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Abstract 

In recent years, direct numerical simulation (DNS) 
has become a powerful tool to study the stability and 
transition of compressible boundary layers. The diffi- 
culty in using explicit methods for DNS of hypersonic 
flow is the limitation of the temporal steps since the 
Navier-Stokes equations are stiff for explicit numeri- 
cal schemes. Due to the progress in computer tech- 
niques in recent years, one way to overcome the limi- 
tation of small time steps in explicit method is by us- 
ing distributed memory computers. However, a short 
marching step still can not be avoided during the com- 
putation due to stability limitation. Implicit method is 
considered to improve the efficiency of solving Navier- 
Stokes equations. In this paper, we extend our previous 
work to develop and validate the new high-order paral- 
lelized semi-implicit shock-fitting code solving the com- 
pressible Navier-Stokes equations. Divide and conquer 
method is used as a start point for the solution of the big 
banded matrix. The new parallel semi-implicit code has 
been tested in solving a 2-D convection-diffusion model 
equation first. Efficiency and accuracy are studied. Sev- 
eral test cases, which include the numerical simulations 
of the stability of 3-D supersonic Couette flow, and hy- 
personic boundary layer receptivity to freestream acous- 
tic waves over 3-D blunt wedge, are used to evaluated 
the efficiency and accuracy of the new parallelized code. 

1 Introduction 

The prediction of laminar-turbulent transition in hy- 
personic boundary layers is a critical part of the aerody- 
namic design and control of hypersonic vehicles [ll. In 
recent years, direct numerical simulation has become a 
powerful tool in the study of fundamental flow physics 
of the stability and transition of boundary layers. The 
DNS of compressible boundary layer transition has been 
carried out by several research groups 12-121. These stud- 
ies show that the DNS of high-speed boundary layer 
transition is feasible on existing computers using evil- 
cient and accurate numerical methods. All these sim- 
ulations are explicit methods, assuming a simple flat 
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surface without the presence of shock waves. Explicit 
high-order finite-difference methods are used in the non- 
periodic streamwise and wall-normal directions, and the 
Fourier spectral collocation methods are used in the 
periodic spanwise direction lgJ121131. But it is difficult 
to apply existing numerical methods. for compressible 
boundary layer DNS to hypersonic boundary layers over 
blunt bodies, due to the lack of efficient semi-implicit 
numerical methods for compressible viscous flows lr41. 
The difficulties are from computing transient hyper- 
sonic flow with shock waves, and the stiffness of the 
equations in reacting hypersonic flows. Moreover, for 
viscous flow calculations, the extremely small grid sizes 
in the boundary layers near the wall is used. The stiff- 
ness of the governing equations refers to the fact that 
the time steps required by the stability requirement in 
the calculations are much smaller than that needed by 
accuracy consideration so that it is difficult to perform 
the simulation in reasonable computation time. This 
requires implicit treatment in numerical computations. 

Due to the progress in computer techniques in recent 
years, another way to overcome the limitation of small 
time steps in explicit .method is by using distributed 
memory computers. A most common method to dis- 
tribute the load between processors is by dividing the 
computational domain into sub-domains. The easiest 
way to solve a problem divided into sub-domains is by 
using explicit numerical schemes [151161. However, such 
schemes still suffer from slow rate of convergence for 
steady state problems, and a short marching step for 
unsteady problems, due to stability limitation. Many 
researchers have tried to implement implicit schemes 
on parallel computers to overcome these limitations. 
Generally, these works are based on the approximate 
factorization method employin either an alternat- 
ing direction implicit(AD1) [17-21 7 or a lower-upper 
factorization 122-251. For instance, an application of an 
implicit scheme on MIMD computers was described 
by Abdallah(l994) . [I71 Two or three one-dimensional 
AD&like factors solutions in two or three dimensions in 
a finite difference formulation were used to solve the 
incompressible Navier-Stokes equations. Povitsky et 
a1.(1997,1998) 120,211 described an asynchronous method 
for the parallelization of the AD1 method. The paral- 
lelization efficiency was tested theoretically and experi- 
mentally. In Ref. [23], Venkatakrishnan implemented an 
incomplete lower-upper factorization in their implicit 
schemes. The preconditioned iterative methods were 
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used to solve the linear system. Wright(l998) I24l mod- 
ified Jameson’s method lz21 and proposed data-parallel 
lower-upper relaxation method to solve Navier-Stokes 
equations. Ghizawi and Abdallah(1998) 1251 derived a 
new lower-upper cycle-independent implicit factoriza- 
tion to solve the compressible Navier-Stokes equations. 
In their method, the factorization has the combined ad- 
vantages of the stability of LU factorizations as well 
as the cycle independency that gives it better parallel 
processing functionality. Generally, in either case, the 
factors resulting from factoring the multidimensional 
problem are dependent on each other where the solution 
from the first factor in needed to be able to solve the 
second step, and so on. Therefore these steps have to 
be performed in series, which limits the parallelization 
features for these types of factorizations. Paralleliza- 
tion of implicit schemes is limited by global spatial data 
dependencies and the requirement to solve large linear 
systems in the form of block tridiagonal and/or pen- 
tadiagonal matrices. Thus the existing algorithms for 
sequential computers to distributed memory computers 
usually requires some algorithmic changes. 

There are several methods 126-341 to obtain the so- 
lution of tridiagonal or pentadiagonal systems of n 
linear equations TZ = d on scalar, vector and par- 
allel computers. For a scalar machine the best di- 
rect solution method is Gaussian elimination, special- 
ized for tridiagonal systems. 
cyclic reduction 1271 281 

For vector computers, 
is more efficient, since all es- 

sential arithmetic operations can be vectorized. One 
step of cyclic reduction consists of eliminating the odd- 
numbered unknowns from the even-numbered equa: 
tions. This reduction can reduce the system to a lower 
bidiagonal system of half the size. On parallel com- 
puters with two CPU’s the two-sided Gaussian elimina- 
tion algorithm, discussed by Babuska(1972) 1351, is very 
useful. The decomposition matrix T, as well as the 
subsequent solution process, can be performed in two 
parallel parts. Iterative methods 1% lg, 2oJ 23j 241 which 
include Gaussian-Seidel method, preconditioned conju- 
gate gradient method 1341 are also utilized on the MIMD 
computers. 

Divide and conquer 11812g831132~321 is one of the most 
commonly used tools in the construction of algorithms 
on parallel computers. The basic idea underlying the 
technique is to solve a given problem of a certain size, 
by dividing the problem up into similar problems of 
smaller size, solving them, and then combining those 
solutions to form the solution of the original’ problem. 
Most commonly, the same technique is applied to the 
smaller problems, making the procedure recursive. Such 
divide and conquer algorithms are excellently suited for 
parallel computers. Based on the ways of the inter- 
processor communication in solving the reduced sys- 
tems, there are mainly two kinds of methods on mas- 
sively parallel computers. One way such as all-to-all 
broadcast 12’1 is to assemble complete reduced systems 

on each processor. Then each processor can efficiently 
solve the systems with a standard serial solver or other 
solvers. The other way is to leave the reduced systems 
distributed and to communicate appropriate equations 
between processors as necessary to consecutively elim- 
inate reduced system coefficients 1181. Each algorithm 
has more merit in particular computing environments. 
In our paper, particular DAC algorithm is implemented 
with message-passing on distributed-memory machines 
on numerical simulation of hypersonic boundary layer 
receptivity problem. 

Recently, [36-381 has developed and validated a set 
of fifth and seventh-order shock-fitting schemes for the 
DNS of practical 2-D and 3-D hypersonic flows over 
planar or axisymmetric blunt bodies. Recently, we 13’1 
developed a new semi-implicit scheme which treats non- 
stiff terms in the governing equations explicitly and si- 
multaneously treating the stiff terms implicitly to over-’ 
come the stiffness of the Navier-Stokes equations. In 
Ref. 14’1, we have already implemented parallel method 
to our explicit -DNS code to study the hypersonic 
boundary-layer receptivity to freestream disturbances 
over an elliptic cross-section cone on IBM SP2 comput- 
ers. However, it is hard to apply the semi-implicit code 
efficiently to massively distributed memory computers 
due to lack of effective algorithms in solving the large 
systems in the form of block multidiagonal matrices. 

The objective of this paper is to extend the previous 
2-D and 3-D parallel high-order shock-fitting schemes 
in [36,38,39,41] to solve compressible Navier-Stokes 
equations implicitly. Divide and conquer algorithm is 
used as the start point to solved the big banded Jaco- 
bian matrices from the semi-implicit methods. A 2-D 
convection-diffusion model equation has been used to 
test the accuracy and efficiency of ,the new parallelized 
semi-implicit method. Meanwhile, analytical compar- 
isons have been made to study the efllciency of differ- 
ent parallelized algorithms in solving the model equa- 
tion, DNS of the 3-D supersonic Couette flow, hyper- 
sonic boundary layer receptivity over 3-D blunt wedge, 
are used to investigate the numerical accuracy and ef- 
ficiency of the new parallelized code with or without 
shock-fitting method. Accuracy and efficiency are in- 
vestigated in these test cases. 

2 Governing Equations and Numerical 
Methods 

2.1 Governing Equations I 
The governing equations are the unsteady three- 

dimensional Navier-Stokes equations written in a 
conservation-law form 

where 
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c 

Fj = 

Fvj = 

P = pRT 
e = p(d’+ $kuk) 

W = -/-1(~+~) +2p,3~a,j  

dT 
Qj = -fC- 

8Xj 

(3) 

(4) 

(5) 
(6) 

(7) 

(8) 
The details for the expressions above can be found 

in [36]. The viscosity and heat conductivity coefficients 
are computed by the Sutherland law and the, assump- 
tion of a constant Prandtl number. Perfect gas assump- 
tion is used in all flows considered in this paper, though 
the method presented here can be easily extended to 
nonequilibrium real-gas hypersonic flows. 

For numerical simulations of flow fields over a curved 
body surface, structured body fitted grids are used to 
transform the governing equations (1) in the Cartesian 
coordinates into a set of curvilinear three-dimensional 
coordinates (I, q, C, 7) along the body fitted grid lines. 
The transformation relations for the two set of coordi- 
nates are 

f 5 = ax, Y, 2) I x = x(E, 7, c, 7-1 

i 

B = Tljx, Y, i 4 
c=c(x,Y,4 * 

i 

Y = Y&?>W 
Y = Y(E, r7,4-, 4 

(9) 

T= t t=r’ 

The governing equations (1) are transformed into the 
computational domain (I, 7, C, Y-) as follows 

1 XJ + dE’ LIF’ bG’ -- 
J dr a[ -+Tg+x 

where 

Et = 

F’ = 

G’ = 

E’, = 

F’, = 

G’, = 

41x +F2& +F3& 
J 

F1773:+F277y+F3772- +Uqt 

FlCx 4 F25y: F3t 
J 

Ed% -t&2&, +Fv3& 
J 

Fu~jlv, + Fv217y + Fvsqz 
J 

Fvlt +&2Cy +F'siz 
J 

(10) 

01) 

02) 

(13) 

(14 

(15) 

(16) 

where J is the Jacobian of the coordinate transforma- 
tion, and Em, &,, EZ, qx, rly, Q, rlt, t, G, and t are 
the grid transformation matrices. In the equations, the 
transformed inviscid fluxes E’, F’, and G’ are standard 
flux terms with known eigenvalues and eigenvectors. 
The transport flux terms Ei, F:, and Gh contain both 
first-order and second-order spatial derivatives of veloc- 
ity and temperature. These derivatives in the Cartesian 
coordinates (z, y, z) are transformed into the computa- 
tional coordinates (& 77, C) using a chain rule for spatial 
discretization. 

2.2 High-Order Semi-Implicit method 

Equation (lO).f. or a three-dimensional flow in (E, q, C, 
T) is additively split into relatively nonstiff part f (Uijk) 
and Stiff part g(uijk) as follows 

where 

1 auijk 
-- = f(uijk) + g(uijk) J dt (17) 

; a? ; aG +,w 
ag x ar ijk P8) -1 

!S(U;jk) = - aq 
( 

EEL+- aF’*2 
) a?. ijk 

(19) 

where i , j, and k are the grid indices in the [, q and 
5 direction respectively. The transport flux vector in q 
direction, F’, , is split into Flv2, the part of the viscous 
flux terms only involving normal derivatives, and Flvl, 
the part of the viscous flux terms except Flv2, i.e., 

F’ v = F’vl + F’v2 (20) 

In J%. (17)) g(uijk) is much stiffer than f (Uijk) 

since grid spacing in the wall-normal direction is much 
smaller than that used in streamwise direction for most 
viscous flow simulations. Therefore, high-order semi- 
implicit method can be used to overcome the stiffness 
of g(Uijk) while maintaining high-order temporal accu- 
racy. 

A simple local Lax-Friedrichs scheme is used to split 
the inviscid flux vectors into positive and negative wave 
fields. For example, the flux term F’ in Eq. (19) can 
be split into two terms of pure positive and negative 
eigenvalues as follows 

where 

F’ = F; + F!. (21) 

F; = ;(F’ + AU) (22) 

F!. = f (F’ - AU) (23) 

3 
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where X is chosen to be larger than the local maximum 
eigenvalues of F’ 

where 

(24 

u1 = qxu + qJ?J + 771 w + qt 
l%l (25) 

and the parameter E is a small positive constant added 
for the smoothness of the splitting. The fluxes Fi and 
FL contain only positive and negative eigenvalues re- 
spectively. .Therefore, in the spatial discretization of 
Eq. (18), the flux derivatives are split into two terms 

(26) 
where the first term on the right hand side is discretized 
by an upwind high-order finite difference method and 
the second term is discretized by a downwind high-order 
finite difference method. The fifth-order upwind explicit 
scheme I36l for the derivative of a variable 4 is 

= & 2 aj+k d’j+k 
kc-3 

(27) 

where aj-+s = fl + ho, ajk:! = r9 - $x, cjki = 
&45 + go, and aj .= --$a. This scheme is fifth-order 
upwind scheme when CY < 0 (o = -2). This scheme is 
fifth-order upwind scheme when cy < 0 (a = -2). The 
scheme reduces to a sixth-order central scheme when 
a = 0. Meanwhile, the corresponding sixth-order cen- 
tral explicit inner scheme for the second-order spatial 
derivative in the viscous term is 

II 1 17 
uj = - 90h2 

IQ-3 - -yi-z + 135ui-I- 245~~ 

+135ui+1 - ;ui+2 + T&+3 

The system of ordinary differential equations of Eq. 
(17) can be integrated in time using semi-implicit tem- 
poral schemes, where f is treated explicitly and g is 
treated implicitly. It was shown by Zhong I421 that 
in order to have a third or higher order temporal ac- 
curacy, the semi-implicit method need to be derived 
in a way that the effects of coupling between the im- 
plicit and explicit terms on the accuracy need be con- 
sidered. Zhong I42l subsequently derived three kinds 
of third-order semi-implicit Runge-Kutta schemes for 
high-order temporal integration of the governing equa- 
tions for reacting flow simulations. For example, third- 
order Rosenbrock Semi-Implicit Runge-Kutta (ASIRK- 
2C) Method is 

[I - ha1 J(u”)] kl = h{f (un) + g(u”)} 
[I - ha2 J (u” + cdl)] k2 

= h{f (u” + bzlkl) + g(u” + c&)} (29) 
@-1 = u” + wkl + u&2 

where WI = 4, ~2 = 4, b21 = 1; ai = $, a2 = 8, and 
czi = &, The parameters of the semi-implicit lounge- 
Kutta methods are chosen by both stability and accu- 
racy. requirements with the simultaneous coupling be- 
tween the explicit and implicit terms. 

In Eqs. (29), J is the Jacobian matrices of the stiff 
flux terms is defined by J(u) = dg/du. The compo- 
nents of the Jacobian J(u) are derived by considering 
the variation of g(&jk) in Eq. (17): 

DF; DF!. DFi2 
-F - -&-- -&- (30) 

ijk 

where D/Dq is the fifth-order finite difference approxi- 
mation of the derivatives in wall-normal direction, and 
Fi, FL are inviscid fluxes given by Eq. (26). The vari- 
ations for these inviscid fluxes are 

and those for the viscous flux are *. 

W’,2 = A& (MSU) + Bv-& (MJU) + cv cMSU) 

where the matrices, M, A,, B,, and C,, can be found 
in Ref. [39]. Substitiuting above equations into Eq. (30), 
where the derivatives are approximated by the fifth- 
order upwind scheme and sixth-order central scheme 
described in Eqs. (27) and (28), leads to 

dg(&jk) = &jkSUij-Sk $BijkSUij-2k $ CijkdUij-lk 

+Dijkdqijk + -&jkd&j+lk + Fijkd&j+2k 

+GijkdUij+Sk (32) 

where the coefficient matrices can also be found in Ref. 
w 

From Eq. (32), we can obtain the global Jacobian 
matrix for the system of ordinary differential equations, 
Eq. (17). For fifth and sixth-order schemes used in this 
paper, the semi-implicit scheme involves implicit equa- 
tions of banded block matrix of nonzero seven diagonal 
elements along the j grid direction. This block septi- 
diagonal system of equations can be solved efficiently 
by a banded matrix solver. 

2.3 Parallelization Approach 

The standard (portable) message passing inter- 
face(MP1) is the parallel library we used to parallelize 
our code. A cluster of workstations. are used to run 
our parallel codes. The present configuration has 24 
RISC/6000 processors. The main memory capacity of 
these nodes is 256 megabytes. All of these nodes are 
connected via ethernet. 

The first step of parallelization approaches is to ini- 
tialize the MPI environment and to establish com- 
municators that describe the communication con- 
texts and the associated groups of processors. The 
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MPIXOMM-WORLD default communication that de- 
fines one communication context and uses the set of all 
processors as its group is the one we used in this version. 
There are several modes of communication in MPI. In 
this work the data exchange at the block boundaries is 
implemented using the MPI-SENDRECV routine. This 
routine is a locally blocking one which means that a 
send or a receive would not return until it is complete, 
and therefore a tight synchronization is achieved among 
the processors. Here, we are using the concept of vol- 
ley which during a volley each processor sends and/or 
receives a maximum of one message, all messages being 
passed simultaneously. 

2.4 Divide and Conquer Method 

Basically, current banded matrix solver proceed in 
three steps by using divide and conquer method. First, 
the subsystems in each processor are reduced to N- 
form equations which called reduced systems. Second, 
this reduced systems are solved by the interprocessor 
communication of all necessary reduced system equa- 
tions. Third, the solution is completed by backsubsti- 
tution of reduced system unknowns into the remaining 
N-form equations of each subdomain. Though the cur- 
rent divide and conquer method is developed for solving 
the septidiagonal, pentsdiagonal or tridiagonal matrix 
on MIMD parallel computers, only tridiagonal matrix 
solver using p nodes are presented here. The extension 
to septidiagonal or pentadiagonal matrix solver using p 
nodes is straightforward. 

Consider the tridiagonal linear system TX = d with 
n = pk equations. The divide and conquer method 
divides the given tridiagonal system into p parallel tasks 
of size k = n/p. T is partitioned into block tridiagonal 
form with each diagonal block a k x k tridiagonal matrix 
and each subdiagonal block a k x k null matrix, except 
for one single nonzero element on its upper right (lower 
left) corner. The tridiagonal system can be written in 
block form as 

where Tj are tridiagonal matrices, 

Tj= 

where j = 1,2, . . ..p. x and d are partitioned to conform 

xj = 
d _ .- 

3 

with the blocks of T: 

For j = 1,2, . . . . p, by defining 

yj = Tj-‘dj 
.zl = Tl-ler: 
Z, = Tj-‘el 
zzp-2 = Tpplel 

.%n+l = Tj-lek 

where m = 2i - 2, er and ek are the first and last unit 
vector. We have the following implicit relations 

Xl = Yl + ma 

Xj = Yj + a2j-2z2j-2 + a2j-lZ2j-1 

2<j<p-1 

XP = Yp + @2p-222p-2 

where al, ~2 ,..., o3,-2, (~4 satisfy the relations as fol- 
lowing reduced systems: 

ekTzl l/bk+l 

l/ck 

l/ck(p-l) 

From the solution of above equations, we then obtain 
the desired solution xl, 2~~x3. In this pa er, we are us- 
ing two approaches, all-to-all broadcast 2gl and folded P 
skip-decoupling method [181 to ,solve above reduced sys- 
tems. All-to-all broadcast assembles complete reduced 
systems on each processor. Then each processor can 
solve the systems independently. For p processors, the 
method needs minimal int(Zogz(p - l))+l number of 
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volleys, each volley requiring passage of p messages. 
The folded skip-decoupling method leaves the reduced 
systems distributed and to communicate appropriate 
equations between processors as necessary to consecu- 
tively eliminate reduced system coefficients. For p pro- 
cessors, p - 1 volleys are necessary to complete solution 
of the reduced system, two messages being passed per 
volley. 

2.5 Boundary Conditions 

The physical boundary conditions for viscous flows 
are non-slip condition for velocity and isothermal or adi- 
abatic condition for temperature. The freestream flow 
conditions are specified by a given flow. For the flow 
disturbed by disturbances, the disturbances are speci- 
fied according to the particular physical nature of the 
disturbances. 

For numerical simulations, it is necessary to set nu- 
merical boundary conditions for some flow variables in 
addition to the physical boundary conditions. This is 
especially the case at the computational boundary of 
the exit and inlet. There have been many investig$ioio; 
on the issues of numerical boundary conditions 
for the direct numerical simulations of compressible 
as well as incompressible boundary layers. Examples 
of the work include: Israeli and Orszag (1981) pre- 
sented a sponge layer with absorbing boundary con- 
ditions in the study of problems involving wave prop- 
agation, Streett and Macaraeg (1989/90) proposed a 
buffer domain in the outflow boundary for unsteady 
transition-to-turbulence simulations, Poinsot and Lele 
(1992) discussed characteristic-based boundary condi- 
tions for direct simulation of compressible viscous flows, 
and Guo, Kleiser, and Adams (1994) compared the re- 
sults obtained by using above different boundary condi- 
tions in the simulation of compressible boundary layer 
transition. Recently, Pruett et al. (1995) used outflow 
buffer domain to do DNS of high-speed boundary-layer 
flows, and Collis and Lele (1996) studied the problem 
of compressible swept leading-edge receptivity by using 
inflow sponge and outflow sponge boundary conditions. 

Since the emphasis of current paper is the parallelized 
semi-implicit method for efficient and accurate time in- 
tegration of the governing equations, we will mainly 
consider flows with a supersonic exit where the reflec- 
tion of disturbances are negligible. 

3 Numerical Results 

A more flexible three-dimensional solver has been 
written by using parallelized explicit and semi-implicit 
high-order upwind schemes for the spatial discretization 
with and without a high-order shock fitting algorithm. 
Fourier collocation method are used in computing the 
azimuthal direction. Investigations have been done as 
followings: 

Performance Studies on Parallelized Explicit 
and Implicit AIgorithms 

The execution time of an algorithm for a problem size 
denoted by n, on a parallel system with P processors 
can be written as: 

T(n, P) = Calculation + Tcommunicat~on (33) 

Ideally, we can assume that no other overhead occurs 
except communication of the overlap regions, the se- 
quential execution time is: 

T(n, 1) = P x Zamation 

Hence the speedup and parallel efficiency are given by: 

S(n,P) = PXT 
T calculation 

calculation + Zommunication 

P = 
1+ Teommunicatiola/Tcalculatiorn (35) 

E(n,P) = l’+T 
c.mm.nic~~~.n,~.~cuz.tion (36) 

For the best algorithm, S(n, P) = P, E(n, P) = 1, 
which means the ratio of Tc$.“Q~C~ is close to zero. 
The amount of data sent and received per processor is 
proportional to the number of boundary cells, while the 
amount of computations performed by each processor 
is proportional to the number of interior cells. For the 
model problem, we have: 

T calculation = cl x nx x ny x tcalc WI 

T communication = c2 x 2 x nx x t,,,, (38) 

where tcacc represents the time required to perform a 
floating point operation, t,,,, denotes the time needed 
to communicate one floating point number, cr and cz 
are constant, The cost of sending a message between 
neighbouring processors can be written as: 

T(n) = &way -I- ntsend (39) 

where n is the size of message, t&lay is the delay time 
caused by hardware and software delays, and tsend is the 
marginal communication time per word. &JXdy, t&Jay 

is much larger than tse&. To avoid too much t&+y 
during the parallelized computation, we prefer sending 
a big message instead of many short messages. So t,,,, 
depends very much on the average size of the message 
that is sent: for small messages t,,,, N t&lay while for 
very large messages tcbmm 21 tse,&. In our study, we are 
considering ideal case.of t,,,, N tsend. 

Convection-Diffusion ModeI Equation 

A two-dimensional linearized model convection- 
diffusion equation bounded by two parallel walls is 

&+dU+-=la2u dU 
dt dx dy R dy2 (40) 
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L 

where R is the “Reynolds number”. The boundary con- 
ditions are ~(2, 0) = U(IC, 1) = 0. When R is large, there 
is a thin viscous boundary layer on the wall with large 
gradients in y direction. This model problem is not a 
practical flow problem, but it is used to test the ac- 
curacy and efficiency of the parallelized semi-implicit 
method. ee are looking for the temporal development 
of the solution in the following form: 

21(x, y, t) = Y (y)eikaeAiwt (41) 
where Ic is a real number. The complex parameter w 
and Y(y) are an eigenvalue and eigenfunction of the 
characteristic equation, Substituting Eq. (41) into Eq. 
(40) leads to the following solution: 

u, (x, y, t) = Ce? sin n7ryeik(z-t)e-ornt (42) 
where n = 1,2,.... The solution represents and expo- 
nential decay of the oscillation energy. There, if we use 
~~(2, y, 0) given by Eq. (42) as an initial condition, the 
exact solution of the model equation is also given by the 
same equation. 

Several algorithms which include explicit method, 
semi-implicit method using divide and conquer and us- 
ing iterative method, fully implicit method using itera- 
tive method, have been studied on the performance of 
the algorithms by solving the above model equations. 
Figure 2 shows the comparisons of the efficiency be- 
tween different algorithms by only partitioning the com- 
putational domain in y direction. Among all the algo- 
rithms, explicit method has the highest efficiency on 
communication, however, its computation time step is 
very small due to the very small grid sizes in y direction. 
Full implicit method has the lowest efficiency compared 
with explicit method and semi-implicit, but it can ap- 
proach highest computation time step. However, it re- 
quires large memory to convert full implicit equations 
and takes a large amount of CPU time. Semi-implicit 
method is the a compromise between computational ef- 
ficiency and numerical accuracy for the DNS studies, 
where only the derivatives in the wall-normal direction 
are treated implicitly. Between different parallelized 
semi-implicit methods, divide and conquer method has 
better efficiency than iterative method since the divide 
and conquer method spends less time on communication 
when more processors participate in the computation. 

Then, we chose parallelized semi-implicit method 
with DAC method to solve the big banded Jacobian 
matrix as the start algorithm in direct numerical simu- 
lation. Similar to semi-implicit method of Navier-Stokes 
equations presented in the previous section, the finite 
difference discretization of Equation (40) leads to a sys- 
tem of semi-discrete ordinary different equations, i.e. 

duij 
Tii- ~5 f(Uij) + g(Wj) (43) 

where 

f(uq) = -2 (44 

g(%j) = I-$+; (@))ij (45) 

where explicit third-order upwind approximationis used 
for urn, and fourth-order central difference approxima- 
tion is used for uy and uyy terms. ASIRK-1C has been 
used to do the temporal discretization. The divide and 
conquer method with all-to-all broadcast solver and 
folded skip-decoupling solver on reduced systems are 
used to solve the big banded matrix from the semi- 
implicit method. 

A periodic boundary condition is used in the x direc- 
tion. An antisymmetric boundary condition is used at 
the walls to calculate u located at one grid-point out- 
side of the walls. Simple uniform grids are used. The 
conditions for the calculation are: R = 10, k = 0.01, 
C = 1, n = 3. To test the accuracy of the new algo- 
rithm, the computation uses a set of 51 x 45 grids to 
discretize the computation domain, (0, 5) x (0,l) and 
three processors are used during computation. 

Figure 3 and Figure 4 show the numerical solution 
distribution along the x direction at y = 0.18 and the 
distribution along the y direction at 2 = 0 and at t = 
0.5335. Figure 5 shows the comparison of contours of 
numerical solution and exact solution at t = 0.5335. 
The agreements are well. 

To investigate the efficiency of the parallelized semi- 
implicit code, no domain partitionings is in x direction. 
Only the number of subdomains in y direction are var- 
ied. CPU time is recorded and compared for several 
cases. Table 2 and Table. 3 show the comparisons of 
execution time, speedup and parallel efficiency for dif- 
ferent partitions in y direction using the two kinds of 
reduced system solvers in the new parallelized semi- 
implicit codes. Both all-to-all broadcast solver and 
folded skip-decoupling method solve the problem effi- 
ciently. Along with the increase of the processor, the 
folded skip-decoupling method approaches higher paral- 
lel efficiency and speedup compared to all-to-all broad- 
cast solver since there are less messages passed during 
interprocessor communication in solving the reduced 
systems. 

3-D Supersonic Couette Flow Stability 

Compressible Couette flow is a wall-bounded parallel 
shear 3ow which is a simple example of hypersonic shear 
flows. Because the mean flow is parallel, the linear sta- 
bility analysis based on the full Navier-Stokes equations 
does not involve the parallel approximation of a devel- 
oping boundary layer. The LST results for compressible 
Couette flow are taken from [50]. Both steady and un- 
steady three-dimensional computations are tested. 

Steady Flow Solutions 

We first used the high-order parallelized semi-implicit 
Navier-Stokes codes to compute the steady solutions 
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Table 1: Numerical errors for computations of su- 
personic Couette flow using parallelized semi-implicit 
scheme. (er = jjeljr and e2 = ~~e~~z) 

Grids er x 10-a ratio e2 x lo+ ratio 
91 5.4772 - 1.0418 - 
181 0.1776 30.84 0.0294 35.47 

of the supersonic Couette flow. Divide and conquer 
method is used to solve the big Jacobian matrix par- 
allelizedly. The results are compared with the “exact” 
solutions obtained by a shooting method with several 
order of magnitudes smaller errors. Several cases by 
using different grids and different processors have been 
tested. The results shown in this paper are using 3 
partitionings in x direction and 3 partitionings in y di- 
rection. There is no partitioning in z direction. Each 
subdomain has grids of 61 x 61 x 4. Figure 6 shows 
the grids of x - y cross-section of the computation do- 
main. Different colors represent the different fields com- 
puted by different processors. The flow conditions are: 
MC0 = 2, the upper wall is an isothermal wall with 
T, = 220.66667K while the lower wall is an adiabatic 
wall. The gas is assumed perfect gas with y = 1.4 and 
Pr = 0.72. The viscosity coefficient is calculated by the 
Sutherland’s law 

p =~3/2 1sc 

c > T-kC (46) 

where C is taken to be 0.5. 
Figure 7 and Figure 8 shows the comparisons f the 

steady temperature and velocity profile obtained by 
using a parallelized semi-implicit fifth-order upwind 
scheme with the “exact” solution. 180 uniform grid 
points are used in y direction. From the figure, nu- 
merical results agree well with the exact solutions. To 
evaluate the accuracy of the algorithm, the numerical 
simulations are conducted using two sets of uniform 
grids. The quantitative numerical errors of the simu- 
lations using two kinds of uniform grids are listed in 
Table 1. The table shows that the numerical errors for 
this parallelized fifth-order semi-implicit scheme in spa- 
tial discretization are of the order of 10s7 using 91 grid 
points and 1.776 x 10u8 using 181 grid points. The the- 
oretical ratio of the errors between the coarse grids and 
the fine grids are 32 for a fifth-order scheme. The re- 
sults in the table show that the numerical.algorithms 
are able- to maintain high order of accuracy. 

Unsteady Flow Solutions 

We conduct numerical simulations for the temporal 
stability of the compressible Couette flow by simulating 
the development of given initial disturbances in the 3- 
D ilow field. The initial conditions are the steady flow 

, 
solutions plus disturbances given by a set of eigenfunc- 
tions obtained by linear stability analysis. For small 
initial disturbances, the growth or decay of the distur- 
bances is given by the eigenvalue of the eigen-mode. The 
same stretched grids are used in y direction as those 
used in the LST calculation. The computational do- 
main in the simulation is one period in length in the x 
direction and periodic boundary conditions are used. 

The flow conditions of the first case are: Mm = 2 
and Re, = 1000. For this case, the initial disturbance 
wave has a dimensionless wave number CY = 3, and the 
eigenvalue obtained from the temporal linear stability 
analysis is 

w ZZ wp + Wii 
= 5.52034015848 - 0.1327863787883 (47) 

where a negative wi means that the disturbances will 
decay in time with a dimensionless frequency, w,.. 9 
processors are used for the computation and 60 x 60 x 4 
stretching grids are used for each subdomain. 

Figure 9 shows the comparison of the DNS results 
using parallelized semi-implicit method and the LST 
prediction for the time history of velocity perturbations 
at a fixed point in the 3-D supersonic Couette flow field. 
The disturbance wave decays along with time increases. 
Figure 10 shows the distribution of instantaneous flow 
perturbations in the y direction after about six wave pe- 
riods. The figures show that the instantaneous pertur- 
bations of all flow variables for the 3-D numerical simu- 
lations using the new parallelized semi-implicit method 
agree well with the LST results. 

In order to study the efficiency of parallelized big Ja- 
cobian matrix solver, we keep no partitionings in both 
2 and z directions. Only different number of proces- 
sors are used in solving the domain partitionings in y 
direction. Table 4 shows the comparison of records of 
real CPU time consumed between the parallelized semi- 
implicit method by using different processors in y di- 
rection and the full explicit method after running the 
codes to the end of one time wave periods. Compared 
with parallelized explicit method, the computational 
efficiency can be improved by using parallelized semi- 
implicit method. But the efficiency decreases along with 
the number of subdomain increasing since more com- 
munication time is used to solve the banded Jacobian 
matrix and part of them are unnecessary waiting. 

Receptivity of A Hypersonic Boundary Layer 

The numerical simulation for the receptivity of hy- 
personic flows over a blunt wedge is carried out using 
the new 3-D fifth-order shock fitting scheme where the 
outer grid line is the bow shock. Figure 1 shows a 
schematic of the general 3-D shock fitted grids. The 
grids are stretched in both streamwise and wall-normal 
directions. The unsteady bow shock shape and shock 
oscillations are solved as part of the computation so- 
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lutions. In our test case the body surface of the 3-D 
parabolic leading edge is given by 

x* = b*Y*2 - d* (48) 

where b* is a given constant and d* is taken as the 
reference length. 

In the simulations, steady flow solutions are first ob- 
tained by advancing the unsteady flow computations 
to convergence using the new parallelized semi-implicit 
computer code. No disturbances are imposed in the 
freestream. Subsequently, freestream disturbances are 
superimposed on the steady mean flow to investigate the 
development of T-S waves in the boundary layer with 
the effects of the bow shock interaction. The freestream 
disturbances are assumed to be weak monochromatic 
planar acoustic waves with wave front oblique to the 
center line of the body in the x - z plane at an an- 
gle of $. The perturbations of flow variables in the 
freestream introduced by the freestream acoustic wave 
before reaching the bow shock can be written in the 
following form: 

da 
= fitly ei(k cm+ n-tk sin@ z-d.) 

(49) 

where ]q’] represents one of the flow variables, )u’], IV’], 
WI, b’l, and b’l. Th e f reestream perturbation ampli- 
tudes satisfy the following relations: 

121’1, = ECOS$J ) IdI, = O’, 
IPtlw = -/Scot, IP’lcw = iced 
Iw’I, = esin$ 

where c represents the freestream wave magnitude. The 
angle 4 is the angle of freestream wave with respect to 
the x axis in the X-Z plane, where $ = 0 corresponds 
to 2-D planar waves. The parameter k is the dimen- 
sionless freestream wave number which is related to the 
dimensionless circular frequency w by: 

w = k (cos T/J + Ad;l) 

The dimensionless frequency F is defined as: 

F= 
W*V* 

u*2’ co 

Steady Flow Solutions 

The specific flow conditions are 

Mm=15 E = 5 x 10-G 
T& = 192.989 I< p& = 10.3 Pa 
T; = 1000 K y= 1.4 
R* = 286.94 Nm/kgK Pr = 0.72 
b* = 40 m-l d* = 0.1 m 
T,*=288K T,” = 110.33 K 
p* = 0.17894 x 10-4kg/ms 
Nose Radius of Curvature = r* = 0.0125 m 
Re w = p;SoU~d*lj.& = 6026.55 

(50) 

(51) 

The body surface is assumed to be a non-slip wall with 
an isothermal wall temperature Tz . 

To show the efficiency and accuracy of the code us- 
ing high-order semi-implicit method, we compare the 
results of the steady flow solutions of the Navier-Stokes 
equations for the viscous hypersonic flow over the 3-D 
blunt wedge obtained by using this new method with 
the results obtained by using the parallelized explicit 
fifth-order unsteady computer code in Ref. [40]. We 
use ASIRK-1C method in time steps and advance the 
solutions to a steady state without freestream pertur- 
bations. 

The numerical accuracy of the parallelized semi- 
implicit method is evaluated by comparing the solutions 
with those of parallelized explicit method. Figure 11 
shows two kinds of different domain partitionings which 
correspond to different processors in computing in y di- 
rection. In the simulation, 321 grid points are used 
in the streamwise direction, 241 points are used in the 
wall-normal direction, and 4 Fourier collocation points 
are used in computing the azimuthal direction. Fig- 
ure 12 shows steady flow solutions for temperature and 
Mach number contours obtained by using 12 processors 
simultaneously. There are two subdomains in z direc- 
tion and 6 subdomains in y direction. Figure 13 com- 
pares the pressure on the body surface between these 
two numerical methods. Figure 14 shows the compari- 
son of Mach number distribution along the stagnation 
line. All these steady solutions show that the results 
of parallelized semi-implicit method agree well with the 
results of the parallelized explicit method. Accurate 
steady solutions can be obtained by running parallelized 
high-order semi-implicit method. Table 5 shows the 
comparison of the computational time consuming be- 
tween parallelized semi-implicit method and the paral- 
lelized explicit method. The parallelized semi-implicit 
method can reach steady state quickly without losing 
accuracy. 

Unsteady Flow Solutions 

In this section, we choose the generation of boundary- 
layer T-S and inviscid instability waves by freestream 
acoustic disturbances for hypersonic flow over a 
parabolic leading edge with freestream disturbance fre- 
quency F = 1770, and E = 5 x 10m3 as the test case for 
comparing the new parallelized semi-implicit method 
using divide and conquer method solving banded Jaco- 
bian matrix with the parallelized explicit method. We 
change the freestream disturbance wave angle $ to 30°, 
45’, 60’. Efficiency and accuracy of the new method 
are studied. 

Figure 15 shows the comparison contours of the in- 
stantaneous perturbation u’ the velocity in x direction 
after the flow field has reached a periodic state for 
$ = 300,45”, and 60’. The numerical solutions are 
obtained by using the new parallelized high-order semi- 
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implicit method with a set of 320 x 240 x 16 grids. 
The instantaneous contours of u’ show the development 
of three-dimensional first-mode waves in the boundary 
layer on the surface. For I/J = 60’ case, the first-mode 
waves in the boundary layer keeps developing. When 
4 changes to 45O, the break region between first-mode 
waves and second-mode waves in the boundary layer ap- 
pears. The length of the region of first-mode wave domi- 
nation is shorter when + given to 45O. Parallelized high- 
order semi-implicit method made us feasible to study 
more on this complicated hypersonic receptivity prob- 
lem. Further studies and comparisons will be continued. 
Figures 16 and 17 compare the distribution of instan- 
taneous presure perturbations along the wedge surface 
and behind the bow shock surface respectively. The re- 
sults agree well between the parallelized semi-implicit 
method and parallelized explicit method. 

Summary 
We are developing new algorithms to efficiently ap- 

ply implicit method on massively distributed memory 
computers. Parallelized semi-implicit treatment is used 
to overcome stiffness in viscous wall-normal derivative 
terms, while the streamwise terms are computed by ex- 
plicit methods parallelizedly for efficient unsteady flow 
calculations. As a startup, divide and conquer method 
is used to solve the big banded Jacobian matrix from 
the parallelized semi-implicit method. All-to-all broad- 
cast solver and folded skip-decoupling solver are applied 
to solved the reduced systems from parallel comput- 
ers. From the results of studying convection-diffusion 
model equation and the instability of supersonic Cou- 
ette flow, the computation efficiency can be improved 
by using parallelized semi-implicit methods while main- 
taining the same accuracy as that of the parallelized ex- 
plicit methods. We can also get the satisfied results by 
using the new parallelized semi-implicit methods for the 
direct simulations of hypersonic boundary layers over 
blunt body to freestream acoustic disturbance. Mean- 
while, the computational time consuming is decreased. 
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Table 2: Comparisons of execution time, speedup and 
parallel efficiency for different partitioning in solving 
model equations by using all-to-all broadcast solver. 

Partitioning Excution Time Speedup Efficiency(%) 
1 1768.4 1 100 

.1x2 902.2 1.96 98 
1x4 515.6 3.43 85.83 
1x8 306.5 5.77 72.12 

1 x 16 166.1 10.65. 66.56 
1 x 20 171.1 10.34 51.7 

- :- 
Table 3: Comparisons of execution time, speedup and 
parallel efficiency for different partitioning in solving 
model equations by using folded skip-decoupling solver. 

Partitioning Excution Time Speedup Efficiency(%) 
1 1771.6 1 100 

1x2 903.9 1.96 98 
1x4 499.0 3.55 88.74 
1x8 271.3 6.53 81.63 

1 x 16 151.3 11.71 73.17 
1 x 20 127:5 13.90 69.48 

Table 4: Efficiency comparisons between parallelized 
explicit method and parallelized semi-implicit method 
for the simulations of unsteady supersonic Couette flow. 
The grids of each subdomain is 60 x 60 x 4. 

CFL 
Explicit Method Semi-Implicit Ratio 

0.2 14.5 , - 
time(sec) 2.1076 x 1O-5 2.1076 x 1O-5 ’ - 

# of nodes CPU time(sec) CPU.time(sec) - 
1 6,716.13 797.64 8.42 
6 6,947.25 1,057.42 6.57 
12 7,364.53 1,490.80 4.94 
18 7,688.47 3.42 2) 248.09 
20 7.823.96 2.399.86 3.26 
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Table 5: Efficiency comparisons between parallelized 
explicit method and parallelized semi-implicit method 
for the simulations of receptivity of hypersonic bound- 

seml.impllcit (Iterative) 
----.- lull implicit 

ary layer over blunt wedge. The total grids of compu- 
tational domain is 320 x 240 x 4. 

CFL 
Explicit Method Semi-Implicit Ratio 

0.085 1.46 
time(sec) 1.7268 x 1O-7 1.7268 x 1O-7 - 

Partitioning CPU time(sec) CPU time(sec) - Figure 2: Comparison of efficiency of different paral- 
2x1 l&734.3 2,779.6 6.74 lelized algorithms by using different number of pro- 
2x3 
2x6 
2x8 

2 x 10 

6,416.6 
3,373.4 
2,612.7 
2,199.l 

1,217.5 
728.6 
628.1 
529.9 

5.27 cessors on model equation study. (Subdomain grids 
4.63 61 x 61). 
4.16 
3.98 

U 
. ASIRK- 

- Exact 

Freesireom Waves 

Figure 3: Comparisons of the distribution of transient 
solution in x direction between numerical result and ex- 
act solution (y = 0.16, t = 0.5335). 

bow shock 

Figure 1: A schematic of 3-D shock fitted grids for 
the direct numerical simulation of hypersonic boundary- 
layer receptivity to freestream disturbances over a blunt 
leading edge. 

Figure 4: Comparisons of the distribution of transient 
solution in y direction between numerical result and ex- 
act solution (Z = 0, t = 0.5335). 
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Figure 5: Contours of instantaneous solution at t = 
0.5335, exaction solution (upper figure), and paral- 
lelized semi-implicit solution (lower figure) by using 3 
processors. 

Figure 6: Grids on z - y cross-section of computation 
domain for 3-D supersonic Couette flow stability prob- 
lem. 9 processors are used for parallel computing. 

Figure 7: Comparison of the temperature distribution 
in y direction between parallelized semi-implicit result 
and exact solution (solid line: exact solution, circle: nu- 
merical result, 3 processors in y direction) 

Figure 8: Comparison of the temperature distribution 
in y direction between numerical result and exact solu- 
tion (solid line: exact solution, circle: numerical result, 
3 processors in y direction) 

Figure 9: Time history of velocity perturbations at a 
fixed point in the 3-D supersonic Couette flow field 
(LST: Sus and Jws, DNS: 6u and SW). M = 2.0, 
Re = 1,000. 
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Figure 10: Distribution of instantaneous flow perturba- 
tions in y direction. (LST: 61~0, STQ, 6~0 and 6To DNS: 
bu, dv, Sp and ST). 

K.~.,,....,....S .,,/.,,.I 

X 

Figure 11: Computation grids for simulation of hyper- 
sonic flow over a blunt wedge using 3 processors in y 
direction (upper figure) and 6 processors in y direction 
(lower figure). Different colors represent the different 
subdomains. 

4.10 405 0.00 0.05 0.10 0.15 

Figure 12: 3-D temperature contours (upper figure) and 
pressure contours on one cross-section (lower figure) of 
steady flow solutions for hypersonic flow over a blunt 
wedge by using high-order parallelized code. 
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Figure 13: Comparison of steady solution of the pres- 
sure profile along the body surface between parallelized 
explicit method and parallelized semi-implicit method. 

Figure 14: Comparison of steady solution of the Mach 
number along the stagnation line between parallelized 
explicit method and parallelized semi-implicit method. Figure 15: Instantaneous u’ contours for the recep- 

tivity to freestream disturbances for 3-D hypersonic 
boundary-layer over a parabolic leading edge. $ = 30° 
(upper figure), @ = 45’ (middle figure), $ = 60° (lower 
figure). 
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Figure 16: Comparison of distribution of instantaneous 
pressure perturbations along the parabola surface be- 
tween the parallelized explicit method and parallelized 
semi-implicit method. (solid line: semi-implicit results, 
dot: explicit results) 

Figure 17: Comparison of distribution of instantaneous 
pressure perturbations behind the bow shock between 
the parallelized explicit method and parallelized semi- 
implicit method. (solid line: semi-implicit results, dot: 
explicit results) 
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