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Abstract

Due to the progress in computer techniques in recent
years, distributed memory parallel systems are rapidly
gaining importance in direct numerical simulation of the
stability and transition of compressible boundary lay-
ers. However, most of the numerical methods used are
explicit high-order finite-difference methods. The diffi-
culty in using explicit methods for DNS of hypersonic
flow is the limitation of the temporal steps since the
Navier-Stokes equations are stiff for explicit numerical
schemes. A short marching step can not be avoided dur-
ing the computation due to stability limitation. This re-
quires implicit treatment in algorithms. In this paper,
we extend our previous work to develop and validate
efficient and high-order time accurate parallel implicit
numerical methods including parallel Fourier spectral
methods on massively distributed memory computers
to solve unsteady Navier-Stokes equations. Divide and
conquer method and parallel iterative method are con-
sidered as the block linear system solver. The efficiency
and accuracy of the new parallel implicit code has been
tested in solving a 2-D convection-diffusion model equa-
tion first. Several test cases, which include the numer-
ical simulations of the supersonic flow over a sphere,
and hypersonic boundary layer receptivity to freestream
acoustic waves over 3-D blunt wedge, are used to evalu-
ated the efficiency and accuracy of the new parallelized
code. At last, on-going work of simulating nonlinear
wave breakdown process of instability waves in hyper-
sonic boundary layers over a 3-D parabolic leading edge
is studied by implementing the new algorithms.

1 Introduction

The prediction of laminar-turbulent transition in hy-
personic boundary layers is a critical part of the aero-
dynamic design and control of hypersonic vehicles ̂ .
Due to the progress in computer techniques in recent
years, distributed memory parallel systems are rapidly
gaining importance in fields where computational per-
formance is important such as computational fluid dy-
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namics (CFD). On massively parallel systems, domain
decomposition method is used to distribute the load be-
tween processors by dividing the computational domain
into sub-domains. This makes direct numerical simula-
tion become a powerful tool in the study of fundamental
flow physics of the stability and transition of boundary
layers ^2)3l There has been considerable research in-
terest in parallel algorithms of solving block matrices
on massively distributed memory computers and direct
numerical simulations of laminar-turbulent transition of
compressible boundary layers.

In DNS studies, the full unsteady Navier-Stokes equa-
tions are numerically simulated without using any em-
pirical turbulence models. The development of the in-
stability waves and the nonlinear breakdown processes
are numerically captured by the simulations. Though
such simulations are computationally intensive, they
have the ability to simulate many of the physical ef-
fects that are not possible by other approaches. Most
of the numerical methods used are explicit high-order
finite-difference methods in the non-periodic streamwise
and wall-normal directions, and the Fourier spectral
methods in the periodic spanwise direction ^4~6\ assum-
ing a simple flat surface without the presence of shock
waves. But it is difficult to apply existing numerical
methods for compressible boundary layer DNS to hy-
personic boundary layers over blunt bodies. For viscous
flow calculations, the extremely small grid sizes in the
boundary layers near the wall are used. The stiffness of
the governing equations refers to the fact that the time
steps required by the stability requirement in the calcu-
lations are much smaller than that needed by accuracy
consideration so that it is difficult to perform the sim-
ulation in reasonable computation time. This requires
implicit treatment in algorithms.

Generally, works of implementing implicit schemes
on parallel computers are based on the approximate
factorization method employing either an alternat-
ing direction implicit(ADI) ™ or a lower-upper(LU)
factorization ^. However, these works mainly focus
on simulation of 2-D flow and at most second-order-
accurate time stepping is used. There have been very
few direct numerical simulation of hypersonic boundary
layer stability and transition on complicated 3-D con-
figurations by using high-order time-accurate implicit
algorithms on parallel computers. Implicit schemes are
more difficult to be parallelized primarily because of the
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inherent global spatial dependencies for the solution of
large systems in the form of block tridiagonal or more
diagonal matrices. Thus the existing algorithms for se-
quential computers to distributed memory computers
usually requires some algorithmic changes.

Many mathematicians have paid much attention on
how to solve the linear systems especially block lin-
ear systems which arise for example in the numeri-
cal solution of partial differential equations on paral-
lel computers. Parallel algorithms have been devel-
oped from fine-grained forms of parallelism to coarse-
grained forms of parallelism. For instance, parallel it-
erative methods ^9'10' which include iterative Jacobian
method, preconditioned conjugate gradient method f11^
and divide and conquer method t12'13^ are commonly
used to solve the block matrices on parallel comput-
ers. On the other hand, Fourier spectral methods have
been applied to solve the problem with periodic bound-
ary conditions on parallel computers ^14 '15^ because of
their high accuracy. Methods of mono-dimensional and
multi-dimensional parallel FFT algorithms^, parallel
algorithms of the Fourier pseudospectral method t15',
parallel spectral method with the Local Fourier Basis
'-17-' are the typical works in this field.

Recently, [18-20] has developed and validated a set
of fifth and seventh-order shock-fitting schemes for the
DNS of practical 2-D and 3-D hypersonic flows over pla-
nar or axisymmetric blunt bodies. Recently, we^2 1 '2^
we have already implemented parallel method to our ex-
plicit DNS code and semi-implicit DNS code to study
the hypersonic boundary-layer receptivity to freestream
disturbances over an elliptic cross-section cone and 3-
D parabola wedge on IBM SP2 computers. In semi-
implicit scheme, non-stiff terms in the governing equa-
tions are treated explicitly and simultaneously the stiff
terms are treated implicitly to overcome the stiffness of
the Navier-Stokes equations.

The objective of this paper is to extend the previ-
ous 3-D parallel high-order schemes with shock-fitting
method in [20,22] to solve compressible Navier-Stokes
equations implicitly. Divide and conquer algorithm and
parallel iterative methods are used to solve the big
banded Jacobian matrices from the implicit methods.
Meanwhile, parallel Fourier spectral method is applied
to the periodic spanwise direction. A 2-D convection-
diffusion model equation has been used to test the ac-
curacy and efficiency of the new parallelized implicit
methods. Analytical comparisons have been made to
study the efficiency of different parallelized algorithms
in solving the model equation. DNS of the supersonic
flow over a sphere and hypersonic boundary layer re-
ceptivity over 3-D blunt wedge are used to investigate
the numerical accuracy and efficiency of the new paral-
lelized code with shock-fitting method. Accuracy and
efficiency are investigated in these test cases. At last,
on-going work of simulating nonlinear wave breakdown
process of instability waves in hypersonic boundary lay-

ers over a parabolic leading edge is presented by imple-
menting the new algorithms.

2 Governing Equations and Numerical
Methods

2.1 Governing Equations

The governing equations are the unsteady three-
dimensional Navier-Stokes equations written in a
conservation-law form

where

dU_
dt

U = {p,

dFv
dxi

, pu2,

Fvj -

(e + p)'
0

(1)

(2)

(3)

P
e

TjkUk

PRT

(dui duj_., I _i i -j
\dxj dxi
<9T

(4)

(5)
(6)

tr% (7)

The details for the expressions above can be found
in [18]. The viscosity and heat conductivity coefficients
are computed by the Sutherland law and the assump-
tion of a constant Prandtl number. Perfect gas assump-
tion is used in all flows considered in this paper, though
the method presented here can be easily extended to
nonequilibrium real-gas hypersonic flows.

For numerical simulations of flow fields over a curved
body surface, structured body fitted grids are used to
transform the governing equations (1) in the Cartesian
coordinates into a set of curvilinear three-dimensional
coordinates (£, 77, f, r) along the body fitted grid lines.
The transformation relations for the two set of coordi-
nates are

= r i ( x , y y z , t )

r-t
y~ &/
t- T

(9)

The governing equations (1) are transformed into the
computational domain (£, r?, £, r] as follows

]_dU_ dE1 dF' 8G'
J dr d£ dr) dC
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where

E' =

(10)

(11)
Urit

F'v =

G'v = J

(13)

(14)

(15)

(16)

where J is the Jacobian of the coordinate transforma-
tion, and ^ j £y, £2, 77^, 7?y, 77-, 77^, Cr, Cyi and G are

the grid transformation matrices. In the equations, the
transformed inviscid fluxes E'', F', and Gf/ are standard
flux terms with known eigenvalues and eigenvectors.
The transport flux terms E'v, F^ and G'v contain both
first-order and second-order spatial derivatives of veloc-
ity and temperature. These derivatives in the Cartesian
coordinates ( x , y, z) are transformed into the computa-
tional coordinates (£, 77, £) using a chain rule for spatial
discretization.

2.2 Implicit Method

2.2.1 High-Order Semi-Implicit Method

The stiffness of viscous flow simulations is mainly due
to terms associated with derivatives in the wall-normal
direction (^~ and ^r) because of grid stretching near
the wall. Therefore, Navier-Stocks Equation (10) for a
three-dimensional flow in (f, 77, (", r) is additively split
into relatively nonstiff part f ( U i j k ) and stiff part g(Uijk)
as follows

1 dUijk
J dt 'W (17)

where details can be found in Ref. [22]. In Eq. (17),
g(Uijk) is much stiffer than f(Uijk) since grid spacing
in the wall-normal direction is much smaller than that
used in streamwise direction for most viscous flow sim-
ulations. Therefore, high-order semi-implicit method
can be used to overcome the stiffness of g ( U i j k ) while
maintaining high-order temporal accuracy.

The split governing equation (17) is first approxi-
mated by high-order accurate finite difference methods.
For the case of direct numerical simulation of compress-
ible boundary layers with a bow shock, the shock wave
can be treated by a shock-fitting method because there
is no discontinuity in the interior of the computational
domain. In this paper, a fifth-order upwind scheme ̂
is used to discretize the inviscid flux derivatives. Mean-
while, high-order central difference schemes, such as the

sixth-order central scheme, are used to discretize the
viscous flux terms in the equations. A simple local Lax-
Friedrichs scheme is used to split the inviscid flux vec-
tors into positive and negative wave fields. Details of
derivations can be found in Ref. [22]. The spatial dis-
cretization of the split Eq. (17) using these high-order
schemes coupled with appropriate boundary conditions
leads to a system of ordinary differential equations in
the form of

(18)

where u = {/7,j,fori = ! , - • • / £ , j ~ 1,--JL} is
the vector of all discretized variables in the flow field,
[f( tf ,u)] represents the discretized nonstiff term, and
[g(t,u)j represents the discretized stiff term.

The system of ordinary differential equations of Eq.
(17) can be integrated in time using semi-implicit tem-
poral schemes, where f is treated explicitly and g is
treated implicitly. It was shown by Zhong ̂  that in
order to have a third or higher order temporal accu-
racy, the semi-implicit method need to be derived in a
way that the effects of coupling between the implicit
and explicit terms on the accuracy need be considered.
Zhong L231 subsequently derived three kinds of third-
order semi-implicit Runge-Kutta schemes for high-order
temporal integration of the governing equations for re-
acting flow simulations. High-order low-storage semi-
implicit Runge-Kutta method versions(LSSIRK) have
also been derived in [24]. In particular, Rosenbrock type
Runge-Kutta (LSSIRK-rC) Method can be written as
following

h (f (uj-i) -f
+ aj [I - hcj

'.x +
-i -f (19)

where j = I , . . . , r and parameters Cj, GJ , bj can be found
in [24]. For instance, in LSSIRK-3C, b1 = i, 62 = f,
63 = 3, ai = -I, a2 = - ff, cx = 2.26760, c2 = 2.68530,
c3 = 2.30975, c2 = -1.14310, and c3 = -2.03122. The
parameters of the semi-implicit Runge-Kutta methods
are chosen by both stability and accuracy requirements
with the simultaneous coupling between the explicit and
implicit terms.

In applying the semi-implicit method to Navier-
Stokes equation (18), global Jacobian matrices J comes
from the implicit method and can be defined by J(u) —
dg/du. As the derivations in Ref. [25], the fifth-order
upwind scheme and sixth-order central scheme are used
to approximate the derivatives of -^- and $?. This
leads to

-f+Vijk6Uijk +
+Gijk6Uij+3k (20)
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where the coefficient matrices can also be found in Ref.
[25].

The final global Jacobian matrix for the system of or-
dinary differential equations, Eq. (18), is a block seven-
diagonal matrix involving terms along the j grid di-
rection only. This block seven-diagonal system of equa-
tions can be solved efficiently by a banded matrix solver.

The physical boundary conditions for viscous flows
are non-slip condition for velocity and isothermal or adi-
abatic condition for temperature. The freestream flow
conditions are specified by a given flow. For the flow
disturbed by disturbances, the disturbances are speci-
fied according to the particular physical nature of the
disturbances. Since the emphasis of current paper is the
parallelized semi-implicit method for efficient and accu-
rate time integration of the governing equations, we will
mainly consider flows with a supersonic exit where the
reflection of disturbances are negligible.

Boundary conditions on the wall are included in the
global Jacobian matrix to ensure that it is a global im-
plicit equation and advanced in time. For example, to
include the lower wall boundary conditions, by impos-
ing the fourth-order boundary conditions, 8Un can be
written as,

du ov

n 8V (dU_ dVu dV

,dU^ ,8V,,,~_J_21 \ / _"__\ c-r1"
uv dVis dU

where V and ^jj can be found in appendix, f^rO' =
2, . . . , 5) is the coefficients of the corresponding boundary
conditions applied to the lower wall.

2.2.2 Two-sweep Gauss-Seidel Line Relaxation
Method

To run the code implicitly, two-sweep Gauss-Seidel
line relaxation method is considered as one way to treat
both streamwise and wall-normal direction implicitly.
Equation (10) for a two-dimensional flow in (£, 77, r) is
written as follow

1
J dr

_ _
dt; + 5^ 8r,

3F'

dr (21)

where i and j are the grid indices in the £ and 77 direction
respectively.

The implicit formulation of above equation is

Ar 6F 'n+1

Two-sweep Gauss-Seidel line relaxation method is ap-
plied to solve Eq. (21).

Backward sweep:

[/;+2j (23)

Forward sweep:

+ + . + &J. (24)

where the coefficient matrices are relative the deriva-
tives of uy v,p, T. For each sweep, the left side is solved
by good pentadiagonal solver as described in following.

2.3 Parallel Methods of Solving Block Linear Systems

The standard (portable) message passing inter-
face(MPI) is the parallel library we used to parallelize
our code. A cluster of workstations are used to run
our parallel codes. The present configuration has 24
RISC/6000 processors. The main memory capacity of
these nodes is 256 megabytes. Divide and Conquer
(DAC) method and parallel iterative methods are pre-
sented to solve the block linear systems on massively
distributed memory computers. These methods have
been extended to solve the big Jacobian matrices of im-
plicit algorithms during numerically solving high-order
discretized nonlinear Navier-Stokes equations.

2.3.1 Divide and Conquer Method

Though the divide and conquer method is developed
for solving the multi-diagonal matrix on MIMD parallel
computers, only tridiagonal matrix solver using 3 nodes
are presented here for simplicity. The extension to more
diagonal matrix solver using more nodes is straightfor-
ward.

Consider the tridiagonal linear system Tx = d with
n — pk equations. The divide and conquer method
divides the given tridiagonal system into p parallel tasks
of size k — n/p. T is partitioned into block tridiagonal
form with each diagonal block a Ar x k tridiagonal matrix
and each subdiagonal block a k x k null matrix, except
for one single nonzero element on its upper right (lower
left) corner. The tridiagonal system can be written in
block form as

(22)

\

Bi T2
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where 7} are tridiagonal matrices,

and

Bj =

\ o
/ o o \

\ c(j-i)k ... 0 f

where j — 1, 2, ...,p. x and d are partitioned to conform
with the blocks of T:

\
J —

For j - 1,2, ...,p, by defining

-I

where m — 2f — 2, ei and e& are the first and last unit
vector. We have the following implicit relations

4- a2j~2^2j-2 +
2 < j < P -

where #1, a2,...5 »2p-25 ^4 satisfy the relations as fol-
lowing reduced systems:

1/c/c eiT2-2

2.3.2 Parallel Iterative Method

Parallel iterative methods are also used to solve the
banded matrix and dense matrix on MIMD machines.
In each iteration, the coefficient matrix is used to per-
form matrix-vector and matrix-matrix multiplications.
The number of iterations required to solve a system of
equations with a desired precision is usually data depen-
dent; hence, the number iterations is not known prior to
executing the algorithm. If iterative methods yield a so-
lution, they are usually less expensive than direct meth-
ods for matrix factorization, especially for solving dense
matrix. Parallel Jacobi iterative method and the paral-
lel preconditioned conjugate gradient iterative method
are tested in our work.

Parallel Jacobi Iterative Method

The ith equation of a system of linear equations Tx =

\ ei Vip-1
From the solution of above equations, we then ob-
tain the desired solution a?i, #2, #3- Two kinds of
approaches, all-to-all broadcast ^3-" and folded skip-
decoupling method ̂  , are used to solve above reduced
systems.

is:

n-l

If all the diagonal elements of T are nonzero, a typical
iteration step of the above equation can be written as:

—rp
-*- i iJ

>

j=o
,>-i

k-l

where rik~l — di — ^Dj=o TijXj k~l is the residual
after k iterations.

Each iteration of the Jacobi method given in above
performs three main computations: the vector inner
product, the calculation of Xik , the matrix- vector multi-
plication. After proper mapping the matrix to different
processors, calculation of Xik can be done in parallel
without any communication, vector inner product and
sparse matrix- vector multiplication can be executed in
parallel with communication.

Parallel Preconditioned Conjugate Gradient Method

The conjugate gradient method belongs to a class of
iterative methods known as minimization methods. If
the coefficient matrix T has / distinct eigen values, the
conjugate gradient algorithm converges to the solution
of the system Tx = d in at most / iterations. Therefore,
if T has many distinct eigenvalues that vary widely in
magnitude, the conjugate gradient algorithm may re-
quire a large number of iterations to converge to an
acceptable approximation to the solution. The speed
of convergence of the conjugate gradient algorithm can
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be increased by preconditioning T with the congruence
transformation T — RTRT, where R is a nonsingular
matrix. R is chosen such that T has fewer distinct eigen-
values than T.

An typical iteration of preconditioned conjugate gra-
dient method is:

where
Jk-i

PkTTpk
T

xk — xk — \

Oik

Ik

Pk+l

where Zk is calculated from Mzk — rk. M = (RTR)~l

is the preconditioner matrix. The parallel precondi-
tioned conjugate gradient algorithm involves the follow-
ing four types of computations in each iteration: matrix
plus matrix, vector inner products, matrix-vector mul-
tiplication, and solving the system Mzk — rk.

2.4 Parallel Fourier Spectral Method
As the basic part of the parallel Fourier spectral

method, discrete Fourier transform (DFT) has been
studied by many researchers. In 1965, Cooley and
Tukey devised an algorithm to compute the DFT of an
n-point series in O(nlogn) operations. Their new al-
gorithm was a significant improvement over previously
known methods for computing the DFT, which required
O(n2) operations. The revolutionary algorithm by Coo-
ley and Tukey and its variations are referred to as the
fast Fourier transform (FFT). Due to its wide applica-
tion in scientific and engineering fields, there has been
a lot of interest in implementing FFT on parallel com-
puters.

In our research, parallel Fourier spectral method is
used to solve the derivatives in periodic spanwise di-
rection on massively distributed memory parallel com-
puters. The binary-exchange algorithm which is based
on iterative FFT algorithm is implemented to compute
an n-point FFT on p processors, when n > p. Assum-
ing that both n and p are powers of two with p — 2d

and n = 2r, the sequences are partitioned into blocks of
n/p contiguous elements and assign one block to each
processor. If (60&i...6 r_i) is the binary representation
of any i, then R[i] and S[i] are mapped onto the pro-
cessor labeled ( & o • • • & < / ) • That is, the d most significant
bits of the index of any element of the sequence are
the binary representation of the label of the processor
that the element resides on. This property of the map-
ping plays a significant role in determining the amount
of communication performed during the parallel execu-
tion of the FFT algorithm. To estimate the execution
time of the algorithm, each communication operation

exchanges n/p words of data. The time spent in commu-
nication in the entire algorithm is ts logp+tw (n/p) log p.
A processor updates n/p elements of R during each of
the log n iterations. If a complex multiplication and
addition pair takes time tc, then the parallel run time
of the binary-exchange algorithm for n-point FFT on a
p-processors parallel computer is

Tp = tc- - (25)

So in parallel Fourier spectral method, the consuming
time is about twice of Tp , which includes time for par-
allel FFT and time for parallel inverse FFT.

3 Numerical Results

A flexible three-dimensional solver has been written
by using parallelized explicit and semi-implicit high-
order upwind schemes for the spatial discretization with
a high-order shock fitting algorithm. Parallel Fourier
collocation method are used in computing the azimuthal
direction. Investigations have been done as followings:

3.1 Parallel Performance Studies on Solving Model
Equation

A two-dimensional linearized model convection-
diffusion equation bounded by two parallel walls is

du du du 1 d2u
(26)

where R is the so-called "Reynolds number". The
boundary conditions are u(x,Q) — u ( x , l ) — 0. When
R is large, there is a thin viscous boundary layer on
the wall with large gradients in y direction. This model
problem is not a practical flow problem, but it is used
to test the accuracy and efficiency of the parallel semi-
implicit method. We are looking for the temporal de-
velopment of the solution in the following form:

u ( x , y , t ) = Y ( y ) e i
(27)

where k is a real number. The complex parameter u;
and Y(y) are an eigenvalue and eigenfunction of the
characteristic equation. Substituting Eq. (27) into Eq.
(26) leads to the following solution:

where n ~ 1, 2, • • •. The solution represents and expo-
nential decay of the oscillation energy. There, if we use
un(x} y, 0) given by Eq. (28) as an initial condition, the
exact solution of the model equation is also given by the
same equation.

The finite difference discretization of the spatial
derivatives leads to a system of semi-discrete ordinary
different equations, i.e.

(29)

American Institute of Aeronautics and Astronautics



c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization,

where model problem, we have:

du_
dx (30)

(31)

where explicit third-order upwind approximation is used
for ux> and second-order central difference approxima-
tion is used for uy and uyy terms. ASIRK-1 and two-
sweep Gauss-Seidel line relaxation method have been
used to do the temporal discretization respectively. The
divide and conquer method and two kinds of parallel
iterative methods (parallel Jacobi and parallel precon-
ditioned conjugate gradient method) are used to solve
a big banded matrix created by implicit methods.

A periodic boundary condition is used in the x direc-
tion. An antisymmetric boundary condition is used at
the walls to calculate u located at one grid-point outside
of the walls. Simple uniform grids are used. The condi-
tions for the calculation are: R = 10, k = 0.01, C — 1,
n ~ 3. To test the accuracy of the parallel code, the
computation uses a set of 51 x 45 grids to discretize the
computation domain. Three processors are used during
computation. Figure 2 shows the contours of solutions
at t — 0.5335. Figure 3 and Figure 4 show the numerical
solution distribution along the x direction at y — 0.18
and the distribution along the y direction at x — 0 and
at l — 0.5335. DNS results agree with exact solution
very well.

To study the performance of different implicit algo-
rithms, the execution time of an algorithm for a problem
size denoted by n, on a parallel system with P proces-
sors can be written as:

T(n, P) = i communication (32)

Ideally, we can assume that no other overhead occurs
except communication of the overlap regions, the se-
quential execution time is:

T(n, 1) = P X TcaiCuiation (33)

Hence the speedup and parallel efficiency are given by:

5(n,P) = Px
rp
^calculation

-'-calculation r -*• communication

____________P _________

•*• "r -*-communication IJ-calculation

E(n,P) =
J- T~ J- communication I -L calculation

(34)

(35)

For the best algorithm, S(n,P) = P, E(n,P) ~ 1,
which means the ratio of g£m7nt4rn'ga*r:f?n is close to zero.

-*• calculation
The amount of data sent and received per processor is
proportional to the number of boundary cells, while the
amount of computations performed by each processor
is proportional to the number of interior cells. For the

T^lculation = Ci X TIX X UIJ X tcaic (36)

•L communication ~~ C2 X Z X TIX X

where tcaic represents the time required to perform a
floatingpoint operation, tcomm denotes the time needed
to communicate one floating point number, GI and c^
are constant. Figure 5 shows the efficiency compari-
son of different implicit algorithms by using divide and
conquer method and two parallel iterative methods (Ja-
cobi and preconditioned conjugate gradient). During
the comparison, the computation size of each subdo-
main is keeping same along with the increasing of the
computation nodes. Both divide and conquer method
and parallel iterative methods perform good in both
semi-implicit and full-implicit method.

3.2 Supersonic Flow over a Sphere

As the second validation of the new parallel semi-
implicit code, a sphere is chosen since there are a lot
of experimental results for a sphere in supersonic flow
[20,27] Qur numericai results are compared with exper-

imental results to check the accuracy of the new implicit
parallel algorithms.

The body surface is a sphere given by:

z** = rf" (38)

where d* is the radius of the sphere and is used as the
reference length. The flow conditions are

M^ = 5.25 and 7.4 6 = 5 x 10~4

T^ = 192,989 K p^ = 10.3 Pa
T*=IQQQK 7=1.4

R* = 286.94 Nm/kgK Pr = 0.72
d* = 0 . 6 m
T; = 288/1 r; = 110.33 K
// - 0.17894 x lQ~4kg/ms
Jfeoo =ploUZod* 7/^ = 36,159.3

The body surface is assumed to be a non-slip wall with
an isothermal wall temperature T^.

The results presented in here are obtained using 91
grid points in the streamwise direction and 61 points in
the wall-normal direction. 32 Fourier collocation points
are used in computing the azimuthal direction. 6 pro-
cessors are using to run the high-order parallel implicit
codes. Figure 6 shows the steady solution for a set of
90 x 60 x 32 computational grids and the axisymmet-
ric steady solutions for velocity vectors obtained by the
numerical simulations for Mach numer 5.25 flow over a
sphere. Bow shocks are captured well by the methods.
Since these steady flows are axisymmetric, we present
the results only in a computational surface of a fixed
azimuthal angle. Figure 7 shows the contours of steady
axisymmetric flow solutions of Mach numbers, pressure,
and entropy for the Mach number 5.25 flow over the
sphere.
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Figure 8 shows the computed and experimental pres-
sure coefficients

Pbody /(7/2)pcoMoo2 (39)

for Mach number 5.25 and Mach number 7.4 in deary's
experiments t27!. The agreement is pretty good, at
least to within the scatter in the experimental data.
Because of the way that the experiments were done,
Cleary claimed that the data should only be accurate
to xl = 0.75. We still can see good agreement for the
larger values of x1. Figure 9 compares the computed
and experimental bow shock shapes for two test cases
with freestream Mach numbers of 2 and 4. Numeri-
cal results by using the new semi-implicit method com-
pare very well with the experimental results. The new
parallel semi-implicit method can approach high-order
accuracy in DNS of 3-D boundary layer problem.

Grid refinement comparisons are done to verify that
the results is grid independent. The numerical resolu-
tion of the 90 x 60 x 32 grids is evaluated by comparing
their resolutions with fine 180 x 120 x 32 grid solutions
for Mach number 5.25 case. Figure 10 compares the
pressure coefficients on the body surface for the two
sets of grids. Figure 11 shows the Mach number along
the stagnation line for the two set of grids. All these
steady solutions show that the two sets of results agree
with each other very well and the steady solutions are
well resolved by the grids.

3.3 Receptivity of 3-D Hypersonic Boundary Layer
over a Blunt Wedge

Our new 3-D parallel shock-fitting hypersonic DNS
code has been applied to DNS of the receptivity of a
three-dimensional boundary layer to weak freestream
oblique acoustic disturbance waves for a hypersonic flow
boundary layer over a 3-D parabolic leading edge whose
body surface is given by

x'" — y -d* (40)

where 6* is a given constant and d* taken as the ref-
erence length. The body surface is assumed to be a
non-slip wall with an isothermal wall temperature T£.

The specific flow conditions are

Moo = 15

T^ = 192.989.
T^ = 1000 K

^r 5 x 10~4

£, = 10.3 Pa
= 1.4

6 * ^ 4 0 m ~ 1 <F=0 .1m
Tr* = 288# T5* = 110.33 K
^ = 0.17894 x lQ~4kg/ms
Nose Radius of Curvature = r* = 0.0125 m
fleoo=P^ <**//£> =6026.55

There is no flow in spanwise direction. Steady results
have been obtained by using the new implicit parallel
shock-fitting code.

In the simulations, steady flow solutions are first ob-
tained by advancing the unsteady flow computations
to convergence using the new parallelized semi-implicit
computer code. No disturbances are imposed in the
freestream. Subsequently, freestream disturbances are
superimposed on the steady mean flow to investigate the
development of T-S waves in the boundary layer with
the effects of the bow shock interaction. The freestream
disturbances are assumed to be weak monochromatic
planar acoustic waves with wave front oblique to the
center line of the body in the x — z plane at an an-
gle of ip. The perturbations of flow variables in the
freestream introduced by the freestream acoustic wave
before reaching the bow shock can be written in the
following form:

2'oo =
i(k cos-ip x-\-k sin ip z—ujt (41)

where \q'\ represents one of the flow variables, \u'\j |v'|,
\wf , |p'|, and \p'\. The freestream perturbation ampli-
tudes satisfy the following relations:

= € COS'0 ,

\Pl

where e represents the freestream wave magnitude. The
angle ^ is the angle of freestream wave with respect to
the x axis in the x-z plane, where ^ = 0° corresponds
to 2-D planar waves. The parameter k is the dimen-
sionless freestream wave number which is related to the
dimensionless circular frequency u by:

u = ^(cos^ + M^1)

The dimensionless frequency F is defined as:

t,1*,,*
PI __

£/*2 •
^oo

Steady Flow Solutions

The specific flow conditions are

Moo = 15

Ti = 192.989 K

(42)

(43)

= 1000.fi:

rr 5 x 10~4

^ = 10.3 Pa
= 1.4

H* = 286.94 Nm/kgK Pr = 0.72
6*rz40??7-1 c?*rr0.1m
T; = 288 A" T5* = 110.33 A"
/** = 0.17894 x lQ~4kg/ms
Nose Radius of Curvature ~r* — 0.0125m
^oo =pSo%d*/^ = 6026.55

The body surface is assumed to be a non-slip wall with
an isothermal wall temperature T^.

To show the efficiency and accuracy of the code us-
ing high-order semi-implicit method, we compare the
results of the steady flow solutions of the Navier-Stokes
equations for the viscous hypersonic flow over the 3-D
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blunt weclge obtained by using this new method with
the results obtained by using the parallelized explicit
fifth-order unsteady computer code in Ref. [21]. We
use ASIRK-1C method in time steps and advance the
solutions to a steady state without freestream pertur-
bations.

The results presented in here are obtained by using
161 grid points in the streamwise direction and 121
points in the wall-normal direction, 4 Fourier colloca-
tion points are used in computing the azimuthal di-
rection. Figure 12 shows the steady solution for a set
of 161 x 121 x 4 computational grids obtained by the
simulation. Figure 13 shows steady flow solutions for
temperature and pressure contours obtained by using
12 processors simultaneously. Edges in figure are the
boundaries of subdomains.

Unsteady Flow Solutions

In this section, we choose the generation of boundary-
layer T-S and inviscid instability waves by freestream
acoustic disturbances for hypersonic flow over a
parabolic leading edge with freestream disturbance fre-
quency F — 1770, and e — 5 x 10"3 as the test case for
comparing the new parallelized semi-implicit method
using divide and conquer method solving banded Jaco-
bian matrix with the parallelized explicit method. We
change the freestream disturbance wave angle ij) from
0° to 15°, 30°, 45°, 55°, 60°.

Figure 15 shows the 3-D contours of the instantaneous
perturbation u1 the velocity in x direction for ty — 30°.
Figure 14 shows contours of the instantaneous perturba-
tion uf the velocity in one cross-section and the Fourier
amplitude | u' after the flow field has reached a peri-
odic state for ̂  = 30°. The instantaneous contours of uf

show the development of three-dimensional first-mode
waves in the boundary layer on the surface. From the
figure, the characteristics of the switching of instabil-
ity modes for first mode instability dominated region to
second mode with the sudden phase angle change near
the body surface around x — 0.2 can be observed. Ta-
ble 1 shows the efficiency comparisons of the CPU time
consuming between parallel explicit method and paral-
lel semi-implicit method on the simulation of hypersonic
boundary layer over 3-D wedge computations for differ-
ent cases using different grids. The efficiency can be
improved by using the new implicit parallel method.

Figure 16 shows the comparison of distribution of the
Fourier amplitude | u1 \ along x axis. Figure 17 shows
the comparison of the maximum Fourier amplitude | u1 \
of the first mode. For the first mode, the maximum
Fourier amplitude occurs around ^ = 45°. But for the
second mode, the maximum Fourier amplitude occurs
on the 2-D wave case of ^ — 0°. This is same as the
conclusion of Mach's work ^28% where the 3-D effects
on linear stability of compressible flat plate boundary
layer were studied.

Table 1: Comparison of full explicit method with
semi-implicit method for hypersonic boundary
layer over 3-D wedge computations.(Zone 1 case)

CFL number
A 47

Ay
timesteps
time(sec)

CPU time(sec)

Explicit Method
0.012
102.04

201,640
0.5951 x 10~2

14,728.77

Semi-implicit
0.93

102.04
3,000

0.5951 x 10~2

1,644.57

Ratio
—
-
_
—

8.956

3.4 Simulations of Nonlinear Wave Breakdown of 3-D
Hypersonic Flows (On-going)

The new efficient parallel implicit codes for massively
parallelized computers are used to do the further di-
rect numerical simulations of nonlinear wave breakdown
simulation of 3-D hypersonic flows. 2-D hypersonic
mean flow over a parabola has been obtained by using
new parallel implicit code. The surface of the parabola
has been described in Eq. (40). The body surface is
assumed to be a non-slip wall with an isothermal wall
temperature Tt*.

The specific flow conditions are

MOO - 15
T^ = 192.989 A"
T* = 1000 K

e = 5 x 10~4

j& = 10.3Pa
7= 1.4
PmO.72

6* rz40??2~1 d* = O . lm
r; = 288^ T; = 110.33 K
// = 0.17894 x lQ~4kg/ms
Nose Radius of Curvature = r* =. 0.0125m

Figure 18 and Figure 19 show the Mach number con-
tours and temperature contours of 2-D mean flow for
this test case. 1600 x 241 grids are used in the whole
computation domain.

Before we start to do the numerical simulation of
non-linear wave breakdown of 3-D hypersonic flow, nec-
essary linear stability (LST) analysis is carried out to
obtain more clear knowledgement of the characteristics
of the wave used in the simulation. The linear stability
analysis shares the same basic flow solutions with the
DNS simulation. Since the linear stability analysis has
to be conducted station by station, the nondimension-
alization is done with respect to local shock layer edge
values. The Reynolds number used in the calculations is
the local Reynolds number R based on the local length
scale. A more standard length scale S(s) is used to scale
the wave numbers and frequencies. S(s) is defined as

s = Ja-2- (44)
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where s is the distance from the leading dege. The
Reynolds number based on this length scale S is R. A
non-dimensional frequency F and the dimensionless cir-
cular frequency u> are also introduced and defination can
be found in previous section.

A common forcing frequency is enforced in DNS. This
frequency is also enforced locally at each station in the
linear stability analysis during the study. In the normal
mode analysis for the linear disturbances, the fluctua-
tions of flow quantities are assumed to be represented
by harmonic waves of the following form:

where a and /? are the wavenumbers in x and z direc-
tions respectively, and u> is the frequency of the distur-
bance waves. These parameters are in general complex
numbers. The complex amplitude (eigen) function of a
typical flow variable, say u, is u(y). In order to com-
pare with the DNS results, spatially stability problem
is solved. In a spatial stability problem, real- valued cj
and j3 are assumed. While a is the complex eigenvalue
to be solved for. The real part of a, ar, represents the
spatial frequency of the disturbance modes, while the
imaginary part, o^, represents the spatial amplification
rate of the disturbances. When — a2- is greater, equal
to, or smaller than zero, a disturbance mode is unstable
with finite amplification, neutrally stable, or stable with
finite damping, respectively. In our research, a range of
forcing frequency is studied for obtaining spatial ampli-
fication rate of the disturbances.

To get secondary instability on higher Reynolds num-
ber region, lower frequence F = 223 are forced in
1ST. Figure 20 shows the amplification rate path of
first mode and second mode from LST with frequence
F = 223. The reference length scale is the local length
scale S. It is clear that LST predicts the change of dom-
inance of the boundary layer modes in the streamwise
direction from the first modes to higher modes. There
is a short range where the second modes become un-
stable at higher Reynolds number. The highest -a*
occurs at about R = 442. Then we can fix the station
of R = 417 and change F to get different -a,-. The
results are shown in Figure 21. From this figure, the
highest — a,- occurs when F is set to 198.

These studies gives us very good understandings of
the characteristics of the wave. Then we can either in-
troduce disturbances into the boundary layer by blow-
ing and suction within a narrow disturbance strip in the
leading edge region of the wall or impose the eigen func-
tion of the unstable second mode into the inlet of the
flow region to carry out the direct numerical simulations
of nonlinear wave breakdown of hypersonic boundary
layer over 3-D wedges by setting the frequency of wave
to the frequency of the most unstable wave in our study.
Further unsteady calculation will be continued soon.

Summary

We have developed a flexible high-order parallelized
computer codes which include parallel Fourier spectral
method for the direct simulations of fully 3-D hyper-
sonic boundary layers over a blunt body to freestream
acoustic disturbance using Navier-Stokes equations. Di-
vide and conquer methods are chosen to solve the
banded matrix parallelizedly because of its good perfor-
mance. Parallel iterative methods are considered too.
From the results of studying convection-diffusion model
equation, the supersonic flow over a sphere and hyper-
sonic boundary layer receptivity over a blunt wedge, the
new algorithms and computer codes reduced the com-
putational CPU times by an order of magnitude while
maintaining high accuaracy. The results shows that it
is feasible for us to use new efficient parallel implicit
code to do further study on nonlinear wave breakdown
of hypersonic boundary layer over 3-D blunt bodies on
current computation conditions.
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bow shock

Figure 1: A schematic of 3-D shock fitted grids for
the direct numerical simulation of hypersonic boundary-
layer receptivity to freestream disturbances over a bluni
leading edge.

Figure 3: Comparisons of the distribution of transient
solution in x direction between numerical result and ex-
act solution (y = 0.16, t = 0.5335).

Figure 4: Comparisons of the distribution of transient
solution in y direction between numerical result and ex-
act solution (x = Q , t = 0.5335).

Figure 2: Contours of instantaneous solution at t =
0.5335, exaction solution (upper figure), and paral-
lelized semi-implicit solution (lower figure) by using 3
processors.

——— full implicit(PCG)
_ _ _ _ full implicit DAC)
._._. semi-implicit(PCG)
.......... semi-implicit(DAC)
—— full implicit(Jacobi)
_._..._ semi-implicit implicit(Jacobi)

Figure 5: Efficiency comparisons of implicit algorithms
by using divide and conquer(DAC) method and parallel
iterative methods (Jacobi and preconditioned conjugate
gradient (PCG)).
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Figure 6: Steady flow solutions for M^ =5.25 flow over
a sphere by using high order 3-D shock-fitting method
for computational grids (upper figure) where the bow
shock shape is obtained as the freestream grid line, and
velocity vectors (lower figure).

2.14
1.63
1.11
0.60
0.09

29.40
22.91
16.41
9.91
3.42

11.45
11.24
11.02
10.81
10.60

Figure 7: Contours of axisymmetric steady base flow
solutions over a sphere behind the bow shock with
MOO = 5.25: Mach numbers (upper figure), pressure
(middle figure), and entropy (lower figure).
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M =5.25
Computed
Experiment

M =7.4
Computed
Experiment

0.2 0.4 0.6 0.8

Figure 8: Comparison of pressure coefficients on a
spherical body with different Mach numbers.

= 5.25
90 x 60 x 32
180 x 120x32

0.0 0.2 0.4 0.6

Figure 10: Comparison of steady solution of the pres-
sure coefficients along the sphere surface for two sets of
grids.

. 90 x 60 x 32
180x120x32

Figure 11: Comparison of steady solution of the Mach
number along the stagnation line for two sets of grids.

Figure 9: Bow shock locations for hypersonic flow over a
sphere (lines: Numerical solutions, circles: experimen-
tal results).

Figure 12: Steady flow solution of temperature contours
for hypersonic flow over a blunt wedge by using high
order parallelized code.
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8294.34
7321.76
6349.13
5376.6
4404.03
3431.45
2458.87

2858.43
2506.65
2154.87

Figure 13: Steady flow solutions for hypersonic flow over
a blunt wedge by using high order parallelized code for
temperature (upper figure) and pressure contours (lower
figure). Edges show the boundaries of each subdomain.

Figure 14: Instantaneous u' contours for the recep-
tivity to freestream disturbances for 3-D hypersonic
boundary-layer over a parabolic leading edge, ip — 30°
(upper figure) and Fourier amplitude u' \ (lower figure)
Edges show the boundaries of each subdomain.

Figure 15: Instantaneous u1 contours for the recep-
tivity to freestream disturbances for 3-D hypersonic
boundary-layer over a parabolic leading edge (-0 — 30°).
Edges show the boundaries of each subdomain.
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Figure 16: Comparison of the distribution of Fourier
amplitude | uf \ along x axis for different ip cases.

Figure 19: Temperature contours of Mach number 15
hypersonic flow over longer wedge.

0 10 20 30 40 50

Figure 17: Comparison of maximum Fourier amplitude Figure 20: Amplification rate path of LST modes at
u' | for different ^ cases. p — 223.
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Figure 18: Mach number contours of Mach number 15 Figure 21: Amplification rate of second mode along with
hypersonic flow over longer wedge. frequence changing at R = 442.
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