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Abstract 

Nonlinear development of GGrtler vortices and inter- 
action with second shear mode are considered in this 
paper. The nonlinear development distorts the mean 
flow and leads highly inflectional profiles not only in 
wall normal direction but also in spanwise direction 
which induce the secondary instability. In boundary 
layer flow along the’ concave surface, shear modes as 
well as Gijrtler modes exist when Reynold’s number is 
large enough, and their interactions play an important 
role in transition of the flow along the concave surface. 
In this paper, nonlinear development of Gijrtler vor- 
tices and their effects on the relatively small amplitude 
of two dimensional second shear mode are investigated 
using Direct Numerical Simulation (DNS). Initial forc- 
ing disturbances are obtained from the Linear Stabil- 
ity Theory (LST) , and subsequent linear and nonlinear 
development and its interaction with other modes are 
simulated using Navier-Stokes equations. We investi- 
gate nonlinear effects of GSrtler vortices in hypersonic 
boundary layers. 

1 INTRODUCTION 

The transition of laminar/turbulent boundary layer 
flow is the fundamental subject in fluid mechanics. 
In general, boundary ‘layer flows become turbulent in 
three steps: 1) receptivity, 2) linear growth of dis- 
turbance, and 3) nonlinear effects in which the flow 
breaks down to turbulence. Gartler instability is one 
of many B-L instability mechanisms. GSrtler vortices 
appear in boundary layer flow along concave surfaces 
due to the imbalance between pressure and centrifugal 
force. .Many practical engineering designs involve con- 
cave surfaces such as engine inlet. Therefore, GSrtler 
instability becomes an important subject in fluid me- 
chanics. 
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GGrtler vortices have been studied experimentally 
and numerically since Gijrtler found them in 1940 11-2gl. 
Liepmann 121 conducted boundary-layer transition ex- 
periments on concave walls and showed that the crit- 
ical Reynold’s number for concave walls is lower than 
for flat plates which means concavity destabilizes flow. 
Even though the GGrtler instability has been theo- 
retically estabilished since 1940, actual observation of 
GGrtler vortices were conducted by Tani 131 in 1962. Us- 
ing smoke, he observed a spanwise variations by veloc- 
ity measurements along the concave wall. 

GGrtler instability has been studied using LST. 
Gijrtler 11] and Smith 14] showed neutral stability curves 
in their linear stability analysis. However, their re- 
sults were not consistent to each other. They were 
only matched in the limit of the short wavelength, 
and Hall (51 [61 [fl applied asym 

Hall l5 P 
totic theory to GSrtler 

instability problems. proved that in high 
wavenumber limit, the parallel flow theory becomes 
valid. Hall 171 obtained that the existence of -a neu- 
tral point strongly depends on location and shape of 
the initial condition. However, Hall and Fu 181 in their 
asymptotic analysis showed that at hypersonic speed 
limit, the nonuniqueness of the neutral stability curve 
associated with incompressible GGrtler vortices disap- 
pears. 

El-Hady and Verma 1’1 computed complete stability 
digrams for various Mach number. Normal velocity 
and streamwise variations were included in their anal- 
ysis. They proved corn 
tor. Spa11 and Malik [lo P 

ressibility is a stabilizing fac- 
dealt with linear stability the- 

ory of GGrtler instability using method of marching in 
which streamwise variations of disturbances were also 
considered. In mean flow calculation, pressure changes 
in streamwise direction were included to study adverse 
pressure effects. Mach number range is O-12 so they 
considered hypersonic as well as supersonic boundary 
layers. It was found that in hypersonic limit, com- 
pressibility effects become less important, and adverse 
pressure is a dominant role in flow instability. 

Aihara 1111 in his wind tunnel experiment showed 
that the non-linear development of GGrtler vortices 
mainly affects the transition of the boundary lay- 
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ers. Sabzvari and Crane [I21 and Peerhossaini and 
Wesfreid [I31 observed mushroom like vortices due to 
the nonlinear growth of Giirtler vortices. They showed 
there are two regions (upwash and downwash) in 
development of Giirtler vortices. Peerhossaini and 
Wesfreid 1131 observed interaction between two neigh- 
boring vortices.’ 

Recent experiments have shown that breakdown of 
GGrtler vortices is mainly due to secondary instabili- 
ties. Aihara and Kohama [I41 and Aihara et al [I51 iden- 
tified the breakdown of the vortex structure as a sec- 
ondary instability due to a horsesho-vortex structure. 
Swearingen :sd Blackwelder 1161 verified two kinds of 
secondary instabilities which are the sinous and vari- 
cose types. They showed that sinuous mode is pro- 
duced by spanwise velocity gradient, and the varicose 
is due to normal velocity gradient. In their experi- 
ments, the unsteady secondary instability fluctuations 
correlated better with the spanwise velocity than with 
the normal velocity gradient. 

Recently many researchers have tried to solve non- 
linear Gijrtler problems numerically. Hall llfl demon- 
strated that nonlinear evolution of streamwise GGrtler 
vortices produces inflectional profiles which will pre- 
sumably break down. Lee and Liu 1181 and Liu 11’1 nu- 
merically showed mushroom like vortex due to nonlin- 
ear growth of Gijrtler vortices. 

Liu and Domaradzki lzol, Yu and Liu 1211, and Li 
and Malik 122l studied secondary instability effects on 
Gartler vortices. Li and Domaradzki12’l dealt with 
Giirtler problem using DNS. Initial disturbances were 
obtained from LST. They showed that Gijrtler vortices 
become turbulent due to’ the spanwise velocity gradient 
as well as the normal velocity gradient. These velocity 
profiles contain inflectional points which play roles in 
flow instability. They mentioned that varicose mode 
is related to the normal velocity gradient, and sinu- 
ous mode is to the spanwise gradient and concluded 
that sinuous mode is dominant. Li and Malik 1221 used 
PSE (parabolic stability equation) method, and stud- 
ied nonlinear effects of Gijrtler vortices. In their ap- 
proach, they showed there are two kinds of secondary 
instability modes; even and odd. The even mode is re- 
lated to the varicos mode, and the odd mode is to the 
sinous mode. 

Nayfeh 1231, in his multiple-scale analysis for two di- 
mensional boundary layers, showed that Gijrtler vor- 
tices can interact with the oblique Tollmien-Schlichting 
(TS) waves whose spanwise wavelength is the twice of 
the vortices. He found that GGrtler vortices strongly 
destablize the TS waves. Malik 1241 obtained the results 
which are not agreed with Nayfeh. He found the incon- 

sistent length scale in Nayfeh’s formula and showed in a 
his temporal and parallel analysis that the oblique TS 
waves whose wavelength is the half of the vortices are 
destabilized by the nonlinear interaction. Nayfeh and 
Al-Maaitah corrected 12’] the formula and 

P 
resented 

the new results which are the same to Malik 241. They 
used both Floquet theory and the method of multiple- 
scale and showed both methods give a good agreement. 

Malik and Hussaini 124 considered nonlinear interac- 
tion between two dimensional TS waves and Gijrtler 
vortices. In the analysis, incompressible Navier-Stokes 
equations are solved using a Fourier-Chebyshev spec- 
tral method. It is shown that the TS waves can be 
excited by GGrtler vortices, and due to the nonlinear 
effects, Giirtler vortices induces the oblique wave whose 
wavelength is the equal to the vortices. 

2 Governing Equations 

The unsteady three dimensional Navier-Stokes equa- 
tions in conservative-law form are used for the direct 
numerical simulation: 

tXJ* aF*j $ dF*,j = o --- 
at* + ax; ax; (1) 

where superscript ‘*’ represents dimensional variables 
and 

e* = p”(C,‘T* + fu~u;) 

The.flux vectors are 

(4 

’ (5) 

(6) 
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where 

* 
T~j = -/I 

q; = +*aT’ 
aq 

p* is the viscousity coefficient and calculated using the 
Sutherland’s law: 

3’2 T,* + T,’ 
T” +T;’ (9) 

and K* is the heat conductivity coefficient computed 
by assuming a constant Prandtl number Pr. The gas 
is assumed to be thermally and calorically perfect gas, 

p* = p’R+T’ (10) 

where R* is the gas constant. 

3 RESULTS 

3.1 Parametric studies on GGrtler and 
shear mode at hypersonic limit 

Both shear and Gijrtler modes at hypersonic speed have 
been considered in the analysis. Unstable shear mode 
as well as Gijrtler mode exist along the concave surface 
when Reynold’s number is large enough; therefore, it 
is important to investigate which mode is dominant. 
At hypersonic speed limit, second shear mode domi- 
nates the first mode; therefore Glirtler modes and sec- 
ond shear modes are compared in the analysis. 

Figure 1 shows the maximum temporal growth rates 
of Giirtler and the second shear modes at constant 
Reynold’s number (Rea). Each lines of GSrtler modes 
indicates constant Gartler number (G). Reynold’s 
number (Res) is fixed as 1500, and radius of curvature 
changes in order to study Gartler number effects. As 
Gdrtler number increases, the maximum growth rates 
increase. Increasing Giirtler number at fixed Reynolds 
number represents increase of curvature effects. As cur- 
vature increases, flow become more unstable. It is also 
true for shear mode, but it does not affect the stability 
condition as much as for Gortler mode. Therefore in 
figure 1, second shear mode at G = 15.0 is only shown. 

The figure, shows that there is a critical Gijrtler num- 
ber above which Gijrtler mode dominates second shear 
mode at hypersonic speed limit. 

At low Mach number, Glirtler modes dominate sec- 
ond shear mode. However, this is the region dominated 
by first shear modes which are not computed in this 
analysis. According to Mack’s13’l results for flat plate 
at Res=1500, we can roughly compare growth rates of 
Gijrtler modes and first shear modes. If Gdrtler num- 
beris greater than 15.0, GSrtler modes dominate first 
shear modes. 

Compressibility effects of GGrtler modes are also 
shown in figure 1. As Mach number increases, growth 
rate decreases. However, at hypersonic limit, stability 
effects of compressibility become less important. When 
Mach number is greater than 5, growth rates become 
constant. It is the same results as Spa11 and Malik li’l. 

3.2 Simulation of flow along the blunt 
body with concave surface 

3.2.1 2-D mean flow 

The steady flow solutions of the Navier-Stokes equa- 
tions for the viscous hypersonic flow over blunt body 
is simulated using a fifth order explicit upwind scheme 
and shock fitting method 1311 The test results of the . 
new fifth-order shock fitting scheme and the numerical 
accuracy of calculating the receptivity problems of hy- 
personic viscous flows are presented in Ref. [31]. Nine 
computational zones are used which are resolved by 
1449 x 121 grids. Stretched grids are used in stream- 
wise direction as well as in wall normal direction in or- 
der to resolve rapid changes of flow properties near the 
stagnation point in zone 1 and viscous layers. Parame- 
ters for the zones are represented in Table 1. Reynold’s 
number is calculated using the flow properties behind 
the shock, and x-distance from blunt nose to inlet of 

’ zone 7 is used as the reference length since disturbances 
are introduced at the inlet of zone 7 in the simulations 
of Gijrtler instability. 

First three zones are parabolic blunt body, and con- 
cave surface is extended in the other zones. Using 
polynomial equations, we make continuous and smooth 
curves. At transition points between two polynomial 
equations, zeroth, first, and second order derivatives 
are matched; therefore, curves are continuous till sec- 
ond order derivatives. More smooth curves can be gen- 
erated by matching the third order and more, but in 
our analysis, we matched till second order in order to 
get continuous radius curvature which is a function of 
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Table 1: Parameters for computational zones. Forcing 
disturbances of the primary Gortler mode are imposed 
at inlet of zone 7 in simulation. 

Zone X0 Xl Rex,, Rex, 
1 0.00 0.05 0.0 9.39 x lo3 
2 0.03 0.20 5.43 x lo3 6.04 x lo4 
3 0.18 0.31 4.99 x lo4 1.02 x lo5 
4 0.29 0.51 9.26 x lo* 1.91 x lo5 
5 0.46 0.82 1.67 x lo5 3.37 x lo5 
6 0.74 ,1.08 2.95 x lo5 4.64 x lo5 
7 1.00 1.34 4.23 x lo5 5.92 x lo5 
8 1.26 1.85 5.52 x lo5 8.49 x lo5 
9 1.71 2.37 7.80 x lo5 1.10 x lo6 

first and second order derivatives. For the concave sur- 
face, we used large radius of curvature to avoid shock 
formation due to the compressive waves inside the com- 
putational domains. 

The specific flow conditions in free stream are 

h&=15 
T& = 101.059K 
PL = 10.3Pa 
T; = lOOOK 
Re, = pkU&/&, = 150753.175 

01) 

The body surface is assumed to be a non-slip wall with 
an isothermal wall temperature Tz. Numerical solu- 
tions of the steady mean flow are represented in Whang 
and Zhong 13’]. The bow shock shape is obtained a8 the 
freestream grid line. The numerical solution for the di- 
mensionless bow shock normal velocities are in order 
of 1o-8 - 1o-g. 

3.2.2 Inlet disturbances obtained from LST 

Inlet forcing disturbances are obtained by linear stabil- 
ity analysis using simulated 2-D mean flow. Concave 
surfaces are included in zone 4 and beyond. Calculated 
Giirtler number is between 2.5-13.0, and Mach number 
behind shock is 6-9.1. Mach number and Gartler num- 
ber distributions along streamwise direction for zone 
5 - 9 are shown in figure 2. Since Gijrtler number 
is relatively low at such high Mach number, zone 4 
and 5 do not have unstable modes in LST calcula- 
tion. At the end of zone 6, we found unstable GGrtler 
mode, therefore, the forcing disturbances are intro- 
duced at inlet of zone 7. Eigenfunctions of the pri- 
mary modes obtained from linear stability analysis are 

shown in figure 3. Flow properties are nondimensional- 
ized by freestream values such as streamwise velocities 
by U&, normal and spanwise velocities by U&,/a, 
pressure by p;$Ug/Re, length scales by xg of zone 
7 in the streamwise direction, and by boundary layer 
thickness,& in normal and spanwise directions, and time 
scale by x*/U&. Nondimensional spanwise wavenum- 
ber, /3, is 0.1. The growth rate (q) of primary mode 
is 1.014. Figure 4 shows streamwise velocity perturba- 
tion contour of primary Gartler mpde. The growth of 
GGrtler vortices in the streamwise direction is shown by 
intensity of the disturbances. The figure also shows the 
distributions of the simulated disturbances in wall nor- 
mal direction at I = 100. LST results are also plotted 
in the same figure. up and T, from DNS are matched 
will with those from LST. More detailed linear growth 
of the primary and secondary GGrlter modes were in- 
vestigated in Whang and Zhong 13=]. 

3.3 Non-linear Growth of Giirtler Vor- 
tices 

It is an important topic how Giirtler vortrices break 
down to turbulence. Experiments showed that it is 
mainly due to the interaction of nonlinear growth of 
Giirtler vortices and other forms of disturbances. In 
nonlinear growing process, mushroom shaped vortices 
are produced since the counter-rotating vortices pump 
fluid with a low streamwise velocity away from the 
wall. There are two regions in GSrtler vortices which 
are peak (low velocity region) and valley (high veloc- 
ity region). These two regions produce the mushroom 
shaped vortices. Interaction between these vortices and 
traveling wave is the main factor of breaking down to 
turbulence. 

To study nonlinear effects’of Gijrtler instability, large 
amplitude disturbances are introduced at inlet of zone 
7. The amplitude of the inlet GGrtler mode is about 
O.lU,. Five zones (zone 7, zone 8, zone 9, zone 10 and 
zone 11) are used in nonlinear simulation. Two more 
zones are extended for nonlinear calculations. Each 
zones are resolved by 161 x 121 x 64 grids. In the simu- 
lation, parallel computing is applied to reduce the.com- 
putational time. Six node8 are applied to each zones. 

Figure 5 and figure 6 show streamwise mean velocity 
distributions a8 flow moves downstream. The develop- 
ment of mushroom shaped vortices is well represented 
in the figure. Bow shock doe8 not have much effects 
on flow field since GGrtler vortices develop in viscous 
layers. The iso-contours of streamwise mean velocity 
at four different streamwise locations are shown in fig- 
ure 7. Peak and valley regions are clearly shown. While 
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. 
the middle region (peak) tends to go up, others be- 
comes narrower. 

Profiles of the streamwisevelocity in wall normal di- 
rection at four different spanwise locations are shown 
in figure 8. Velocity in peak region increases near the 
wall, and inflection points develop. The Gijrtler vor- 
tices pump vertically the low-speed fluid away from the 
wall in the peak region and push the high speed fluid 
toward the wall in the valley region. However, there 
is the limitation of growing thickness of the peak, and 
high speed fluid starts to transfer to the peak region 
near the wall and the low speed fluid to the valley away 
from the wall. As a results, the mushroom shaped vor- 
tices are produced. Streamwise velocity perturbation 
contours shown in figure 9 represent fluid near the wall 
in peak region is transferred to the valley. 

In GGrtler instability, inflection points develop in 
wall normal and spanwise directions, and inviscid in- 
stability problem becomes important which induces the 
secondary instability. Derivatives of the streamwise 
velocity show clear development of inflection points. 
Figure 10 shows iso-contour of p% in four different 
streamwise locations. Structure in peak region (low 
velocity region) changes as flow moves. The vertical 
shear has its maximum in the low velocity region. Wall 
normal distributions of the normal streamwise velocity 
gradients are shown in figure 11 in which the magni- 
tude of py 

I 
is the maximum. Inflection points develop 

in the pea region. At X = 1.042, there is no inflec- 
tion points; however, as the flow moves to downstream, 
they develop and the magnitude increases which means 
that effects of inflection points increase. 

The same trends are observed in spanwise velocity 
gradients. Figure 12 and 13 show profiles of spanwise 
velocity gradients, p$$, at four different streamwise lo- 
cations. Both figures also represent the development of 
inflection points. Inflectional profiles appear in span- 
wise direction as well as normal direction, and they are 
related to the secondary instability. Using energy con- 
version mechanism, Yu and Liu czll showed that sinu- 
ous mode of secondary instability is related to normal 
velocity gradient, and varicos mode is related to the 
spanwise gradient. 

Figure 14 shows streamwise vorticity contours. 
Counter rotating streamwise vortices are well repre- 
sented in this figure. The structure of the velocity field 
is shown in figure 15 as the cross sectional vector plot in 
four different streamwise directions. It also shows that 
the counter rotating streamwise vortices and pumping 
action with low velocity away from the wall. This ef- 
fect become stronger in downstream. In addition, as 
flow moves, structure becomes complex due to nonlin- 

ear effects, and it will break down to turbulent. The 
complexity is also shown in figure 10 and figure 12. 
Nonlinear breakdown of Gijrtler vortices will be inves- 
tigated by extending more zones. 

There are two peaks in iso-contours of spanwise ve- 
locity gradients, and flow properties changes. There- 
fore, X-Z cross sections are plotted for various flow 
parameters. Figure 16 is the cross sectional plots for 
streamwise velocity. From figure 9, high velocity dis- 
turbances near the wall moves toward the peak region, 
and the low velocity away from the wall moves to the 
valley. Therefore near the wall (J = 42), minimum 
velocity region become narrower However, low velocity 
disturbances away from the wall transferred from the 
valley goes down since counter rotating vortices pushes 
down the flow at the valley region. That’s why there 
are two minimum peak regions near the center (J = 69) 
as flow moves downstream. Spanwise velocity gradient 
(figure 17) and streamwise vorticity (figure 18) profiles 
also represent the effects of counter rotating vorticity. 
Near the wall the peak region moves toward the center, 
but opposite trends occurs away from the wall. Both 
figures also show that flow becomes complicated down- 
stream. 

Finally, we studied spanwise Fourier spectral modes 
on nonlinear growth of GSrtler vortices. The number 
of spanwise Fourier modes used in the z-direction is 33. 
The energy in each Fourier mode is shown in figure 19. 
Energy is defined as 

E,, = 
J oui (14 + M2 + lwJ2)dy. w-4 

Initially, the Gijrtler vortex (mode 1) develops linearly. 
Mean flow correction mode (mode 0) dominates mode 
1 as the flow moves downstream. In this nonlinear 
regime, the main interaction is between the fundamen- 
tal and mean flow correction mode (mode 0). However, 
effects of higher modes (mode 2, 3, etc) increase as flow 
moves downstream. Those modes will increase and be 
saturated. If the flow reaches this condition, it will 
break down to turbulence. 

Figure 20 and figure 21 show the eigenfunction com- 
parison between simulated results and those obtained 
from local LST. Simulated results near the inlet of zone 
7 are well matched with LST. It means that distur- 
bances grow linearly at the beginning. However, after 
higher mode and mean flow correction mode effects be- 
come significant, the results are not compatible since 
nonlinear effects are significant. 

In figure 22 and figure 23, mode shapes for stream- 
wise velocity and temperature at four different stream- 
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wise locations are plotted. Hall [I71 in his incompress- 
ible G&tier instability analysis shows that shape of 
Vi changes significantly compared to linear solution as 
flow moves downstream. However, in our hypersonic 
Gijrtler analysis, the shape of second mode for stream- 
wise velocity and temperature changes more dramat- 
ically than the fundamental mode. It is a difference 
between incompressible analysis and our compressible 
analysis. In our analysis, the disturbance is dominated 
by the fundamental and mean flow correction which is 
also true for Hall’s [lq. However, magnitude of the sec- 
ond mode is the almost same order of the fundamental 
and- mean flow correction modes. 

3.4 Nonlinear interaction of GSrtler 
and second shear mode 

Experiments showed that GGrtler vortices break down 
to turbulence due to secondary instability. Nonlin- 
ear development of GGrtler vortices produce comlicated 
structure which will break down. However, interac- 
tion of Gijrtler vortices with other form of disturbances 
leads earlier transition to turbulence. 

34.1 Simulation of second shear mode with- 
out Giirtler vortices 

First we imposed the second shear mode at inlet of 
zone 7 and compared the simulated results with those 
obtained from LST in order to verify the simulation 
code. 2-D mean flow without GGrtler vortices is used 
in this analysis. Inlet disturbances which are shown in 
figure 24 are obtained from LST. Profile of pressure dis- 
turbance (pp) represents that it is second shear mode. 
At hypersonic speed limit, second mode dominates first 
mode; therefore, we found the second. However, in 
our linear stability analysis, there is no unstablle shear 
mode, and we choose one stable mode and impose it at 
inlet of zone7 in’the analysis with and without GGrtler 
vortices. 

Spatial stability analysis is considered. In other 
words, frequency, w , is real, and wavenumber, Q, is 
complex. In the analysis, the nondimensional frequence 
is 120. Figure 25 show disturbance contours at certain 
time after disturbances propagate spatially and reach 
the periodic condition. The figure shows disturbances 
decay as the flow moves downstream. Decaying dis- 
turbances are more clearly shown in figure 26 which 
represents disturbance distributions along the stream- 
wise direction at a certain wall normal position. 

The simulated results are compared with those pre- 

Table 2: Growth rates obtained from DNS at three 
different locations are compared with those from LST. 
Positive sign of the growth rate represents the mode is 
stable. 

’ 

X aj(LST) ai(DNS) error(%) 
k.043866 5.84966 6.20078 6.0 
1.056898 5.95504 6.32484 6.2 
1.086860 6.19107 6.67196 7.8 

dieted by LST. Figure 27 shows the disturbance distri- 
butions at X = 1.056898 (X = 1.0 is at inlet of zone 
7). There is a good agreement between DNS and LST. 
Growth rate (CQ) and phase (o,.) are also compared. 
Growth rates at three different streamwise locations 
are shown in table 2. Growth rate for DNS is com- 
puted using: 

where 4 is the amplitude of disturbances and is com- 
pared ‘one from LST. The error is around 6 to 7 %. (Y,. 
for simulation is computed using 

where X is the wavelength. Phase angle is plotted in 
figure 28. From the figure, the wavelength is calculated 
which is 0.04581, and it leads crp is 137.15739. crp from 
LST is 133.746 which agrees well with one from DNS. 
Fourier transformation is.used in order to compute am- 
plitude and phase angle of disturbances. 

3.4.2 Effects of Gijrtler vortices ori second 
shear mode 

Nonlinear interaction of second shear mode and GGrtler 
mode is considered. The second mode is imposed 
at inlet of zone 7 in which steady GGrtler mode ex- 
ists. The amplitude of the shear mode is 1% of the 
freestream velocity which is one order lower than im- 
posed GGrtler mode. Nondimensional frequency and 
inlet disturbances of the shear mode are the same as 
those in previous section. 

Figure 29 and Figure 31 show the cross sectional dis- 
tributions of the shear mode in the existence of Gijrtler 
mode. Figure 29 is for the region near the surface, and 
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figure 31 is for inflectional region. Both figures show 
the development of complex structure as the flow moves 
downstream due to the nonlinear interaction between 
shear and Gljrtler mode. We imposed 2-D TS waves 
at the inlet of zone 7, but oblique mode develops along 
the streamwise direction. Disturbances imposed in the 
middle propages slower than those at side which rep- 
resents the development of oblique mode. 

We studied nonlinear effects of Gijrtler vortices. Sim- 
ulation showed the development of high and low veloc- 
ity regions in Gortler vortices. The transfer of high 
speed fluid in valley region into the peak produced 
mushroom shaped vortices. Inflection points developed 
in nonlinear growth of Gijrtler vortices. The profiles of 
normal and spanwise velocity gradient showed the in- 
flectional points which induce the inviscid instability I 
problem. 

The imposed shear mode is stable according to linear 
stability analysis. DNS results show that the mode is 
stable in the existence of Giirtler mode except near in- 
flectional region. Figure 30 show distributions of tem- 
perature disturbances near the surface along stream- 
wise direction at three different spanwise locations. De- 
caying disturbances are well represented in the figure. 
However, in figure 32, disturbances are excited as the 
flow moves downstream due to the nonlinear interac- 
tion. Nonlinear development of GGrtler vortices pro- 
duce inflectional profiles which destabilize the shear 
mode. Figure 8 shows that inflectional profiles start 
to develop at valley region (li = 4). Inflection points 
at peak region appear later station. However, in zone 
7, there is no inflection points near the peak region. 
Therefore, disturbances imposed near the valley region 
increase along the streamwise direction (2 = 0.0 and 
2 = 0.11 in figure 32). However, those in which there 
is no inflection points decay. This trend is well repre- 
sented in streamwise velocity profile in figure 33. 

Finally, nonlinear interaction of GGrtler and second 
shear mode was considered. Due to development of 
inflection points in nonlinear effects of steady Gijrtler 
mode, stable 2-D shear mode was excited, and oblique 
mode was developed as the flow moves downstream. 

5 Future Works 

Work is in progress to include more detailed nonlinear 
interaction between Gortler mode and other forms of 
disturbances. Secondary instability of GGrtler vortices 
at hypersonic speed will be investigated using DNS and 
Floquet theory. Fundamental and subharmonic sec- 
ondary instability will be considered. Mixing effects 
in the existence of fuel injection will also be studied. 
There are concave surfaces at engine inlet of hypersonic 
vehicle in which GGrtler vortices and fuel injection ex- 
ist. 

4 CONCLUSIONS 
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Figure 1: Comparison of the maximum growth rates of 
Gijrtler modes and second shear modes at Res = 1500. 
There is a critical GGrtler number above which GGrtler 
modes are dominant. 
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Figure 2: Distributions of Gijrtler number and Mach 
number behind shock, Mach number increases because 
a shock becomes weaker, and GGrtler number increases 
since Reynold’s number increases. 
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Figure 3: Schematic of computational domain and 
eigenfunctions of primary GGrtler mode of inlet of zone 
7 at G = 6.71, M = 7.89, Re, f 4.23 x 105, and 
p = O.l.Growthrate (pi) is 1.014. 
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Figure 4: Streamwise velocity perturbation contours 
and wall, normal distributions of up and T, at I = 100 
of zone 7 at G = 6.71, M = 7.89, Re, = 4.23 x 105, 
and /I = 0.1, Results are compared with those obtained 
from LST. 
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Figure 5: Distributions of k-contours of streamwise mean velocity along the streamwise direction for zone 7, 8 
and 9. The size of grids is 483 x 121 x 64. Mushroom shaped vortices develop as flow moves downstream due to 
nonlinear effects. 

Zone 11 

Figure 6: Distributions of Lx-contours of streamwise mean velocity along the streamwise direction for zone 10 
and 11. 
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Figure 7: Sectional streamwise velocity distribution at 
four different ‘streamwise locations. x=1.703 

x=2.291 

Figure 8: Profiles of the streamwise velocity in wall 
normal direction at four different streamwise locations. 
Velocity of the peak region (K=28) near the wall in- 

Figure 9: Streamwise velocity disturbance contours at 

creases as flow moves downstream. 
four different streamwise locations. Disturbances in 
valley region’near the wall moves to’the peak region of 
Giirtler vortices. 
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Figure 10: Iso-contours of normal gradient of the mean 
streamwise velocity in the cross-stream plane at four 
different streamwise locations. 

Figure 11: Profiles of normal gradient of the mean 
streamwise velocity in wall normal direction at peak 
region. Inflection points develop along the streamwise 
direction. 

Figure 12: Iso-contours of spanwise gradient of the 
mean streamwise velocity in the cross-stream plane at 
four different locations. 

Figure 13: Profiles of spanwise gradient of the mean 
streamwise velocity in wall normal direction. Inflection 
points develop along the streamwise direction. 
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Figure 14: Streamwise vorticity contours at four differ- 
ent streamwise directions. Counter rotating vorticity 
is well represented. 
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Figure 15: Structure of the velocity vector field in the 
plane normal to the wall. Figure 16: Streamwise mean velocity in the (X,Z)- 

plane at J = 42 (up) and J = 69 (bottom) 
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Figure 17: Spanwise velocity gradient profiles in the Figure 18: Distributions of streamwise vorticity in the 
(X,Z)-plane at J = 42 (up) and J = 69 (bottom) (X,Z)-plane at J = 42 (up) and J = 69 (bottom) 
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Figure 19: Nonlinear evolution of disturbance energy 
for various spanwise Fourier modes. 

Figure 20: Streamwise velocity disturbance compari- 
son between DNS and local LST results. Disturbances 
grow linearly near the inlet of zone 7. 

Figure 21: Temperature disturbance comparison be- 
tween DNS and local LST results. Disturbances grow 
linearly near the inlet of zone 7. 

Figure 22: Streamwise velocity profiles for mode 0, 1, 
2, and 3 at four different streamwise locations. 
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Figure 23: Temperature profiles for mode 0, 1, 2, and 
3 at four different streamwise locations. 

Figure 24: Eigenfunctions of the second shear mode 
which are imposed inlet of zone7. 
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Figure 25: Distributions of disturbances without inter- 
action with Gijrlter modes. Disturbances decay along 
the streamwise direction. 
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Figure 26: Distributions of disturbances along the 
streamwise locations show that the mode is’stable. 
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Figure 28: Phase angle of disturbances obtained from 
Fourier transformation analysis. 
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Figure 27: Comparison between simulated results and 
those obtained from LST (1=50). They give a good 
agreement 
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Figure 29: Sectional distributions of shear mode near 
the surface in the existence of GSrtler mode. Compli- 
cated structures appear as the flow moves downstream 
due to the nonlinear interaction. 
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Figure 30: Imposed shear mode near the surface decay 
in the existence of Gijrtler mode. 
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Figure 31: Sectional distributions of shear mode in the 
existence of G&tier mode in which there is an inflection 
point. Structure become complicated as the flow moves 
downstream due to the nonlinear interaction. 
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Figure 32: Disturbances imposed at inflection region 
increase as the flow moves down stream. 
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Figure 33: Inflectional profiles develop along wall nor- 
mal direction. Disturbances increases in which there is 
a inflection point. 


