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Abstract

Low-Reynolds-number flows over airfoils are often
characterized by the presence of separation bubbles,
which can be unsteady with vortex shedding. The sepa-
ration bubbles are unstable and their structure depends
on the ambient disturbances present. Hence, it is im-
portant to understand the receptivity to disturbances
and its effect on the separation bubbles. The objec-
tives of this paper are two fold: 1) to develop and vali-
date a new high-order (of arbitrarily high order) explicit
finite difference scheme with stable boundary closure
for solving the unsteady incompressible Navier-Stokes
equations in the vorticity-velocity form; 2) to present
results of numerical simulations of unsteady separation
bubbles induced on a flat plate. The first part of this
paper presents a new method for solving unsteady in-
compressible Navier-Stokes equations, which uses arbi-
trarily high-order finite difference schemes with stable
boundary closure schemes derived directly on a non-
uniform stretched grid. The second part of the pa-
per presents results from separation bubble simulations,
computed using a fifth order accurate method in the
streamwise and wall normal direction and a spectral
method in the spanwise direction. The separation bub-
bles on the flat plate are induced by specifying a ve-
locity gradient in the freestream or by suction at the
freest ream. The freestream velocity distributions are
varied to obtain different sizes of separation bubbles.
The unsteady separation bubbles are studied by intro-
ducing wall blowing and suction disturbances, of vary-
ing frequencies and amplitudes.

1 Introduction

Low-Reynolds-number aerodynamics, in the range of
Re = 5 x 104 to 1 x 106, is important for the design of a
variety of aircrafts, ranging from sailplanes and human-
powered aircrafts to high altitude unmanned aerial vehi-
cles (UAV's)/'1'2] Low-Reynolds-number flows over air-
foils are characterized by the presence of transitional
separation bubbles. ̂  The structure of the separation
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bubble is illustrated by a schematic in Fig. 1. The
laminar flow separates due to the adverse pressure gra-
dient. The separated boundary layer is unstable, and
there is rapid growth of disturbances. The flow con-
sequently becomes turbulent and reattaches. The re-
gion between the separation point and the reattachment
point is called the separation bubble.

Computations of complex transitional separation
bubble flows require high order schemes to resolve the
wide range of spatial and temporal scales present in
the flowfield. The first part of the paper presents
a new high order scheme to solve the incompressible
Navier-Stokes equations. Most finite difference schemes
used in direct numerical simulation are either central
difference schemes '•3'4-' with filtering or upwind high-
order schemes ^~s\ The orders of accuracy of numerical
methods used in practical DNS studies, however, are of-
ten limited to 6th-order or lower in the interior and 4th-
order or lower on the boundary closure schemes because
of the numerical instability of the boundary closure
schemes. The main limiting factor in the application of
high-order schemes is the numerical instability of high-
order boundary closure schemes t4'9'10^. The instability
of high order boundary closure schemes often limits nu-
merical schemes to 6th-order or lower in the interior and
4th-order or lower on the boundary closure schemes. In
an earlier AIAA paper ^ we proposed new arbitrar-
ily high-order finite difference schemes which overcome
the instability of high order boundary closure schemes
by directly computing the derivative coefficients on a
stretched non uniform grid. The numerical instabil-
ity for high-order schemes based on uniform grids was
shown to be due to the instability of polynomial inter-
polation based on uniform grids (the Runge phenom-
ena). The instability can be overcome for arbitrarily
high-order finite difference schemes if the the schemes
are determined based on polynomial interpolation in the
physical nonuniform grids. The amount of grid stretch-
ing is determined to maintain the stability of the overall
schemes. In this paper we implement the new high order
scheme for the incompressible Navier Stokes equations
in the velocity-vorticity form.

The second part of the paper presents results from
unsteady separation bubble simulations. Unsteady low-
Reynolds-number separation bubbles have been the
subject of many theoretical, experimental, and numeri-
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cal studies L12~21J. Early theoretical studies of separated
flows revealed that the traditional boundary layer the-
ory fails at the separation location due to a singularity
in the boundary layer solution. ^22-' Stewartson, Smith
and Kaups ^13J developed a procedure based on the
triple deck theory, which avoids such singularities, to
study marginal separation problems. This method has
been applied to unsteady three-dimensional '•23-' bound-
ary layer flow. Hsiao and Pauley ^24-" did a quantita-
tive study of the accuracy of triple deck and interactive
boundary layer solutions at finite Reynolds-numbers.
They found good agreement with numerical results at
high Reynolds-numbers. Hence, for sufficiently gradual
adverse pressure gradients the triple deck method and
the interactive boundary layer method can be used to
solve separation bubble problems. For unsteady prob-
lems, the nonlinear triple-deck system was developed by
Vickers and Smith, t25-' In their formulation additional
equations are developed to resolve the detached shear
layer far beyond the separation point. When combined
with the triple deck formulation for the breakaway sep-
aration it enables a theoretical study of the unsteady
separation and the inflexional modes associated with
the detached shear layer.

Unsteady separation bubbles were first studied in
detail by Gaster t12-' through experimental measure-
ments. A dimensionless pressure gradient parameter,

92 rtPavg = ^ d^u* , was used in a criteria proposed by
Gaster ^12\ based on experimental correlations, to pre-
dict the bursting of "short" separation bubbles to form
"long" separation bubbles. In the expression d

d
x
u* is

the velocity gradient obtained from an inviscid analysis
and Osep is the momentum thickness at the separation
location. Based on experimental results Gaster showed
that unsteadiness occurs for Pavg < —0.24. Experimen-
tal studies by Leblanc, Blackwelder, and Liebeck. '-14-'
showed the presence of a dominant frequency in the
velocity spectra in the separated region. The peak
frequency was found to match the most amplified fre-
quency calculated from linear stability theory. The lin-
ear evolution of disturbances in the separation bubble
was also observed by Dovgal, Kozlov, and Michalke. ̂
They also detailed the nonlinear interactions of the dis-
turbances and the path to transition.

Two dimensional numerical simulations of Lin and
Pauley t16-' and our previous simulations^18'19^ showed
the unsteady nature of low-Reynolds-number separa-
tion bubbles and the associated vortex shedding. The
numerical results showed that the growth of disturbance
waves in the separated region leads to the vortex shed-
ding. The dominant frequency from the numerical sim-
ulations is found to agree with the most unstable fre-
quency from a linear stability analysis. Three dimen-
sional effects in separation bubbles for flows over a flat
plate have been studied by Hildings '-21-' and Rist and

Maucher. t20-" Rist and Maucher introduced various 2-D
and 3-D disturbances into the flowfield to study the non-
linear disturbance development in the separation bub-
ble. Their simulations were able to obtain a turbulent
flowfield and predicted longitudinal vortices in the reat-
tachment region. Their results showed that secondary
disturbance amplification reduces considerably as the
TS waves saturate, suggesting that the transition mech-
anism is not governed by secondary instability. They
suggest an oblique breakdown mechanism for transition.
Alam and Sandham ^ used direct numerical simu-
lations of "short" laminar separation bubbles to show
that the separated shear layer undergoes transition via
oblique modes and vortex induced breakdown. Spalart
and Strelets t27-' numerically studied the transition pro-
cess to show that the mechanism involves the instability
of the shear layer producing Kelvin-Helmholtz vortices
which breakdown. The results also show a flapping of
the shear layer in the front part of the separation bubble
which dominates in comparison to the convective distur-
bances. Maucher et. al. ^ showed that the definition
of a well posed boundary condition at the freestream
is critical. They proposed an interaction method based
on thin airfoil theory to capture the displacement effects
of the separation bubble on the surrounding potential
flow. Zhang and Fasel evaluated the feasibility of flow
control, by blowing and suction ahead of the separation
bubble I293.

Past research, summarized above, has shown the com-
plex nature of the unsteady low-Reynolds-number sep-
aration bubbles. The onset of unsteady vortex shed-
ding, the question of absolute instabilities in large sep-
aration bubbles, feedback effects in separation bubbles,
and bursting of separation bubbles are areas which still
need to be studied. The parameters affecting the onset
of vortex shedding and their influence on the transi-
tion process can be studied through detailed numerical
simulations. This paper is focused on two objectives:
1) to develop high order schemes to effectively resolve
the complex separated flowfields, and 2) to study the
unsteady separation bubbles by varying the freestream
velocity gradient, disturbance amplitude, and distur-
bance frequency.

2 Governing Equations and Numerical Methods

The new high order scheme for solving incompress-
ible Navier-Stokes equations is detailed in this section.
Current numerical methods used in most practical DNS
studies are limited to 6th-order or lower in the interior
and 4th-order or lower on the boundary because of the
numerical instability of the boundary closure schemes.
In an earlier AIAA paper ^ we showed that this nu-
merical instability for high-order schemes based on uni-
form grids is due to the instability of polynomial inter-
polation based on uniform grids (the Runge phenom-
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ena). This instability can be overcome for arbitrarily
high-order finite difference schemes with stable bound-
ary closure schemes if the schemes are derived directly
on a non-uniform stretched grid. The details of govern-
ing equations and the new scheme are presented below.

Governing Equations

The flat plate separation bubble simulations are car-
ried out using a time accurate incompressible Navier-
Stokes solver. The formulation is based on the approach
of Zhang and Fasel. ̂  The governing equations for this
test case are the 3-D incompressible Navier-Stokes equa-
tions in the vorticity transport form:

dt
dUy

du^

where

d
—(

fa
d

d
— (

~^
d

= Aux (I)

(3)

Redx2
d2

dy2

= —rot(u)

J_^L+ Redz2

and the nondimensionalization is as follows:

x*
X = - , y = CT - ,

u
u = v = , w = (4)

where the *'s represent the dimensional variables and
Re = UasL/v. The velocity components can be calcu-
lated from the following equations:

d2v
E2 '

d2w
dx2

dz2

Av

d2w
' dz2

dz

~ dz

dx

dxdy

dx
d2v

dydz

(5)

(6)

(7)

Non-Uniform Grid High Order Finite Difference
Method

The equations are discretized on a stretched grid in
both directions, with the derivative coefficients com-
puted directly for the nonuniform grid. The convective
terms are discretized using a high order upwind finite
difference scheme. The order can be set to an arbitrarily
high number less than the number of grid points. The
second derivatives in the viscous terms are discretized

directly on the stretched grid using high order finite dif-
ferences. The details of the grid spacing and the explicit
scheme are presented in the following subsections.

Grid Spacing

The stability of high-order schemes is dependent on
the grid clustering near the boundaries. Spectral col-
location methods utilizing the Chebyshev spacing are
stable for arbitrary order schemes with boundary clo-
sure. However, this spacing is very restrictive on the
timestep (O(l/N2)) in a temporal integration of a PDE.
In this paper we are using a less restrictive spacing with
high-order finite difference schemes in order to maintain
stability and high spatial accuracy and an O(l/N) in
minimum grid spacing and timestep.

In this paper, the grid spacing in the numerical sim-
ulations is controlled using the stretching function pro-
posed by Kosloff and Tal-Ezer t30-' for a spectral method,
i.e.,

sin~"l (—a cos(m/N))
x =

sn a (8)

where the parameter a is used to change the stretching
of the grid points from one limit of a Chebyshev grid at
a -» 0 and the other limit of an uniform grid at a—I.
Figure 2 shows a x vs. i/N plot for the stretching func-
tion (N=101). A grid stretching factor can be measured
by &xmin/&xuniform, where Axmin is the minimum
grid spacing in the stretching grid and Axunf/orm is the
average grid spacing. Figure 3 shows the grid stretching
factor as a function of the stretching parameter a (for
N=51).

Explicit Schemes

The coefficients for the explicit high order schemes
on nonuniform grids are derived from a lagrange poly-
nomial interpolation. The interpolation polynomial is
as follows:

N

(9)

Hence, the derivative at the point xi can be calculated
by differentiating the above polynomial as:

.7=1 (10)

where lj(xi) is calculated as follows: If i

n*}(*.•)= n (^-^M-
1=1,1^,1^

If i = j :

(11)
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where a,j is :

(13)

Similarly, the second derivative is calculated as :

N
(14)

Hence, once the Xi locations of the stencil are known
the coefficients can be calculated explicitly using the
above formulas.

In addition, the formulas for normal velocity deriva-
tives on the wall include the first derivative at the wall
(i.e. a compact scheme is used at the wall) to ensure
that the continuity equation is satisfied. The solution
is advanced in time using a fourth order Runge-Kutta
method.

Boundary Conditions

The Blasius boundary layer solution is prescribed at
the inlet. No slip conditions are used on the wall, ex-
cept in the disturbance strip region where the normal
velocity is specified. At the freestream, the streamwise
velocity is specified and the vorticity is set to zero. The
separation bubble is generated by prescribing a decel-
eration in the freestream velocity. Controlled distur-
bances can be introduced in the flowfield by blowing
and suction at the wall upstream of the separation bub-
ble. The disturbance form is as follows:

V k ( x , Q , t ) = AkVRevw(x)sin(/3t)

where vw(x) is the wall-forcing function, k is the fourier
mode number (in the z direction) and /? is the nondi-
mensional frequency. vw(x) is zero everywhere except
within the disturbance strip, where a point-symmetric
amplitude distribution with respect to the center of the
strip is used.

Numerical Scheme

The explicit nonuniform grid scheme detailed above
is used for the spatial discretization of the govern-
ing vorticity equations. The discretized equations are
advanced in time using a fourth order Runge-Kutta
method. At each step of the method, once the vorticity
field is computed, the velocity field needs to be solved.
First, the wall normal component is solved using equa-
tion (6). The equation is discretized using the explicit

scheme detailed above. After fourier decomposition in
the spanwise direction the algebraic equations for each
spanwise wave number k are as follows:

ns—l ms—l

*=o

where n5, ms are the stencil sizes for the derivative
schemes. The solution is obtained using a line Gauss-
Seidel method. Once the wall normal velocity is ob-
tained the streamwise and spanwise velocities can be ob-
tained by using a banded matrix solver at every stream-
wise grid location using equations (5), and (7). The wall
vorticity components are calculated using the vorticity
and velocity from the following equations:

dx* I

UJy = 0

dx "9

(16)

(17)

(18)

3 Numerical Results

The high order code was validated by computing a
Blasius boundary layer test case. The validated code
is used for the simulations of the flat plate separation
bubble test cases. The separation bubbles are induced
by imposing velocity gradients in the freestream. The
freestream velocity gradients are varied to change the
size of the separation bubble, and to study the onset
of unsteady vortex shedding. The unsteady character-
istics are further studied by introducing disturbances
upstream of the separation bubble. Results of 2-D sim-
ulations for cases with varying disturbance amplitudes
and frequencies are presented.

3.1 New High Order Scheme

Blasius Boundary Layer Case

The high order incompressible explicit Navier-Stokes
code was validated by computing a flat plate boundary
layer test case. The flow variables are nondimensional-
ized as follows:

-,

u = ___K , w =

L '
w;*

In this test case the Reynolds number is 105 and the
characteristic length is 0.05m. The domain ranges
x0 — 0.37 to XN = 0.5 in the x-direction and the
maximum in the wall normal direction is yw = 18.84.
A 101 x 101 grid, with the grid stretching parameter
a = 0.98, is used for the calculations. Figure 4 shows
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the grid distribution used in the calculations. The com-
putations are carried out using 4th, 8th, 10th, and 16th
order schemes. Figure 5 shows the variation of the
wall normal velocity in the wall normal direction at
x — 0.469 for the 16th order case. The solution is in
very good agreement with the Blasius solution. The
vorticity contours for the 16th order case are shown in
Fig. 6. A comparison of the wall vorticity for the dif-
ferent order cases is shown in Fig. 7. Figure 8 shows
a magnified view of Fig. 7. The magnified view shows
that the solution agrees excellently for the 8th, 10th,
and 16th order schemes.

Flat Plate Separation Bubble Case

The new high order scheme is used to compute the flat
plate separation bubble test case of Rist and Maucher
'-20-' and the results are compared with the results from

the existing fifth order code. In the test case the sep-
aration bubble is created by specifying a 8.8% drop in
the streamwise freestream velocity. The grid stretching
parameter a = 0.995, with a 301 x 101 grid is used for
the calculations. Figure 9 shows the comparison of the
wall vorticity distribution for the two cases. The results
show excellent agreement between the fifth order finite
difference scheme and the new high order scheme with
a eleven point stencil.

3.2 Flat Plate Separation Bubble Cases

The fifth order explicit Navier-Stokes code was used
to compute the flat plate separation bubble test cases
based on the approach of Rist and Maucher. ̂  In the
test cases the separation bubble is created by specifying
a jump in the streamwise freestream velocity. The flow
variables are nondimensionalized as follows:

* = T , y = vne- , L '
U* r—— V" W*u = -—- , v = V-Re-— , w = -— (20)

In this test case the Reynolds number is 105 and the
characteristic length is 0.05m. The domain ranges
x0 = 0.37 to XN = 5.06 in the x-direction and the max-
imum in the wall normal direction is y^ — 18.84. Test
cases with velocity jumps of 8.8%, 8.9%, and 9%, and
9.5% from x — 0.71 to x — 2.43, are considered in the
simulations. The separation bubble produced for the
8.8% case is shown in Figure 10. The wall vorticity
distribution is shown in Figure 9. The zero vorticity lo-
cations correspond to the separation and reattachment
points.

The mean flow from the 8.8%, and 8.9% velocity jump
cases is chosen for the disturbance test cases. The 2-D
disturbances were induced by blowing and suction up-
stream of the flow. The disturbance is induced at a
blowing and suction strip from x = 0.55 to x = 0.70.

The disturbance form is as follows:

V ( x , Q , t ) = AVRevw(x)sin(l3t)

where vw(x) is the wall-forcing function, and /? is the
nondimensional frequency. vw(x) is zero everywhere
except within the disturbance strip, where a point-
symmetric fifth order polynomial amplitude distribu-
tion with respect to the center of the strip is used. All
the test cases considered are tabulated in table 1.

Effect of disturbance amplitude

The effect of disturbance amplitudes is studied by
varying the amplitudes from 5 x 10~8 to 1 x 10~3 for
the 8.8% and 8.9% velocity drop cases. Figure 11
shows the variation of disturbance fourier amplitudes
in the streamwise direction at y — 0.18846S for the
A = 5 x 10~8, and the 8.8% velocity drop case. The
result shows that the disturbance growth is similar for
all the modes and there are no nonlinear effects. Fig-
ure 12 shows the disturbance fourier amplitudes for the
A = l x l O ~ 4 case. In this case the higher modes are
grow and saturate in the separation bubble, and the
nonlinear effects can be seen. When the initial ampli-
tude is further increased to A — I x 10~3 similar results
are obtained as shown in Fig. 13. For the 8.9% velocity
drop case a similar trend is observed. Figure 14 shows
the disturbance fourier amplitudes in the streamwise di-
rection at y = 0.1884<J5 for the A = 5 x 10~8 case. All
the modes grow linearly through the separation bubble.
Figure 15 shows the amplitudes for the A = I x 10~5

case. The presence of nonlinear effects can be clearly
seen. For the A = 1 x 10~4 and A = I x 10~3 cases
similar results are observed as shown in Figure 16 and
Figure 17. In this case the disturbance growth is high
enough to induce vortex shedding from the separation
bubble. Figure 18 shows a sequence of instantaneous
streamline plots to illustrate the resulting vortex shed-
ding process.

Effect of disturbance frequency

The second set of calculations was done for a fixed
amplitude and with varying frequencies. Figure 19
shows the disturbance amplitude growth with stream-
wise coordinate (x), for the flat plate separation bubble
test case with A = 5 x 10~8, /? = 5.4 and /? = 2.7. The
results show that the /3 = 5.4 leads to a much higher
amplification of the disturbance. Hence, it is essential
to study the stability characteristics of the separation
bubble to find the most unstable disturbance frequency.

Effect of freestream velocity drop size

As discussed in the section on amplitude effects,
a larger separation bubble (8.9% case) causes higher
growth rates and leads to vortex shedding at lower dis-
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turbance amplitudes. This is further illustrated by the
9.5% velocity drop case. In this case the numerical
noise is enough to result in unsteady vortex shedding as
shown in Figure 20. This is a possible explanation for
unsteadiness in the numerical simulations by Pauley et.
al. *-3l\ However, in cases with vortex shedding three
dimensional effects will be very important. Three di-
mensional simulations are currently in progress to eval-
uate the effects.

4 Discussion of Results

The two dimensional simulations have shown that the
vortex shedding process is initiated by the growth of dis-
turbances in the separation bubble. For a sufficiently
large separation bubble the numerical noise is enough
for destabilization. This corresponds to the pressure
gradient criteria proposed by Pauley et. al. *-3l\ This
also a possible explanation for the bursting of the sep-
aration bubble reported by Gaster ^. However, three
dimensional effects are important in such transitional
flows. For small separation bubbles Alam and Sand-
ham t26^ found that the three dimensional breakdown
to turbulence is fundamentally different from the two
dimensional simulation results. However, for high pres-
sure gradients (or suction strengths) the two dimen-
sional vortex shedding may dominate the breakdown
process. Three dimensional simulations for high veloc-
ity drop cases are in progress to evaluate the shedding
process and the bursting of short bubbles to form long
bubbles.

5 Summary

An unsteady incompressible Navier-Stokes code, of
arbitrarily high order on stretched grids, has been devel-
oped and verified by simulating a Blasius flow test case
and a separation bubble test case. A fifth order code has
been used to study separation bubble test cases. The
separation bubble was found to be highly sensitive to
the freestream velocity gradient imposed. The stability
characteristics were studied by introducing disturbances
by blowing and suction on the wall upstream of the sep-
aration bubble. The amplitudes and frequencies of the
disturbances were varied. For high amplitude cases, the
presence of nonlinear effects was seen, and the instabili-
ties led to vortex shedding. The disturbance amplitude
required to induce the shedding was found to reduce as
the separation bubble size increased. For a sufficiently
large separation bubble, the numerical noise was suffi-
cient to induce the vortex shedding. Three dimensional
simulations will be required to fully ascertain the effects
of disturbances on the unsteady vortex shedding. The
new high order scheme will be used for the proposed
simulations.
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Receptivity
Laminar I I
Boundary Layer * *
Separation

Turbulent Flow

Linear Instability Interaction of
Nonlinear Disturbances

Table 1: List of unsteady separation bubble test
cases considered. The freestream velocity drop,
the disturbance amplitudes, and the disturbance
frequency are varied

Figure 1: Structure of the separation bubble for low-
Reynolds-number flows. A schematic detailing the
growth of disturbances in various regions of the sepa-
ration bubble.

Velocity Drop

8.8%

8.8%

8.8%

8.8%

8.9%

8.9%

8.9%

8.9%

9.5%

Amplitude

5 x 10-s

1 x 10~4

1 x 10-3

5 x 1(TB

5 x 10-8

1 x IfJ-5

1 x 10-4

1 x 10~3

Unsteady Vortex Shedding

Frequency

5.4

5.4

5.4

2.7

5.4

5.4

5.4

5.4

-

— - Chebyshev grid (a = 0)
— a = 0.9
— a = 0.9995
— Uniform (a=1)

Figure 2: Grid stretching function used in this paper (x
vs. i/N).

0.94 0.96
a (stretching parameter)

Figure 3: Grid stretching factor as a function of the
stretching parameter a.

American Institute of Aeronautics and Astronautics



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

Figure 4: The 101 x 101 grid used for incompressible
computations. The grid stretching parameter a is set
to 0.98 in both directions.

16th order
10th order
8th order
4th order

Figure 7: Comparison of the wall vorticity distribu-
tion computed using the 4th, 8th, 10th, and 16th order
schemes.

yReos/L
16th order finite difference
Exact Solution

Figure 5: Comparison of the wall normal velocity nu-
merical solution with the Blasius solution, at x/L =
0.469. The numerical solution is calculated using a 16th
order scheme.

Figure 8: Comparison of the wall vorticity distribu-
tion computed using the 4th, 8th, 10th, and 16th order
schemes. A magnified view near the end of the compu-
tational domain.

- 11 Point Stretched Grid
5th Order Uniform

0.38 0.40 0.42 0.44 0.46 0.48 0.50

Figure 6: Spanwise vorticity contours for the incom-
pressible flat plate boundary layer case. The numerical
solution is calculated using a 16th order scheme.

Figure 9: Comparison of the wall vorticity distribution,
for the 8.8% velocity drop case, computed using a 11
point stencil (10th order) and the existing fifth order
scheme.
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Figure 10: Mean flow streamlines showing the separa-
tion bubble for the 8.8% velocity drop case.

10'5

10'"

n=1
n=2
n=3
n=4

Figure 11: Variation of disturbance fourier amplitudes
in the streamwise direction at y — 0.1884<J5. The wall
blowing and suction amplitude is set to A — 5 x 10~8,
and the freestream velocity drop is set to 8.8%.

Figure 13: Variation of disturbance fourier amplitudes
in the streamwise direction at y = 0.1884cJs. The wall
blowing and suction amplitude is set to A = I x 10~3,
and the freestream velocity drop is set to 8.8%.

Figure 14: Variation of disturbance fourier amplitudes
in the streamwise direction at y = 0.1884<JS. The wall
blowing and suction amplitude is set to A = 5 x 10~8,
and the freestream velocity drop is set to 8.9%.

10'7

10"'

10'8

10'10

10'7

Figure 12: Variation of disturbance fourier amplitudes
in the streamwise direction at y = 0.1884£5. The wall
blowing and suction amplitude is set to A = 1 x 10~4,
and the freestream velocity drop is set to 8.8%.

Figure 15: Variation of disturbance fourier amplitudes
in the streamwise direction at y = 0.1884£5. The wall
blowing and suction amplitude is set to A = 1 x 10~5,
and the freestream velocity drop is set to 8.9%.
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10'5

Figure 16: Variation of disturbance fourier amplitudes
in the streamwise direction at y — 0.1884JS. The wall
blowing and suction amplitude is set to A = 1 x 10~4,
and the freestream velocity drop is set to 8.9%.

Figure 17: Variation of disturbance fourier amplitudes
in the streamwise direction at y — 0.1884£5. The wall
blowing and suction amplitude is set to A — I x 10~3,
and the freestream velocity drop is set to 8.9%.
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Figure 18: Flow field streamline plots, in sequence in time, showing the vortex shedding process for the flat
plate separation bubble test case with /? = 5.4, for the 8.9% velocity drop case with a disturbance amplitude of
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Figure 19: Disturbance amplitude growth with stream-
wise coordinate (x), for the flat plate separation bubble
test case for the 8.8% velocity drop case with /3 = 5.4
and /? = 2.7. The Reynolds-number is 105 and the
reference length L — 0.05m. The disturbances are in-
troduced by blowing and suction at the wall upstream
of the separation bubble.

Figure 20: Flow field streamline plot for the 9.5% ve-
locity drop case showing vortex shedding.
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