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RECEPTIVITY OF HYPERSONIC BOUNDARY LAYERS TO FREESTREAM 
DISTURBANCES 

Xiaolin Zhong * 
University of California, Los Angeles, California 90095 

ABSTRACT 

The receptivity of hypersonic boundary layers to 
freestream disturbances, which is the process of envi- 
ronmental disturbances initially entering the boundary 
layers and generating the growth of instability waves, is 
altered considerably by the presence of the bow shocks 
in the flow fields. In a previous paper (AIAA paper 97- 
0756), we have presented some initial results on numeri- 
cal simulations of the receptivity of a hypersonic bound- 
ary layer to freestream monochromatic planar acous- 
tic disturbances for a Mach 15 flow over a parabolic 
leading edge. The initial results showed that the in- 
stability waves developed in the hypersonic boundary 
layer behind the bow shock contain both the first and 
second mode instabilities. The purpose of this paper 
is to present the results of our subsequent parametric 
study through a large number of computational simu- 
lations with different parameters. The effects of nature 
of freestream waves, Reynolds number, nose bluntness, 
and wall temperatures on the leading edge receptivity 
are investigated. 

1 INTRODUCTION 

The prediction of laminar-turbulent transition in hy- 
personic boundary layers is a critical part of aerody- 
namic design and control of hypersonic vehicles 11121. 
In general, the transition process in boundary lay- 
ers is the result of nonlinear response of the lami- 
nar boundary layers to forcing disturbances [3-61. The 
forcing disturbances can originate from many differ- 
ence sources including freestream disturbances, surface 
roughness and vibrations, etc 171. In an environment 
with small initial disturbances, the paths to transi- 
tion consist of three stages: 1) receptivity, 2) linear 
eigenmode growth or transient growth, and 3) nonlin- 
ear breakdown to turbulence. Among them, the re- 
ceptivity mechanism provides important initial condi- 
tions of amplitude, frequency, and phase for the insta- 
bility waves in the boundary layers 18-lol. For hyper- 
sonic boundary-layer flow over blunt bodies, the recep- 
tivity process is much more complex and is currently 
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not well understood 1i1~i21. Figure 1 shows a schematic 
of wave field interactions near the hypersonic leading 
edge affected by freestream disturbances. The recep- 
tivity phenomena are altered considerably by the bow 
shock in front of the body. The interaction of the waves 
with the shock can affect the transition of the hyper- 
sonic boundary layer behind the shock. 

In [13], we developed and validated a set of fifth- 
order shock fitting numerical methods for the DNS of 
the receptivity of hypersonic boundary layers over blunt 
bodies. Both the unsteady bow shocks and the de- 
velopment of instability waves in the boundary layers 
are simultaneously included in the simulations. Subse- 
quently, we 1141 investigated the receptivity of a hyper- 
sonic boundary layer to 2-D freestream monochromatic 
planar acoustic disturbances by DNS for a Mach 15 flow 
over a parabolic leading edge. The initial results showed 
that the instability waves developed in the hypersonic 
boundary layer behind the bow shock contain both the 
first and second mode instabilities. In order to gain a 
deeper understanding of the the leading edge receptivity 
process of hypersonic flows over blunt nose, parametric 
studies are necessary to study the effects on receptiv- 
ity by nose radius, wall cooling, Reynolds numbers, and 
other freestream disturbances. 

The purpose of the present studies is to conduct para- 
metric studies by means of numerical simulations for a 
large number of computational cases with different pa- 
rameters. These results demonstrate in depth the prop- 
erties of the hypersonic receptivity process. To focus 
our attention on the leading edge receptivity only, we 
limit our parametric studies to the two-dimensional in- 
stability waves in hypersonic boundary layers induced 
by 2-D free stream disturbances. The generation of 
boundary-layer waves in the boundary layer are stud- 
ied based on the direct numerical simulations (DNS). 
The numerical solutions of the full Navier-Stokes equa- 
tions are compared with theoretical analysis, such as 
the local normal-mode linear stability analysis. The 
numerical accuracy of the DNS results for such hyper- 
sonic boundary layer receptivity have been evaluated by 
grid refinement studies and by comparison with avail- 
able experimental or theoretical results. The detailed 
results of code validation and error assessments are not 
presented here. They have been reported in several pre- 
vious papers Ref. [13,15]. 
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2 GOVERNING EQUATIONS 

The governing equations are briefly presented in this 
section, followed by a brief discussion of the numerical 
methods and accuracy in Section 3. Details of the gov- 
erning equations and gas models, as well as a review of 
the hypersonic receptivity, stability, and transition have 
been presented in [13]. 

The governing equations for the direct numerical sim- 
ulations of hypersonic flows over a blunt wedge are the 
unsteady three-dimensional Navier-Stokes equations in 
the following standard conservation-law form: 

dU* dF*j dF*,j = o -- 
F+ ax; + ax; 

where superscript V represents dimensional variables, 
and t* and x; are components of Cartesian coordinates 
and time respectively. 

In the present study, the gas is assumed to be a ther- 
mally and calorically perfect gas. The viscosity coeffi- 
cient is calculated according to the Sutherland law with 
the assumption of zero bulk viscosity. It is also assumed 
that the gas has a constant ratio of specific heats and 
a constant Prandtl number. The thickness of the bow 
shock is assumed to be thin so that it is treated as 
a mathematically discontinuous surface satisfying the 
the Rankine-Hugoniot relations. These assumptions are 
a significant simplification of actual hypersonic flows, 
where the equilibrium and nonequilibrium real-gas ef- 
fects may be significant and the bow-shock thickness 
may not be very thin. However, these simple models 
are necessary in order to study the main features of the 
stability and receptivity of viscous hypersonic flows. 

In receptivity simulations, the flow variables at the 
supersonic free stream in front of the bow shock are 
fixed for a steady flow, and are a steady flow field plus 
a weak acoustic wave field for unsteady flows. The body 
surface is assumed to be a non-slip wall with a given con- 
stant wall temperature TG. The bow shock is assumed 
to be an infinitely thin moving surface, where flow vari- 
ables across the shock are governed by the Rankine- 
Hugoniot conditions. The Rankine-Hugoniot relations 
lead to jump conditions for flow variables behind the 
shock as functions of freestream flow variables at the 
shock and the local shock normal velocity v,. In order 
to compute the flow variable behind the shock, the ve- 
locity of the shock front v, is needed. The shock normal 
velocity is determined by a characteristic compatibility 
equation immediately behind the shock. 

Because the flow field behind the bow shock is not 
uniform, the flow variables are nondimensionalized us- 
ing the freestream conditions as characteristic variables. 
Specifically, we nondimensionalize the velocities with re- 
spect to the freestream velocity U,& , length scales with 
respect to a reference length d*, density with respect 
to &$, pressure with respect to pL,, temperature with 
respect to T&, time with respect to d*/U&, vorticity 

with respect to U&/d*, entropy with respect to cg , wave 
number by l/d*, etc. The dimensionless flow variables 
are denoted by the same dimensional notation but with- 
out the superscript “*“. 

3 RECEPTIVITY SIMULATIONS 

The receptivity of a two-dimensional boundary layer 
to weak freestream acoustic disturbance waves for hy- 
personic flows past a parabolic leading edge at zero an- 
gle of attack are considered. The body surface is a 
parabola given by 

x* = b*Y*2 -d* (2) 

where b* a given constant and d* is taken as the ref- 
erence length. The nose radius of curvature is r* = 
1/(2b*). 

The receptivity problems consider freestream distur- 
bances superimposed on the steady mean flow to inves- 
tigate the development of boundary-layer waves under 
the influence of bow shock interaction. The freestream 
disturbances are assumed to be weak monochromatic 
planar fast acoustic or entropy waves with wave fronts 
normal to the center line of the body. The wave fields of 
the unsteady viscous flows are represented by the per- 
turbations of instantaneous flow variables with respect 
to their local steady based flow variables. The flow vari- 
able perturbed by the freestream acoustic wave before 
reaching the bow shock can be written in the following 
form: 

9’ = jqq eik(z-ct) (3) 

where q represents the perturbation of any flow vari- 
ables. For acoustic or entropy waves in the freestream, 
the perturbation amplitudes of nondimensional flow 
variables satisfy the following relations: 

Acoustic Waves: 
IS’I, = IV’I, = 0 
Ip’lm = I~‘lm/r = 1&x&L = ~Moo 

Entropy Waves: 
Idloo = lv’l, = Ip’lw = 0 
lp’lcx, = +‘I, = EMU 

where E is a small number representing the relative am- 
plitudes of the freestream waves. 

The nondimensional wave speeds are c = 1 + Mzl 
for fast acoustic waves and c = 1 for entropy waves. 
The parameter k is the dimensionless freestream wave 
number which is related to the dimensionless circular 
frequency w by: 

w=kc (4) 

A Reynolds number of the flow is defined as 
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The forcing frequency of the freestream acoustic wave 
is represented by either a dimensionless frequency F 
defined by 

F = lo6 $ = lo6 w/Rem . 
00 

or represented by a Strouhal number S defined by 

The Strouhal number S represents the relative blunt- 
ness of a blunt leading edge if the nose radius of curva- 
ture is used for d’ , and F represents the wave frequency 
with respect to viscous flow scales. For the same forc- 
ing frequency w, the wave numbers for the fast acoustic 
waves (ka) and entropy waves (lee) in the freestream are 
related to each other by the following relations: 

Mco-tl 
lee = ka 7 

lx 

In this paper, the receptivity problems are studied nu- 
merically by solving the unsteady Navier-Stokes equa- 
tions using a fifth-order shock fitting scheme described 
in [13,15]. The numerical accuracy of the solutions are 
also evaluate by grid refinement studies for both the 
steady and unsteady solutions. The numerical simula- 
tion for an unsteady hypersonic layer receptivity prob- 
lem is carried out in three steps. First, a steady flow 
field is computed by advancing the unsteady ilow so- 
lutions to convergence with no disturbances imposed in 
the freestream. Second, unsteady viscous flows are com- 
puted by imposing a continuous planar acoustic or en- 
tropy single-frequency disturbance wave on the steady 
flow variables at the freestream side of the bow shock. 
The unsteady calculations are carried out for about 20 
to 40 periods in time until the solutions reach a periodic 
state in time. Third, the unsteady computations are 
carried out for one additional period in time to perform 
a FFT on the perturbation field to obtain the Fourier 
amplitude and phase of the perturbations of the un- 
steady flow variables throughout the flow field. 

4 FLOW CONDITIONS 

A number of computational cases have been con- 
sidered to study parametric effects of frequency, nose 
bluntness, freestream wave types, wall cooling, and 
Reynolds numbers on hypersonic receptivity. All cases 
presented in this paper have the following common flow 
conditions: 

J&=15 
p& = 10.3 Pa 
Pr = 0.72 

T& = 192.989 I< 
y= 1.4 

A. Freestream Acoustic Waves: 
Re, = 6026.6 T; = lOOOK 
r* = 0.0125m d* = 0.1 m 
E = 5 x lo-* to 10-r 

Seven Cases of Frequencies: 
Case Number k, F S 

A.1 15 2655 2.00 
A.2 12.5 2212.5 1.67 
A.3 10 1770 1.33 
A.4 7.5 1327.5 1.00 
A.5 5.7 1008.9 0.76 
A.6 4.35 769.95 0.58 
A.7 3 531 0.40 

B. Freestream Entropy Waves: 
All conditions same as Case A 
except freestream entropy waves 

Eight Sub-Cases of Frequencies: 
Case Number It, F S 

B.l 16 2655 2.00 
B.2 15 2489.1 1.88 
B.3 12.5 2074.2 1.56 
B.4 10 1659.4 1.25 
B.5 7.5 1244.5 0.94 
B.6 5.7 945.84 0.71 
B.7 4.6 763.31 0.58 
B.8 3.5 580.78 0.44 

C. Wall Temperature Effects: 
All conditions same as Case A except 
T; = 2OOOIC 

Six Cases of Freauencies: 
Case Number -k, F S 

c.1 15 2655 2.00 
c.2 12.5 2212.5 1.67 
c.3 10 1770 1.33 
c.4 7.5 1327.5 1.00 
c.5 5.7 1008.9 0.76 
C.6 4.5 796.5 0.6 

The computational cases are classified into four 
groups (A - D) as follows: 
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D. Reynolds Number Effects: 
All conditions same as Case A except 
T*, d*, Re, are 10 times as large 
Re, = 60266 

Six Cases of Frequencies: 
Case Number k, F S 

D.l 18.25 323.0 2.43 
D.2 15 265.5 2.00 
D.3 12.5 221.3 1.67 
D.4 9.487 167.9 1.26 
D.5 7.5 132.8 1.00 
D.6 5.7 100.9 0.76 

5 STEADY FLOW SOLUTIONS 

The general features of steady flow solutions have 
been presented in [16]. In this section, we discuss the 
steady flow characteristics for the viscous hypersonic 
flow over parabolas relevant to the receptivity studies. 

5.1 Vorticity Interaction 

Hypersonic flow fields over a blunt leading edge con- 
sists of three main regions as shown in Fig. 2. Region 
I is the rotational inviscid outer field, where vorticity 
is generated by the curved bow shock according to the 
Crocco’s theorem. Region II is the viscous stagnation 
flow region, where the boundary layer thickness is con- 
stant for incompressible flow and is near constant for 
compressible flows. Region III is the boundary layer 
flow downstream where boundary layer thickness grows 
along the streamwise directions. There is an interaction 
between region I and region III due to non-zero vorticity 
outside the boundary layer created by the bow shock. 
Such vorticity interaction, which may play an important 
role in the stability of hypersonic boundary layer down- 
stream, is studied in this paper through the numerical 
solutions of the full Navier-Stokes equations. 

The inviscid vorticity field immediately behind the 
bow shock can be analyzed by making the inviscid 
flow assumption for flow near the shock. The invis- 
cid vorticity jump across the bow shock was derived 
by Truesdell li71, Lighthill [i81, and by Hayes lrgl using 
the Rankine-Hugoniot relation and Crocco’s theorem 
or momentum equation in the direction normal to the 
shock. For a bow shock in a uniform freestream flow, 
the vorticity vector behind the shock depends only on 
the density ratio across the shock and the shock curva- 
ture tensor, i.e., 

where k is the curvature of the shock and ut is the local 
tangential velocity component. 

Fig. 3 compares the local vorticity components im- 
mediately behind the bow shock for the steady Navier- 
Stokes solutions of Case A and the inviscid theoretical 
results determined by Eq. (9). The two sets of results 
agree very well. There are slight differences at the val- 
ley of vorticity distribution because the viscous effects 
are not accounted for in Eq. (9). In the figure, the nega- 
tive sign in the vorticity represents that the vorticity is 
pointing in the negative z direction. The magnitude of 
the vorticity generated by the bow shock reach a max- 
imum near the leading edge and decreases afterward. 

The bow shock generates curved streamlines behind 
it as shown in Fig. 4. The ratio of the local streamline 
curvature at the shock to the shock curvature at the 
same point was derived by Hornung as a function of 
local shock angle, Mach number and y only, i.e. 1201, 

Figure 5 compares streamline to shock curvature ratios 
between numerical solutions of the Navier-Stokes equa- 
tions and the theoretical results. The two sets of results 
compare very well with each other. The curvature ra- 
tio is zero at the stagnation line (p = 90°) because the 
streamline curvature is zero. The ratio is negative near 
the stagnation point because the streamlines are con- 
cave there. It then passes through the zero curvature 
point and become positive as ,B decreases. 

The vorticity generated behind the shock is con- 
vected downstream in region I, where the flow is isen- 
tropic along a streamline in steady inviscid flows. For 
steady inviscid flow with a uniform freestream, it can 
be shown 1211 that 

(11) 

Equation (11) leads to the result that the ratio of vor- 
ticity to pressure w/p is constant along streamlines for 
steady 2-D perfect-gas flow. Since hypersonic flow over 
a parabola has favorable pressure gradients in region I, 
the magnitude of vorticity drops along a streamline for 
inviscid flows. The vorticity created by the bow shock 
interacts with the boundary layer when the streamlines 
enter the boundary layer downstream. Figure 6 shows 
steady vorticity solutions along the body surface and 
behind the bow shock. The vorticity along body sur- 
face is generated by viscosity due to shear effects in the 
boundary layer. The vorticity interaction can be char- 
acterized by the ratio of maximum vorticity in magni- 
tudes behind the shock and on the body surface. For 
the present case A, the ratio is 

max(wshk) = o 0465 
max(wwall) * 

(14 

which indicates a weak vorticity interaction between re- 
gion I and III. According to Eq. (9), the vorticity be- 
hind the shock becomes stronger when the density ratio 

4 

American Institute of Aeronautics and Astronautics 



(c)2000 Americanllnstitute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)’ sponsoring organization. 

across the shock decreases. Therefore, it is expected 
that the vorticity interaction will be stronger when the 
density ratio across the shock is very small, which is the 
case for hypersonic flows with real gas effects. 

5.2 Solutions in the Boundary Layer Region 

The numerical solutions of the full Navier-Stokes 
equations are compared with boundary layer equa- 
tions results. An approximate locally similar bound- 
ary layer solution is calculated by using a similarity 
transformation 1221, i.e., 

n’ 
7) = -& o PZ dn* I 

(13) 

(14) 

where, s* and n’ are the local dimensional natural coor- 
dinates defined by the surface length and distance along 
the wall-normal direction, respectively. The variable 17 
is the similarity boundary layer nondimensional coordi- 
nates. 

The parameters pe+, uz, and ,$ are dimensional den- 
sity, tangential velocity, and viscosity coefficients for in- 
viscid flow on the wall, and they are taken to be the 
freestream boundary conditions for the boundary layer 
equations. For hypersonic flow over a parabola, the 
determination of boundary edge conditions can be ob- 
tained from inviscid solutions by computing the Euler 
equations. Since the pressure does not change much 
across the boundary layers, we use the surface pressure 
obtained by the Navier-Stokes equations as the edge in- 
viscid pressure p, for the boundary layer calculations. 
The other inviscid conditions, pz, uz, and & are on the 
surface, and are obtained by an isentropic relation by 
assuming they are corresponding to the inviscid stag- 
nation streamline behind the normal part of the bow 
shock. 

The boundary layer solutions in region II and III are 
obtained by using an approximate local similarity solu- 
tion by assuming 

and 
T* 
- = 477) 
T,* 

(15) 

Substituting Eqs. (15) into the compressible boundary 
layer equations, and neglecting the effects of body sur- 
face curvature, leads to the following standard similarity 
equations, 

(Cf")' +ff" + a(g - ff2) = 0 (16) 

(;gy + fg' + (y - l)M$f”2 = 0 (17) 

where C = $$ is the Chapman-Rubesin parameter, 
Me is the edgggach number, Pr is the Prandtl number, 
anda= 52’ + is the edge velocity gradient parame- 
ter. This nonlinear set of ordinary differential equations 

with appropriate boundary conditions are solved by a 
shooting method based on a fourth-order Runge-Kutta 
scheme. 

Figure 7 shows the distribution of the Navier-Stokes 
solutions along the body surface for skin friction coeffi- 
cients and heat transfer coefficients nondimensionalized 
by freestream parameters. The characteristics of the so- 
lutions in Viscous region II and III is shown in the fig- 
ure. In the leading edge region, shear stress coefficient 
Cf has a rapid and almost linear increase, which repre- 
sents the stagnation region II boundary layer solution. 
As x increases, the Cj reaches a peak and decreases 
as x increases further down stream, which is a typical 
boundary layer solution in favorable pressure gradients 
in region III. 

The Navier-Stokes solutions and independently ob- 
tained boundary-layer similarity solutions for the same 
flow conditions are compared by normalizing the 
Navier-Stokes solutions by local boundary-layer edge 
parameters. Figure 8 shows a local shear stress coeffi- 
cient cf and Stanton number st defined by local bound- 
ary layer variables, i.e., 

The figure shows that the current Navier-Stokes solu- 
tions agree very well with the boundary-layer results 
for both skin friction and heat transfer rates. The re- 
sults also show that there is also a similar characteristic 
in the cf and st as the Reynolds analogy in flat plate 
boundary layers in that cf/(2st) is close to a constant. 
The ratio is near 1.14 for the current flow conditions. 

The interaction of solutions in region I and III can be 
shown by plots of tangential velocity u*/uz vs. bound- 
ary layer coordinates q along wall-normal grid lines. 
Figure 9 compares the velocity profiles from the bound- 
ary layer solutions with those from the Navier-Stokes 
solutions for two cases of different Reynolds numbers 
(Cases A and D), where i = 12 is an index near the nose 
region while i = 127 is located further downstream. The 
x coordinates of the intersecting points of grid lines and 
the body surface for Case A are: 

Table 1. x coordinates for surface grid points. 
Index i x, Coordinates 
50 -0.756873 
70 -0.557069 
90 -0.297524 
110 0.0376505 
130 0.465454 
150 1.00326 

The results show a very good agreement in the bound- 
ary layer up to the edge of the boundary layer located 
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approximately at q = 3 for this case as shown in Fig. 
10. The velocity profiles are nearly independent of the 
Reynolds number when they are normalized by local 
boundary layer similarity parameters. The velocity pro- 
file has an inflection point near the leading edge due to 
strong inviscid vorticity outside the boundary layer. As 
the flow moves downstream, the velocity profiles be- 
come fuller and approach the boundary layer solutions. 
The figure also shows that the boundary thickness is lo- 
cated at approximately 17 = 3, which is nearly constant 
at various grid stations along the body surface. 

The viscous flow in region II of the stagnation point 
can also be solved by the boundary layer equations gov- 
erned by Eqs. (16) and (17) with Q = 1. The results 
are compared with the Navier-Stokes solution at the 
stagnation point for Case D of Re, = 60266. Fay and 
Riddell 1231 did extensive stagnation line boundary layer 
calculations on stagnation heating rates. Fay and Rid- 
dell’s result for the stagnation point heating coefficient 
h defined in the experimental studies are: 

6.1 Case A: Freestream Acoustic Waves 

The first group of cases are the receptivity simulations 
for freestream planar acoustic waves. Forcing frequency 
F is in the range of 531 to 2655. Some initial results 
of the acoustic receptivity have been presented in [16]. 
The results of parametric studies are presented here. 

Figure 11 shows the contours for the instantaneous 
perturbation u’ and the velocity vectors after the flow 
field reaches a time periodic state for Case A.l. The in- 
stantaneous contours show interaction of the freestream 
disturbances with the bow shock and the development 
of instability waves in the boundary layer on the sur- 
face. Figure 12 shows the distribution of instantaneous 
velocity perturbations due to the wave field develop- 
ment in the boundary layer along the j = 30 grid line 
near the body surface. There are two distinct sections 
of different wave patterns in the boundary layers, one 
is developed from the leading edge at x < 0.2 and the 
other is developed further downstream at x > 0.2. The 
peak oscillations for the wave in the first region are very 
close to the wall surface and there is mainly one peak 

qw = 0.570 Pr-“.6 Cp m (2) “’ (Te - Tw) (20) in th e oscillation magnitudes across the boundary layer. 
The second region d&elops oscillations away from the 
wall with two magnitude peaks. Figure 11 also shows 
that the first region shows very strong vertical wave 
patterns, while the second region shows relatively weak 
vertical waves. These two sections were identified in [lS] 
as first and second mode regions respectively. 

where K is the streamwise velocity gradient obtained 
approximately by the Newtonian theory for hypersonic 
flow at the stagnation point: 

K= z e- 1 

\i 
2be - Pco) -- 

R Pe 
(21) 

The Navier-Stokes solutions of stagnation heating rate 
is compared with the theoretical results by using a 
nondimensional parameter 

For Case D of Mach 15 flow and Re, = 60266, the 
Navier-Stokes solutions, the Boundary layer computa- 
tions, and the curve fit of Fay and Riddell given by 
Eq. (20) are compared for the heating parameter $$-. 
The values are 0.5063,0.5383,0.5523, respectively. Tee 
Navier-Stokes solutions agree reasonably well with the 
boundary layer prediction. The difference between the 
results are consistent with the uncertainty in computing 
the value of I<. 

6 UNSTEADY FLOW SOLUTIONS 

In this section, the receptivity of boundary-layer in- 
stability waves to planar acoustic and entropy distur- 
bances in the freestream is studied for two-dimensional 
hypersonic flow over a parabolic leading edge. The un- 
steady flow solutions are obtained by imposing acous- 
tic or entropy disturbances to the basic flow in the 
freestream. The flow conditions of four groups of com- 
putational cases are tabulated in Section 4. 

On the other hand, the change of wave modes does 
not exist in region I which is outside of the boundary 
layer as shown in Fig. 13, which shows the distribution 
of instantaneous perturbation of u’ immediately behind 
the shock. There is only a single wave pattern in the 
solution behind the bow shock. 

Temporal Fourier analysis is carried out on local per- 
turbations of unsteady flow variables after a time peri- 
odic state has been reached. The Fourier transform for 
the real disturbance functions lead to: 

N 

q’(x, y,t) = %{c jqn(x, y)I ei[--nwt+4n(zsy)l} (23) 
n=O 

where w is the forcing frequency, q/(x, y, t) represents 
any perturbation variables, and lqn(x, y)] and &(x, y) 
are real variables representing the local perturbation 
amplitude and phase angle respectively. The subscript 
n represents the wave modes of the perturbation fields, 
where n = 0 is the mean flow distortion, n = 1 is the 
fundamental mode, and n = 2 is the second harmonic, 
etc. These variables indicate the amplitude of local dis- 
turbances and the local phase angle. with respect to the 
forcing waves in the freestream. The averaged kinetic 
energy per unit volume and Reynolds stress can also be 
computed using the following formulas: 

f~ = f p (U’2 +w’~) = f f&l2 + lw,12) (24) 
n=O 
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n2 = -p u’ ‘u’ = -P -g [Iunl lwnl COS(q+un - &J] 
n=O 

(25) 

For perturbations in the boundary layer near the body 
surface, we can define a local growth rate o,. and a local 
wave number Qi of the perturbation fields by, 

1 dlqll Qj = -- 
hl dx (26) 

dh cq. = - 
dx (27) 

where the derivatives are taken along a grid line parallel 
to the body surface. 

Figure 14 shows the contours of Fourier amplitudes 
and phase angles for the horizontal velocity components 
for the case of F = 2655. There is a strong growth near 
the leading edge in the boundary layer near the wall, fol- 
lowed by a rapid decay and transition to another wave 
mode. This can be shown in Fig. 15 for the ampli- 
tude distribution of the velocity perturbations near the 
parabola surface. These figures show two distinct main 
regions of instability waves. The figure also shows that 
the first mode is much stronger than the second mode 
for the test case at this particular frequency. 

The propagation of the perturbation waves are rep- 
resented by the spatial distribution of lines of constant 
phase angles shown in Fig. 14. Notice that some of 
the discontinuous contour lines in the phase angles with 
jumps in phase angle of multiples of 360° are not real 
discontinuities. The decay of first mode and the growth 
of the second mode is shown by a sudden phase change 
near the body surface around x = 0.2. The phase struc- 
ture has one more variation across the boundary layer 
after the change of modes. 

Local parallel linear stability theory (LST) is used to 
identify the boundary layer eigenmodes and to analyze 
the instability mechanism and the bow-shock effects. 
The LST is used to obtain instability modes based on 
the numerically obtained basic flow between the body 
and the bow shock. The LST code is a spatial stability 
code developed by Hu and Zhong 12*1 based on both a 
fourth-order finite difference global method and a spec- 
tral global method. In LST analysis, the disturbance 
equations are reduced to an eigenvalue problem by as- 
suming the perturbations of flow variables in a normal 
mode form: 

q’ = B(~,) ,i (--wt+as) (28) 

where n and s is coordinate along the wall-normal and 
surface directions, cr is the wave number, and i(yn) is 
the eigenfunction. In the LST analysis, (Y and c&) 
are obtained as the eigenvalue and eigenfunction of the 
stability equations for a given forcing frequency w. For 
the spatial problem, w is real, and CY is a complex wave 

number, 

CX = (Yf + i CYi (29) 

where CY,. and oi represent the spatial wave number and 
growth rate of a wave mode respectively. The wave is 
unstable when oi is negative. 

In this paper, the wave modes obtained by the LST 
analysis are compared with the Fourier amplitude and 
wave number/growth rates defined by Eqs. (26) and 
(27). Because the eigenfunction represents only the ho- 
mogeneous transient solution in the receptivity process, 
the comparison is used mainly for the purpose of iden- 
tification of the wave modes obtained by the receptivity 
simulations. Since the simulation is an initial boundary 
value problem with non-homogeneous forcing terms in 
the freestream, while LST involves a homogeneous nor- 
mal mode problem, it is expected the two solutions will 
not agree in region I located outside of the boundary 
layer. 

Figure 16 shows the local wave number CY,. in the 
boundary layer along a grid line near the parabola sur- 
face for the case of F = 2655. The numerical solutions 
include the wave number computed using both tempera- 
ture and entropy perturbations. The LST results of the 
first, second and third modes are compared with the 
results obtained by numerical simulations. In the first 
mode region, the wave number increases (wavelength 
decreases) along the x direction. The figure shows that 
the LST first mode wave number has the closest agree- 
ment with the numerical wave solutions in this region. 
The results agree reasonably well considering the fact 
that LST is based on a parallel flow assumption, while 
the numerical solution is obtained in a flow field which 
is not strictly parallel and with the effects of surface 
curvature. As the waves develop downstream, the wave 
mode in the simulations undergo a gradual transition 
from the first mode to the second and third modes fur- 
ther downstream. Therefore, the results indicate that 
the instability waves excited in the first region are domi- 
nated by the first mode, followed by a gradual transition 
to the second and third modes. 

The identification of the wave modes induced by 
freestream disturbances is further examined by compar- 
ing the LST eigenfunctions with Fourier amplitudes of 
the Navier-Stokes solutions. For the purpose of compar- 
ison, the eigenfunctions are normalized by their respec- 
tive peak values near the wall. Figure 17 shows such 
comparison for the temperature amplitudes along grid 
lines normal to parabola surface at ‘several i grid sta- 
tions for the case of F = 2655. The figure shows that 
numerical solutions at earlier stations of i = 50 and 80 
agree closer to the LST first mode in the region inside of 
the boundary layer. At later stations, the DNS results 
gradually change to profiles that are closer to the LST 
2nd mode at i = 100 and 120, the LST 3rd mode at 
i = 140 and 160. The figure also shows that due to the 
effects of interaction of the bow shock with the flow dis- 
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turbances, the DNS produce very complex flow distri- 
butions in the inviscid region I. The variations outside 
the boundary layers are those induced by the forcing 
disturbances and their interaction with the bow shock. 
The DNS results and LST ones agree mainly inside the 
boundary layer in the wall region. In the flow region 
outside the boundary layer, the two solutions do not 
agree because the DNS solutions contain both the wave 
modes and the nonhomogeneous solutions induced by 
the forcing wave in the freestream. 

It is found that the agreement between the LST first 
and second mode eigenfunctions and DNS results be- 
comes better for test cases of lower frequencies. Fig- 
ure 18 compares the LST first-mode eigenfunction with 
amplitudes of the simulation along a wall-normal di- 
rection at x = 0.5521 for the case of F = 1770. The 
DNS results agree very well with LST results inside the 
boundary layer. Again, the disagreement outside the 
boundary layer near the bow shock is expected because 
the effects of the forcing disturbances are not considered 
in the linear stability analysis. 

For hypersonic flows over a blunt body, any 
freestream wave interaction with the shock always gen- 
erates a combination of all three kinds of waves: acous- 
tic, entropy, and vorticity waves. In a previous paper, 
Zhong et al. 1161 showed that the inviscid entropy and 
vorticity waves based on the Euler equations are singu- 
lar at the stagnation point. Such a singularity creates 
a wide .range of length scales for these waves near the 
leading edge region. The singularity is removed in the 
viscous flow solutions. 

Figures 19 and 20 show the variation of local pressure 
and entropy perturbation amplitudes along the stag- 
nation line. The pressure disturbances show a typical 
acoustics interaction with a solid wall. The variation in 
pressure amplitudes is the result of the back and forth 
propagation and reflection of the acoustic wave. The 
existence of the boundary layer on the wall does not 
have a strong effect on the pressure waves propagation 
in the flow fields and the reflection from the wall. On 
the other hand, the entropy distribution shows a sharp 
change in entropy amplitudes in a region very close to 
the wall. There are two wave patterns along the stagna- 
tion line. The propagation in the region of x < -1.02 is 
a normal entropy wave propagation with slight damp- 
ing on the wave because of viscosity. This region cor- 
responds to the region outside of the boundary layer in 
the mean flow. The second region at x > -1.02 is the 
region inside the boundary layer induced by the incom- 
ing entropy waves. The wave is first amplified near the 
wall, but then decreases in a region very close to the 
wall. The thickness of the small region has a length 
scale much smaller than the lengthscale of the bound- 
ary layer. Such features of entropy perturbations exist 
for all cases considered in this paper. 

For weak monochromatic freestream forcing waves, 
the generation of instability waves are expected to be 

linear with respect to the forcing amplitudes for the dis- 
turbances with the same fundamental frequency. Figure 
21 shows the maximum temperature amplitudes of the 
first and second modes as functions of the freestream 
forcing disturbance amplitudes for the case of A.l. The 
dotted lines are the expected linear response to the 
freestream forcing amplitudes. The figure shows that 
when e is very small, the receptivity of the wave mode 
of the fundamental frequency is linear. As E increases, 
the receptivity results deviate from the linear curves 
due to the nonlinear effects of the nonlinear interaction 
between the wave harmonics. 

Figure 22 shows the temperature disturbance am- 
plitudes along the body surface for two cases of E at 
F = 2655. Both the fundamental mode (n = l), second 
harmonic (n = 2), and mean flow distortion (n = 0) 
for the two cases are plotted in the figure. The scaled 
results of the two cases should be the same for linear 
modes. The figure shows that receptivity of the funda- 
mental modes are governed by linear mechanism, while 
the second harmonic and the mean flow distortion is 
nonlinear with respect to E as shown by the figure. 

For the leading edge receptivity problems of hy- 
personic flows over blunt bodies, the effects of nose 
bluntness can be characterized by the nondimensional 
Strouhal number defined in Eq. (7). Therefore, the 
increase of forcing frequency at a fixed nose radius is 
equivalent to the increase of nose bluntness. We investi- 
gate the effects of forcing frequencies and nose bluntness 
on the receptivity of a hypersonic leading edge by con- 
sidering a number of test cases with a range of forcing 
frequencies F while holding all other flow parameters 
fixed. The specific nondimensional frequencies are in 
the range of F = 531 to 2655, which corresponds to the 
Strouhal number in the range of S = 0.4 to 2. 

Figure 23 shows the distribution of the amplitudes 
of horizontal velocity and entropy perturbations along 
a grid line near the body surface for Cases A.1 to A.7 
of different forcing frequencies. Each line in the figure 
represents a test case of different frequency. The results 
of different frequencies show similar receptivity pattern 
that first modes grow and decay, followed by the growth 
and decay of second and third modes respectively. As 
frequency decreases, the maximum first mode growth 
becomes larger, its location moves downstream, and the 
first mode instability region extends to a much longer 
range. The second mode instability region appears at 
further downstream to the first mode region with higher 
local Reynolds numbers. Similar to the first mode cases, 
the second mode increases in strength as frequency de- 
creases, though they are weaker than the first mode 
region for these particular flow conditions. 

The receptivity effects are often measured by a recep- 
tivity coefficient. For incompressible boundary layer re- 
ceptivity studies, it is defined by the ratio of amplitudes 
at the Branch I neutral stability point to the freestream 
wave amplitudes. Such a definition is difficult to ap- 
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ply to current hypersonic boundary layer receptivity. 
Therefore, a different receptivity coefficient for hyper- 
sonic receptivity studies is defined as 

where Id Imar is the Fourier amplitude for a flow vari- 
able q at a location of maximum first or second mode 
amplitudes in the boundary layer. 

Figure 24 shows the variation of receptivity coefficient 
(Al defined by entropy perturbations as a function of 
F. The results of A for both the first and the second 
modes are plotted in the same figure. As the frequency 
decreases, the receptivity coefficients for the first modes 
increase and approach peak values. The location of the 
maximum first and second mode wave amplitudes as a 
function of F is shown in Fig. 25 The frequency increase 
corresponds to the increase of the Strouhal number and 
the relative nose radius. Therefore, as the relative nose 
radius increases, the receptivity coefficients decrease. 

6.2 Case B: F’reestream Entropy Waves 

In addition to freestream acoustic waves, other forms 
of disturbances in the freestream can also affect the in- 
stability in hypersonic boundary layers. In this sec- 
tion, the results of receptivity of hypersonic boundary 
layers to single-frequency planar entropy waves in the 
freestream are considered. Freestream entropy waves 
represent non-acoustic temperature or density pertur- 
bations in the freestream of the flow field. 

For hypersonic flow over a blunt leading edge, the bow 
shocks play an important role in the leading edge recep- 
tivity process. Before entering a hypersonic boundary 
layer, a freestream disturbance wave will interact with 
the bow shock first. The interaction of any kind of 
disturbances with a shock wave will produce all three 
kinds of waves: acoustic, entropy and vorticity waves. 
It is these generated disturbances which propagate or 
convect downstream to enter the boundary layers. The 
strengths of the generated waves behind the shock de- 
pend on the specific incident wave from the freestream. 

The linear interaction of freestream disturbance wave 
with a planar shock can be predicted by linear theory 
such as that derived by Mckenzie and Westphal 1251. For 
the case of the transmission of freestream acoustic waves 
through a normal shock, the ratio of pressure ampli- 
tudes before and after the shock is: 

p:- 2M$, + 2(y + l)M& + 2(3y - 1)M; + 1- y 
Pb, - (7 + I)(1 + M& + WkgNs) (31) 

where subscript s represents variable immediately be- 
hind the shock. The corresponding generation formula 
for the case of freestream entropy wave is 

p:=- 2yM& (M& - 1) 

sb, (y+l)[l+M&(l+M&(1+2M,))] (32) 

The strength of freestream acoustic and entropy waves 
are measured by pk, = cMco and sb, = EM, respec- 
tively. Table 1 shows a comparison of pressure and en- 
tropy amplitudes behind a shock generated by incident 
acoustic waves with those generated by incident entropy 
waves for the same freestream wave amplitudes for the 
current case of Mach 15 flow with y = 1.4. For the 
same wave strength in the freestream, freestream acous- 
tic waves generate stronger acoustic wave components 
behind the bow shock while generating weaker entropy 
wave components. Therefore, freestream acoustic and 
entropy receptivity cases represents the effects of re- 
ceptivity by an acoustic wave dominated perturbations 
behind the shock as compared to the entropy wave dom- 
inated ones. Therefore, a comparison of the results of 
acoustic and entropy wave receptivity will help to un- 
derstand the relative importance of the two kinds of 
perturbations in the freestream on generating instabil- 
ity waves in the boundary layers. 

Table 1. Linear Generation Coefficients by 
F’reestream Waves (M, = 15, y = 1.4) 

Incident 
Waves P2 s; Pb 

~Meaypz EMmCp ~M,Pz 
Acoustic 0.4715614 -0.5123659 0.9839273 
Entronv -0.4022472 0.6099873 -1.012235 

The flow conditions for the entropy receptivity Case 
B are listed in Section 4. All cases in group B have the 
same base steady solution as that of Case A except that 
the freestream is planar entropy waves. 

Figure 26 shows the contours of instantaneous per- 
turbations of horizontal velocity components for Case 
B.l of freestream entropy wave of F = 2655. The u’ 
contours of the entropy Case B.l show wave patterns 
in the boundary layer very similar to those of Case A.1 
for freestream acoustic waves (Fig. 11). Specifically, it 
shows a first mode growth and decay in the region of 
x < 0.2, followed by a second mode structure in the 
region of z > 0.2. The contours of Fourier amplitudes 
and phase angles of horizontal velocity components for 
the same case are shown in Fig. 27. The wave patterns 
inside the boundary layer near the wall are identical 
to those of freestream acoustic waves at the same fre- 
quency (Fig. 14), though the wave patterns generated 
by the two kinds of freestream waves are different in 
the region I outside of the boundary layer. The results 
indicate that freestream perturbations of the same fre- 
quency but different kinds generate identical boundary 
layer wave modes, which is independent of the forcing 
disturbances. 

Figure 28 compares the pressure and temperature 
amplitudes of two case of freestream waves along a 
wall-normal grid line. Since the amplitudes of the two 
cases are different, the wave amplitudes in the figure 
are normalized by their own first peak values near the 
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wall so that we can compare the eigenfunctions. The 
numbers marked on the figures are those for the case 
of freestream acoustic waves of Case A.l. The figure 
shows that while the wave strengths are very much dif- 
ferent outside the boundary layers, the induced insta- 
bility wave modes in the wall are identical. 

Figure 29 shows the distribution of the Fourier ampli- 
tudes of Iu’J along a grid line near the parabola surface 
for the acoustic and entropy cases. The figure shows 
that the freestream acoustic wave generates stronger 
first and second wave modes in the boundary layer than 
the freestream entropy wave does. Meanwhile, the lo- 
cation of the peak in the first mode and the second 
mode are the same for two cases. Figure 30 shows 
the corresponding distribution immediately behind the 
bow shock. The freestream entropy waves generate 
stronger entropy perturbations behind the shock but 
weaker pressure perturbations near the leading edge. 
These results show that acoustic waves play a more im- 
portant role in the receptivity process of exciting the 
instability waves in the boundary layer. 

Figures 31 shows the variation of local pressure and 
entropy perturbation amplitudes along the stagnation 
line for Cases A.1 and B.l. Again, freestream acoustic 
waves generate stronger perturbations in the boundary 
layer though it induces weaker entropy perturbation im- 
mediately behind the shock. Both pressure and entropy 
perturbations are stronger for the acoustic case A.l. 

Figure 32 shows the distribution of the amplitudes of 
horizontal velocity and entropy perturbations along a 
grid line near the body surface for Case B of different 
forcing frequencies. Each line in the figure represents a 
test case of different frequency. The results of different 
frequencies show similar receptivity patterns as those 
for the freestream acoustic wave cases (Fig. 23), except 
that the entropy waves induce weaker perturbations in 
the boundary layer. Figure 33 compares the variation of 
receptivity coefficient IAl induced by freestream acous- 
tic and entropy waves. The corresponding compari- 
son of location of maximum entropy amplitude between 
the cases of freestream acoustic and entropy waves are 
shown in Fig. 34. Again the receptivity coefficients 
for freestream entropy waves are weaker than those for 
acoustic waves, but the location of maximum wave am- 
plitudes are the same for both cases. Figure 33 also 
shows that as the frequency decreases, the receptivity 
coefficients for the first modes increase, approach a peak 
value, and decrease as F is further reduced. Therefore, 
as the relative nose radius decreases, the receptivity co- 
efficients will first increase, but decrease if the nose ra- 
dius is further decreased. 

6.3 Case C: Effects of Wall Temperatures 

It has been shown by LST 1261 that wall cooling stabi- 
lizes the first mode in a flat plate boundary layer while 
destabilizing the second mode. The wall-cooling effects 

on the leading edge receptivity are studied by DNS of 
acoustic receptivity for two cases of wall temperatures 
in Case A (T,,, = 1OOO.K) and Case C (T, = 2000K). 
The flows conditions for the higher wall temperature 
Case C are listed in Section 4. 

Figure 35 shows the contours of instantaneous per- 
turbations and Fourier amplitudes of horizontal veloc- 
ity components for the case of freestream acoustic waves 
with T, = 2OOOK and E = 5 x 10e4. The u’ contours of 
the current case show a very similar wave pattern in the 
boundary layer as to those of Case A.1 for lower wall 
temperature (Figs. 11 and 14). 

Figure 36 compares the distributions of the Fourier 
amplitudes of 15’1, lu’l and lzl’l along a grid line near the 
parabola surface for Case A.1 and C.l of higher wall 
temperature. The figure shows that the wall cooling 
results in a stronger receptivity in wave perturbations 
in the boundary layer. Meanwhile, the location of the 
peak in the first mode and the second mode are not very 
sensitive to the changes in wall temperatures. 

Figure 37 shows the distribution of the amplitudes of 
horizontal velocity and entropy perturbations along a 
grid line near the body surface for Case C of different 
forcing frequencies. Each line in the figure represents a 
test case of different frequency. The results of different 
frequencies show similar receptivity patterns as those 
for the freestream acoustic wave cases (Fig. 23), except 
that the case of high wall temperature induce weaker 
perturbations in the boundary layer. 

Figures 38 and 39 compare the variation of receptiv- 
ity coefficient IAl induced by freestream acoustic waves 
for two cases of different wall temperatures. The corre- 
sponding comparisons of location of maximum entropy 
amplitude are shown in Fig. 40. Again the receptivity 
coefficients for the case of higher wall temperature are 
weaker but the location of maximum wave amplitudes 
are the very close for both cases. 

6.4 Case D: Effects of Reynolds Numbers 

The Reynolds number effects on receptivity are stud- 
ied by DNS of two cases of acoustic receptivity of 
the same flow conditions except that the sizes of the 
parabola are different. The flow conditions for the 
higher Reynolds number Case D are listed in Section 
4. 

Figure 41 shows the contours of instantaneous pertur- 
bations of horizontal velocity components for the case 
of higher Reynolds numbers at E = 5 x 10m4. The u’ 
contours of the current case show a generation of first 
mode instability waves in the boundary layer. Since the 
frequency for the current case is very low, only the first 
mode region is shown in the figure. 

Figure 42 shows the distribution of the amplitudes of 
horizontal velocity and entropy perturbations along a 
grid line near the body surface for Case D of different 
forcing frequencies. Each line in the figure represents a 
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test case of different frequency. The results show that 
the case of high Reynolds numbers induce stronger per- 
turbations in the boundary layer. In addition, the sec- 
ond mode also becomes stronger than the first for Case 
D.3. Figure 43 compares the variation of receptivity 
coefficient IAl induced by freestream acoustic waves for 
two cases of different Reynolds numbers. Again, the 
receptivity coefficients for the case of higher Reynolds 
numbers are stronger but the location of maximum wave 
amplitudes are very close for both cases. 

7 CONCLUSIONS 

A parametric study of the leading-edge receptivity of 
a hypersonic boundary layer to freestream monochro- 
matic planar acoustic and entropy disturbances has 
been carried out by direct numerical simulations (DNS) 
for a two-dimensional Mach 15 flow over a parabola. 
The steady flow solutions are studied with the focus on 
the vorticity interaction between inviscid vorticity field 
generated by the bow shock and viscous viscosity gener- 
ation by the boundary layer. In the parametric studies, 
the effects of different freestream waves, wall tempera- 
tures, nose bluntness, and Reynolds number are inves- 
tigated. The main conclusions are: 

1. The freestream disturbances generated both 
boundary-layer first and second modes. The first 
mode is always generated near the leading edge and 
is amplified before decaying rapidly. The second 
mode is the dominant mode after the first mode 
decay. The eigenfunctions of the first and sec- 
ond modes obtained by LST agree well with the 
DNS results inside the boundary layers. The agree- 
ment becomes better as the waves propagate down- 
stream. 

2. The results show that the receptivity coefficients 
and the region of the first mode instability in- 
creases substantially when the forcing frequencies 
decrease. As the forcing frequencies decrease fur- 
ther, the receptivity coefficients reach a peak and 
becomes smaller afterward. These results indicate 
that the receptivity coefficients increase as the rel- 
ative nose radius decreases but there is a critical 
nose bluntness (or frequency) which corresponds to 
maximum receptivity coefficients. 

3. The DNS shows the generation of instability modes 
of the fundamental forcing frequency is linear. The 
receptivity also generates nonlinear superharmon- 
its. 

4. The results show that wall cooling increases the 
receptivity coefficients or wave perturbations gen- 
erated in the boundary layers. 

5. The increase in freestream Reynolds numbers 
shows an increase in receptivity coefficients. 
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Figure 1: A schematic of the wave field of the inter- 
action between the bow shock and free-stream distur- 
bances. The disturbances can originate either from the 
freestream, surface roughness, or surface vibrations. 

I. Inviscid Rotational Flow Field 
II. Stagnation Point Region 
III. Boundary Layer Downstrenm 

Figure 2: Flow field of viscous hypersonic flow over a 
blunt leading edge. 
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Figure 3: Distribution of local vorticity immediately 
behind the bow shock as a function of x for Case A 
(a: solutions of the full Navier-Stokes equations; R,: 
theoretical prediction). 
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Figure 4: Steady flow streamlines for Case A. 

Figure 5: Streamline to shock curvature ratios as a func- 
tion of local shock angle for Case A (Ic: Navier-Stokes 
solutions, 121: theoretical results by Hornung 1997). 
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Figure 6: Steady vorticity distribution along the body 
surface and behind the bow shock vs. x for Case A. 
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Figure 7: Distribution of Navier-Stokes solutions of skin 
friction coefficient (Cf = h) and heat transfer 

coeficient (St = h) along the body surface m mho L 
for Case A. 
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Figure 8: Distribution of locally defined skin friction 
coefficient cf and heat transfer coefficient st along the 
body surface for Case A (Case 1). 

(k12) (i=67) (i=127) 

Figure 9: Distribution of streamwise velocity compo- 
nents in the wall normal direction in local boundary 
layer similarity coordinates n (Case 1: Case A, Re, = 
6026.6; Case 3: Case D, Re, = 60266; B-L: boundary 
layer solutions). 
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Figure 10: Distribution of streamwise velocity and tem- 
perature components in the wall normal direction in lo- 
cal boundary layer similarity coordinates 77 at several i 
grid stations for Case D. 
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Figure 13: Distribution of instantaneous perturbation 
of horizontal velocity components immediately behind 
the shock for Case A.1 at E = 5 x 10m4. 
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Figure 11: Contours of instantaneous perturbation of 
velocity components u’ and velocity vectors after the 
solutions reach a time periodic state for Case A.1 at 
E = 5 x 10-4. 
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Figure 12: Distribution of instantaneous perturbation 
of horizontal velocity components in 1 the boundary layer 
along the j = 30 grid lines near the : body surface for 
Case A.1 at E = 5 x 10S4. 
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Figure 14: Contours of Fourier amplitudes and Fourier 
phase angles (in degrees) of horizontal velocity compo- 
nents ju’j for Case A.1 at E = 5 x 10R4. 
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Figure 15: Distribution of the Fourier amplitudes of the 
velocity perturbations in the boundary layer along the 
j = 30 grid line near the parabola surface for Case A.1 
at E = 5 x 10m4. 

Figure 17: Variation of the temperature amplitude 
along grid lines normal to parabola surface at six i grid 
stations for Case A.1 at E = 5 x 10W4. (a) i = 50 LST: 
1st mode, (b) i = 80 LST: 1st mode, (c) i = 100 LST: 
2nd mode, (d) i = 120 LST: 2nd mode, (e) i = 140 
LST: 3rd mode, (f) i = 160 LST: 3rd mode. 
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Figure 16: Distribution of the local wave numbers in 
the boundary layer along the j = 30 grid line near the 
parabola surface for Case A.1 at E = 5 x 10W4. 

Figure 18: First-mode eigenfunction amplitudes along 
the wall-normal direction at z = 0.5521 for Case A.3 at 
6 = 5 x 10-4. 
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Figure 19: Variation of local pressure perturbation 
amplitudes along the stagnation line for Case A.1 at 
E = 5 x 10-4. 

Figure 20: Variation of local entropy perturbation am- 
plitudes along the stagnation line for Case A.1 at E = 
5 x 10-4. 

Figure 22: Distribution of amplitudes of temperature 
perturbations in the boundary layer along the i = 30 
grid line near the body surface for Case A.1 at two sets 
of E. 
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Figure 21: Maximum temperature amplitudes of the 
first mode (Ti) and second mode (Tz) vs. freestream 
forcing disturbances amplitudes E for Case A.l. 

Figure 23: Variation of horizontal velocity and entropy 
perturbation amplitudes along the i = 30 grid line near 
the body surface with several forcing frequencies with 
E = 5 x 10S4 (Cases a to g in the figure correspond to 
Case A.1 to A.7 respectively) 
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Figure 24: Variation of the amplitude of receptivity co- 
efficient IAl vs. forcing disturbance frequency for Case 
A of freestream acoustic waves with E = 5 x 10m4. 
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Figure 25: Location of maximum entropy amplitude vs. 
disturbance frequency for Case A of freestream acoustic 
waves with E = 5 x 10S4. 
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Figure 27: Contours of Fourier amplitudes and phase 
angles of horizontal velocity components for Case B.l 
with E = 5 x 10v4. 
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Figure 26: Contours of instantaneous perturbations 
of horizontal velocity components for Case B.l of 
freestream entropy waves with E = 5 x 10m4. 
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Figure 28: Variation of pressure and temperature ampli- 
tudes along the i = 100 grid line normal to the parabola 
surface for two cases of freestream waves at F = 2655 
and E = 5 x 10v4 (acoustic: Case A.l, entropy: Case 
B.l). 
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Figure 29: Distribution of the Fourier amplitudes of the 
horizontal velocity perturbations along the j = 30 grid 
line near the parabola surface for two cases of freestream 
waves at F = 2655 and E = 5 x low4 (acoustic: Case 
A.l, entropy: Case B.l). 
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Figure 30: Distribution of the Fourier amplitudes of the 
pressure and entropy perturbations immediately behind 
the bow shock for two cases of freestream waves at F = 
2655 and E = 5 x 10m4 (acoustic: Case A.l, entropy: 
Case B.l). 
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Figure 31: Distribution of the Fourier amplitudes of 
the pressure and entropy perturbations along the stag- 
nation line of the flow field for two cases of freestream 
waves at F = 2655 and e = 5 x 10e4 (acoustic: Case 
A.l, entropy: Case B.l). 

Figure 32: Variation of horizontal velocity and entropy 
perturbation amplitudes along the i = 30 grid line near 
the body surface with several forcing frequencies with 
E = 5 x 1o-4 (C ases a to g in the figure correspond to 
Case B.l, B.3, . . . . B.8 respectively). 

Figure 33: Comparison of variation of amplitude of 
receptivity coefficient IAl vs. forcing disturbance fre- 
quency between the cases of freestream acoustic and 
entropy waves with E = 5 x 10S4 (acoustic: Case A; 
entropy: Case B). 
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Figure 34: Comparison of location of maximum entropy 
amplitude vs. disturbance frequency between the cases 
of freestream acoustic and entropy waves with E = 5 x 
10m4 (acoustic: Case A; entropy: Case B). 
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Figure 36: Distribution of the Fourier amplitudes Is’], 
Iu’I and IV’/ along the j = 30 grid line near the parabola 
surface for two cases of different wall temperatures at 

x low4 (T, = lOOOK: Case A.l; T, = 2000K: 
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Figure 35: Contours of instantaneous perturbations and 
Fourier amplitudes of horizontal velocity components 
for Case C.l with wall temperature T, = 2000K and 
E = 5 x 10-4. 
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Figure 37: Variation of horizontal velocity and entropy 
perturbation amplitudes along the i = 30 grid line near 
the body surface with several forcing frequencies with 
E = 5 x 10S4 and T, = 2000K (Cases a to fin the figure 
correspond to Case C.l to C.6 respectively). 
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Figure 38: Distribution of receptivity coefficient IAl vs. 
frequency for two cases of different wall temperatures 
at E = 5 x 10U4 (T, = 1000K: Case A.l; T, = 2000K: 
Case C.l). 
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Figure 39: Distribution of receptivity coefficient IAl vs. 
frequency for two cases of different wall temperatures 
at E = 5 x 10S4 (T, = lOOOK: Case A.l; T, = 2000K: 
Case C.1). 
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Figure 40: location of maximum entropy amplitudes vs. 
frequency for two cases of different wall temperatures at 
E = 5 x 10m4 (T, = lOOOK: Case A.l;~TW = 2000K: 
Case C.l). 
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Figure 41: Contours of instantaneous perturbations 
of horizontal velocity components for Case D.2 of 
freestream acoustic waves at F = 323 and Re, = 
60266. 

d 

Figure 42: Variation of horizontal velocity and entropy 
perturbation amplitudes along the i = 30 grid line near 
the body surface with several forcing frequencies at E = 
5 x 10S4 and Re, = 60266 (Cases a to d in the figure 
correspond to Case D.2 to D.5 respectively). 
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Figure 43: Distribution of receptivity coefficient IAl vs. 
frequency for Cases D at e = 5 x 10S4 and Re, = 
6026611. 
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