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Abstract 

In high Mach number flight conditions, air begins to 
depart from the perfect gas behavior due to vibrational 
excitation and chemical dissociation, which can signif- 
icantly influence the heat flux on the vehicle wall sur- 
face and laminar-turbulent transition. In our previous 
work, fifth-order upwind finite difference scheme com- 
bined with additive semi-implicit Runge-Kutta method 
is developed and validated in direct simulation of tran- 
sient hypersonic nonequilibrium flows. This method 
is advanced and applied for the nonequilibrium hyper- 
sonic flow over a thin flat plate. Unsteady flow is devel- 
oped naturely after disturbance is introduced by blow- 
ing and suction through a narrow slot on the wall. The 
numerical methods and computational codes are vali- 
dated by comparing the results with locally self-similar 
boundary layer results and local linear stability analy- 
sis. 

Introduction 

The laminar-turbulent transition in hypersonic 
boundary layer significantly affects the dynamic per- 
formance and surface heating of space transportation 
vehicles. Therefore, the accurate prediction of bound- 
ary layer transition is a critical part of the aerody- 
namic design of advanced hypersonic vehicles and cor- 
responding thermal protection system. The transition 
from laminar to turbulent flow in wall-bounded shear 
layers occurs because of an incipient instability of the 
basic flow field, which is identified in stability analy- 
ses. In general, the transition is a result of nonlinear 
response of the laminar boundary layers to forcing dis- 
turbances llw41. The forcing disturbances can originate 
from many different sources, including disturbance in 
free stream, and blowing and suction through the slot 
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on the wall. Initially these disturbances may be too 
small to be measured, and they can be observed only 
after the onset of an instability. The initial growth 
of these disturbances is described by linear stability 
theory (LST). The properties of disturbance can be 
described by defining a local Mach number .i@ accord- 
ing to the disturbance phase speed c, relative to the 
boundary layer edge velocity ue: 

(1) 

where a, is the sound speed at the edge of the bound- 
ary layer. When the local flow velocity is subsonic 
throughout the boundary layer relative to the distur- 
bance phase speed (ti < l), the presence of a general- 
ized inflection point (gip), defined as: 

(2) 

is a sufficient condition for the existence of instabil- 
ity (first mode) because of a maximum in the angu- 
lar momentum according to Lee and Lin’s 1’1 results. 
The first mode is an extension of the incompressible 
Tollmien-Schlichting (TS) wave at high speeds. Af- 
ter the pioneering work of Lee and Lin, Mack r6*71 
made great contributions to the subject on compress- 
ible boundary layer stability. Mack developed the the- 
ory for compressible fiat pIate flow and obtained fruit- 
ful results about the effects of Mach number, wall tem- 
perature, Reynolds number etc. For compressible gas 
flows, the inflection point moves away from the wall 
boundary with the increasing Mach number. As a re- 
sult, the first mode inviscid instability increases. This 
effect occurs up to a Mach number of approximately 
5 171. At supersonic Mach number, the fist mode rep- 
resents a combination of the viscous (TS) mode and 
the inviscid compressible Rayleigh instability associ- 
ated with the general inflection point in the basic flow 
profiles. At high Mach number, besides of first mode, 
Mack found a new family of unstable modes called 
Mach modes, which represent sound waves that reflect 
inviscidly between the solid wall and the relative sonic 
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line in the boundary layer 181. The second inviscid sta- 
bility mode is caused by the presence of a region of 
supersonic mean flow relative to the disturbance phase 
velocity. At higher Mach number, higher modes be- 
longing to this class may be relevant. Mack investi- 
gated the effects of wall temperature and found that 
the wall cooling is stablizing to the first mode while 
destabilizing to the second mode. Some later work on 
compressible stability of axisymmetric boundary layers 
can be found in Refs. [8-131. The recent advancement 
on stability of boundary layer is reviewed in Ref. [14]. 

The stability of hypersonic flow is much more compli- 
cated due to vibrational excitation and chemical reac- 
tion. In hypersonic flows, the bow shock is pushed more 
closely to the edge of the boundary layer. The real gas 
effects on stability were investigated by Malik li5~i61 by 
assuming air to be in thermal and chemical equilib- 
rium. Stuckert and Reed [I71 studied the effects of fi- 
nite rate chemistry on stability of shock layer with basic 
state being taken to be the solution of the parabolized 
Navier-Stokes(PNS) equations. They also considered 
the effect of shock by using the linearized shock-jump 
conditions. Recently, Hudson et al. 11’1 analyzed the 
stability of hypersonic flat plate boundary layer by as- 
suming both chemical and thermal nonequilibrium. All 
these numerical results showed that the effect of chem- 
ical reaction is very similar to that of wall cooling, i.e., 
stablizing for the first mode and destabilizing for the 
second mode. In addition, the second mode is shifted 
to lower frequencies shown in both the equilibrium and 
nonequilibrium air calculations. This is attributed to 
the increase in the size of the region of relative su- 
personic flow due to the lower speeds of sound in the 
relatively cooler boundary layers. 

Many theoretical and experimental studies have 
been done on hypersonic boundary layer transition. 
Reshotko and Khan lrgl showed that the swallowing of 
the entropy layer by the boundary layer has strong ef- 
fects on the stability of the boundary layers. The ex- 
perimental measurement on hypersonic boundary layer 
stability of sharp cones showed the additional complex- 
ity of hypersonic boundary layers 120-221. The results 
indicated that the’first and second mode instabilities 
are simultaneously present in the hypersonic bound- 
ary layers. Experiments on hypersonic boundary layer 
transition of blunt cones 123-251 showed that slight nose 
bluntness has significant effects on the boundary layer 
transition. The increase of nose bluntness delays the 
transition onset, but the trend is reversed when the 
nose bluntness exceeds a certain limit. In addition, 
Stetson et al. 1251 found the evidence ‘of inviscid en- 
tropy instability in the region outside of the bound- 
ary layers for the case of certain blunt cones at Mach 
8 free stream in the entropy-layer swallowing region. 

The stability characteristics of hypersonic boundary 
layers over a blunt cone corresponding to Stetson’s 
experiments 1251 have been studied using LST by Malik 
et al. li’l, Herbert and Esfahanian I26l, and Kufner et 
al. 127a281. Though some observations on the effects of 
bluntness and the entropy layer are consistent with lin- 
ear stability analysis, the second-mode instability and 
the general amplification characteristics in the blunt 
cone flows do not agree with the experiments. The 
discrepancy may be due to the fact that the LST of 
hypersonic flow over a blunt cone has the difficulty of 
obtaining highly-accurate steady base flow for the sta- 
bility equations. 

Although the parabolized stability equatidns(PSE) 
results of Bertolotti 12’1 and’chang et al. 13’1, which ac- 
counts for the nonparallel and nonlinear effects, showed 
that nonparallel effects are negligible for 2-D waves 
on a flat plate compared with the stability results of 
El-hady 13il and Arnal 1321, nonparallelism has strong 
destabilizing effect for oblique waves. This effect in- 
creases with increasing Mach number 12g1331341. More 
recently, Chang et al. 135l investigated the effect of 
reacting chemistry on the instability waves and super- 
sonic mode instability that is characterized by an os- 
cillating disturbance structure outside of the bound- 
ary layer and a relative phase velocity.faster than the 
free-stream sonic speed. PSE has shown’ promise to 
calculate boundary layer transition. However, both 
linear and parabolized stability stability analyses are 
very sensitive to the accuracy of the base flows. In 
addition, the effects of the bow shock , nonlinear inter- 
action and non-parallel boundary layers on the distur- 
bances fields are not completely considered in the LST 
and PSE. LST and PSE could not deal with the pro- 
cess that acoustic, vorticity or entropy disturbances in 
free stream enter the boundary layer as fluctuation of 
the basic state, which is called receptivity 136B371. This 
part of the process provides the vital initial conditions 
of amplitude, frequency, and -phase for breakdown of 
laminar flow. Transition to turbulence will never be 
successfully understood or predicted without answer- 
ing how free-stream disturbances enter the boundary 
layer and ultimately generate unstable waves. 

For hypersonic flow over blunt bodies, the receptivity 
phenomena are much more complex and are currently 
still poorly understood 13813gl. Kovasznay 14’1 showed 
that weak disturbance waves in compressible flow can 
be decomposed into three independent modes: acous- 
tic, entropy, and vorticity modes. The acoustic waves 
propagate with the speed of sound relative to the mov- 
ing fluid, while the entropy and vorticity waves con- 
vect with the moving fluid veiocity. Before entering 
the boundary layer, free stream disturbances will be 
first processed by the bow shock. Irrespective of the 
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. 
nature of the free stream disturbance, its interaction 
with the bow shock always generates all three types of 
waves 1411. These transmitted disturbance waves prop- 
agate to downstream and interact with the boundary 
layer near the body. At the same time, the boundary 
layer will also generate reflected acoustic wave imping- 
ing on the shock from behind and generating further 
disturbances to the shock and wave fields. All these 
interactions will affect the transition of the hypersonic 
boundary layer behind the shock. The review of re- 
cent progress in this area can be found in Ref. [42-451. 
Receptivity of nonequilibrium hypersonic flow remains 
unresolved and deserves more systematic investigation 
in light of its importance to the prediction of transition. 

At the first step, we investigate the the hypersonic 
flow over a thin flat plate. In the downstream, the 
shock layer and boundary layer are separated from each 
other and clearly distinguishable. To simplify the prob- 
lem, shock layer is excluded from the computational 
domain. The objective of this research is to investi- 
gate the stability of nonequilibrium hypersonic flow by 
direct numerical simulation using high-order upwind fi- 
nite difference methods. Semi-implicit method is used 
to treat source terms due to chemical reaction and ex- 
citation of vibrational energy. The numerical methods 
and computational code were validated in calculation 
of hypersonic flow -over a blunt body 1461. 

Our main purpose is to study the real gas effects. on 
the stability of hypersonic. flow. The departure from 
perfect gas depends on temperature as well as pres- 
sure. For example, at a pressure of 1 atm, vibrational 
excitation begins at about 800OK. When temperature 
exceeds about 2500°K, oxygen moleculae begin to dis- 
sociate while nitrogen begins at about 4000°1C. React- 
ing oxygen flow instead of air flow over a flat plate is 
studied in this work for the purpose of computational 
expediency. In order to validate our code for simula- 
tion of flow over a flat plate, we also study the hyper- 
sonic reacting flow via boundary layer approach under 
local self-similarity assumption. The pressure gradi- 
ents induced by interaction of external free stream and 
viscous boundary layer flow is modeled by prediction- 
correction scheme.’ 

After obtaining the mean flow, we introduce the dis- 
turbance by blowing and suction through a narrow slot 
on the wall. In order to analysis the real gas effects, 
we also study the same problem under the perfect gas 
regime. 

Governing Equations and 
Physical Model 

The governing equations are formulated for a two- 
temperature model with two species (non-ionizing) fi- 
nite rate chemistry under the assumption that the rate 
of rotational relaxation approachs infinity, and the ro- 
tational energy is fully excited (i.e., rotational temper- 
ature equals translational temperature). 

Direct Numerical Simulation 

In conservative form, the two-dimensional Navier- 
Stokes equation can be written as: 

F,l) + -$Fz + I%) = W (3) 

where the conserved quantity and source term vectors 
are: 

PI 
P2 

u= ",; , 

&I 
E 

w= 

L 

Inviscid fluxes are 

F1 = 

r PlU 
P2 

PU2$-P 
PUV 
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0 
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WJ 
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I F2 = 

Viscous and diffusive fluxes are 

F,I = 

where 
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(4) 

. (5) 

(6) 

Qx = --UT., - vrxy + qx, 
Qy = -urx, - vryy + qy. 
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Boundary Layer Approach 

Under the boundary layer assumption, the governing 
equations can be simplified as the following: 

State Equations tid Source Terms 

The system is taken to be a mixture of thermally per- 
fect gases with the following equation of state: 

p=pRTt, P = PI + P2 (13) 

where p and p are the bulk pressure and density, re- 
spectively, Tt is the translational temperature, and R 
is the mass averaged gas constant, defined as: 

R = CIRI -I- C2R2 (14 

where Ri(i = 1,2) is the species specific gas constant, 
C; the mass fraction. The vibrational and total ener- 
gies per unit volume are given by: 

Ev = f&,i, 

NS 
E=~piei+p~ (15) 

a’=1 i=l 

The reaction model is given as: 

02-!-Mi + 0+0$-M; (16) 

where Mi denotes any of the i species. Reaction rates 
are following Park’ chemistry model L47r481. The com- 
ponents of total energy and transport coefficients are 
described in detail in our previous work [46]. 

Numerical Met hods -and 
Boundary Conditions 

Direct Numerical Simulation 

Fifth-order upwind finite difference schemes are applied 
for convective terms while sixth-order central schemes 
for the discretization of viscous terms t4’]. 

The spatial discretization of the governing equa- 
tions leads to a system of first-order ordinary differen- 
tial equations. Third-order Semi-implicit Runge-Kutta 
schemes 15’] are used for temporal discretization. The 
governing equations are additively split into stiff and 
non-stiff terms in the form of 

$.= F(U) +.G(U) (17) 

where U is the vector of discretized flow field variables, 
F is non-stiff terms resulted from spatial discretization 
of the flux terms which can be computed explicitly, and 
G is stiff thermo-chemical source terms which need to 
be computed implicitly. 

For numerical simulation with source term, it is nec- 
essary to exactly evaluate the Jacobian of source vector’ 
C = 8W/iXJ. W can be expressed as a function of 
the temperature 

W(U) = ~(U,T(U),Tv(U)), (18) 

and Jacobian can be written as 

c,al+ I ~T;ii~T+&YT, -- -- 
au a~ au az au (19) 

The derivation of each term in more detail can be found 
in Ref. [51] 

Boundary Conditions 

Self-‘similar -results of boundary layer solutions are 
used as inflow conditions. Non-slip, non catalytic and 
adiabatic wall condition is used at the wall boundary. 
Extrapolation is used as outflow condition because flow 
is hypersonic except that there exists a considerably 
small subsonic region near the wall. No reflecting char- 
acteristic boundary conditions are applied at the upper 
boundary. Equation (3) in the computational domain 
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at the upper boundary can be rewritten as: 

dU 
dt=- &I +&I) 

(20) 

where the right side of the equation is valuated by one- 
sided finite difference scheme. In above equations, the 
Jacobian matrix, B = (dFz/dU), has the six eigenval- 
ues: 

x1 = x2 = As = xq = 21, (21) 
xg = v + c, xc = v - c. 

where c is the frozen speed of sound. The correspond- 
ing left eigenvectors can be written as 

Ll, L2, L3, L4, L5, L6 (24 

Among them, the only incoming wave is associated 
with Xs 15’1, while others are outgoing waves associ- 
ated with Xi(i = 1,2,3,4,5). The compatibility rela- 
tions for these characteristic fields can be obtained by 
multiplying Eq. (20) with Li(i = 1,2,3,4,5), 

. dU Ll.-g-=-Li. +I -I- &I) 

+-& + J%2) - W 
> 

(23) 

which gives five equations for six unlmows. Non- 
reflecting condition is enforced here to enclose equa- 
tions, 

ap bv 
- - PC% = 0. 
at 

The expression of Jacobian matrix B and left eigen- 
vectors can be found in Ref. [53]. 

Boundary Layer Approach 

We choose Illingworth transformation and the follow- 
ing dimensionless dependent variables.in order to get 
locally self-similar solutions. 

(25) 

(26) 

(30) 

where the subscript e refers to the values in the local 
free stream, and Cl, CZ are the mass fraction of molec- 
ular and atomic oxygen respectively. Substituting in 
boundary layer equations and assuming the dependent 
variables f, g, gv, si are functions of q alone, there re- 

lCP& [ 1 c”p fgq _ CGfc~(h~ - evi)w + 20, I Cdr 1) pe PC,,T, 

+P2f,2, + c 
2 lCpiLiCi,g, = o 

i=l 
c p 

Pe T 

where 

C 
k vl q)z) = -. 
Pl 

&T-V +C----- 
pCpeTe 

= 0 (34) 

(35) 

(36) 

WI 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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Eqs. (31) to (34) were solved simultaneously by us- 
ing Chebyshev collocation spectral method with the 

the Prandtl-Mayer relation: 

boundary conditions 
f(O) = 0, fd0) = 0, f&4 = 1, 
Sl?JO) = 0, ho = 1, 
g(0) = g, (0) = g, (isothermal wall) , 
g, = gull = 0 (adiabatic wall), 
g(c4 =sv(4 = 1. 

where 

Then, the vertical velocity is calculated numerically 
through continuous equation. 

In hypersonic viscous flow, the curvature of the 
boundary layer brings about an important change in 
the effective geometric shape of the body, which re- 
sults that pressure variations are propagated into the 
main free stream along the Mach lines. This exter- 
nal pressure field in turn feeds back into the boundary 
layer and affects its growth rate 1541. The magnitude 
of the pressure variations produced in the external flow 
by the viscous layer can be measured by a hypersonic 
viscous-interaction parameter x defined as 

6* is the displacement thickness of boundary layer 
,and Me, the Mach number at the edge of the bound- 
ary layer, where the external inviscid flow and viscous 
boundary layer ilow match each other. The corrected 
pressure distribution is calculated by numerical inte- 
gration of Eq. (46). The corrected solution of bound- 
ary layer is obtained by solving Eqs. (31) to (34) one 
more time with new pressure distribution. We assume 
Mach waves emanating from the edge of the bound- 
ary layer. Along the Mach line, flow parameters such 
as pressure, velocity, temperature and density are con- 
stant and equal to corresponding values at the edge of 
boundary layer, which are given by viscous solution. 
The angle between Mach line and x-direction equal to 
sum of 8 and Mach angle. Because temperature in free 
stream is low, frozen flow is a good approximation for 
external flow. The complete final solution is combi- 
nation of viscous boundary layer solution and inviscid 
isentropic external solution. Similarly, we can get the 
solution for perfect gas by boundary layer approach. 

(44 

where Ce = p/pco ‘and R,, = pm uoox/,um, M, is the 
free stream Mach number when x appsoachs infinity. 
The strong and weak interaction regions .are described 
by Anderson: 1W 

Strong interaction x > 3 ,. 
Weak interaction x < 3 . 

At our prediction step, pressure distribution along 
x-direction is given by curve fitted expression, 

ISesults and Discussion 

P -= 1 + 0.660~ + 0.158~’ 
PC0 1+ 0.321~ ’ 

which is a composite formulafit for both strong interac- 
tion region and weak one Wl This approximation was . 
fit for perfect air flow over adiabatic wall with y = 1.4 
and P,. = 1. In boundary layer approximation, pres- 
sure is a function of x alone at certain flow conditions. 
When pressure distribution along x direction is given 
by Eq. (45), the development of boundary layer is cal- 
culated by solving Eqs. (31) to (34). 

Hypersonic 02 flow past a thin flat plate with adia- 
batic wall is studied as a test case to validate our code. 
Perfect gas model and thermochemically nonequilib- 
rium gas model are used respectively in order to study 
the real gas effects. To analysis the stability of hi- 
personic boundary layer flow, we introduce the distur- 
bance to the mean flow by blowing and suction through 
a slot on the wall and compare present results with re- 
sults in linear stability theory (LST) . The specific flow 
conditions are: 

A&=10 T, = 350.0 Ii 
pm = 3903.5Pa Pr = 0.72 
Re w = p,u,/~m = 6.6 x 106/m 

A correction step is used to recalculate the distribu- 
tion of pressure after .the shape of boundary layer is 
given in prediction step. Outside of boundary layer, 
the external flow is approximated by an isentropic flow 
across a single family of Mach lines and is governed by 

The computational domain and grids are shown in Fig. 
1, where the grid spacing is conventional wall-clustered 
and vertical scale has been enlarged by a factor of 3 for 
clarity. 
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I Mean flow 

As a part of validation, steady mean flow is calculated 
by both DNS and boundary layer approach. 

Perfect Gas 

Figure 2 shows the pressure contours computed by DNS 
and boundary layer approximation separatedly. The 
blank region in the up left corner of the figure shows 
that the pressure in this region is uniform, which is 
because that the pressure is given as uniform at the 
entrance. The figures shown here is far from the en- 
trance in order to reduce the effect of entrance con- 
ditions. As shown in the figure, there are a bunch of 
Mach waves emanating from the edge of the boundary 
layer. The angle between Mach line and x-direction 
given in DNS exactly equals to that in boundary layer 
approach, which is approximated as sum of 6 defined in 
Eq. 47and Mach angle. Because non-reflecting bound- 
ary condition is used at upper boundary, there is no 
numerical Mach waves reflected at the upper bound- 
ary. It is obvious that pressure is almost constant 
across the boundary layer and along the Mach lines. 
The distribution of pressure along the surface is shown 
in Fig. 3. As a result of interaction of inviscid ex- 
ternal flow and viscous boundary layer flow, there are 
significant pressure gradients in streamwise direction 
especially in the upstream. This kind of interaction 
becomes weaker and weaker with the development of 
boundary layer. However, the Mach waves propagate 
to the downstream and strongly change the free stream 
in the downstream, which is shown in the profiles of 
vertical velocity and pressure in downstream (Figs. 4 
and 5), where x = 0.0945m. On the contrary, the pro- 
files of temperature and streamwise velocity in down- 
stream are not strongly affected by Mach waves(Figs. 6 
and 7). Except for the little differences in wall temper- 
ature, there is good agreement with profiles of veloc- 
ity, temperature and pressure calculated by DNS and 
boundary layer approach. 

Reacting Gas 

Figure 8 shows the comparison of pressure contours 
computed by DNS and boundary layer approach. Same 
as perfect gas case, the blank region in the up left cor- 
ner is due to uniform pressure given at entrance. In ex- 
ternal flow, the temperature is low, the performance of 
frozen flow is same as perfect gas flow. The Mach lines 
calculated by DNS match that obtained by boundary 
layer prediction. The distribution of pressure along 
the surface is shown in Fig. 9. Near the wall, the 

temperature is very high so that oxygen moleculae be- 
gin to dissociate. The contours of dissociated oxygen 
are shown in Fig. 10. The change of atomic oxygen 
mass fraction (Co) along the surface is shown in Fig. 
11. With the C,, increasing along the all, wall tempera- 
ture keeps decreasing(Fig. 12). The difference between 
translational temperature and vibrational temperature 
indicates that the vibrational energy is in nonequilib- 
rium on the wall as well as inside of boundary layer(Fig. 
13). The velocity, density and mass fraction profiles at 
the location x = 0.0945m are shown in Figs. 14 to 
17. Overall, the profiles of flow variables are in good 
agreement between DNS and boundary layer predic- 
tion. The reacting gas results of temperature are com- 
pared with perfect gas results in Figs. 18 and 19. For 
perfect gas, the wall temperature is much higher than 
that that of reacting gas. As a result, the thickness 
of boundary layer for perfect gas is larger than react- 
ing flow, which may change the pro 
amplified second mode disturbance P 

erty of the most 
571 . 

Unsteady flow 

In this section, the generation of instability waves by 
introducing disturbance to mean flow through localized 
wall suction and blowing is considered. According to 
Balakumar and Malik’s study 15’1, such forcing would 
generate several discrete modes as well as continuous 
spectra. The particular form of forcing used in present 
study is 

v,(x) = A(x) sin(&) (48) 

where A(x) is constructed by using sine-function which 
is shown in Fig. 20. The instantaneous flow is modeled 
by a mean flow plus perturbations of flow variables, 
4 = Tt-4’ (4 stands for u,u,~,P~,P~,T or T.). It is 
to be noted that the A(x) is carefully chosen so that 
the nondimensionalized amplitude of perturbation is 
at least one-order larger than the maximum numerical 
noise, and it can not be too large to avoid the distortion 
of mean flow. The unsteady computations are carried 
out for more than 30 periods in time till the solutions 
reach a periodic state. After that, unsteady computa- 
tions are conducted for one additional period in time. 
FFT is performed on the results of the unsteady flow 
in one period to obtain Fourier’ amplitude and phase 
angle of perturbations of flow variables throughout the 
flow field, 
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For perfect gas flow, present results are also compared unstable if oi < 0. It is hard to determine if the flow is 
with local parallel analyses. The LST code is devel- 
oped by Hu and Zhong c5’l. Thus, the fluctuations are 

stable or not here, because the computational domain 
is still in the range of effect of disturbance sources, ‘. 

decomposed in a normal mode form blowing and suction. 

#(x, y, 2) = fj(y)e+-) 

where 4 is complex amplitude of the disturbance, a = 
o+. + ioi , the streamwise wave number. Compared Eq. 
(50) with (49), t s reamwise wave number can be ex- 
tracted in DNS as 

(51) 

The response of flow field to the forcing from blowing 
and suction is analyzed in the following sections. 

Perfect Gas 

0.025 .6n 21.081 19.988 
an 27.262 26.241 
10n 34.567 33.156 

0.030 6n 18.121 19.796 
8n 26.027 26.305 
107-r 34.089 33.010 

Table 1. Comparison of real components of wave 
Three different frequencies are chosen to be enforced in 
blowing and suction. The frequencies nondimensional- 

number calculated by DNS and LST (L = 0.021m). 

ized by ws(wu = u,/L, L = 0.021~2) are 6n, &r, 10n 
and 12n respectively. 

The comparison of eigenfunctions calculated by DNS 
and LST is shown in Figs. 26 to 28 for w/ws = 10n 
case at location x = ,O.O25m. The results agree rea- 
sonably well considering the fact that LST is based Mode Structure of Instability Waves 

Figure 21 shows the contours of instantaneous pres- 
sure perturbation after the flow field reaches a periodic 
state . In this case, dimensionless frequency equals 
to 10~ (corresponding nondimensional frequencies ex- 
pressed in term of F = 3 = W = 2.267 x 10-4). bklR#T. - -- 
It is clear that blowing &d suction introduceboundary 
layer disturbance as well as Mach waves radiation. Due 
to the weak discontinuity property of Mach wave, there 
is numericai osciiiation in the region existing Mach 
waves, where the high order difference schemes have 
no enough dissipation. The instantaneous contours of 
entropy and vorticity perturbation are plotted in Figs. 
22 and 23. It is obvious that maximum perturbation of 
entropy appears near the edge of boundary layer while 
vorticity perturbation concentrates near the wall re- 
gion. Because external flow including Mach waves are 
approximately isentropic where viscosity is neglectable, 
the radiation of Mach waves has no direct effects on 
entropy waves and vorticity waves. The pressure per- 
turbation along the surface for four cases of different 
frequencies is shown in Fig. 24, while corresponding 
growth rate defined in Eq. (52) is shown in Fig. 25. 
According to Eq. (50), it is stable if a; > 0, and it is 

Comparison with LST Results 

The preliminary calculations of linear stability anal- 
ysis at the location x = 0.025m and x = 0.030m have 
been carried out. For different frequency, the com- 
plex wave numbers of discrete modes are computed 
by searching eigenvalues in LST. The real component 
of wave number at fixed enforced frequency is given 
by Eq. (52) in DNS. The comparison of dimension- 
less wave number. (nondimensionalized by length scale 
L = 0.021m) predicted by DNS and LST is tabulated 
in Table 1. 

(c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)’ sponsoring organization. 

Location X (m) w/w0 a,L (DNS) a,.L (LST) 

on a parallel flow assumption. It is clear that the real 
component of eigenfunctions of pressure perturbation is 
strongly effected by Mach wave, which cannot be cap- 
tured by LST. The mode structure inside the boundary 
layer shows that it is the second mode dominant at this 
location according to Mack’s 171 results. 

For reacting flow, the nondimensionalized frequencies 
enforced in blowing and suction are 87r, 10n and 127r 
respectively. Figure 29 shows the contours of instanta- 
neous pressure perturbation after the flow field reaches 
a periodic state . In this case, dimensionless frequency 
equals to 10~. The pressure perturbation contours of 
reacting gas are very similar to that of perfect gas (Fig. 
21) , so is true for contours of entropy and vorticity per- 
turbation. The instantaneous contours of vibrational 
temperature and dissociated oxygen density perturba- 
tion are ‘plotted in Figs. 30 and 31. It is obvious that 
maximum perturbation of vibrational temperature ap- 
pears near the edge of boundary layer while dissociated 
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oxygen density perturbation concentrates near the wall 
region as well as the edge of boundary layer, which are 
not significantly effected by radiation of Mach waves. 
For dimensionless frequency of 10n case, the effect of 
amplitude of disturbance enforced in blowing and suc- 
tion is studied by increasing A(x) shown in Fig. 20 
to 5 times. The amplified disturbance case is denoted 
as case A.2, while the unamplified case is denoted as 
case A.l. After obtaining the perturbation field,. the 
fluctuation amplitude of flow variables in case A.2 is 
adjusted by a factor of 0.2, and plot together with the 
case A.l. Fig. 32 shows the dimensionless perturba- 
tion amplitude of pressure and temperature along the 
wall surface. The distribution of velocity perturbation 
amplitude along streamwise direction at different lo- 
cations in wall-normal direction is shown in Fig. 33. 
The amplitude contours of atomic oxygen mass frac- 
tion and pressure perturbation are compared in Figs. 
34 and 35. Due to the linearity of enforced disturbance, 
the perturbation field of case A.1 is almost identical to 
the adjusted perturbation field of case A.2, which in- 
dicates that the amplitude of disturbance introduced 
here is appropriate. The eigenfunctions at location 
x = 0.025m are shown in Figs. 38 to eigvt-r-p. The 
pressure perturbation along the surface for three cases 
of different frequencies is shown in Fig. 36, while cor- 
responding growth rate defined in Eq. (52) is shown in 
Fig. 37. Further study is needed to study the effect of 
frequencies on stability waves. 

Conclusions 

This paper has applied and tested a high-order up- 
wind finite difference method for simulation of react- 
ing oxygen flow over a flat plate. Spectral method and 
computational code for boundary layer approach are 
developed to provide initial condition for direct nu- 
merical simulation as well as validation of mean flow 
of DNS. There is good agreement for the mean flow 
between DNS results and locally self-similar results 
from boundary layer approach. Blowing and suction 
through the slot on the wall is enforced as the source 
of disturbance to study the stability of boundary layer. 
For perfect gas, the eigenva.lues and eigenfunctions cal- 
culated by DNS and LST agree reasonably well con- 
sidering the fact that .LST is based on a parallel flow 
assumption. Work is currently underway to parallel&e 
our code for further study of the stability and real gas 
effects. 
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Figure 1: Computational domain and grids for hyper- 
sonic flow over a flat plate. 
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Figure 2: Comparison of pressure contours computed 
by DNS and boundary layer approximation (perfect 
fP4. 
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Figure 3: Comparison of pressure distribution on the 
wall surface computed’ by DNS and boundary layer ap- 
proximation (perfect gas). 
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Figure 4: Profiles of vertical velocity at X = 0.0945m 
(perfect gas). 
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Figure 5: Profiles of pressure at X = 0.0945m (perfect 
gas). 

I DNS 
- BL 

~01”“““““““““““’ 
0.000 0.005 omo 0.015 0.020 0.025 

Y (m) 

Figure 6: Profiles of mean temperature at X = 
0.0945m (perfect gas). 
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Figure 7: Profiles of streamwise velocity at X = 
0.0945m (perfect gas). 
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Figure 9: Comparison of pressure distribution on the 
wall surface computed by DNS and boundary layer ap- 
proximation (reacting gas). 
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Figure 10: Comparison of contours of dissociated oxy- 
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layer approximation (reacting gas). 
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Figure 11: Comparison of dissociated oxygen mass 
fraction on the wall surface computed by DNS and 
boundary layer approximation (reacting gas). 
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Figure 12: Comparison of temperature distribution on 
the wall surface computed by DNS and boundary layer 
approximation (reacting gas). 
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Figure 13: Profiles of temperature at X = 0.0945m 
(reacting gas). 
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Figure 15: Profiles of irertical velocity at X = 0.0945m 
(reacting gas). 
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Figure 16: Profiles of mean density at X = 0.0945m 
(reacting gas). 
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Figure 17: Profiles of dissociated oxygen mass fraction 
at X = 0.0945m (reacting gas). 
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Figure 18: Comparison of mean wall temperature be- 
tween perfect gas and reacting gas. 
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Figure 19: Comparison of mean temperature profiles Figure 22: Contours of instantaneous entropy pertur- 
between perfect gas and reacting gas at X = 0.0945m. bation for the case of w/w0 = 10~ (perfect gas). 
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Figure 20: Vertical velocity distribution over blowing 
and suction slot for generating disturbances. 
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Figure 23: Contours of instantaneous vorticity pertur- 
bation for the case of w/we = 10~ (perfect gas). 
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Figure 21: Contours of instantaneous pressure pertur- 
bation for the case of w/w, = 10~ (perfect gas). 

Figure 24: Distribution of the peak amplitudes of the 
pressure perturbation along the wall surface for four 
cases of different frequencies. 
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Figure 25: Distribution of the local growth rate along 
the wall surface for four cases of different frequencies. 
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X = 0.025~~1 (perfect gas). 
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Figure 27: Comparison of disturbance eigenfunctions 
of temperature and vertical velocity for the case of 
w/w0 = 10~ at X = 0.025~7~ (perfect gas). 
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Figure 28: Comparison of disturbance eigenfunction of 
pressure for the case of w/w0 = 10~ at X = 0.025~1 
(perfect gas). 
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Figure 29: Contours of instantaneous pressure pertur- 
bation for the case of w/we = 10~ (reacting gas). 
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Figure 30: Contours of instantaneous vibrational tem- 
perature perturbation for the.case of w/we = 10~ (re- 
acting gas). 
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Figure 31: Contours of instantaneous dissociated oxy- 
gen density perturbation for the case of w/w0 = 10~ 

Figure 34: Comparison perturbation amplitude con- 

(reacting gas). 
tours of dissociated oxygen mass fraction for the case 
of w/w0 = 10~ (reacting gas). 
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Figure 32: Comparison of perturbation amplitude of 
pressure and temperature along the wall surface for 
the case of w/w0 = 10~ (reacting gas). 
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Figure 33: Comparison of perturbation amplitude 
of streamwise velocity at different location+ = 
2,12,22,32,42,52) for the case of w/w0 = 10~ (react- 
ing gas). 
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Figure 35: Comparison perturbation amplitude con- 
tours of pressure for the case of w/w0 = 16~ (reacting 
gas). 

- 0,Jo),=Sx 
----- oJco~=lOx 
-.-._,_.- oJu;;12x 

O.OEO ’ ’ ’ * ’ ’ * 9 5 ’ I - 
--I-. ._.e. 
’ r ’ 

0.015 0.020 0.025 0.030 
X Cm) 

Figure 36: Distribution of the peak amplitudes of the 
pressure perturbation along the wall surface for three 
cases of different frequencies (reacting gas). 
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Figure 37: Distribution of the local growth rate along 
the wall surface for three cases of different frequencies 
(reacting gas). 
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Figure 38: Disturbance eigenfunctions .of velocity for 
the case of w/we = 12~ at X = 0.025~~ (reacting gas). 
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Figure 39: Disturbance eigenfunctions of temperature 
for the case of w/w* = 12n at X = 0.025~1~ (reacting 
gas). 
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Figure 40: Disturbance eigenfunctions of pressure for 
the case of w/w0 = 127~ at X = 0.025~1 (reacting gas). 
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