-dimensional
Navier-Stokes equations (1) to (4) are written in
conservative-law form as follows:

au*  9F*;

OF*,;
o+ +

oz a:c;

J

=0 (11)

where superscript **’ represents dimensional variables
and

Ur = {p", p*ui, p'us, plug, €7} (12)
* %* E e ntd 1 * %k
e =p(C;T + §“k“k) (13)

The flux vectors are

ptuj
J
pruiu; +p*dy;
prusuj + p*lo; (14)
p*uiuj + p*d3;
(e +p")u]

3
I

Foj = {7 (15)

* *
C Ti%e — 95



where
,, (o du ou
. LOT*
95 —K 62:; (17)

u* is the viscousity coefficient and calculated using the
Sutherland’s law:

T* 3/2T*+T*
v =u (%)

18
T T*+T;’ (18)

and k* is the heat conductivity coeflicient computed
by assuming a constant Prandtl number Pr. The gas
is assumed to be thermally and calorically perfect gas,

p* — p*R*T* (19)

where R* is the gas constant.

The general curvilinear three-dimensional coordi-
nates (¢, n, ¢, 7) are used along the body fitted grid
lines. A shock fitting method is used to treat the bow
shock as a computational boundary. The transforma-
tion relations for the current grid systems are

£ = &(($9 y) Z) ) x = z((g) n!CCJT))
n=n(z,y,2,t y=yn¢,T
¢={((z,y,2) = y=y(&n(7) (20)
r=1 t=r1

where £ = 0 and ¢ = 0 because the £ and ¢ grid
lines are fixed when the shock boundary moves. In the
numerical simulations, the governing equations {11) are
transformed into the computational domain (£, 3, ¢, 7).

18U AE' 8G
Z_g;+ fﬁ_Jr 6G+ :’:( ¥ _ (21)
agu + anu + JL + U 7 0

The governing equation (21) is discretized in the
computational domain (€, 5, {, 7). High order fi-
nite difference methods are used for spatial discretiza-
tion of the equation. Inviscid and viscous flux terms
are discretized using different methods: fifth order up-
wind explicit schemes for the inviscid flux terms and
central difference schemes for the viscous terms. The
time advancement of the governing equations is solved
by Runge-Kutta schemes. The shock fitting method
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treats the bow shock as a computational boundary at
7 = fJmaz- The flow variables behind the shock are de-
termined by the Rankine-Hugoniot relation across the.
shock and a characteristic compatibility equation from
behind the shock.

3 Results

Linear "% and nonlinear [” developments of Gortler

vortices in hypersonic boundary layers had been stud-
ied by DNS of the full Navier-Stokes equations. The
specific test case is a Mach 15 flow over a blunt wedge
with a concave surface. The flow conditions in free
stream are

T* = 101.059K

P* =10.3Pa
TE = 1000K (22)
Reos = pt, UL [ty = 150753.175 /m

The body surface is assumed to be a non-slip wall with
an isothermal wall temperature T;;,. Two-dimensional
steady base flow along the blunt body with concave
surface had been first obtained by two-dimensional
simulation [*). Three-dimensional simulation had been
carried out for Gorlter vortices 1617, Figure 1 shows
the distributions of Mach numbers and Gértler num-
bers along the streamwise direction in concave wall
region. Mach number and Gortler number ranges in
concave surface are from 6 to 9 and from 4 to 14.7 re-
spectively. For the current test case, the Gorlter num-
ber increases as & increases. For the LST analysis, the
Gortler mode is unstable when G is larger than 6. The
Gorlter modes obtained from the LST code using the
simulated two-dimensional base flow were imposed at
G = 6.8. The subsequent linear and nonlinear devel-
opments of the spatially growing longitudinal vortices
were solved by computing the full Navier-Stokes equa-
tions. Figure 2 shows a schematic of the computational
domain.

Nonlinear development of hypersonic Gortler vor-
tices are first presented in this paper which shows the
highly inflectional profiles. Since nonlinear Géortler
vortices lead to inflection points, we study secondary
Gortler instability in hypersonic boundary layers using
both 2-D linear stability analysis and numerical sim-
ulations. The results of secondary hypersonic Gortler
instability are also presented.



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

3.1 Nonlinear Growth of Gortler Vor-
tices

The nonlinear development of Gortler vortices leads
to a highly distorted mean flow with inflectional pro-
files in the wall normal direction as well as the span-
wise direction which induce the secondary instabili-
ties of the nonlinear interactions between the Gértler
mode and the shear mode. The nonlinear develop-
ment of Gortler vortices is investigated by imposing
the strong disturbances at the entrance of the com-
putational domain. Disturbance amplitude is in the
order of 0.2U. Imposed disturbances propagate spa-
tially and reach steady state conditions. The strong
disturbances distort the two-dimensional base flow and
produce the mushroom-shaped vortices and inflectional
flow fields in boundary layers. The mushroom-shaped
vortices develop due to the counter-rotating vortices
pumping action in which low velocity flow moves away
from the the wall and the high velocity flow toward
the wall. Gortler number of the whole computational
domain of the three-dimensional simulation is from 6.8
to 14.7. The corresponding local Reynolds numbers
are the range of 4.23 x 10° to 1.33 x 106. Four com-
putational zones are used in nonlinear development of
Gortler vortices. The total grid size of the domain is
644 x 121 x 64. Grid independent studies on the nonlin-
ear development of Gortler vortices are used to ensure
the numerical accuracy of the results.

Figure 3 shows the streamwise mean velocity (two-
dimensional base flow + the primary Gortler mode)
distributions as flow moves downstream. The strong
vorticity effects distort the two-dimensional base flow.
The development of the mushroom-shaped vortices is
well represented in the figure which is similar to the
incompressible Gortler instability. The figure shows
that bow shock does not have much effects on flow
field because the shock is far away from the vortices.
Figure 4 shows the streamwise mean velocity contours
at four different streamwise locations. The region in
the neighborhood of the centerline of the vortices is
referred to as the peak region, and the region in the
side of the vortices is referred to as the valley region.
While a displacement thickness in the peak region in-
creases, the one in the valley region decreases down-
stream. Gortler vortices pump vertically the low-speed
fluid away from the wall in the peak region and push
the high speed fluid toward the wall in the valley re-
gion. As the flow moves downstream, high velocity
flow near the surface in the valley region is transferred
to the peak horizontally. Such transfer actions of the
flow produce the mushroom-shaped vortices. Develop-
ment of the mushroom-shaped vorticities is illustrated
in figure 4. Contours at £ = 1.042 show the linear
development of the disturbances because the shape is

like a cosine curve which is the function of the stream-
wise velocity perturbations. But it is quickly modified
downstream as the Gortler mode disturbances become
nonlinear. Figure 5 shows cross sectional velocity vec-
tor plots at four different streamwise locations. The
counter-rotating vortices are illustrated in the figure.
At early station (z = 1.042), the vorticity effects are
small, but those increase downstream as the distur-
bances become nonlinear. Flow transfer phenomena
in the peak and valley regions is clearly represented in
the cross sectional vector. Directions of the vector near
the centerline is upward, but the downward for the side
regions.

Figure 6 shows the wall normal distributions of the
streamwise mean velocity at four different streamwise
locations. Each figure contains four curves which rep-
resent the four different spanwise locations. The pro-
files at K = 4 and K = 28 are for the side and the
centerline of the vortices respectively. In the peak re-
gion, the pumping action of the counter-rotating vor-
tices gradually generates an S-shaped profile with two
inflection points. All wall normal distributions inside
the mushroom show the development of the inflection
points. The profile at K = 4, which is outside of the
mushroom, dose not shows the inflection points down-
stream. As we discussed earlier, as the disturbances
become nonlinear, the high speed fluid in the valley
near the wall is horizontally transferred to the peak.
In figure 6, while the maximum velocity near the sur-
face at K = 4 decreases downstream, those inside the
mushroom increases which produce a inflection point
near the surface. It is an indication of the horizon-
tal flow transfer. The horizontal transfer of the flow
is more clearly shown in the streamwise velocity dis-
turbance distributions. Figure 7 shows the streamwise
velocity disturbance contours at different streamwise
locations. Dashed lines represent negative values of the
disturbances. High velocity disturbances in the valley
region near the surface move horizontally to the peak
region as z increases. On the contrary, the low velocity
in the peak region away from the wall moves to the val-
ley. It is due to the action of the counter-rotating vor-
tices. Two inflection points appear in the mushroom
near and away from the surface. Figure 8 shows the
spanwise distributions of the streamwise mean velocity
at four different streamwise locations. The velocity is
wake-like profile with inflection points. At z = 2.754,
the third curve from the bottom shows three minima
which is due to the horizontal transfer of the low ve-
locity flow from the peak region to the valley by the
counter-rotating vorticity effects. The transfer of low
velocity flow causes the side minima in spanwise distri-
bution of the velocity field.

For the numerical accuracy and grid independence of



the DNS results, we conduct grid refinment studies on
the three-dimensional nonlinear Gortler vortices. The
grid size of each computational zone in this paper is
161x121x64. We compute the same case for the fine
321x241x64 grids. The Fourier collocation with 64
grid points in the spanwise direction well resolve the
nonlinear Gortler vortices so we keep 64 collocation
points in the grid refinment studies. We also compute
two Gortler vortices by extending spanwise distance.
The grid size is 161x121x128. Each vortex is resolved
by 64 spanwise grids points. Figure 9 shows the com-
parison of the results from two different sets of grids
at z = 1.34. The comparison shows the grid indepen-
dence in streamwise and wall normal directions. The
figure also shows that the vortices dose not interact
with other neighboring vortices in the spanwise direc-
tion which represents that the simulation of one Gortler
vortex is enough in order to study the nonlinear Gortler
instabilities.

3.2 Secondary Instability of Hyper-
sonic Gortler Vortices

We showed that the nonlinear development of Gértler
vortices produce inflection points not only in wall nor-
mal direction but also in spanwise direction which is
similar to incompressible flow. These inflection points
are associated with the secondary instability of the
nonlinear interaction between the Gortler mode and
the shear mode. Such secondary instability may be re-
sponsible for the nonlinear break-down and transition
to turbulence in the Gortler instability. We study sec-
ondary instability of hypersonic Gortler vortices using
two-dimensional linear stability analysis and numerical
simulation. We develop a two-dimensional LST code
for secondary instability because the secondary modes
are two dimensional. The secondary mode obtained by
a two-dimensional LST code is imposed at the entrance
of the computational domain. Subsequent development
of the secondary mode is carried out by solving the full
Navier-Stokes equations.

A two-dimensional LST analysis is applied to the dis-
torted mean flow obtained in the nonlinear DNS study
of Gortler vortices in Mach 15 flow over a blunt wedge.
There are two kinds of secondary instability modes:
sinuous and varicose. We find such modes using the
nonlinear simulated results. We search the modes in
arange of w at ¢ = 1.7 and G = 10.3. At this loca-
tion, the mushroom-shaped vortices are not fully de-
veloped, but the nonlinear effects of Gortler vortices
are significant. In the two-dimensional LST analysis,
we consider the spatial secondary instability. A wave
frequency w is given, and streamwise wavenumber o
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and corresponding eigenfunctions are computed in an
eigenvalue calculation. At z = 1.7, we find the first
varicose and sinuous modes, but those are stable. Fig-
ure 10 shows the eigenfunction contours for the first
varicose mode at w = 80.0. A growth rate «; of this
mode is 0.8. Positive o; represents the mode is stable.
The eigenfunctions in figure 10 shows the symmetric
or anti-symmetric characteristics of the varicose mode.
All eigenfunctions except spanwise velocity disturbance
are symmetric in the spanwise direction, but spanwise
velocity components are anti-symmetric. In the incom-
pressible Gortler instability, it had been shown that
the varicose mode is associated with the wall normal
gradients of streamwise mean velocity and the sinu-
ous mode is with the spanwise gradients. 712724 We
compare the structures of the wall normal streamwise
mean velocity gradient obtained from the nonlinear
DNS study with those of the varicose mode from the
two-dimensional LST analysis. Figure 11 shows the
contours of the wall normal gradients and a root mean
square of streamwise velocity eigenfunctions. The fig-
ure shows that the location of the peak in the low ve-
locity region away from the surface is the same in both
contours. The varicose mode is related to the vertical
shear and caused by inflection points in the wall normal
direction.

We also find the sinuous mode at the same location
for the same wave frequency w. The growth rate of the
mode obtained from the LST analysis at w = 80.0 is
3.9. The positive growth rate represents the mode is
stable. The growth rate of the sinuous mode is larger
than the one of the varicose. It shows that the sin-
uous mode is more stable than the varicose mode at
z = 1.7. In other words, the varicose mode is the
dominate instability over the sinuous mode at this lo-
cation. Figure 12 shows the contours of the eigenfunc-
tions of the first sinuous mode. The sinuous mode has
an anti-symmetric structure in all disturbances except
the spanwise velocity component. It is well represented
in the figure. Streamwise velocity, pressure, and tem-
perature eigenfunctions are ant-symmetric in the span-
wise direction, but the spanwise velocity component is
symmetric. The sinuous mode is associated with the
spanwise gradients of the streamwise mean velocity ob-
tained by a nonlinear DNS study of Gortler vortices.
Figure 13 compares the spanwise gradients of the DNS
results with a root mean square of streamwise veloc-
ity eigenfunctions of the two-dimensional LST results.
The comparison shows that the peaks of the eigenfunc-
tion appear at the peaks of the velocity gradient. It
represents that the sinuous mode is associated with the
inflection points in the spanwise direction.

The two-dimensional LST analysis shows that the
varicose mode is the dominate instability over the sin-
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uous mode at £ = 1.7. The two-dimensional LST anal-
ysis is conducted for the whole computational domain,
and growth rate a; is compared with respect to 2. Fig-
ure 14 shows a such comparison. The figure represents
that the mode is stable in whole computational domain
since «; is positive for all z. However, the magnitude
become less positive as z increases which represents the
mode are more unstable as flow moves downstream.

We conduct a DNS study of the secondary instabil-
ity of Gortler vortices by imposing the varicose mode
at the entrance of the computational domain located
at £ = 1.7. A range of Gortler number in the domain
is 10.2 to 12.9. A local Reynolds number is between
7.80 x 10° and 1.10 x 10%. Amplitudes of the imposed
secondary disturbances are 0.1% of the freestream ve-
locity. The disturbances propagate spatially in the
streamwise direction and reach a periodic condition.
Figure 15 shows the contours for streamwise velocity
disturbances obtained by the DNS of secondary insta-
bility for Mach 15 flow over a blunt body with concave
surface. The disturbances develop into a mushroom
like structure which is characteristic of the varicose
mode. Figure 16 is the instantaneous cross sectional
contours in the wall normal direction. Although the
mode is stable at the inlet, the figure also shows that
some cross sections show growing disturbance by the
intensity in the middle of the section.

Fourier analysis is carried out on the numerical solu-

tion of secondary Goértler instability. Fourier transform
of a disturbance variable is expressed to:

M N

q/(x’ v, z,t) — Z E q;n"(x’y)ei [mwt+nﬁz+¢mn](23)

m=0n=0

where # and w is the spanwise wave number and fre-
quency of inlet disturbance, and ¢(z, y, 2, t) represents
any perturbation variables. gl,,,(z,y) and ¢, are the
local perturbation amplitudes and phase angles. The
integer m and n represent the wave mode of the per-
turbation fields. In our numerical results, a dominant
wave mode is (m,n) = (1,1). Since the imposed distur-
bances are weak, magnitudes of other modes are small.
Figure 17 shows the magnitude of streamwise velocity
disturbance amplitude (Ju11]) as a function of z. The
magnitude is defined as

lua1] = y/u? +u} (24)

where u, and u; represent real and imaginary parts
of the local perturbation amplitude. The figure shows
the streamwise distributions of magnitudes for several

different wall normal locations. Perturbation ampli-
tude near the surface initially increases but starts to
decrease at later station. However, disturbance am-
plitude away from the surface increases. For exam-
ple, the amplitude at y = 0.003 starts to decrease at
z & 1.9, but the one at y = 0.028 increases in the
whole z ranges. Nonlinear development of Gértler vor-
tices produce inflection points between y = 0.01 and
y = 0.05 (figure 6). Such inflection points cause in-
crease disturbances.

We do some preliminary comparison on the wave
structure between DNS results and those obtained from
2-D secondary instability analysis. Figure 18 com-
pares eigenfunctions from DNS with those obtained
from two-dimensional LST analysis at £ = 2.0. The
wave structures of streamwise velocity, temperature
and spanwise velocity components from both DNS and
LST are shown in the figure. The two sets of results
are similar.

Having studied linear development of varicose mode
by imposing weak disturbances at the entrance of com-
putational domain, we impose strong disturbance at
the same location and conduct the nonlinear develop-
ment of the mode. The amplitude of the inlet dis-
turbances is in the order of 5% of freestream veloc-
ity. We observe that the strong disturbances distort
steady Gortler vortices. Figure 19 shows the instanta-
neous streamwise velocity contours in the (z, z) plane
at various wall normal locations. Left figures repre-
sents the contours of steady Gortler vortices without
varicose mode, and those on the right are the contours
with varicose mode. Large amplitude varicose mode
change Gortler vortices into series of knotty structure
associated with the horseshoe vortex mode of break
down. Streamwise velocity contours in the (z,y) plane
also shows the distortion of steady Gortler vortices.
Figure 20 represents the contours at various spanwise
locations. Left figures are the contours without vari-
cose mode, and the rights are those with varicose mode.
The figure shows that varicose mode imposed at the en-
trance of computational domain propagates spatially
and changes Gortler vortices into wave motion.

2-D LST analysis shows anti-symmetric character-
istic of spanwise velocity perturbation and the sym-
metric of other variables of varicose mode. Therefore,
we examine the structures of spanwise mean velocity
for both with and without varicose mode. Figure 21
shows the instantaneous spanwise mean velocity con-
tours at various wall normal locations. Although the
spanwise velocity has anti-symmetric structure in span-
wise direction, varicose mode spatially propagates in
the manner of horseshoe vortex motion. The contours
near the surface such as y = 0.0007 and y = 0.003
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show the knotty structure in the middle portion of the
figures. Such structure is also observed in the con-
tours away from the surface such as y = 0.036 and
y = 0.063. However, for these cases, horseshoe vor-
tex motion appears both sides of a center line. Fig-
ure 22 shows the spanwise mean velocity contours in
the (z,y) plane at various spanwise location. As the
case of streamwise velocity discussed earlier, varicose
mode distort the spanwise velocity of Gortler vortices
into wave motion. Other flow variables show the similar
structure of streamwise mean velocity, so those are not
presented in this paper. From the numerical solutions
of nonlinear interactions between varicose mode and
Gortler vortices, we can conlude that varicose mode
distort Gortler vortices and may break down the vor-
tices into turbulence.

4 Summary

Nonlinear development of Gortler vortices and sec-
ondary instability effects in hypersonic boundary layers
have been studied by 2-D linear stability analysis and
numerical simulations. In the nonlinear development of
Gortler vortices, the counter rotating vorticity effects
transferred the low velocity flow away from the sur-
face and high velocity flow toward the surface. Such
effects lead to the mushroom-shaped vortices with in-
flection points in both wall normal and spanwise di-
rections which induce secondary instability effects. In
order to study secondary Gértler instability, we devel-
oped 2-D LST code and found the secondary modes.
In 2-D LST analysis, both sinuous and varicose modes
were found. We imposed varicose mode at the en-
trance of computational domain since the LST analysis
showed varicose mode was more unstable than sinuous
mode for our flow conditions. For linear development
of varicose mode, weak disturbances were introduced
on steady Gortler vortices. Simulation results were
compared with those obtained from 2-D LST analy-
sis. Such comparison showed a good agreement. By
imposing large amplitude of varicose mode, we stud-
ied nonlinear interaction between varicose mode and
Gortler vortices. The numerical results showed that
the strong varicose mode breaks down Gortler vortices
into horseshoe vortex.
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Figure 1: Distributions of Goértler number and Mach
number behind shock. Gortler number increases since
Reynold’s number increases.

Bow Shock

Computational
Domain

Impose Initial
Disturbances

Figure 2: A schematic of computational domain of two-
dimensional base flow and three-dimensional Gértler
instability simulation.
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Figure 3: Distributions of streamwise mean velocity contours along the streamwise direction. Mushroom-shaped
vortices develop as flow moves downstream due to the nonlinear effects.
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Figure 4: Sectional streamwise mean velocity distributions at four different streamwise locations.
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Figure 5: Structure of the velocity vector field in the

plane normal to the wall.
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Figure 6: Profiles of the streamwise velocity in wall
normal direction at four different streamwise locations.
Two inflection points develop in the region of the mush-
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streamwise mean velocity and a root mean square of
streamwise velocity eigenfunction of the sinuous mode.
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Figure 14: Growth rate (@;) comparison of varicose
mode with respect to z at w = 80

Figure 15: Cross sectional contours for streamwise ve-
locity disturbances of the varicose mode in streamwise
direction with w = 80.0 at inlet of the computational
domain.



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

2-DLST DNS

HHTHTS

Figure 16: Cross sectional contours for streamwise ve-
locity disturbances of the varicose mode in wall normal
direction with w = 80.0 at inlet of the computational
domain.
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Figure 17: Magnitude of streamwise velocity distur-
bance amplitude of (1,1) mode as a function of z ob-
tained by Fourier analysis.

Figure 18: Comparison of the wave structure between
DNS results and those obtained from 2-D secondary
instability analysis at 2 = 2.0
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Figure 19: Cross sectional contours of streamwise ve-
locity at various wall normal locations. Left figures rep-
resent streamwise velocity contours without varicose
mode, and right figures are the contours with varicose
mode
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