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Abstract 

t 
The prediction of transition in hypersonic boundary 

layer flow is one of the fundamental interests in fluid 
mechanics. ’ In general, boundary layer flows becomes 
turbulent i; three steps: 1) receptivity, 2) linear growth 
of disturbance, and 3) nonlinear effects in which the 
flow breaksldown to turbulence. When forcing distur- 
bances are /introduced into the boundary layer edge, 
the flow is iexcited and becomes turbulent due to the 
growth of the disturbances. Gijrtler vortices appear in 
boundary layer flow along concave surfaces and affect 
the flow stability conditions. It is not possible to avoid 
concave surkaces in engineering designs such as engine 
inlet. Therefore, Gijrtler instability becomes an impor- 
tant topic in fluid dynamics. 

In this paper, Gortler instability is investigated using 
two approaches: Linear Stability Theory(LST) and Di- 
rect Numerical Simulation(DNS). Linear stability code 
with curvature effects is developed, and results are 
compared with available published papers. DNS is used 
to simulate Gijrtler vortices in hypersonic boundary 
layers. Two dimensional steady mean flow is computed 
using a fifth order explicit upwind scheme. Initial forc- 
ing disturbances are obtained from the LST code, and 
receptivity is applied in DNS. Linear growth of distur- 
bances is compared with the LST code to verify the 
DNS. 

1 1ntr;oduction 

Counter rotiating vortices whose rotating axis is in the 
streamwise idirection appear in boundary layer flow 
along the concave surface due to the imbalance between 
pressure fo{ce and centrifugal force. These kind vor- 
tices are called Ghtler vortices, and they play a main 
role in stability problem along the concave wall. In 
hypersonic boundary layer, flow becomes complicated 
because real gas effects and heating condition near the 
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-stagnation point cannot be ignored. In addition, when 
the hypersonic flow along the blunt body is concerned, 
bow shock appears in front of the body. If the blunt 
body contains concave surface, Gortler vortices affect 
the stability conditions of the flow. 

Gortler vortices have been studied experimentally 
and numerically since Gijrtler found them in 1940 l1-361. 
Liepmann [‘I conducted boundary-layer transition ex- 
periments on concave walls and showed that the crit- 
ical Re for concave walls is lower than for flat plates. 
In other words, concavity destabilizes the flow. Even 
though the GGrtler instability has been theoretically es- 
tabilished since 1940, actual observation of Gijrtler vor- 
tices were conducted by Tani 131 in 1962. Using smoke, 
he observed a spanwise variations by velocity measure- 
ments along the concave wall. Aihara 14] in his wind 
tunnel experiment showed that the non-linear develop- 
ment of Gortler vortices mainly affects the transition of 
the boundary layer. Sabzvary and Crane 15] and Peer- 
hossaini and Wesfreid I61 observed mushroom like vor- 
tices due to nonlinear growth. They showed there are 
two regions(upwash and downwash) in development of 
Gortler vortices pair. Peerhossaini and Wesfreid 161 also 
observed interaction between two neighboring vortices. 

Recent experiments have shown that breakdown of 
Giirtler vortices is mainly due to secondary instabili- 
ties. Aihara and Koyamalq and Aihara et al 181 iden- 
tified the breakdown of the vortex structure as a sec- 
ondary instability due to a horsesho-vortex structure. 
Swearingen and Blackwelder 1’1 verified two kinds of 

-secondary instabilities which are the sinous and vari- 
cose(horsesho) types. They showed that sinuous mode 
is produced by spanwise velocity gradient and the vari- 
cose is due to normal velocity gradient. In their exper- 
iments, the unsteady secondary instability fluctuations 
correlated better with the spanwise velocity than with 
the normal velocity gradient. 

Gortler ii1 in h’ 1‘ IS mear stability analysis assumed 
parallel flow. Kahawita and Meroney liol calculated 
Gortler instability problem in which normal veloc- 
ity was included. In their analysis, the value of the 
Gijrtler number approaches a critical value of zero as 
the wavenumber reaches a limiting value of 0.3. It was 
a quite different results to Gortler’s in which nonzero 
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critical Gortler number exists at zero wave number. 
Herbert [I11 and Floryan llzl studied higher mode of 
Gortler instability, and they concluded that the growth 
process for the second mode is considerably slower than 
for the first mode. 

Gortler 11], Hammerin 113] and-smith 1141 showed neu- 
tral stability curves in their linear stability analysis. 
However, their results were not consistent to each 
other. They were only matched in the limit of the 
short wavelength, and Hall 1151 1161 [I71 applied asymp- 
totic theory to Gijrtler instability problems. Hall [I51 
proved that in high wavenumber limit, the parallel flow 
theory becomes valid. Hall 1171 obtained that the exis- 
tence of a neutral point strongly depends on location 
and shape of the initial condition. 

Recently many researchers have tried to solve non- 
linear Gijrtler problems numerically. Sabry and Liu [is1 
and Hall 11’1 demonstrated that nonlinear evolution of 
streamwise Gortler vortices produces inflextional pro- 
files which will presumably break down. Lee and 
Liu lzol and Liu lzl] numerically showed mushroom like 
vortex due to nonlinear growth of Gijrtler vortices. 

Liu and Domaradzki lz21, Yu and Liu lz31, and Li 
and Malik lz4] studied secondary instability effects on 
Gortler vortices. Secondary instability is produced by 
interaction between TS waves and Gijrtler vortices. Li 
and Domaradzki lz21 dealt with Gijrtler problem us- 
ing DNS. InitiaI disturbances were obtained from LST 
since initial stage of growing Gijrtler vortices is linear. 
They showed that Gortler vortices become turbulent 
due to the spanwise velocity gradient as well as the nor- 
mal velocity gradient. These velocity profiles contain 
inflectional points which play roles in flow instability. 
They mentioned that varicose~mode is related to the 
normal velocity gradient and sinuous mode is to the 
spanwise gradient and concluded that sinuous mode is 
dominant. Li and Malik 1241 used PSE(parabolic stabil- 
ity equation) method, and studied nonlinear effects of 
Grotler vortices. In their approach, they showed there 
are two kinds of secondary instability modes; even and 
odd. The even mode is related to the varicos mode, 
and the odd mode is to the sinous mode. 

The interactions between two neighboring vortices 
are concerned by Guo and Finlay 12’]. They used Leg- 
endre spectral element method and studied Eckhaus 
instability due to spanwise perturbations. They fig- 
ured out the vortices can attract or repulse each other 
depending on the wavelength of the disturbances. 

Compressibility is considered as a stabilizing factor. 
This is also true for the boundary layer flow along the 
concave surface. -Kobayashi and Kohama 124 in their 

linear stability analysis considered compressibility ef- 
fects on GijrtIer-vortices. Parallel flow approximations 
were assumed. They concluded compressibility has a 
stabilizing effect -on Gortler vortices. With weak cur- 
vature, the vortices grow weakly in the stream direc- 
tion; therefore, it is not possible to separate the weak 
growth of the boundary layer from the growth of the 
disturbance. In other words, nonparallel effects are im- 
portant in Gijrtler instabilities. El-hady and Verma 1271 
computed complete stability digrams for various Mach 
number. Normal velocity and streamwise variations 
were included. They also proved compressibility is a 
stabilizing factor. 

In normal mode analysis in linear stability analysis, 
method of separation variables is used. Hall 1181 proved 
that normal mode solution is only valid in the limit of 
high wavenumber. Therefore, Spa11 and Malik lz81 dealt 
with linear stability theory of Gortler instability using 
method of marching in which streamwise variations of 
disturbances were also considered. In mean flow calcu- 
lation, pressure changes in streamwise direction were 
included to study adverse pressure effects. Mach num- 
ber range is O-12 so they considered hypersonic as well 
as supersonic boundary layers. It was found that in hy- 
personic limit, compressibility effects become less im- 
portant, and adverse pressure is a dominant role in flow 
instability. Cooling and heating effects also play an im- 
portant role in corn ressible flow stability. According 
to Spa11 and Malik “I, P cooling destabilized the flow, 
and heating slightly stabilized flow when Gijrtler vor- 
tices are concerned. 

Hall and Malik12’l and Dando 1301 analyzed the role 
of corn ressibility within the large wavenumber limit. 
Dandob’l completed analysis fo two-dimensional and 
three dimensional~boundary layers in the large Gtjrtler 
number limit(inviscid flow). He use unit prandtl num- 
ber and Chapman viscosity law. 

Hall and Fu 1311 in their asymptotic analysis showed 
that at hypersonic speed limit, the nonuniqueness of 
the neutral stability curve associated with incom ress- 
ible Gortler vorlZ?es disappears. Fu and Hall [&on- 

sidered real gas effects on the linear stability of Gijrtler 
vortices and considered secondary instability in hyper- 
sonic limit. Recently receptivity becomes a critical is- 
sue for the Gortler problem. Denier et al 1331 addressed 
exactly this issue by considering the vortex motion in- 
duced by wall roughness. 
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2 Dkfurbance Equations 

The compressible linear stability equations originate 
from the compressible Navier-Stokes equations. The 
gas is assumed to be perfect Newtonian gas. The 
three dimensional Navier-Stokes equations in Cartesian 
coordinates(z*,y*,z*), where ‘*’ denotes dimensional 
quantities, jare 

I 
p*[*+u*.Vu*]=-vp* 
+ v p* (v . u*) I+ p* (vu’ + vu*t’)] ) (1) 

p*c;& + u* VT’] = v (k* v T*) 
+g;+u* ~vu*+a*, 

(2) 

L 

i p* = p, R’T* , 
/ (4) 

where u* is the velocity vector, p* is the density, p” 
is the pressure, T’ is the temperature, R* is the gas 
constant, cb is the specific heat at constant pressure, 
k’ is the thermal conductivity, p* is the first coefficient 
of viscosity,’ and A* is the second coefficient of viscosity. 
The viscoui dissipation function, a*, is given as 

I 
a* = T(v . u*)Z + $[vd + vU*fr12 . (5) 

In the derivation of disturbance equations, we closely 
followed M&k’s 1371 formulation for Cartesian coordi- 
nates. The bow variables and equations are nondimen- 
sionalized as follows: velocity by U&, density by p:, 
pressure by ‘p& Ug , length scales by z* , and time scale 
by x*/U& $here x* denotes distance from the leading 
edge. Instantaneous flow variables are represented as 
the sum of mean value and fluctuations, i.e. 

U 

2) 

W =i E/(x, Y, z) + qx, Y, 2, t) (6) 
P =; fl(x, YI 2) + EC? Y, Zl t) 
T =j T(x,y,z)+T(x,y,&t) . 

I 

Detailed linear disturbance equations can be found in 
Malik 13q. Two dimensional steady mean flow is as- 
sumed; the{efore, w(z, y, z) = 0 and & = 0. 

Resulting linear disturbance equations can be ex- 
-pressed in matrix form as 

(8) 

All matrix coefficients are function of mean values only. 

Coordinate transformations are applied to Eq (7) to 
transform Cartesian coordinates (x,y,z) into curve linear 

system (t,wZ). They are related geometrically (Fig- 
ure 1): 

d< = RdB 
q=R-r 
<=z 
i-=t , 

(9) 

where R is a radius of curvature of the wall, T = 

- ~(~-+~)~+(y-y~)~ and tanB= (xc-z)/(y-yy,). 

Velocity components depend on direction(Figure 2); 
therefore, it should be considered. Their relations are 

+, Y, =, t) = ~‘(f, V, C, 7) cos e - w’(&, ‘1, C, T) sine (lo) 

4x, Y, 2, t) = u’(f, V, C, T) sine + ~‘(f, V, c, T) cos e (11) 

42, Y, ,‘, t) = w’(f, rl, c, T) (12) 

For variable radius curvature, R and 0 is function of <. 

An important feature of steady streamwise vortices 
within a shear layer is the convection of streamwise 
momentum in the normal and spanwise directions by 
weak velocity profiles. Therefore, governing equations 

I 3 
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(13) 

Transformation and rescale give new matrix form of 
disturbance equations: 

WIG1 + [B’] % + [c’] + + [D’] $$ 

+[I.?] * + [@+ + [G’]$-% + [H’]$% (15) 

+~1’l$gi + [J’l* + [Ii’]&! = 0 , 

where 

(16) 

For normal mode analysis, disturbance form is 

s; = q(ql’)e”F’+PC’-WT , 

where 

(17) 

41 = (18) 

When Eq( 17) is substituted into Eq( 15), linearized dis- 
turbance equations become a homogeneous system of 
ordinary differential equations: 

(AoD2+BoD+Co)q=~0, (19) 

where 

Ao = [G’] 
B. = [O’] + zk[I’] + i/?[J’] 
Co = [A’] - iw[B’] + ictjc’] + iP[E’] (20) 

-a”[F’] - p[H’] - cg[L’] 

D is the derivative opperator in 7’ direction, i.e. D = 
d/drf and D2 =-d”/d$‘. The eigenvalue problems are 
solved using Chebyshev collocation global method P53 
and fourth order finite different method. Boundary 
conditions are subjected to 

Our disturbance equations do not expressed Gijrtler 
number and curvature explicitly. However, they are in- 
cluded implicitly m transformation procedure. There- 
fore, to study Gijrtler problem, we should calculate 
Gijrtler numeber from Re, radius of curvature(R) and 
other flow properties (i.e. pressure and temperature). 
Formula of Gortler number is 

G = Res J 
6 
R’ (23) 

where 

3 Results 

(24) 

3.1 Incompressible 
linear stability analysis of Giirtler 
vortices 

To deal with Gijrtler instability, curvature effects are 
included in LST~code using coordinate transforma- 
tions, and results are compared with previous works. 
Both temporal and spatial linear stability analysis are 
considered. Mean flows are computed from Blasius 
equation using shooting method. Flow variables and 
equations are nondimensionalized as follows: stream- 
wise velocities by U&, normal and spanwise veloci- 
ties by U&/&Z~pressure by pkUz/Re, length scales 

4 
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by X* in slreamwise direction and by boundary layer c 
thickness,&? in normal and spanwise directions, and 
time scale jby x*/U&. These scalings follow from the 

work of Davey, Diproma and Stuart 13sl on Taylor vor- 
tices, and have also been used in subsequent investiga- 
tions of Gjrtler vortex instability. 

Herbert llrl studied temporal Gartler instability and 
found higher mode as well as the primary in which 
wavenumb+r, IX, is zero, and spanwise disturbances are 
introduced1 in the mean flow. Parallel flow approxima- 
tions were iassumed. In the limit of Re+oo and large 
radius of curvature, governing equations of Gijrtler vor- 
tices in curve linear system become flat plate bou- 
undary layer equation; therefore, most people assumed 
the flat plate mean flow. The flow conditions are 

G = 6.55 
,B = 6.3824 
U& + 5m/sec 
T: 7 313.6Ir’ 
R* =-3.2m 
x* = :0.4m , 

(25) 

which Herbert used in his analysis. Gortler number, 

G, is definid as Rea 4 i. From these conditions, we 

calculated Re and Mach number which are main pa- 
rameters in our code. The growth rate of the primary 
mode is w; I= 1.67 which is very closed to the value in 
Herbert ll’li which is 1.66. The computed value of the 
second mode is 0.027, and it also agrees well with the 
Herbert l’rl;S which is 0.0. Real part of the frequency 
is zero for both modes. Both modes are unstable since 
their eigenvalues are positive. Eigenfunctions of both 
modes are shown in figure 3 and figure 4. Two peaks 
in figure 4 represent that there are two vorticity layers 
which are stacked together. It is more clearly repre- 
sented in figure 5 which is streamwise velocity contour. 
Mode II contains one more layer than Mode I. Dashed 
lines represent negative. However, higher modes are 
rarely observed in experiments because growing pro- 
cess of these modes are much slower than one of the 
primary. The shapes of eigenfunctions are similar to 
those in Herbert [lll. 

Experiments show that, at the onset, Gortler vortices 
are generally steady. Therefore, recent papers only con- 
sidered the ipatial linear stability analysis in which w is 
zero and p Fs real. To deal with spatial stability prob- 
lem, (Ye terms in the disturbance equations are ignored 
since with these terms, we cannot solve the eigenvalue 
problems. These terms are usually small compared to 
others. The results from spatial analysis are compared 
Kahawita et al l”1. Normal velocity is included in the 
analysis, but streamwise variations are still neglected. 

Mean flow was assumed Blasius boundary layer Bow. 

Figure 6 show eigenfunction distributions computed 
using following conditions which Kahawita et al used 
in their analysis: 

G = 2.569 
p = 1.0 
lJ& = 5.0m/sec 
T& = 292.4K 
P.& = latm 
R* = 3.2m , 

(26) 

Results by Kahawita et al [la1 are also shown in the 
same plot. The shape of eigenfunctions are the same, 
but our results are shifted upward more than those in 
Kahawita et al. The reasons may be due to the method 
differences. Kahawita considered normal velocity and 
higher curvature terms. He expanded the curvature 
terms (i.e. terms associated to (1 - q)-‘, where R 
is curvature) and kept zeroth and first order terms. 
However, we did not use Taylor expansions for the cur- 
vature. We deal with them as mean values, so those 
terms are included in the matrix which are functions 
of mean quantities only. Also they solved eigenvalue 
problem locally so o2 terms are not ignored. - 

3.2 Compressible linear stability 
ysis of Gijrtler vortices 

anal- 

Main purpose of this project is to study phenomena 
of Gijrtler instability at hypersonic limit, so flow con- 
dition is compressible. Spatial linear stability is con- 
sidered since the steady Gijrtler vortices are enerally 
observed in experiments. El-hady and Verma 7 271 com- 
puted complete stability diagrams for various Mach 
numbers. Therefore, our code is first verified by com- 
paring results with El-hady et al. In this analysis, all 
streamwise variations are included; so growing bound- 
ary layers are concerned. Pressure is still assumed con- 
stant. Compressible mean flow of the boundary layer 
along the flat plate is computed using Mangler-Levy- 
Lees transformation and shooting methods. Flow con- 
ditions for different Mach numbers are shown in Table 
1. All sets of conditions gave the same growth rate 
in which wavenumber (0) is 0.3 and stagnation tem- 
perature (T:) is 31011’. The computed growth rates of 
primary modes using 100 grid points for five different 
Mach numbers are represented in Table 2 and com- 
pared with El-hady’s results. They are well matched. 

Figure 7 shows distributions of eigenfunctions of 
streamwise velocity, normal velocity, spanwise velocity, 
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Table 1: Flow properties for different Mach numbers in which 
T,’ = 310K and p = 0.3. El-Hady et al (1983) show five different 
Giirtler numbers which gives the same growth rates in different 
Mach numbers. 

Mach G CL (N/m’) T&(K) R(m) 
1 12.9289 1.013~10~ L= 258.3 7.8 
2 12.0844 6.753x lo4 172.2 ~ 13.6 
3 11.5310 4.341x104 ; 110.7 20.2 
4 11.4786 2.894x lo4 __ 73.8 26.3 
5 11.7611 2.026x lo4 _~ 51.7 31.4 

Table 2: G rowth rates of Mode I for different Mach numbers 
are shown and compared with El-Hady et al (1983). 

Mach G n(current method) a(El-Hady et al) 
1 12.9289 -4.95880522 -5.0 
2 12.0844 -4.98951110 -5.0 
3 11.5310 in -4.97404248 -5.0 
4 11.4786 -4.93742251 -5.0 
5 11.7611 -4.84224414 -5.0 

and temperature. The figures show that the location 
of C,,,, fi,,,, W,,,, and T,,, move away from the 
wall as Mach number increases. This indicates that 
disturbances go outside of the boundary layer as Mach 
number increases. -In order words, flow become more 
stable. 

3.3 Curvature effects 

Theoretically convex wall stabilizes flow, and the con- 
cave destabilizes flow. We have~studies these effects in 
three different cases:l) o # 0.0 and p = 0.0 2) o = 0.0 
and p # 0.0, and 3) LY # 0.0 and p # 0.0. 

3.3.1 Case I ( (Y # 0.0 and fl= 0.0 ) 

Nonzero alpha represents the shear mode. Curvature 
effects have been investigated for incompressible and 
compressible flows. Temporal instablity is concerned 
in this analysis. Figure 8 and figure 9 represent incom- 
pressible flow curvature effects since Mach number is 
lo-“. Figure 8 shows that concave curvature does not 
really affects the growth rate since temporal growth 
rate (wi) dose not change depending on radius curva- 

ture. However, the convex stabilizes the flow as curva- 
ture effects become lager. Smaller radius of curvature 
represents more curved wall and higher curvature ef- 
fects. Figure 9 shows that as the radius decreases, the 
growth rates decreases, and flow becomes more stable. 
:.= =, .-- ~- ~ 

Concave curvature effects for compressible flow is 
shown in figure 10. Mach number is 10 in this anal- 
ysis. At such a high Mach number, the second shear 
mode is dominant. Temporal growth rates plotted in 
figure 10 and figure 11 are for the second shear mode. 
It is clear that concavity destabilizes the flow since as 
the radius becorn% smaller, growth rate increases. The 
role of convex wall for compressible flow is the same as 
one for incompressible which is represented in figure 

s 

3.3.2 Case-;III[ (Y = 0.0 all4 ,b'# 0.0 ) -_ 
.- _ ~._. 

Gijrtler mode is developed when spanwise disturbances 
are introduced on the flow along the concave surface. 
In other words, p is not zero for the Gortler mode. In 
this case, we set o is zero to study Gortler instability 
only. In the case of nonzero beta, there is no unstable 
Gijrtler mode for convex surface. In other words, the 
convex is one of stabilizing favtor in Gortler instability. 

Curvature effects have been investigated for two dif- 
ferent Mach number (O.O14(figure 12) and 4.0(figure 
13)). Figure 12 is temporal stability analysis, so growth 
rate is wi, and figure 13 is for the spatial analysis. 
Nondimensitional growth rate oi is normalized by z*. 
Both figures show that concavity has destabilizing ef- 
fects on the flow condition. It is what we expected 
because as radius curvature decreases, Gortler num- 
ber(Eq (23)) increases when other parameters remain 
the same. As Gortler number increases at the same p 
and Mach number, growth rate increases. 

3.3.3 Case III ( (Y # 0.0 and p # 0.0 ) 

In this case, there may exist both shear and Gortler 
modes. We found a condition in which both modes ex- 
ist. Wave number (k) is equal to 0.117, and we change 
angle(B) to study how shear and Gortler modes affect 
the flow stability conditions (See vector digram in fig- 
ure 16 and figure 17). When the angle is O’, it becomes 
case I, and 90’ represents case II. 

Figure 14 and figure 15 show eigenspectrum of 
modes. Figfure 14 is for the flat plate ,and Figure 15 
is for the curved wall. General shapes are the same, 
however, the right blanches of the spectrums are dif- 

I- 

- 
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ferent. When there is curvature effects, flat bed region 
appears(figure 15). Figure 16 also represents the desta- 
bilizing effects of concavity at various angle 8. 

It is intbresting that in which conditions GGrtler 
mode is dgminant. As angle, 8, decreases from 90”, 
Gijrtler mode changes to shear mode (figure 17). Crit- 
ical angle at Ma = 2.5, 
r = 5m is ‘about 89”. 

R = 3000, k = 0.117, and 
In this flow condition, Gijrtler 

mode is dominant since the growth rate at 90” is larger 
than maximum growth rate of the shear mode. Figure 
17 shows that very small magnitude of (Y changes mode 
from the 

d 
ijrtler to the shear. This trend is well rep- 

resented ini change shapes of the eigenvalue spectrum 
(figure 18) eigenfunctions of ‘1~~ and p, (figure 19). 
Figure 18 ows that as the angle decreases, the struc- 
ture become more y-shaped, and the primary mode 
moves to the left branch of y-shape. This trend is more 
clearly represented in eigenfunction of p, (Figure 19). 
As the angle decreases, number of peaks of p, becomes 
two from one. It shows that Gortler mode becomes the 
first mode,jand the critical angle is 88.8”. 

3.4 Simulaticm of Flow along the Blunt 
Baby with Concave Surface 

/ 

3.4.1 20 mean flow 

The steady flow solutions of the Navier-Stokes equa- 
tions for the viscous hypersonic flow over blunt body is 
simulated using a fifth order explicit upwind scheme 
and shockufitting method 13’]. Eight computational 
zones are )sed which are resolved by 161 x 121 grids 
in each zones. Stretched grids are used in streamwise 
direction as well as in normal direction in order to re- 
solve rapid changes of flow properties near the stag- 
nation pomt in zone 1 and viscous layers. For other 
zones, streamwise stretching is not necessary; however, 
it is used in current analysis. 

First twd zones are parabolic blunt body, and con- 
cave surface is extended in the other zones. Using 
polynomial equations, we make continuous and smooth 
curves. At; transition points between two polynomial 
equations, -zeroth, first, and second order derivatives 
are match{d; therefore, curves are continuous till sec- 
ond order derivatives. More smooth curves can be gen- 
erated by matching the third order and more, but in 
our analys&, we matched till second order in order to 
get continuous radius curvature which is a function of 
first and se;ond order derivatives. For the concave sur- 
face, we used large radius of curvature to avoid shock 
formation 8ue to compressive waves inside the compu- 
tational domains. 

t 
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The specific flow conditions are 

A& = 15 
T& = 101.059K 
P& = 10.3Pa 
T; = 1OOO.K 
Re, = 150753.-175 

(27) 

The body surface is assumed to be a non-slip wall with 
an isothermal wall temperature Tz. 

Numerical solutions of the steady mean flow are rep- 
resented in figure 20. Temperature and pressure are 
nondimensionalized by the flow variables beyond the 
shock. The numerical solution for the dimensionless 
bow shock normal velocities are in order of 10-s - lo-‘. 
Both figures show the evidence of concavity. Concave 
wall starts when x is approximately 0.5, and the fig- 
ures show that flow properties change after that point. 
Temperature distribution across the boundary layer in 
two different regions (convex and concave) is shown 
in figure 21. Y, represents the normal distance from 
the wall. In convex wall region, maximum tempera- 
ture decreases as flow moves along the surface; how- 
ever opposite trends are observed in concave region. 
Pressure distributions are shown in figure 22. Increase 
pressure in the region of the concave surface mainly 
affects Gortler stability condition of the flow at hyper- 
sonic speed lzal. Favorable pressure gradients are shown 
in convex region (figure 22 (up)) and adverse pressures 
in concaved region (figure 22 (bottom)). 

3.4.2 Initial disturbances and spatially grow- 
ing Gijrtler vortices 

Concave surfaces are included in zone 4-7. Calculated 
Gortler number is between 2.5-9.0, and Mach number 
behind shock is 6-8.5. Since Gortler number is rela- 
tively low at such high Mach number, zone 4 and 5 do 
not have unstable modes in LST calculation. At the 
end of zone 6, we found unstable Gortler mode, there- 
fore, we gave the initial disturbances in inlet of zone 7 
(figure 25). Eigenfunctions of the primary and second 
Gijrtler modes obtained from linear stability analysis 
using the simulated mean flow are shown in figure 23 
and figure 24 respectively. The growth rate of primary 
mode is larger than one of the second mode. It means 
that primary mode is a dominant mode. 



Inlet boundary conditions are 

U = ~(~,y,t)+~~,(~,y,z,t)cos(pz) 

V = WZ,~Y> z) + ffir(Z, Y, z, t) cos (Pz) 

w = w(z, y, z) - ~ti&(z, y, z, t) sin (pz) (28) 

P = q,, Y, z) + q%(Z, Y, z,b) cos (Pz) 
T = T(zy, z) + &(z, y, z,t) cos (Pz) , 

where &., ti,., &i, @r, anf T, are eigenfunctions obtained 
from LST. Other eigenfunctions (c;, tia, ti,, $,, anf pi) 
are zero. Since steady Gijrtler vortices are observed 
in experiments, we start to study spatial Gijrtler in- 
stability. In spatial linear stability analysis, w is zero; 
therefore, eigenfunctions do not depend on time, and 
initial disturbances at inlet of zone 7 are fixed as time 
changes. Initial disturbances propagates spatially and 
converged to steady state condition. 

We used four points in z-direction to cover one wave- 
length of spanwise disturbances. Spectral method is 
applied to spanwize direction to get accurate results. 
Wavelength is calculated from wavenumber p. In the 
current computation, nondimensional p is 0.1 whcih 
is normalized by boundary layer thickness 6 and gives 
maximum growth rate. 

To verify the DNS code, simulated results are com- 
pared with LST. We set 6 is 0.601 which makes distur- 
bances grow linearly, and results can be compared with 
LST. Figure 26 shows the temperature perturbation 
contours of primary(up) and second(bottom) modes in 
the simulation. The growth of the Gortler vortices in 
the streamwise direction is shown by the intensity of 
the disturbances. 

Figure 27 shows the streamwise velocity contours 
of the primary(up) and the second(bottom) modes at 
later station (I=lOO). One more vorticity layer appears 
in second mode. Prediction by LST is also ploted in 
the same figure. The simulated results are matched 
with ones from LST. We used four points in spanwise 
direction, therefore, sharp points appears in contours. 
If we use more points, it will be resolved. 

Figure 28 and figure 29 show distributions of simu- 
lated disturbancesin normal direction at I = 100. LST 
results are also plotted in the same figures. u, and T, 
from DNS are matched well with those from LST. v, 
and w; show that shapes are the same, but their ampli- 
tudes are little different. The reason is because order of 
magnitudes of IL,. and T, is one-order higher than those 
for v, and w,. When the values are compared, they 
are different in 10B5 digit. Because of higher order of 
magnitude, u, and Tp seem to be more accurate. 

Distribution&f velocity (ur) and Lemperaturc (T,.) 
along the streamwise direction are shown in figure 30. 
There are three curves in each figures which represent 
four points in z direction. The figures indicate the 
growing disturbances since their amplitude increases 
as flow moves. The results predicted by LST are also 
plotted in the same figures and matched well with the 
simulated results. 

3.4.3 Blowing and suction 

Engine inlet contains concave surface, and air and fuel 
is mixed near inlet. Fuel injection will be applied to the 
compression surface entrance of the inlet to study mix- 
ing effects on the Gortler instability (figure 31). First 
we tried to verify our code. Using computed mean flow 
at zone6, we give blowing and suction at inlet of zone6 
which diturbes flow, but net amount of incoming flow 
is zero. We changed boundary condition of normal ve- 
locity at the surface of inlet as 

- 
3 

v* = sin (p*z) , (29) - 

where nondimentional ,0 is 0.1, and length of z is 
one wavelength. This condition gives spanwise distur- 
bances. 

2% 
- 

Figure 32 shows that two kinds of disturbances de- - 
velops. Gortler instability appears near the surface. 
Other kinds of mode appears top of the Gortler modes, 
but it seems to go away and Gortler mode becomes 
dominant as flow moves. It is shown in figure 33 and 
figure 34 in which the combined mode is shown at early 
station, but they_ are detached later station. Top mode 
decays as flow moves, and clear Gijrtler mode develops 
near the surface. Computational domain of zone 6 is 
not large enough to show that the top mode decays out. 
The whole domain of zone 6 is the transitional state; 
therefore, the results are not camparable to LST. How- 
ever, the analysis shows that Gijrtler mode develops at 
the spanwise disturbed flow along the concave surface. 

4 Conclusion ._ 

The main focus of this paper was to verify linear grow- 
ing Gortler vortices using two methods:LST and DNS. 
We developed the LST code which includes curvature 
effects. Incompressible and compressible flow stabili- 
ties were computed using a compressible stability code, 
and results were compared with available published 
works. It was shown that the code gave good agree- 
~ments with previous results. Curvature effects on shear 

- 
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and G&t& instabilities have been calculated. It was 

clear that koncavity destabilizes the flow, and convex 
curvature Stabilizes the flow. 

Mean flo’w along the blunt body which includes con- 
cave wall kas simulated by a fifth-order explicit un- 
steady cor$puter code. It showed a clear adverse pres- 
sure regioq due to the concave surface. The three 
dimension+ mean flow was simulated using two di- 
mensional Fata since we assume there are no spanwise 
changes. Disturbances computed by the stability code 
were added in inlet of zone 7. Simulation results were 
compared aith results predicted by LST. There was 
good agreeTents between the two results. Finally we 
specified w,ave number (p) in inlet using blowing and 
suction an4 simulated the flow. The numerical simula- 
tion show \p development of GGrtler mode. 

t 

5 Fut,ure Works 

Work is in:progress to include bow shock effects and 
study nonlinear G&ler instability. To study bow 
shock effecds on Gijrtler instability, boundary layer flow 
without shbck will be investigated. Nonlinear study 
of Gijrtler .jnstability includes interactions with other 
forms of dlaturbances(eg. TS waves, cross flow effects 
etc.) and mixing effects when fuel injection is applied 
in front of kngine inlet. 

/ 

Acknofledgments 

This reseaifh was supported by the Air Force Office 
of Scientifiy Research under grant numbers F49620- 
95-l-0405 apd F49620-97-1-0030 monitored by Dr. Len 
Sakell. , 

References 

[l] Gijrtlef, II., “Instabilita-umt laminarer Gren- 
zchicht,en an Konkaven W;iden gegenber gewissen 
dreidirensionalen Stijrungen,” ZAMM, Vol. 21, 
1941, pp. 250-52. 

[2] Liepminn, H. W., “Investigation of boundary 
layer tkansition on cancave walls,” NACA Rep., 
Vol. y-107, 1945. 

i 
[3] Tani, T., “Production of longitudinal vortices in 

the boundary layer along a concave wall,” J. Geo- 
physic& Res., Vol. 67 no 8, 1962, pp. 3075-80. 

PI 

[51 

[61 

[71 

PI 

PI 

PO1 

P11 

P21 

P31 

P41 

D51 

Aihara, Y., “Gijrtler vortices in the nonlinear re- 

gion,” In Theoretical and Experimental Fluid Me- 
chanics, ed U. Miiller, Ii. G. Roesner, B. Schmidt, 
pp 331-38. Berlin:Springer-Verlag, 1979. 

Sabzvari, J. and Crane, R. I., “Effect of GGrtler 
vortices on transitional boundary layers,” ASME 
FED, Vol. 32, 1985. 

Peerhossaini, H. and Wesfreid, J. E., “Experi- 
mental study of the Taylor-GGrtler Instability,” 
In Propagation in Systems Far From Equilib- 
rium, ed. J. E. Wesfreid, H.R. Brand, D. Man- 
neville, G. Albinet, N. Boccara, et al, pp. 399-412. 
Berlin:Springer-Verlag, 1988. 

Aihara, Y. and Koyama, H., “Nonlinear devel- 
opment and secondary instability of Gijrtler Vor- 
tice,” In Stability in the Mechanics on Continua, 
ed F. H. Schroeder, pp 345-54. Berlin: Springer- 
Verlag, 1982. 

Aihara, Y., Tomita, Y., and Ito, A., “Genera- 
tion, development and distortion of longitudinal 
vortices in boundary layers along concave and flat 
plates,” In Laminar-Turbulent Transition, ed V. 
V. Kozlov, pp. 447-54. New York:Springer-Verlag, 
1985. 

Swearingen, J. D. and Blackwelder, R. F., “The 
growth and breakdown of streamwise vortices in 
the presence of a wall,” J. FZuid Mech., Vol. 182, 
1987, pp. 255-290. 

Kahawita, R. and Meroney, It., “The influence of 
heating on the stability of laminar boundary lay- 
ers along concave curved walls,” J. Applied Mech., 
1977, pp. 11-17. 

Herbert, T., “Higher eigenstates of Gijrtler vor- 
tices,” In Theoretical and Experimental Fluid Me- 
chanics, ed U. Miiller, K. G. Roesner, B. Schmidt, 
pp 322-30. Berlin:Springer-Verlag, 1979. 

Floryan, J. M., “The second mode of the Gortler 
instability of boundary layer,” J. AIAA, Vol. 23, 
1985, pp. 1828-30. 

H;immerin, “Uber die stabilitat einer kom- 
pressiblen StGmung l&gs einer konkaven wand 
dei verschienden wandtemperaturverhaltnissen.” 
Deutsch Versuchsanstalt fiir Lufi fahrt, Bericht 
176. 

Smith, A., “On the growth of Taylor-Gijrtler vor- 
tices along highly concave wall,” Quart.. J. Math, 
Vol. 13, pp. 233-262. 

Hall, P., “Taylor-Gijrtler vortices in fully devel- 
oped or boundary-layer flows: linear theory,” J. 
Fluid Mech., Vol. 124, 1982, pp. 475-494. 

9 



[16] Hall, P., “Onth e non-linear evolution of Gortler 
vortices in non-parallel boundary layers,” IMA J. 
Appt. Math., Vol. 29, 1982Fpp. 173-196. 

[17] Hall, P., “The linear development of Gortler vor- 
tices in growing boundary layers,” J. Fluid Mech., 
Vol. 130, 1983, pp. 41-58. ~~ 

[18] Sabry, A. S. and Liu, T. C., “Nonlinear develop- 
ment of Gortler vortices and the generations of 
high shear layers in the boundary layer,” 1988, 
pp. 175-83. 

[19] Hall, P., “The nonlinear development of Gortler 
vortices in growing boundary layers,” J. Fluid 
Mech., Vol. 193, 1988, pp. 243-66. 

[20] Lee, K. and Liu, T. C., “On the growth of mush- 
roomlike structure in nonlinear spatially develop- 
ing Gortler vortex flow,” Phys. Fluids A, Vol. 4( 1), 
1992, pp. 95-103. 

[21] Liu, T. C., “0 n scalar transport in nonlinearly 
developing Gijrtler vortex flow,” Geophys. Astro- 
phys. Fluid Dynamics, Vol. 58, 1991, pp. 133-45. 

[22] Liu, W. and D omaradzki, J. A., “Direct numerical 
simulation of transition to turbulence in Gortler 
flow,” J. Fluid Mech., Vol. 246, 1993, pp. 267-299. 

[23] Yu, X. and Liu, T. C., “On the mechanism of 
sinous and varicose modes in three-dimensional 
viscous secondary instability of nonlinear Gortler 
rolls,” Phys. Fluids, Vol. 6(2), 1994, pp. 736-50. 

[24] Li, F. and Malik, M., “Fundamental and subhar- 
monic secondary instabilities of Gortler vortices,” 
J. Fluid Mech., Vol. 297, 1995, pp. 77-100. 

[25] Guo, Y. and Finlay, W. H., “Wavenumber selec- 
tion and irregularity of spatially developing non- 
linear Dean and Gijrtler vortices,” J. Fluid Mech., 
Vol. 264, 1994, pp. l-40. 

[26] Kobayashi, R. and Kohama, Y., “Taylor-GSrtler 
instability of compressible boundary layers,” J. 
AZAA, Vol. 45, No. 12, 1977, pp. 1723-7. 

[27] El-Hady, N. M. and Verma, A. K., “Growth of 
Gortler vortices in compressible boundary layers 
along curved surfaces,” J. Engineerzng and Appl. 
Sciences, Vol. 2, 1983, ppl 213-38. 

[28] Spall, R. E. and Malik, M. Ft., “Gortler vortices 
in supersonic and hypersonic boundary layers,” 
Phys. Fluids, Vol. 1(11), 1989, pp. 1822-35. 

[29] Hall, P. and Malik, M. Ft., “The growth of Gijrtler 
vortices in compressible boundary layers,” J. Engi. 
Math., Vol. 23, 1989, pp. 239-51. 

(c)l999 American Institute of Aerohautics & Astronautics 

[30] Dando, A. II., “The compressibe Gortler prob- 
lem in two-dimensional boundary layers,” ZMA J. 
Appl. Math., Vol. 51, 1993, pp. 27-67. 

[31] Hall, P. and-Fu, Y., “On the Gortlcr vortex insta- 
bility mechanism at hypersonic speed,” Theoret. 
Compuf Fluid Dynamics, Vol. 1, 1989, pp. 125- 
34. 

[32] Fu, Y. and Hall, P., “Effects of Gijrtler vortices, 
wall cooling and gas dissociation on the Raylcigh 
instability in a hypersonic boundary layer,” J. 
Fluid Mech.,-Vol. 247, 1993, pp. 503-25. 

[33] J. P. Danier,-P. H. and Seddougui, S. O., “On the 
receptivity problem for Giirtler vortices: vortex 
motion induced by wall roughness,” Phil. Trans. 
R. Sot. Lond. A, Vol. 335, 1991, pp. 51-85. 

[34] Hall, P., “Gijrtler vortices in growing boundary 
layers: the leading edge receptivity problem, lin- 
ear growth and the nonlinear breakdown stage,” 
Mathematika, Vol. 37, 1990, pp. 151-189. 

[35] Floryan, J. M., “On the Gortler instability of 
boundary layers,” Prog. Aerospace Sci., Vol. 28, 
1991, pp. 235-271. 

[36] Saric, W. S., “Gijrtler vortices,” Annual Review of 
Fluid Mechanics, 1994, pp. 379-409. 

[37] Malik, M. R., “Numerical methods for hyper- 
sonic boundary layer stability,” J. Comput. Phys., 
Vol. 86, 1990, pp. 376-413. 

[38] Davey, A., Diprima, R. C., and Stuart, J. T., “On 
the instability of Taylor vortices,” J. Fluid Mcch., 
Vol. 31, 1968, pp. 17-52. 

[39] Zhong, X., “D’ irect numerical simulation of hyper- 
sonic boundary-layer transition over blunt leading 
edges, partI: a new numerical method and valida- 
tion,” AZAA 97-0755, 1997. 

10 



(c)l999 American Institute of Aeronautics & Astronautics 

$igure 1: Schematic of coordinates. 

Figure 2: i< :hematic of velocity vector which represents 
the relatic J-L ship of velocity components in two different 
coordinat e, I jystems. 
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Figure 3: Velocity distributions of mode I at G = 6.55, 
U& = 5m/sec, R’ = 3.2m, and ,~9 = 0.56. 
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Figure 4: Velocity distributions of mode II at G = 6.55, 
U& = 5m/sec, R* = 3.2m, and p = 0.56. 
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Figure 6: Eigenfunction distributions of the first mode 
in two different sets of grids at G = 2.569, R = 3.2m, 
T& = 292.41i, Irz = 5m/ set, and p = 1.0 ( Stream- 
wise velocity, normal velocity, spanwise velocity, and 
pressure). Results are compared with Iiahawita et 
al(1979). 

Figure 7: Streamwise(upper left), normal(uppcr 

Figure 5: Streamwise velocity contour of mode I (top) 
right), and spanwise(lower left) velocity and temper- 

and mode II (bott-om) at G = 6.55, U& = 5m/sec, 
ature(lower right) distributions for the primary mode 

R’ = 3.2m, and p = 0.56. 
at 0 = 0.3 andTe = 31OK in which Mach number 
range is l-5. 
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Figure 8: Concave curvature effects on dominant tem- 
poral unstable shear mode at R = 580 and M = 
10S6.(o # 9.0 and p = 0.0) 
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Figure 10: Concave curvature effects on dominant tem- 
poral unstable shear mode at R = 1000 ,M = 10.0, 
a = 0.12 and fl= 0.0. 

Figure 11: Convex curvature effects on dominant tem- 
poral unstable shear mode at R = 1000, M = 10.0, 
o = 0.12 and ,B = 0.0 
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Figure 12: Concav-e curvature effects on dominant ten 
poral unstable Gortler mode at R = 343 and A4 
0.014~~ = 0.0 and ,B = 0.56 I- 
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Figure 13: Concave curvature effects on dominant spa- 
tial unstable Gortler mode at R = 8657, AI = 4.0 and 

Figure 14: Eigenspectrum(left) of modes for flat plate 

cy = 0.0 
at R = 3000: M = 2.5 ,k = 0.117, and B = 63.0’. Right 
figure represent the rectangular region in the spectrum. 
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Figure 15:i Eigenspectrum(left) of modes for curved 
surface, whose radus of curvature is 5.0, at R = 3000, 
M = 2.5 jk = 0.117, and 0 = 63.0’. Right figure 
represent the rectangular region in the spectrum. 
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Figure 16: Magnitude of growth rate for the primary 
mode for flat plate and curved surface changes for var- 
ious angle(o) at R = 3000, A4 = 2.5 and k = 0.117. 
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Figure 17: As 0 increases, shear mode becomes Gijrtler 
modes at R = 3000, M = 2.5 and k = 0.117. Gortler 
mode is dominant since growth rate of Gijrtler mode is 
greater than one of shear mode. 
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Figure 18: Structure of eigenspectrum changes as 0 
changes at R = 3000, M = 2.5 and k = 0.117. The 
primary mode moves to the left branch of the y-shaped 
eigenstructure (primary modes are circled in each spec- 
trums). It means the mode becomes the primary shear 
mode as 0 decreases. 
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Figure 19: Change shapes of eigenfunctions (q and 
p,) indicates mode changes at R = 3000, M = 2.5 and 
k = 0.117. 
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Figure 21: Variation of temperature along grid lines Figure 22: Variation of pressure along grid lines normal 
normal to the surface at severali grid stations: in con- to the surface at-several i grid stations: in convex region 
vex region (up) and in concave region (bottom). (up) and in concave region (bottom). 
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Figure 23: lbigenfunctions of the primary Gtjrtler mode 
in inlet of zbne7 at G = 6.71, hf = 7.89 , Re = 4.23 x 
105, and ,B k 0.1. Growthrate (u;) is 1.014. 
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Figure 24: Eigenfunctions of the second Gortler mode 
in inlet of zone7 at G = 6.71, M = 7.89 , Re = 4.23 x 
lo’, and ,b = O.l.Growthrate (pi) is 0.519. 
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Computational 
Domain 

rtler Vortices 

/ Dis*turbance-s 

Figure 25: A schematic of the concave body(enginc 
inlet) on which shock and Gortler vortices exist. Corn 
putational domain is shown in the figure 

Vortex Gmwth 

Figure 26: Temperature distribution of the pri- 
mary(up) and second(bottom) Gortler modes along 
the streamwisemdirection at G = 6.71, M = 7.89 , 
Re = 4.23 x 105, and p = 0.1. 
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Figure 27:: Velocity contours of the primary(up) and 
second(bot%om) Gijrtler modes at I=100 of zone7 at 
G = 6.71, !M = 7.89 , Re = 4.23 x 105, and ,B = 0.1. 
Results ar{ compared with LST results. 

-Simulation 
----- LST 

- Simulation 
----- LST 

Figure 28: Distributions of u, (up) and v, (bottom) 
at I=100 of zone7 at G = 6.71, M = 7.89 , Re = 
4.23 x 105, and ,B = 0.1. Results are compared with 
LST results 
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Figure 29: Distributions of T/(up) and w; (bottom) 
Figure 30: Distributions of U, (up) and T, (bottom) 

at I=100 of zone7 at G = 6.71, M = 7.89 , Re = 
along streamwise direction at J=20 of zone7 at G = 

4.23 x 105, and p = 0.1. Results are compared with 
6.71, M = 7.89 , Re = 4.23 x i05, and p = 0.1. Re- w 
suits are compared with LST results. It is shown that - 

LST results disturbances are growing along streamwise direction -2= 
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rtler Vortices 

url Injection 

Figure 31:: A schematic of the concave body(engine 
inlet) on dhich shock and GSrtler vortices exist. Fuel 
injection i! placed in front of the vortices. 

Figure 32: Distributions of velocity (D,.) and temper- 
ature (T,) along the streamwise direction in zone 6 
whose inlet contains blowing and section. 
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Figure 33: Velocity (IL,.) profiles at three different lo- 
cations. They show that there are two different distur- 
bances, and top one is transitional disturbances and 
decays out. 

Figure 34: Temperature (T,.) profiles at three different 
locations. 

- 
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