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Abstract 

The receptivity, stability and transition mechanisms 
of hypersonic flows over 3-D bodies have been the focus 
of recent research efforts. 2-D and 3-D DNS (Direct 
Numerical Simulation) have been used as a primary 
tool in attacking the problems. However, to fully ad- 
dress the problems, less costly methods are desirable to 
provide independent checks and theoretical interpreta- 
tions of the numerical results. 3-D PSE (Parabolized 
Stability Equations), a 3-D extension of the 2-D linear 
PSE, derived from the full compressible Navier-Stokes 
disturbance equations in generalized coordinates, have 
been developed as a cost effective alternative to DNS 
in solving the problems. Specifically, 3-D PSE intend 
to account for spanwise variations of basic flow as well 
as the wavenumbers and shape functions of the dis- 
turbances which are ignored in 2-D PSE. Along with 
3-D DNS to provide the receptivity solutions, 3-D PSE 
may serve as a very practical tool in understanding the 
3-D stability and transition mechanisms for compress- 
ible flows. The formulations and numerical methodol- 
ogy are presented for 2-D and 3-D PSE. At the testing 
stage, 2-D and 3-D linear PSE are validated with pre- 
vious 2-D linear PSE results for supersonic flows over 
flat plate. 

1 Introduction 

The understanding of the stability and transition mech- 
anisms of high-speed flows are critical to the accurate 
calculations of aerodynamic forces and heatings to su- 
personic and hypersonic vehicles. Current understand- 
ing of the laminar-turbulent transition in compressible 
boundary layers comes mainly from the parallel linear 
stability theory l141. Mack 1’1 did extensive work on 
the linear stability of 2-D and 3-D supersonic bound- 
ary layers and shear flows. One of the most impor- 
tant contributions by Mack to the compressible linear 
theory is that he discovered a new family of higher 
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modes at supersonic speeds. He showed that, for com- 
pressible boundary layer stability, the lowest-frequency 
two-dimensional second mode (Mack mode) is the most 
unstable one for Mach number greater than about 4. 

The linear stability theory (LST) provides many in- 
sights on the stability properties of hypersonic bound- 
ary layers. However, it neglects non-parallel effects of 
the boundary layer and confines the stability analy- 
sis to local stations of the boundary layer. For hy- 
personic flow over 3-D bodies, such as elliptical cones, 
basic flow changes in both streamwise, and spanwise 
direction and the transition process is indeed a 3-D pro- 
cess. Moreover, the effects of the bow shocks have to 
be taken into account when the bow shocks are close to 
the body surfaces. The traditional linear stability the- 
ory and the eN method for transition prediction do not 
account for these effects. The remedies in these situa- 
tions may be the direct numerical simulations (DNS), 
the Parabolized Stability Equations (PSE) methods. 

Recently, DNS of hypersonic flows over 2-D and 3-D 
blunt bodies including the effects of boundar 
and shock layers were conducted by Zhong [ST ;Gye; 

who studied the generation of instability waves due to 
freestream acoustic disturbances for 2-D and 3-D hy- 
personic flows by numerically solving full Navier-Stokes 
equations using a new explicit fifth-order shock fitting 
upwind scheme. Better understanding of the stabil- 
ity characteristics of the hypersonic parabolic body 
flow can be achieved if the overall wave phenomena 
from DNS can be decomposed into linear and non- 
linear parts, and the effects of the shock wave, and 
the 3-D basic flow can be identified. Due to the 
high computational demand of DNS, especially for 3- 
D DNS, more efficient numerical methods are desir- 
able. PSE, which were originally developed by Herbert 
and Bertolotti. Is-111 are certainly a good candidate 
for that purpose. In LST, in a Cartesian coordinate 
system, where (2, y, z) represent the streamwise, wall 
normal and spanwise directions respectively, the dis- 
turbances by the normal mode assumption are 

q’(z, y, 2, t) = t(y)ezp[i(m + Pz - 41- (1) 

1 

. 



(c)l999 American Institute of Aeronautics & Astronautics 

While in PSE, the disturbances are expressed as 

P’(X, Y, 2, t) = @(xc, y)exp[/= (YCZE + ipz - iwt], (2) 
10 

which subject to a constraint imposed to ensure the 
slow change in shape function +(x, y). 

The traditional difficulty in studying transition has 
been the streamwise ellipticity of the equations and the 
outflow boundary conditions to the passage of distur- 
bances. To bypass the traditional difficulty, Herbert 
and coworkers parabolized the governing equations by 
eliminating the streamwise derivatives that are higher 
than the first order utilizing the above form (Eq. 2) 
for disturbances. Spatial evolution of disturbances is 
then computed by an efficient space marching algo- 
rithm. Despite the parabolization, PSE exhibit weak 
ellipticity. Efforts have also been made to study the 
mathematical nature of PSE. The related papers in- 
clude Haj-Hariri li21, Li and Malik 1131 among with 
other papers. With careful treatment of numerical pro- 
cedure, PSE are capable of including the nonparallel 
and nonlinear effects neglected by the linear parallel 
theory. PSE have been embraced by many authors 
since their genesis. Chang et al. 1141, and subsequently 
Airiau et al. 115] have all utilized PSE as tools for sta- 
bility analysis. The PSE have been successfully applied 
to many subsonic and supersonic boundary layers for 
both linear and nonlinear stabilities. It has also been 
extended to study the cross flow instabilities over uasi- 
2-D boundary layers. 1’11 1131 Chmg and Malik 9 ‘6,171 

also investigated the linear and nonlinear stability of 
compressible growing boundary layers using PSE. Re- 
cently, Chang, Vinh and Malik [isI used PSE to study 
the linear stability of the reacting flows in hypersonic 
boundary layers. Three gas models, perfect gas, chem- 
ical equilibrium and non-equilibrium, were considered. 
Rankine-Hugoniout shock conditions were also applied 
at the shock. 

The latest developments in PSE are the extension 
of PSE to truely 3-D flows. Herbert 11g8201 discussed 
the progress in applying the PSE to 3-D applications. 
Previously, PSE were only used to solve the stability 
problems of 2-D and quasi-2-D boundary layers where 
the spanwise variation of the basic flow is ignored. Her- 
bert discussed the extension of 2-D PSE to PSE/SD 
where the disturbances grow both along the stream- 
wise and spanwise directions. The objective of this pa- 
per is to develop and demonstrate a modified 3-D PSE 
to solve for the stability of hypersonic flow over 3-D 
bodies, specifically 3-D elliptical cones, with nonpar- 
allel, 3-D and shock effects tocompare with the DNS 
solutions. The body geometry and the basic flow so- 
lutions of a Mach 15 flow over an elliptical blunt cone 

3 

are shown in Fig.1. Several modifications are needed 
for PSE to solve this types of problems. The presence 
of the bow shock over the 3-D body may require special 
treatment in PSE. Previously, shock jump conditions 
have been implemented for the linear stability analysis 
of 2-D parabolic bodies 1211, it is convenient to enforce 
the same conditions for PSE. The spanwise variation 
of basic flow is clearly seen f rom the spanwise cross 
section Mach number contour. What is also evident 
from the primary unsteady DNS results shown in Fig.4 
is the spanwise dependence of the disturbances. The 
situations differ from the cases described by Herbert 
PI 1111 m that the disturbances in the spanwise di- 

rection can be assumed to be periodic. These facts 
lead to an extension from 2-D PSE with the following 
features. The disturbances in the transformed coordi- 
nate system, where <,T, C are streamwise, normal, and 
spanwise direction respectively, are expressed as: 

where the determination of the 3-D dependence of 
$ = i([,v,C), and the 2-D dependence of (Y = a([,<) 
demand the 2-D PSE procedure to be modified. The 
modifications in the numerical methods and procedures 
necessary for 3-D PSE from 2-D PSE are the focuses 
of the paper. The demonstrations of 2-D PSE and 3- 
D PSE methods are only carried out for compressible 
boundary layers over flat plate at this stage. 

2 Governing Equations 

Both the compressible linear stability equations (LST) 
and the parabolic stability equations (PSE) originate 
from the compressible Navier-Stokes equations. The 
gas is assumed to be perfect Newtonian gas. The three 
dimensional Navier-Stokes equations in Cartesian coor- 
dinates (z* ,y* ,z*), where * denotes dimensional quan- 
tities, are. 

p*[~+u*.vu*]=-vp” 
+v-[X*(v~u*)I+/J*(vu*+vu*t’)], (4) 

g+v-(p’u’)=O, (5) 

p*c;~ [$g + u* VT*] = 
v-(k’vT*)+$g+u*-vu*+@*, (6) 

p* = p*R*T* , (7) 
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where u* is the velocity vector, p* is the density, p’ 
is the pressure, T* is the temperature, R’ is the gas 
constant, c; is the specific heat at constant pressure, 
k* is the thermal conductivity, p* is the first coefficient 
of viscosity, and X’ is the second coefficient of viscosity. 
The viscous dissipation function, a*, is given as 

@* = x*(v. u*p + f[vu* + VU*tr]2. (8) 

In the derivation of linear disturbance equations, 
we closely followed Malik’s I22l formulation in Carte- 
sian coordinates. The flow variables and equations are 
nondimensionalized as follows: velocity by U&, density 

by ~2, pressure by p:Uz, length scales by a fixed 
6 = dm, and time scale by 6*/U& where x* 
denotes distance from the leading edge. For PSE for- 
mulations in particular, 6 = 6(x:) is used where xz is 
the starting point in the streamwise direction for the 
marching procedure. Instantaneous flow variables are 
represented as the sums of mean values and fluctua- 
tions, i.e. 

u = w,Y,z)+qx,Y,z,q 
V = V(X,Y,Z) ++,y,z,t) 
W = W(z,y,z)+ul(x,y,z,t) (9) 

P = Rx,,,.) +P(x,Y,&t) 
T = T(x, y, z) + F(x, Y, z, t) 

The disturbance equations are recast using a com- 
pletely general transformation of the form: 

where <, 7, C are streamwise, normal, and spanwise di- 
rection respectively. 

Finally we obtain the disturbance equations in the 
following form, 

(11) 

where, @ = s^(E, 7, C)expL.jYL 4’ - iwT)l . (17) 

(12) 

Early DNS results for the hypersonic flow over 3- 
D bodies with elliptical cross sections show that the 
wavenumbers of the disturbances CY vary in both c, and 
C directions, that is (Y = (r(<, 0, see Fig.4. This fact en- 
tails determination of the spanwise dependent Q in the 

2.1 2-D PSE and 3-D PSE formulation 

To derive the 2-D PSE formulation, the disturbance is 
expressed in the following form: 

or 

6=4A , (14 

where Q = a(E) only for 2-D PSE, and A = 
ew[$< odt + ip[ - iwr)]. Substituting the PSE a.+ 
sumptions, 

and ignoring the 0( 1 /R2) terms, Eqs 11 can be rewrit- 
ten as the following: 

where a, 8,6, L? are operaters acting in 77 direction. 
p is assumed to be real and is contained in A, B,c 
along with the basic flow terms. This formulation is 
consistent with the well accepted 2-D PSE formulation. 

For problems such as compressible flow over 3-D bod- 
ies with elliptical cross sections, one may assume dis- 
turbances only grow streamwise. Also ,L? may vary in 
the streamwise direction. The basic flow is 3-D. More 
importantly, the disturbances are also 3-D. So the 2- 
D PSE assumptions may not be suitable for stability 
analysis. However, 3-D stability analysis is still in its 
infancy. Here a 3-D PSE formulation is proposed to 
fully account for the 3-D nature of basic flow. In this 
3-D PSE formulation, the local shape function j is as- 
sumed to be 2-D, that is 6 = i(v, C). Accordingly, the 
normal wave assumption is relaxed in the spanwise di- 
rection C, which leads to 

3 
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marching procedure, which is achieved with a special 
normalization procedure extended from the standard 
2-D PSE normalization procedure. The normalization 
procedures are discussed in the next section. Here, we 
present the formulation of 3-D PSE as follows: 

where the spanwise wavenumber ,B in the 2-D PSE for- 
mulation is replaced by spanwise (C) direction deriva- 
tives. The coefficient matrices are defined over the co- 
efficient matrices in Eq.11 as: 

Ai=A- iwB + id + iqF 
+iqL - CY~F, 
6=C-!-2iaF, 
c= D+iaI 

fi=G (19) 

k= E+iaL 
p=H 
G=J 

3 Numerical Methods 

Solving 2-D PSE entails numerical discritization in 
both the streamwise and wall normal directions. Typ- 
ical discritixation method in the streamwise direction 
is the implicit backward Euler method. In the wall 
normal direction, the use of spectral collocation meth- 
ods and fourth order finite different methods (4FDM) 
are both reported. The determining factor in choos- 
ing the streamwise schemes is stability. In the wall 
normal direction, schemes with the grid distributions 
suitable at certain Mach number are chosen, because 
of the outward moving tendency of the boundary layer 
as Mach number increases. For practical reasons, cur- 
rent PSE also use the implicit backward Euler in the 
streamwise direction. A spectral collocation method 
with an algebrai~tretching function is used for Mach 
number less than 4.5 cases, whereas 4FDM is used for 
Mach 4.5 cases. 3-D PSE require discritization in span- 
wise direction also. When the number of grid points is 
limited and simple wave solutions are expected in the 
spanwise direction, a Fourier collocation method is a 
good candidate. 

3.1 Spectral collocation method 

The Neuman conditions on pressure are enforced as 

(20) 

where a and b are evaluated at the two boundaries using 
the normal momentum equations. Dirichlet boundary 
conditions are used for the flat plate boundary layer 
case both at the wall and the free stream: 

ikd=ti=T=O&J=O (21) 

When the shock is present, in addition to the above 
formulation, the Rankine-HugcGriot shock jump condi- 
tions derived early lzll replace the free stream bound- 
ary conditions. 

Having laid out the formulations for 2-D and 3-D 
PSE, the numerical methods used for solving the equa- 
tions are discussed in the following section. 

The discretization formulas using the s ectral colloca- 
tion method can be found in Malik I22 P and are given 
below for completeness. 

The Nth-order Chebyshev polynomials TN are de- 
fined on the interval j E [-I, I]. The collocation points 
tj, which are the extrema of TN, are 

cj F COSTS- 4 = 0, 1, . . . , N. (23) 

In order to apply the spectral collocation method, an 
interpolant polynomial is constructed for the depen- 
dent variables in terms of their values at the collocation 
points. An Nth-order polynomial is 

(24) 
kc0 .~ 

where the interpolant XL(e) for the Chebyshev scheme 
is 

(25) 

4 
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where CO = CN = 2, and Ck = 1, 0 < k < N. 

The first derivative of q5([) may be written as 

(26) 

where Ejk are the elements of the derivative matrix 
defined as: 

Ejk _ ‘j (-lJk+j 
ckm’ 

j#k (27) 

tj 
Ejj = 2(1 _ p) 8 

2NZ+1 
Eoo = -ENN = -_ 

6 

(28) 

(29) 

The transformation between physical and computa- 
tional domains is 

(30) 

where 

b = kk& a = YiYma= 
Ym.az ’ Y,.,-2Yz' (31) 

Half the grid points are located between yi and the 
wall, 

Therefore the scaling factor for the transformation 
between physical domain y and computational domain 
( is given as 

s.=ar . 
3 

BY ' 
j = 0, 1, . . . . N 

j 

then the first derivative matrix F in the physical do- 
main may be written as 

Fjk = Sj Ejk 

and the second derivative matrix Gjk is 

(33) 

(34) 

5 

The stretching function for this collocation method is 
the algebraic stretching where yi is normally assigned 
to be the displacement thickness of the boundary layer. 

3.2 Fourth-order 
method 

finite-difference 

In implementing the fourth-order finite-difference 
method, we use a non-staggered grid. One-sided dif- 
ference formulas which do not involve the wall points 
are used to approximate the first derivative of 9. The 
derivatives to be represented here are assumed to be 
D4/dy, D24/dy2. The fourth-order finite-difference 
formulas at a grid point j, where j is from 1 to N + 1, 
are the following. 
Forjfrom3 toN-1, 

D2dj = & 
(-4j+2 + lWj+l - 3O$j + 164j-1 - $j-z), (35) 

(-dj+2 + Wj+l- Wj-1 + 4j-2). 

For j = 2: 

(36) 

D2dj = +(lOdj-1 

-1Wj - Qj+l + I%$+2 - 6$j+3 + 4j+4), (37) 

D4j = h(-Sdj-l- 1Odj 

+lWj+l - Wj+2 + 4j+3)- 
(38) 

For j = N: 

D24j = *(4j-4 - Wj-3 
+14dj-2-4+j-1- 15$j+lO(bj+l), 

(39) 

Ddj = &(-4j-3 + Wj-1 

--18dj-l+ lO+j + 3$j+l). 
(40) 

The first derivative of 6 near the wall are given below. 
For j = 2: 

D4j = h(-Wj + 484j+l 

-364j+2 + 1Wj+3 - 34j+4)- 

For j = 3: 

(41) 

D4j = &(-3+j-l- 1Odj 

+lWj+l- Wj+2 + 4j+3). 
(42) 
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For j = N: 

D4j = &(3$j-4 - lWj-3 
+36dj-a -_48dj-i + 25dj). (43) 

Forj=N-1: 

Ddj = &(-4j-3 + Wj-2 
-lWj-1 +_lOdj + Wj+l). 

(44) 

The stretching functions used for the 4FDM method 
vary with Mach number. Instead of clustering points 
close to the wall as in the low Mach number cases, at 
Mach 4.5, a stretching function that clusters grid points 
near an interior point is used for satisfactory results. 

3.3 Fourier collocation method 

The Fourier collocation method is used in the spanwise 
direction for the test case where Cartesian coordinates 
(z, y, z) are used. The spanwise grid distribution is 
uniform with 

zj = 3 N, 2 E [O,Jq, L= I,- (45) 

where N is the number of grid points in z direction. 
Note here that the spanwise direction is scaled with 
the spanwise wave length. The-Fourier collocation dif- 
ferentiation matrices are: 

where dij may be evaluated in closed form: 

dfj = t(-l)‘+jcot(w), 1 #J, 
dtj = 0, 1 = j. (47) 

3.4 3-D PSE formulation 

For the simple test case of flat plate boundary layer 
with periodic solutions in the spanwise direction, accu- 
rate results can be achieved with very few grid points 
by using the Fourier collocation method. The use of 
the Fourier collocation differentiation in the spanwise 
direction entails a different scale in the spanwise di- 
rection. When simple wave solutions are expected in 

the spanwise direction, the grid points are uniformly 
distributed in C. A natural choice of scale in this sit- 
uation is thus the wave length Xc. Thus the resealed 
PSE equations are: 

(48) 

A major difference between 2-D and 3-D PSE is that, 
in 3-D PSE, local shape functions 4 are 2-D and are 
solved simultaneously. The local 2-D shape functions 
are also used to update the local wavenumbers Q that 
vary in the spanwise direction. 

3.5 2-D and 3-D PSE procedures 

Both 2-D and 3-D PSE formulations can be rewritten 
in a simple format. Using a simple first order discriti- 
zation scheme in the streamwise direction gives the fol- 
lowing equation system to be solved at streamwise loca- 
tion i+ 1 given the solutions at the previous streamwise 
location i and the basic flow: 

(49) 

The computational cost in the eventural complex ma- 
trix inversion to obtain 6 increases proportionally with 
the grid numbers used in the spanwise direction, NC. 
For 2-D PSE, the rank of the square complex matrix 
to be inversed is NV, whereas for 3-D PSE, NV NC. 

An iterative procedure starts with assuming oi+l = 
cyi, the following steps follow: 

Solve for $;+I while evaluating matrices Mr , Iw2 at 
j + 1 using implicit backward Euler scheme. 

Update oi+lm based on the new bi+r, @i and some 
choice of normalization schemes. 

Check if ozr - of+r < c. If yes, i = i + 1. If no, 
go back to step 1. 

This procedure is repeated until the whole domain 
is traversed. No@ here that o = o(t) for the 2-D PSE, 
and Q = cr(E, 7) for the 3-D PSE. For the 2-D PSE, two 
formulas, namely, 

(50) 

6 
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1 

where Cm may be the maximum streamwise distur- 
bance in the wall normal direction at a fixed streamwise 
location, 

Table 1: Effects of marching step size. Ro = 480, R = 
963.7 

ai difference 
Ax = 10 -0.2722ie - 3 - 
Ax = 20 -0.27449e - 3 0.8% 
Ax=40 -0.27890e - 3 2.0% 

where t denote complex conjugates and E is given as 

E= #q1iy2 + ICI2 -I- lzu12)d~ (52) 

which is independent of the wall normal coordinate. 
These two normalization schemes are referred to later 
in the paper as ‘u. and E normalizations respectively. 

For 3-D PSE, the local wavenumbers CY vary with 5. 
Both ‘1~ and E normalizations have to be extended for 
the C dependency. The u and E normalization formulas 
are modified, respectively, to be: 

(53) 

where k is the index for the spanwise grid points. Since 
at a fixed streamwise location c, there is one ok cor- 
responding to one spanwise location k, the extended 
normalzation procedure updates a[k] at each span- 
wise grid points before next iteration. The converged 
shape function satisfies the normalization condition at 
all spanwise locations and thus all o[k], k E [l, NC] 
are updated. This procedure allows the variation of 
wavenumbers in the spanwise direction which is ob- 
served in the early DNS results for the hypersonic el- 
liptical cone case. 

3.6 Initial conditions 

The initial conditions for 2-D PSE come from either 
the nonparallel linear stability solutions or an iterative 
procedure solving the first order Taylor series expan- 
sions of the parallel linear stability results. The details 
of the latter method can be found in [8]. For 3-D PSE, 
the initial conditions may be obtained by extending 
the linear stability solutions to 3-D. Perhaps a better 
way for 3-D PSE is to use the DNS receptivity results 
which embodies both the receptivity mechanism near 
the leading edge and the 3-D nature of the basic flow 
and disturbance for the initial conditions. 

Table 2: Effects of wall normal grid points. Rc = 
400, R = 774.3 

-0.1292. - 2 
difference 

NY = 121 - 
NY =61 -0.12809e - 3 0.7% 

4 Code Validation and Result 
Discussion 

The linear PSE results for compressible flat plate 
boundary layer are presented along with previously 
published results for validation purposes. Since the 
3-D PSE code has been developed only recently, it has 
not been put to test against the DNS simulations due 
to the time constrain. For all the results presented, 
the computational field is scaled with So (except for the 
spanwise direction in the 3-D PSE cases), the boundary 
layer thickness at the starting point Ro. Other con- 
stants used throughout include ymaz = 100, Prandtl 
number Pr = 0.72, 7 = 1.4. 100 grid points are used 
in the wall normal direction. 

4.1 2-D PSE results at Mach 1.5 

The linear stability characteristics for Mach 1.5 flat 
plate boundary layer were studied using PSE with a 
single domain spectral collocation method in some de- 
tail by Bertolotti . [*I We use this case as a benchmark 
case for code validation and method evaluation. The 
stagnation temperature is TO = 298.58K. The fre- 
quency F defined as 

27rfv 
FE- 

CL 

is F = 40 x 10e6. E is set to lo-’ in updating cr. The 
initial conditions come from the nonparallel LST solu- 
tions. Figure 4 shows the growth rate based on parallel 
LST and PSE formulations using u and E normaliza- 
tion formulas. The parallel linear stability and PSE 

7 
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results from Bertolottl . P 1 are also shown for compari- 
son purposes. The parallel linear stability results are 
seen to be in good agreement. The PSE results using u 
normalization agree quite well in general. The disagree- 
ment at low Reynolds number may be contributed to 
different marching step size and maybe different initial 
conditions. Another feature tom be noticed is the dif- 
ferent growth rates result from different normalization 
formulas (U and E formulas in this case). This feature 
makes the nonparallel effects hard to interpret because 
the growth rate based on u is generally smaller than 
that based on E, while the parallel stability results are 
in between at Reynolds number less than 800. The real 
part of the wavenumbers from LST and PSE using u 
and E normalization formulas are shown in the bottom 
plate of Fig. 4. It is quite interesting to notice that 
although the two normalization formulas produce quite 
different growth rate curves, which envelope the paral- 
lel LST results at R < 800, their real wavenumbers (Y,. 
are close and are quite different from their LST coun- 
terparts. Indeed, although different growth rate curves 
are produced by using different normalizations, the 
recombined instant disturbances I+-“; (COSQ, , isincu,) 
prove to be the same. This is shown in Fig.5 for both 
6,. (top plate) and & (bottom plate) in contours over 
the disturbance field. The results using different nor- 
malization formulas produce the same contours. This 
fact csn serve as a check for the-various normalizations 
in that different normalizations should return the same 
instantaneous disturbances. : 

The effects of using 4FDM and spectral collocation 
schemes for wall normal direction differentiations are 
illustrated in Fig.6. The growth rates (pi obtained us- 
ing the two schemes are compared in the upper figure, 
the real wavenumber (Y, the lower figure. The (pi com- 
parisons show the difference to be within O( l/R). The 
difference in (Y, seems to be quite small. The choice 
of discretization schemes indeed depends on whether 
the schemes can provide proper cluster of grid points 
at regions of high gradient. In a low Mach number 
range, for example, at Mach 1.5, both schemes pro 
vide proper stretching. The situation changes as Mach 
number increases and the high gradient region moves 
outward from the wall. The use of the simple spectral 
collocation methods often fails to provide good results. 
The remedy may be the use of double domain spec- 
tral collocation methods, or high order finite difference 
schemes such ss 4FDM with a stretching function clus- 
tering enough points in the middle region between the 
wall and the free stream. However, whether the con- 
vergent results can be obtained also depends on the 
streamwise marching step size as well as the the initial 
conditions. 

8 

In an attempt to resolve the issue whether the small 
difference in Q; from the PSE results as shown in Fig. 
4 is due to the methods in obtaining initial conditions. 
The iterative Taylor expansion method described in 
Bertolotti lsl is implemented and used to obtain the 
initial conditions. These initial conditions and the non- 
parallel LST initial conditions as used to obtain two 
sets of PSE results which are compared in Fig. 7. It 
is evident that the use of different sets of initial condi- 
tions at Mach 1.5 does not affect the PSE results except 
near the starting position Ro. 

The accuracy of PSE is known to be 0(1/R). The ef- 
fects of different step sizes and different numbers of wall 
normal grid points are shown in Tables 1 and 2. The 
difference in oi in~both tables are well within 0(1/R), 
which indicates that, the computational demand of PSE 
is quite flexible. We notice that using Nbl = 181 as in 
the case shown in Table 2 does not lead to convergent 
results, which may be the result of high x and y step 
size ratio. 

4.2 PSE results at other Mach numbers 

Having studied the stability of Mach I.5 flat plate 
boundary layer, the performance of the 2-D PSE code 
at other Mach numbers are explored. At Mach 0.02 and 
otherwise the same conditions as in the Mach 1.5 case, 
the parallel LST results and PSE results are shown in 
Fig. 8 in comparison with Bertolotti’s results. The 
agreement is excellent. Also noticable is that the non- 
parallel effects, or the difference between the LST and 
PSE results, are quite small at this low Mach number. 

Mach 1.6 results are shown in Fig. 9 for~b = 0 
(2-D wave) and b = 0.1 (oblique wave) cases, where 
b = PR/lOOO. The PSE results from Bertolotti is also 
shown. The results indicate that the instability is of 
first mode naturein that the instability is amplified 
when it is oblique. The other reason to show this com- 
parison is the availability of PSE shape functions for 
the oblique wave&e at R = 750 from Bertolotti 181. 
The match in shape functions IS] and /?I shown in 
Fig.10 are excellent. 

The Mach 4.5 results with F = 120 x 10-s and 
Te = 311K are shown in Fig. 11. 4FDM with a 
stretching function clustering grid points near a mid- 
dle point outperforms the single domain collocation 
method with algebraic stretching. Both LST and PSE 
results are shown with Chang et ah results. 1161 The 
first modes switch to second modes between R = 1200 
and R = 1400. The nonparallel basic flow stablizes the 
first modes and destablizes the second modes. 
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b 

4.3 3-D PSE results 

a, 
The 3-D PSE code is implemented for solving the sta- 
bility of hypersonic flow over 3-D elliptical cones. The 
results presented here are only a test case where the 
oblique disturbances of Mach 1.5 flow over a flat plate 
are simulated. 2-D PSE can handle this problem by 
simply setting a constant p and marching along a 
streamwise path. This test case serves as a test of con- 
cept, doability and correctness of the numerical codes 
for 3-D PSE. 3-D PSE use spanwise Fourier collocation 
differentiations to resolve the spanwise periodic wave 
components. 4 points are enough in the spanwise di- 
rection for the test runs. The initial conditions are the 
3-D nonparallel linear stability results expanded in z 
direction by multiplying linear stability eigenfunctions 
with e’@. For the current numerical setup, the inver- 
sion of the complex square matrix of rank 5 x 100 x 4 
is needed and is the most costly computational task. 
Figure 12 shows the growth rates by the 2-D and 3-D 
PSE methods as well as the results from Bertolotti. 181. 
The 2-D and 3-D PSE results are found to be identical 
up to machine precision. Finally, the 3-D disturbance 
field obtained with the 3-D PSE are shown in Fig.13 
in contours of Fr (upper figure) and C, (lower figure). 
The oblique wave angle and the growth of the 3-D dis- 
turbances are clearly illustrated. 

5 Conclusions 

2-D and 3-D PSE codes are developed and tested for 
the stability of supersonic flow over flat plate cases. 
Numerical aspects of PSE are discussed including the 
effects of different discritization schemes, different ini- 
tial conditions. The effects of nonparallel basic flow are 
also discussed. The 3-D PSE procedures are laid out 
and will be used to solve for the stability of hypersonic 
flow over an elliptical cone case. 
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Figure 1: Mach 15 flow over a 2:l blunt elliptical body 
The cross section contours are the Mach number con 
tours. 
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Figure 2: Instantaneous presure perturbations on body 
surface induced by freestream plannar acoutstic distur- 
bances on two spanwise locations. 

Figure 3: Mach 15 flow unsteady receptivity simula- 
tion results. Instantaneous entropy perturbations on 
body surface induced by freestream plannar acoutstic 
disturbances. 
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Figure 4: Linear stability results at Mach 1.5. Growth 
rate, (Y;, is shown in the top plate. Wavenumber, at, 
is shown in the bottom figure. Parallel linear stabil- 
ity results are compared with the nonparallel PSE re- 
sults using u and E normalization formulas. In the top 
plate, results from Bertolotti (1991) is also shown for 
comparison. 

Figure 5: Instantaneous disturbance contours. The 
shape functions and the complex wavenumbers (CC,, oi) 
are recombined to give the disturbances. Top half, C+, 
bottom half, @r. 
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Figure 6: Linear stability results at Mach 1.5. Growth 
rate, a;, is shown in the top plate. Wavenumber, cy,, 
is shown in the bottom figure. Nonparallel PSE results 
using 4FDM and spectral collocation methods are com- 
pared. 

Figure 7: Nonparallel PSE results at Mach 1.5. Re- 
sults using initial conditions obtained from nonparallel 
LST solutions and from the iterative Taylor expansion 
methods are compared along with Bertolotti’s results 
(1991). 

Figure 8: Growth rates at Mach 0.02. Parallel linear 
stability results are compared with the nonparallel PSE 
results using u normalization formulas. Results from 
Bertolotti (1991) is also shown for comparison. 
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Figure 9: Growth rates at Mach 1.6 for b = 0 and 
b = 0.1. For b = 0, parallel linear stability results 
are compared with the nonparallel PSE results using u 
and E normalization formulas. Results from Bertolotti 
(1991) is also shown for comparison. For 6 = 0.1, only 
the ‘~1 normalization results are shown. 
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Figure 10: PSE shape functions ICI (upper plate) and 
Iri’l (lower plate) at Mach 1.6 with b = 0.1. The symbols 
are results from Bertolotti (1991). 
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Figure 11: Growth rates at Mach 4.5. Parallel linear 
stability results are compared with the nonparallel PSE 
results using u normalization formula. Results from 
Chang (1993) is also shown for comparison. 

Figure 12: Comparisons of 2-D and 3-D PSE results 
at Mach 1.5 for b = 0.15. Growth rates are updated 
using ZL normalization formula. Results from Bertolotti 
(1991) is also shown for comparison. 

Figure 13: 3-D PSE results at Mach 1.5 for b = 0.15. 
Upper figure, contours of j$. Lower figure, contours of 

Er. 
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